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We present a framework for a class of sequential decision-making problems in the context of general
interdiction problems, where a leader and a follower repeatedly interact. At each period, the leader allocates
resources to disrupt the performance of the follower (e.g., as in defender-attacker or network interdiction
problems), who in turn minimizes some cost function over a set of activities that depends on the leader’s
decision. While the follower has complete knowledge of his problem, the leader has only partial information,
and needs to learn about the cost parameters, available resources, and the follower’s activities from the
feedback generated by the follower’s actions. We measure policy performance in terms of its time-stability,
defined as the number of periods it takes for the leader to match the actions of an oracle with complete
information. In particular, we propose a class of greedy and robust policies and show that these policies are
weakly optimal, eventually match the oracle’s actions, and provide a real-time certificate of optimality. We
also study a lower bound on any policy performance based on the notion of a semi-oracle. Our numerical
experiments demonstrate that the proposed policies consistently outperform a reasonable benchmark, and

perform fairly close to the semi-oracle.
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1. Introduction

Bilevel optimization deals with problems where a subset of the lower-level decisions are constrained
to be a solution of another mathematical program that depends on the remaining upper-level
decisions. This general structure makes bilevel programs useful for modeling hierarchical decision-
making problems between multiple, typically, two actors, commonly referred to as the leader
(an upper-level decision-maker) and the follower (a lower-level decision-maker), see Colson et al.
(2007). In this perspective, the leader solves an optimization problem that depends on the optimal
solution to the follower’s problem, and this latter problem is, in turn, parameterized by the leader’s
decisions. Bilevel programs are used in several application areas such as law enforcement (Morton

et al. 2007), defense (Brown et al. 2006), economics (Sherali et al. 1983), transportation (Lucotte
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and Nguyen 2013), energy (Bard et al. 2000), revenue management (Coté et al. 2003), among
others; see Colson et al. (2007) and the references therein.

An important class of bilevel programs, known as maz-min bilevel problems or interdiction prob-
lems, deals with settings where the leader and follower are adversaries. More precisely, in these prob-
lems the leader’s objective is to maximally degrade the performance of the follower. As an example,
consider network flow interdiction problems, which have applications in military and smuggling pre-
vention settings. Here, the follower operates a network with the objective to move between two ver-
tices through a shortest path (Israeli and Wood 2002), to send the maximum flow possible between
two vertices (Wood 1993), or more generally, to move flow in the network at minimum cost subject
to some demand balance constraints (Smith and Lim 2008). The leader, by using the resources at her
disposition, can block (either totally or partially) a limited number of arcs and nodes in the network.
Her objective is to allocate her resources so as to maximize the length of the follower’s shortest path,
minimize the maximum flow, or maximize the minimum cost incurred by the follower, respectively.
These types of models are also used in surveillance settings, where the leader places resources (e.g.,
sensors) in a network to minimize the follower’s probability of evasion, see Morton et al. (2007).

Network flow interdiction models belong to a larger class of Attacker-Defender (AD) or Defender-
Attacker (DA) models (Wood 2011). In a typical AD setting, an attacker (the leader) and a defender
(the follower) interact during a war-time confrontation: the attacker allocates her forces so as to
disable assets of the defender’s infrastructure; the defender decides how to operate his system at
minimum cost given the restrictions set by the leader’s attack. The leader decides her allocation
with the objective to maximize the defender’s operational costs. Conversely, in a DA model, a
defender (the leader) allocates her limited defensive resources to protect her assets, and an attacker
(the follower), for a given defensive configuration, seeks for the most effective attacks. Here, the
defender’s objective is to allocate her resources so as to minimize the effectiveness of the attacks. In
general, AD and DA models can be casted as interdiction problems to model decisions in a broad
range of application areas: see, e.g., Salmeron et al. (2004), Brown et al. (2005).

Typical formulations of interdiction problems in the literature assume a single interaction
between the leader and the follower, and that either the leader knows all the parameters of
the follower’s problem (as in the references discussed above), or that she knows a probability
distribution over the set of problem configurations and parameters (see, e.g., Held et al. (2005)).
Hence, these models solve a single (possibly stochastic) interdiction problem, assuming that even
if the leader and the follower interact across several periods, the leader would implement the
resulting full-information solution at every time period. In contrast, many applications inherently
involve multiple interactions between the leader and the follower (e.g., as in smuggling interdiction

and AD-DA problems). More importantly, in these problems the leader does not always know
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with certainty the system that the follower operates, and cannot estimate it (a priori) reliably due
to the adversarial nature of their confrontation. Consequently, she has incomplete information of
the problem solved by the follower at each time period, and has to learn about it through time by
observing the follower’s reactions to her actions.

Departing from the existing literature, this paper studies sequential interdiction problems with
incomplete information (SIPI). In these problems, the leader and follower interact repeatedly:
at each stage the leader implements a set of actions and then observes the follower’s reaction;
from the information, or feedback, she gets from the follower’s response, the leader (potentially)
updates her knowledge of the follower’s problem, and incorporates this information into her
decision-making process. Observe that in SIPI, besides determining how to allocate her resources,
the leader faces additional questions outside the scope of traditional bilevel models, as she needs to
recognize whether a given upper-level solution is the best possible, she needs to force the follower
to disclose as much information as possible, and needs to exploit this newly learned information
to best re-allocate her resources in future periods. Therefore, given the leader’s limited knowledge
of the follower’s problem, at each time period she faces a form of the exploitation vs. exploration
trade-off: she must choose either to exploit the current information so as to maximize her
immediate reward, or to explore solutions that albeit not being maximally rewarding, may reveal
new information that can be used to implement better solutions in future periods.

For the reasons above, SIPI can be viewed as a class of online optimization problems (Cesa-
Bianchi and Lugosi 2006). In particular, SIPI can be framed as an adversarial multi-armed
bandit problem (Auer et al. 2002). However, naively using bandit policies would result in regret
bounds that are ezponential in the primitives of the SIPI (where regret is the difference between
the costs incurred by the decision-maker and those incurred by an oracle decision-maker with
complete up-front knowledge of the problem, see Cesa-Bianchi and Lugosi (2006)). This follows as
the number of solutions of a bilevel linear problem is typically exponentially large in the number
of its variables and constraints, in the worst-case (Colson et al. 2007).

Multi-armed bandits do not yield polynomial regret bounds for SIPI as they make no specific
assumptions about the relationship between the actions of the decision-maker and the costs
associated with these actions. In this sense, online models with particular structures have been
studied in the literature, see for instance, online convex (Zinkevich 2003, Hazan 2015), online
combinatorial (Audibert et al. 2013), and online linear (Agrawal et al. 2014) models. However,
these models assume a single-level relationship between the decision-maker’s actions and the costs
she observes. As a consequence, SIPI does not fit these frameworks due to the hierarchical (and

generally non-convex) relationship between the leader actions and the responses she observes.
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Given the limitations of current online models, in this paper we develop a general framework
for SIPI. We represent the leader’s and follower’s decisions in terms of resources and activities,
respectively. Initially, the leader does not know all the follower’s activities and constraints, and as
such, she might not know all of her resources or constraints. The leader learns about an unknown
follower’s activity as soon as she observes him performing it, and at the same time learns about
all the lower-level constraints that restrict this activity, all the leader’s resources that interfere
with that activity, and all upper-level constraints associated with the newly learned resources.

From a technical point of view, we first make the assumption that for every activity, resource, and
constraint she knows, the leader also knows the corresponding entries in the upper and lower-level
constraint matrices and the right-hand side vectors in a typical bilevel programming formulation
of the full-information problem. However, we suppose that the leader does not know with certainty
the components of the follower’s cost vector for the activities she knows; she only knows that they
belong to a certain (polyhedral) uncertainty set. Furthermore, in Section 4 we analyze a more
general uncertainty model, where the uncertainty extends beyond the follower’s cost vector.

Besides learning new activities, resources, and constraints, the leader can also observe addi-
tional information of the follower’s problem from his response. In this sense, we introduce the
notions of Standard feedback, and its specializations, Value-Perfect and Response-Perfect feedbacks.
In Standard feedback, the leader observes the total cost the follower incurs at each time period;
in Value-Perfect feedback she also observes the cost coefficient associated with each activity used
by the follower at that time, while in Response-Perfect feedback she also observes the value of the
decision vector for the activities performed by the follower.

We measure the performance of the leader’s decision-making policy in terms of its time-stability.
This is defined as the first time period by which the cost the follower incurs coincides with the
best possible cost an oracle leader with complete knowledge of the problem attains from there on.
Time-stability is closely related to the notion of regret used in online optimization; in particular any
upper bound on the time-stability of a policy implies an upper bound in the regret of that policy.

In this paper we analyze a set of greedy and robust policies, which we denote by A. The policies
are greedy because at any time they exploit the leader’s information of the follower’s problem so
as to maximize the follower’s costs at the current time period, and they are robust because they
assume that the follower’s cost vector realizes its worst case for the follower. For these reasons,
implementing the policies in A involves solving at each time a max-min bilevel problem with lower-
level robustness constraints. Hence their computation requires both bilevel and robust optimization
techniques: we develop a method that first replaces the lower-level robust optimization problem by
its equivalent linear program counterpart (Ben-Tal et al. 2009), and then reformulates the resulting

linear bilevel program as a one-level mixed integer program (Audet et al. 1997).
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We demonstrate that the time-stability of policies in A under Value-Perfect and Response-
Perfect feedback is upper bounded by the number of follower’s activities. We show that these
policies are optimal in the sense that they attain the best possible worst-case time-stability across
all possible problem instances. Furthermore, they provide a certificate of optimality in real time.
We also develop a method to provide a lower bound for the time-stability of any policy based on
the concept of a semi-oracle. The semi-oracle has full information of the problem beforehand, but
can only use the leader’s resources whose existence has been revealed by the follower’s actions. As
such, the semi-oracle combines the knowledge of the standard oracle with the practical limitations
of the leader and thus, provides an informative lower bound on the performance of any policy. Our
numerical results show that the policies in A consistently outperform a reasonable benchmark,
and perform reasonably close to the semi-oracle.

The present work is connected to the shortest-path interdiction model with incomplete infor-
mation discussed in Borrero et al. (2016). Particularly, the aforementioned model can be viewed
as an SIPI where the bilevel problem is a shortest-path interdiction problem, the feedback is
Value-Perfect, the uncertainty set is a hypercube, and there is incomplete information only about
the follower’s cost vector. In this sense, our work generalizes the results of Borrero et al. (2016) to
account for general interdiction models with Value-Perfect feedback, polyhedral uncertainty sets,
and uncertainty in the follower’s cost vector. Moreover, we extend many of these results to SIPI
problems where feedback is Response-Perfect or Standard and where there is uncertainty in the
follower’s constraint matrix. In addition, in this work we measure the performance of policies in
terms of worst-case time-stability rather than in terms of efficiency (see Borrero et al. (2016));
the former is a more transparent and informative measure of performance, see Section 2.1.

The remainder of the paper is organized as follows. In Section 2 we provide a mathematical
formulation of the problem. Section 3 discusses greedy and robust policies, while Section 4 extends
most of the results of greedy and robust policies for the case of uncertainty in the lower-level
constraint matrix. Section 5 discusses the semi-oracle benchmark and Section 6 presents numerical
experiments. The proofs of the main results are provided in the manuscript; supporting material

and the remaining proofs are given in the online supplement.

2. Basic Model: Cost Uncertainty

Before describing the main model of this section, we first consider the single-stage model with full
information. Here, the leader can use any resource i € I, |I| < oo, and for each i € I she chooses a
value z; > 0 such that z:= (z;: i € I) € X, where X denotes the set of feasible resource levels. We

let C';, denote the set of constraints faced by the leader and assume that X is given by

X ={zeZ" xR Hz<h},
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where 0 <k <|I|, H:=(Hy:deCp,icI)e Rl and h:= (hy,d € Cp) € RICL].

The follower, on the other hand, reacts after the leader chooses . He can pick different levels
among his activities in a finite set A: we let y, denote the level by which activity a is performed,
and define y == (y,: a € A). By performing activity a at level y, the follower incurs a cost of ¢, - yq,
and hence he desires to select y so as to minimize his total costs. His choices for y are limited,
however, as y should satisfy all the constraints in a set C'r and should also be feasible given the

leader’s decision x. Therefore, the follower selects vector y(z), where for any z € X
y(z) cargmin{c'y : yeY(x)}, with Y (z):={y € Z’ x R'f‘*b . Fy +Lz < f}. (1)

For any x € Z% x RK‘_k, Y (z) is the follower’s set of feasible actions given the leader’s decision z.
In (1), c:=(c,: a€ A) e R F:=(F,,: d€ Cr,a € A) belongs to RICF*IAI [ .= (Ly: deCr,ic
I) belongs to RICFIXIIl and f := (f;,d € Cp) € RI°FI. In addition, 0 < b < |A| indicates the number
of discrete variables of the follower’s problem.

The objective of the leader in the full-information bilevel model is to choose the x € X that

maximizes the cost the follower faces. Therefore, she solves the following bilevel problem

z* =max c'y (2a)
st. Hz <h,zeZ" xR!™* (2b)
yecargmin{c'y': Fy'+ Lo < f, y' € Z', x ]R‘f‘*b}. (2¢)

In contrast with this usual single-stage interdiction problem with complete information, we
assume that the leader and the follower interact sequentially, once per period in 7 ={0,1,...,T},
that at all times the follower has the information needed to compute y(x), but that this is not
the case for the leader. We assume that at time ¢t = 0 the leader does not fully know the set of
activities A, and hence potentially neither Cr, nor the value of all the data defining region Y (z).
In addition, as some leader’s resources might be only available if some of the follower’s activities
are known, she might have only partial information regarding I, C}, and the set X.

Specifically, at the beginning of each time ¢ € T the leader is aware of a subset of the follower’s
activities A* C A, a subset of the leader’s resources I C I, a subset of upper-level constraints C% C
C'r, and a subset of lower-level constraints C}, C Cr. The contents of A, I*, C%, and C}. depend on
the set of activities, resources, and constraints the leader initially knows, denoted by A%, I°, C?, and
(Y, and on all the activities, resources, and constraints she has learned from the feedback generated
by follower’s responses until time ¢ — 1, see Figure 1. Furthermore, the leader’s knowledge of the fol-

lower’s lower-level problem data is limited, and in this direction we make the following assumptions:
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A1l: At any time t € T the leader knows with certainty the values of F*':= (F,,: d € Ch,ac A")
and f':=(fy: d€ CL). In addition, the leader knows with certainty all her data (both upper-level
and lower-level) with respect to the resources in I*, that is, at time ¢ she knows with certainty
H':=(Hy:deC},iel"), h':==(hg: deC}) and L' := (Ly;: de Ck,i€1").

A2: The leader does not know with certainty all the entries of ¢ but she knows that
c':=(c,: a€ A") eU", with

U :={e' eRM . Glét < g'}.

If CY, is the set of constraints of polyhedron U*, then G* € RI°TI*I4"l and gt € RI°U!. We assume
that both G* and g are known with certainty to the leader at time ¢.
A3: The matrix H and vector h take non-negative values.

A4: For any x € X, Lz < f.

1. The leader chooses z* € X*, where
Xt={zez¥ xR!I'™" . H'z<h'}, (3)

and k', 0 < k' <|I'|, is the number of resources in I* whose levels are discrete.
2. The follower solves the lower-level optimization problem given that the leader implements z*:
2= min{cTy: Fy+ ZLZLC: <f,yeZf x R‘f‘_b},
Y ielt
where L; is the i-th column of L. Denote by y* the solution of this program that the follower implements.
3. The response of the follower generates feedback F*; see Section 2.2 for its definition. The leader
observes the information in F* and uses it to update her knowledge to I*t', Cit' A**t! CiF! and

UL (thus, potentially, she also updates H't1 kit Ft+l L1 £+l and cttl).

Figure 1 Interaction between the leader and the follower at period ¢ € 7. The matrices and vectors are defined as
H''=(Hy:deChicI), At =(hg:d€CL), F':= (Fuo: d€Ch,a€ A", L' :=(Lgi: d€ Ch,i € I"),
fl=(fs: d€C%), and " := (cqa: a € A"). The set U" is the uncertainty set for the cost vector.

Assumption A1l implies that, with the exception of the cost vector, the leader knows with
certainty all the problem data in (2) that is associated with activities in A’, resources in I*, and
constraints in C%L and C%. Particularly, the latter part of this assumption stems from the idea that

the leader is always certain about her operational capabilities (hence, she always knows H and h

for all activities and constraints known to her), and about the effect that her actions have on the

follower (hence, she always knows L for all activities and constraints known to her). We note that
the assumption regarding the leader’s certain knowledge of the values of F'* can be relaxed, and

most of the results can be extended to this more general setting, see Section 4.
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Assumption A2 states that the leader has a polyhedral uncertainty set for ¢'. Polyhedral sets
capture many important classes of uncertainty for the data in ¢’ such as lower and upper bounds,
linear relationships between the entries, 1-norms, infinity norms, among others, see Ben-Tal et al.
(2009). Assumption A3 reflects the fact that the leader aims to optimally use her assets subject to
budgetary constraints. (Note that this assumption holds for broad classes of standard interdiction
problems arising in network interdiction, AD and DA models.) This follows due to our convention
that the upper-level vectors in X are non-negative. Thus, by using resource ¢ € I at level x;, the
leader consumes Hgx; units of asset d, d € C'1, and the total amount of such asset available to her
at any given time is given by h,. Finally, assumption A4 is technical and is made to ensure that
the follower’s problem is not trivially infeasible.

Ideally, the leader would implement an optimal upper-level solution of the full-information prob-
lem (2) at any given time. However, given the lack of information, she might not be able to do
so. For this reason, we assume that the objective of the leader is to select the value of z¢, for all
t €T, in order to minimize the number of periods until she can implement an optimal upper-level
solution of the full-information problem (2) from there on. More precisely, her objective is to find
a weakly optimal decision-making policy with respect to time-stability. The formal definition of
these concepts is given in Section 2.1 below. Before that, we illustrate the assumptions above and
the flexibility of the framework by means of an example. (An additional example of SIPI in the
context of network interdiction with incomplete information can be found in Borrero et al. (2016).)

Example 1. We consider a simple class of the attacker-defender linear models, which can be
viewed as an adversarial knapsack problem (DeNegre 2011, Caprara et al. 2013). The defender has
n > 0 assets; operating asset a during a time period costs him b, and produces a profit of p,. He has
an operational budget of B per period, and has to decide a level y, € [0,1] at which the operation
of asset a is performed for all a =1,...,n. Hence, at each period the follower would ideally solve

the following knapsack problem absent the actions of the leader
y*cargmax{p'y : b'y<B,0<y,<1Va=1,...,n},
Yy

where p:=(p,: a=1,...,n) and b:=(b,: a=1,...,n).

The attacker, on the other hand, can temporarily disable some of the defender’s assets. Disabling
asset a during any given period costs her r,, and the attacker has a budget of R per period.
Moreover, if an asset is disabled then the follower cannot operate it. In this setting, A =1 =
{1,...,n}, Cr consist of n+ 1 constraints, and hence F = (b";I), where I is a n x n identity
matrix. Here, the lower-level right-hand side vector is given by f = (B;1) (1 is a vector of ones of

size n) and the cost vector satisfies ¢ = —p. On the other hand, C} is a singleton that contains the
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leader budgetary constraint, so H =", with r = (r,: a € I), and h = (R). Observe that matrix L
in this setting is given by L= (0";I) where 0 is a vector of zeros.

At time t =0, we make the assumption that the attacker does not know all the assets operated
by the defender, nor the corresponding profits. For those assets A° C A she knows, she has interval
estimates ¢, < ¢, <m, for the profits, which implies that U° = {¢° € R4 ¢, < & <m, Ya e A°}.
Thus, G° = [I; —I] and g° = (m;£), with m = (m,: a€ A°) and £=({,: a € A). n

2.1. Optimality Criteria

We measure the performance of a leader’s decision-making policy in terms of its time-stability,
where the time-stability of a policy is the first time period by which the actions prescribed by
the policy coincide with the actions of an oracle decision-maker from there on. Recall that the
oracle has all the information about the problem and thus, implements an optimal full-information
decision, which yields a cost of z* to the follower, at all time periods t € T.

To formally introduce time-stability and the concept of optimality we use, we first define what
we consider a problem’s instance for the leader. The initial information of the problem is the
collection D, where

D° = (A%, 1°,C%, C0,U°, HO, h°, F°, L°, ).

Note that given some initial information D°, there might be several different bilevel problems of
the form (2) that agree with the information contained in D°. In view of this, we define G(D") to

be the collection that contains all possible bilevel problems given that the leader knows D°:
G(D°):={(A,I,Cp,Cr,c,H,h,F, L, f): conditions C1-C5 below are satisfied}

Cl: A°CAI°CI,CVLCCr, CYCCy.

C2: I'=U,ca0l(a), C) =U;cpCL(i), Cp =Uue 40Cr(a).

C3: U° has valid upper and lower bounds for all ¢,, a € A°.

C4: (cu:a€ A% eld’.

C5: H° h°, F° L°, f° are submatrices of H, h, F, L, f.

In condition C2, the set I(a) contains all the interdiction resources that interfere with activity
a € A. Likewise, Cr(i) and Cr(a) are, respectively, the sets of upper- and lower-level constraints
that restrict resource i € I and activity a € A; see Definition 1 in Section 2.2 below for further details
on these notions in the context of feedback. Therefore, C2 means that at time ¢ = 0 the leader
knows all interdiction resources and constraints associated with the follower’s activities in A°.

Using collection G(D?), we define an instance of the problem as a pair (D, D), where D € G(D°).
We denote by G the set of all possible instances.
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A decision-making policy 7 is a sequence of set functions m = (x',...,77), such that 2’ =
7w (HY(D°, D)), and H'(D°, D) denotes the history of both the leader and follower decision-making
process up to time t > 1, that is, H'(D°, D) := (D%, 2%, F°, ... x'= F'=1), where we recall that F* is
the feedback the leader gets from the follower’s response at time ¢, see Figure 1. The set of all poli-
cies is denoted by IT. When discussing a particular policy 7, we include a superscript = on x* and
in all other quantities depending on it, and denote them by z®™, yt™, 267, It7 Ab™ *™ and Fb.

Let an instance (D%, D) be given. We define the time-stability of a policy on (D D), denoted by

7™(D°, D), as the first time in 7 such that z* is equal to 2™ from there on, i.e.,
(D, D) :=min{t € T : 25" =2 for all s >t}.

The leader would like to find an “optimal” time-stability policy, i.e., a policy that has a lower
time-stability than any other policy across all instances. To this end, let us say that policy = is
absolutely better than policy 7 if and only if 77(D°, D) < 7™ (D° D) for any instance (D°,D),
and that 7* is absolutely optimal if it is absolutely better than any other policy. Unfortunately,
absolute optimality is a very strong notion, and, in general, absolute optimal policies do not exist,
see, e.g., Remark 1 in Borrero et al. (2016) for the sequential shortest-path interdiction problem
with incomplete information, which can be viewed as a particular case in our general setting.

Henceforth, we study an alternative optimality notion referred to as weak optimality. Let the size
of an instance (D% D) as the vector (|A4],|A°|), and define G, as the collection of instances of size
s=(n,n% (with n>n%), i.e.,, Gs :=={(D°, D) € G: (JA],|A°|) = s}. We say that 7 is weakly better
than 7" when for any instance size s, the worst-case time-stability of 7 across all possible instances
of size s is at most the worst-case time-stability of 7’ across all possible instances of size s.

Observe that any direct information on U° in the definition of s is not included. This follows
as, from the worst-case analysis perspective, any reasonable notion of size of U is likely to be a

function of n°. Given the above considerations, we say that policy 7 is weakly better than 7’ if

max 77(D°, D)< max 7" (D°,D) for all s€ S,

(P9,D)eGs (DY, D)eGs

where S := {(n,n") € Z% : n >n"}. We say that 7* is weakly optimal if it is weakly better than
any other policy, that is, if

7 €argmin max 77(D°, D) for all s€S. (4)

well (DO,'D)EGS

Therefore, we define the objective of the leader as to find a weakly-optimal policy 7*, i.e., to find
a solution to the optimization problem (4). It should be clear that the notion of weak optimality is
an adaptation of the notion of min/max optimal policies used in the online optimization literature,

specifically, in the multi-armed bandit settings, see Audibert and Bubeck (2009).
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REMARK 1. Time-stability is connected to the concept of regret, where the regret until time ¢ is
given by Rf = _,(z" — 2*7). Importantly, a finite bound on the time-stability provides a finite
upper-bound on the regret, i.e., R <U7™, where U satisfies that z* — 2™ < U. Most of the online
optimization literature uses regret, or its variations such as pseudo-regret, as a measure of perfor-
mance and seeks to find policies that optimally upper-bound it, see, e.g., Cesa-Bianchi and Lugosi
(2006). We use time-stability instead of regret because of its practical implications: if the leader
knows that time-stability is attained, then an optimal full-information solution has been found.

Moreover, she can be assured that there will be no loss of performance after that time period. g

2.2. Feedback

Recall that the feedback F := (F',t € T) is the information that the leader collects from the
follower’s response at each time period. Depending on the particular application, the feedback
might include data from the follower’s problem as well as from his response y*, some information
regarding the follower’s activities and constraints that were unknown to the leader, as well as the

leader’s resources that were previously unavailable. We formalize these notions as follows:

DEFINITION 1. Let time ¢ € T be given and consider the bilevel problem (2).

e We say that the follower performs activity a € A (leader uses resource i € I) at time ¢ if and
only if ¢! >0 (xf >0).

e We say that a lower-level (upper-level) constraint d € Cr (d € C1) restricts follower’s activity
a € A (leader’s resource i € I) if and only if F,, #0 (Hy; #0), and we denote by Cr(a) (CL(7)) the
set of constraints that restrict a € A (i € I).

o We say that a leader resource i € I interferes with follower activity a € A if and only if there
exists a lower-level constraint d € Cr, such that d € Cr(a) and Lg; # 0. We denote by I(a) the set

of all leader’s activities that interfere with a € A. u

The first of the above definitions reflects the intuitive fact that if the follower’s variable y, takes
the value 0 then it does not change the value of the follower’s objective function nor the value
of his constraints; hence this can be interpreted as if activity a € A is not performed. The second
definition is a consequence of the fact that if F,;, =0 for a given a € A, then y, can take arbitrarily
large values without compromising the satisfiability of constraint d; the remaining definitions are
also inspired by the same observations.

Example 1 (continued). In the AD knapsack example, the follower performs activity a € A
if he operates asset a. The leader uses resource a € A if she disables asset a (hence, I = A). For
any a € A, Cr(a) consists of the defender’s budget constraint and on the constraint y, <1. On the
other hand, for any a € I it is clear that C(a) = CL. Moreover, observe that in this setting, for

any asset a € A, we have that I(a) ={a}. n
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DEFINITION 2. We say that feedback F is standard if and only if for any t € T

S1: The leader observes the total cost z! incurred by the follower.

S2: The leader observes the activities performed by the follower, that is, she can determine that
the follower performed activity a € A at time ¢ as long as y’, > 0. If y* >0 and a ¢ A, the leader

learns about the existence of a € A, and of all the leader resources that can restrict a € A. Therefore,

Att=Atu | {a}, 1=r'v | I
a: yt>0 a: yt>0
S3: For every new follower’s activity a € A learned by the leader, she learns all the lower-level

constraints in Cr(a), and all the upper-level constraints Cp,(¢), for all i € I(a). Henceforth,

cit=cpu |J Crle), cCif'=ciu |J ).
acAt+1\ At JertHI\ It
S4: For any newly learned activity a € A: the leader learns the value of Fy, for all d € Cr(a)UCk;
for any i € I(a) N I* the leader learns the value of Hy; for all d € Cp(i) \ Ct and the value of Ly;
for all d € Cr(a)\ C%; for any i € I(a) \ I' the leader learns the value of Hy; for all d € C1(i) UCE
and the value of Lgy; for all d € Cr(a) UCY. Finally, for any d € Cr(a) \ Ck the leader learns the
value of f;, and for any i € I(a) the leader learns the value of h, for all d € Cp (i) \ CL. n

Hereafter, we make the assumption that the feedback is always standard. Importantly, note that
S2 — S4 imply that at any given time ¢ € T the leader knows all the resources and constraints asso-
ciated with all the follower’s activities she knows at time ¢. In other words, a condition analogous
to C2 in Section 2.1 for ¢ =0 holds at all periods ¢t € 7. These considerations imply that at any

given time t € T the matrices F', L and H can be partitioned in submatrices as follows:

At A\ A It I\I It I\
p_ Ch F, F L Ct L, 0© g Ch H, H, 5)
Cp\CL\ 0 F Cp\Ct \ L, L, c,\Ct\ 0 H,

and it is clear that, in the notation of the above structure, the leader is only aware of Fy, L, and
H, at the beginning of time t € 7. In particular, note that F* = F,, L' = L,, and H' = H;.
Assumption S1 on the standard feedback is typical in the online optimization literature (Cesa-
Bianchi and Lugosi 2006) and can be seen as a minimum requirement to perform any optimization
analysis. The role of the other assumptions, namely, S2-S4 is to determine what information the
leader gains when a new activity is learned; specifically, these assumptions ensure that at any time
t the leader has the structural information of a version of problem (2). That is: (¢) the leader always
observes all the constraints associated with the resources/activities she knows, and hence, if she

ignores the existence of a constraint (lower or upper level) then she must ignore the existence of all
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the resources/activities associated with it; (77) the leader is always aware of all the resources in I
that can restrict the follower’s activities she knows, and hence, if the leader ignores a resource, then
it must be that said resource cannot interfere with the follower’s activities that she already knows.

It is important to note that our assumptions on standard feedback do not rule out the possibility
that there might exist resources that the leader knows at time ¢ that might restrict the follower’s
activities she does not know at time ¢. In this sense, some of the leader’s feasible vectors at time ¢
might ‘involuntarily’ restrict the follower’s activities.

Example 1 (continued). In the AD knapsack example, by assuming standard feedback, at
each time ¢ the leader observes the profit the follower receives from operating his assets. If the
follower uses an asset unknown to the leader, then the leader learns about the existence of this
asset, its cost b, and the operating level upper bound. In addition, she discovers that she can
disable the asset and that it costs her r, to do so. m

Observe that the assumptions on standard feedback impose no conditions on the wvalues that
are observed from the follower’s response nor on the follower’s cost vector. In this sense, stronger
assumptions can be made in order to guarantee that the leader learns the follower’s data in ¢ or

his response ' with more accuracy. In this paper we consider the following two cases:

DEFINITION 3. Let F be standard. We say F is: (i) Value-Perfect if and only if at any time t € T
the leader learns the value of ¢, for all a € A such that y’ > 0; or (ii) Response-Perfect if and only
if at any time ¢ € T the leader learns the value of y! for all a € A such that y’ > 0. n

Standard feedback, as well as its Value-Perfect feedback version, can be viewed as adaptations
of similar notions in the online optimization literature. For example, suppose that A = A° (hence,
the leader knows all the follower’s activities at time ¢ =0). In this case, standard feedback only
requires the leader to observe the value of z* at each t € T, and thus it parallels to the notion of
bandit feedback that appears in online convex and combinatorial optimization (see, e.g., Bubeck
and Cesa-Bianchi (2012) and the references therein). Similarly, Value-Perfect feedback parallels
the notion of semi-bandit feedback in online combinatorial optimization (Audibert et al. 2013).

Example 1 (continued). In the AD knapsack setting, under Value-Perfect feedback, at each
period the leader observes the follower’s profit from the assets operated during the period. Under

Response-Perfect feedback, she observes the corresponding values of y’s. ]

3. Greedy and Robust Policies

In this section we introduce a set of leader’s policies A that are greedy and robust. These policies
are greedy in the sense that at each t € T they aim to maximize the immediate cost that the follower

faces at time ¢, and robust in the sense that they exploit the cost information in U* in a worst-case
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scenario approach. Under the Value-Perfect and Response-Perfect conditions on the feedback F,
we show that these policies’ time-stability are upper-bounded by | A|, and moreover, that they are
weakly optimal. Also, we show that these policies also have additional features, such as that they
can identify the value of time-stability in real time, yielding a certificate of optimality. Note that
the proposed policies can be viewed, in a sense, as natural generalizations of known results for the
shortest-path network interdiction problem, see Borrero et al. (2016). Throughout this section we

omit any dependence on the instance (DY, D) unless necessary to avoid confusion.

3.1. General Results for Standard Feedback
In order to define the set of greedy and robust policies, A, some additional concepts have to be
introduced. For any ¢t € T, and given any x € X", define region Y'(x) as

Yi(z) = {yezbj < RIAT Fty+thgft},

with 0 <b' < |A*|. Observe that Y*(x) is the leader’s perception of the follower’s feasible region
given that she selects x, and that the leader completely knows Y*(z) at time ¢. For any x € X',

define zk(x) as the value of the robust linear program
2h(z) = min{max{(é)T y:e'el'}: ye Yt(a:)}.

Note that z%(z) is the follower’s (worst-case) objective function value given z if the leader’s per-
ception is correct. Let z’g* be the value that corresponds to the best possible decision the leader

can take at time ¢ if she estimates the follower’s response using the robust approach above, that is,
25t =max{zh(z) : z€ X'} VteT.

Finally, for any policy 7, define £ := £™(D° D) as ™ :=min{t € T : 25" = 2""}. We define
policies in A as those policies that greedily optimize in a robust fashion from time ¢ =0 until time

&), From £ onwards, policies in A repeat the same solution used at time ¢*. Formally:

DEFINITION 4. We say that A € A CII if and only if
' € argmax{zh(z) : z€ X'} W<, (6)

and 2 = 26 for all & <t <T. m

The greedy and robust policies A generalize the greedy and pessimistic policies given for the
shortest-path interdiction problem in Borrero et al. (2016). In contrast to the policies of this earlier
work, here A requires solving a general max-min bilevel linear problem, where the lower-level

problem involves a robust optimization problem over a polyhedral uncertainty set. Despite this
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more general setting, it can be shown that the policies in A are computable by standard mixed
integer programming (MIP) solvers as robust bilevel problem (6) can be reduced to a single-level
MIP, see Appendix A.3 for further details.

The following result lists the main properties of the policies in A under the assumption of
standard feedback. It establishes a simple relationship between the cost of the optimal oracle
solution (z*), the cost the follower faces at t (%), and the cost the leader expects the follower
to incur (zf;i*). In addition, it reveals the importance that time period ¢* has for time-stability.
We note that this result generalizes Lemma 4 of Borrero et al. (2016), which is given for the

shortest-path interdiction setting, to general interdiction problems.
THEOREM 1. Let t €T be given and let A€ A be arbitrary. Then, z'* < z* < zf%’* and ™ < &N

Proof. Observe that for any t € 7 and z € X!, z4(z) =min{(d") "y : v € Yi(z)}, where d' =
(1,0,...,0)" and Yii(2) := {(yo,y) e R x RIAT © — g0+ () Ty <0 Ve e U,y € Y(z)}. Indeed,

zh(x) can be equivalently written as

mind yo: yo > )y, Fly+ L'z < f',y e RY yo e R
Yo: Yoz max (¢) y, Fly+ Lia<f,yeR Ly €Ry.

The observation follows after noting that (yo,y) satisfies the first constraint of the above problem if
and only if yo > (¢!) " y for all ¢ € U*. Importantly, in the remaining proofs, we assume that 2% (z)
is given in terms of Y}(x). We proceed in two steps.

Step 1. We first prove that 2t < z* < zg*. Fix x € X and 2" € X*, and define z(z) and z* as
z(r)=min{c"y: yeY(z)}, and 2t =zl ificI’; 2t =0if i g I". (7)

For the leftmost inequality, the result follows from the definition of both z* and z%*

(see Equa-
tions (2) and Equation (4)). Indeed, observe that z* = max{z(x): z € X}, that 2** = 2(z""), and
that z%* € X because the feedback is standard and Assumption A3 holds. For the rightmost
inequality, let z* be an element of X that attains z*. Partition x* as x* = (&, ), where & = (2 );ct
and Z = (27 );ep\st- Recall the definition of the partition of matrices given by (5). Therefore, because
z* € X and A3 holds, one has that £ € X*.

Now, suppose that Y}(#) is non-empty (if it is empty then it must be the case that z4* = +o0
and the result holds) and let (yo,9) be such that (yo,§) € argmin{(d") "y : ' € Y4(#)} (hence
()" § = 24 (2)). By the definition of 2% we have that (¢!)’ § < 24", On the other hand, define 7
as Y, =19, if a€ A, and g, :=0 if a € A\ A'. Because F is standard, Assumption A4 holds, and
§ e Yt(#), it follows that 7 € Y (z*); therefore, z* <¢'7. As ¢ j=(c!)' §, and both (¢!)' § < 24"

and z* < c'y hold, then we have the desired result.
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Step 2. Next, we show that 7* < &*. For notational convenience, let £ = £* in the remainder of the
proof. We claim that z¢* € argmax{z(x): z € X}. Indeed, the fact that the feedback is standard
(recall equation (5)) implies that z¢* € X. Because by definition of £ we have that z6* = 23", step
1 implies that z(z5*) = 2* (recall that we have 2%* = 2(z"*)), and therefore the claim follows.

Now, by definition of )\, for all s >t it must be the case that z5* = 25*. We claim that this
implies that z** = z* for all s > ¢, and hence that 7 < ¢*. In order to arrive at a contradiction,
assume that z5* < z* for s > ¢*. As 2% = 2%, one has that y** € Y(2%*), and by the definition
of ¥ it would follow that 2** < 2** < 2*, which contradicts the fact that z5* = 2*. n

Theorem 1 has important practical implications. Note that the leader is always aware of the value
of 5%, and (by standard feedback) always observes the value of z**. Therefore, she can determine
whether a given period t is equal to £*. Let t € T be given such that ¢t — 1 < £*, then at time ¢
exactly one of the following scenarios may occur:

(i) The follower faces the cost the leader expected (2%* = z5;*). In this case, t = £*, and Theorem 1
implies that the solution implemented by the leader at time ¢ is an optimal solution of the full-
information problem.

(ii) The follower faces a cost less than that the leader expects (2%* < z5;*). In this case, nothing
can be said regarding the optimality of the solution that the leader implements at time ¢ by only
assuming standard feedback. However, if the stronger notions of either Value-Perfect or Response-
Perfect feedback are assumed, then the leader must learn new information of the follower’s problem,
as we show in the following sections.

Particularly, observation (i) implies that policies in A provide certificates of optimality in real-
time. That is, as soon as t = £*, the leader is sure that the best possible solution has been found.
Given the importance of £* for greedy and robust policies, next we derive a sufficient condition in

terms of the uncertainty set U* that establishes whether a given time ¢ € T corresponds to &*.

PROPOSITION 1. Lett € T be given, suppose that U* = {c'}, and assume that y =0 for all a ¢ A’.
Then £ <t, and, in particular, T <t.

Proof. Asy" €Y (z!*)and ! =0 for all a ¢ A*, it follows that >°,_ ¢ Fuayi + 3,0 Laivi < fa
for all d € CL, which implies that (y’*),cat € Yi(2"*). On the other hand, as U' is a single-
ton, the set Yi(z"*) becomes Yi(z"*) = {(yo,y) € ]R‘ft‘ C —yo+ () y <0,y eY(z'M)}, and
hence, z4(zt*) < (¢') " (y'*),eat. Therefore, from the first set of inequalities of Theorem 1 and as
24 (2') = 25" by definition of z*, we have that z* < 25" < (¢!)" (4'*)aear. On the other hand,
from the definition of y**, we have that z* = (¢!)" (y**).cat. We can conclude that z'* = 24",

and hence £* <t, as desired. The later part of the proposition is a consequence of the above result

and the second set of inequalities of Theorem 1. m
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In other words, whenever there is no uncertainty in U*, if the leader decides by using a policy in A,
and the follower does not reveal any new activity, then the leader can be sure that the best solution
has been found. Importantly, there is a connection between the fact that U* is a singleton with the
polyhedral dimension of U', dim(U"), which is defined as the maximum number of affine independent
points within ' (see Wolsey and Nemhauser (2014)). Indeed, dim(U*) = 0 if and only if U* = {c'}.
In the following sections we use the condition that dim(U*) = 0 along with Proposition 1 to establish

upper bounds on &* (and hence, on 7*) under Value-Perfect and Response-Perfect feedbacks.

3.2. Policies in A Under Value-Perfect Feedback

Recall that feedback F is Value-Perfect if the leader observes the value of ¢, for all activities a € A
such that ¢’ > 0. Under this feedback the leader should update the uncertainty set U* to U™ as

At+1| X

Utt={ee R! (Ca)acat €U, ¢, =c, for all a s.t. y', > 0}.

For convenience we partition A! as At = A' U At, where for any follower action a € At the leader
knows with certainty the value of ¢,, that is, At = {ac At : ¢,=c, Vé €U}, and At := A \ﬁt
The next lemma establishes that if the cost the follower incurs is different from the one expected
by the leader, then the leader must learn the real cost of a follower’s activity. The proof follows

directly from the definitions, its details can be found in the online supplement.

LEMMA 1. Suppose A € A and that feedback F is Value-Perfect. If 22 < 23" then AN\ A L. In
particular, if yt =0 for all a ¢ A, then dim(U'*) < dim(U?).

A direct consequence of the above result is that, in conjunction with Proposition 1, it provides
an upper bound for the time-stability for any policy in A. We observe that this result generalizes

Lemma 5 of Borrero et al. (2016) to general interdiction problems:
THEOREM 2. Let A € A and suppose that F is Value-Perfect. Then, 7> <&} <|A\ ZO].

Proof. Lett € T be given such that 25 < 25", Lemma 1 implies that A1\ At £ (). Hence, A* # A
can happen at most for |[A\ A°| periods. Also, if ¢ € T satisfies A' = A, then dim(l*) =0 and
Proposition 1 implies that £ <. Therefore, £* < |A\ A°| and the result follows. n

The previous results shed light into the importance of greedy and robust policies for solving
the exploitation vs. exploration dilemma. Simply speaking, it states that as long as the leader is
being robust with respect to uncertainty, then ‘robust’ exploitation (i.e., deciding greedily) always
implies exploration (i.e., discovering new information). We emphasize that the key property behind
the result is robustness: if the leader were to use another approach to deal with uncertainty, then
she might not discover any new information; see Remark 7 in Borrero et al. (2016) for an example

in the context of shortest path interdiction.
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Our next result, whose proof can be found in the online supplement, shows that the upper bound
in Theorem 2 is tight across all instances and, more importantly, across all policies. In other words,

we establish that policies in A are weakly optimal.

PROPOSITION 2. Consider A € A and suppose that F is Value-Perfect. Then, for any s = (n,n°) € S

max 7(D°, D) <n. (8)
(DY, D)cGs

Moreover, X\ is weakly optimal.

3.3. Policies in A Under Response-Perfect Feedback

Next, we establish convergence and weak optimality under Response-Perfect feedback. Recall that
under this feedback the leader always observe the value of ¢, for all a € A such that ¢’ > 0. In this
setting, the leader should update the uncertainty set ! to U**! by including the linear equality

tAA A -
Y wcatt1 Yo ea = 2. That is,

Ll”l:{éeR'AM' D (la)acar €U Y y;%a:z“}. 9)

acAt+l

Observe that if A1 = At i.e., if the leader does not learn any new activity at time ¢, then !
has the same number of variables as U*, and moreover, equation (9) implies that U** CU".

In Response-Perfect feedback, as in the Value-Perfect setting, by using a policy in A the follower
must be forced to reveal new information whenever z* < 25", Specifically, if 3 =0 for all a & A*,
then it must be the case that dim(U'™') < dim(U*). This inequality follows because in this case
dim(U") cannot increase (since U'™' CUY'), and, more importantly, from the fact that the linear
equality Y 441 YL ¢q = 2" is linearly independent from all the linear equalities in . These
observations are formalized in the following result, which can be considered analogous to Lemma 1:

t,*

LEMMA 2. Let A€ A and suppose feedback F is Response-Perfect. If z'* < 2" and y =0 for all
ag A then dim(U) < dim(U?').

Now, if the leader learns new activities at ¢, then U™ has |A"™™'\ Af| more variables than U".
The addition of the corresponding new variables potentially increases the dimension of U**! with
respect to U* by [A"*1\ A*|. However, it is readily seen that the linear equality > _ 1 y5ité, = 2
is trivially linearly independent of previous inequalities in U, and as such if the leader learns new
activities at ¢ it can be concluded that dim(U'™) < dim(U*) + |A*T1\ Af| — 1. This observation,

along with Lemma 2, immediately provides the following upper bound (whose proof we omit):

THEOREM 3. Let A\ € A. Then, under Response-Perfect feedback, T <& <dim(U°) + |A\ A°|.
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The above results, as in the case of Value-Perfect feedback, have the same implications regarding
the exploitation vs. exploration dilemma. That is, exploitation always implies exploration as long as
the leader decides robustly. In addition, for Response-Perfect feedback weak optimality also holds.

The proof of this fact applies the same arguments as in Proposition 2. Thus, its proof is omitted.

PROPOSITION 3. Let A € A be given and suppose that F is Response-Perfect. Then, for any s € S
max 7(D°, D)< n.
(DY, D)eGs

Moreover, X\ is weakly optimal.

4. Model for Matrix Uncertainty

In this section we consider a more general model referred to as the matrix model for the uncertainty
of the leader regarding the data of the follower’s problem. We assume that she knows with
certainty the value of ¢ at the beginning of time ¢, but that she does not know with certainty
the values of matrix F'*. We emphasize the generality of this model: if in a given problem c' is
uncertain as well, then it can be included in F* w.l.0.g. by introducing a new variable y, that
represents the cost function and adding the constraint yo > (c) Ty.

In this setup, and under the appropriate extensions of certain assumptions and feedback
definitions, we show that the results for standard feedback for the basic model of Section 2 (which,
in view of the current discussion, can be referred to as the cost model) are also valid. Moreover,
we show that for the Value-Perfect feedback case, the time-stability upper bound of Theorem
2 also holds, while for Response-Perfect feedback, an extension of the upper bound in Theorem
3 holds under certain assumptions. The proofs of the results, except for that of the bound for

Response-Perfect feedback (which can be found in the online supplement), follow from similar

arguments as those for the cost model, and thus are omitted.

4.1. Assumptions and Feedback in the Matrix Model
In this model we assume that the leader knows ¢! with certainty, but only knows that F* belongs to
an uncertainty set U*. For any d € C% let us denote by nf, the number of the follower’s activities in
A that d restricts, that is, nl;:==|{a € A": d € Cr(a)}|. We replace assumption A2 from Section 2
with the following:
A2E: The leader does not know with certainty all entries of F' but she knows that F! € /¢, with
Ut = (Ft e R™=CH" . QIR < g1},

where we make the convention that

ot T
F_(F117°°°7F1n§7F213"'7F2n57'"7EC}|17'°°7ECt|nt ) :
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If C}; is the set of constraints of polyhedron U*, then G* € Rlcblxzde% na and g' € RIS, We
assume that both G* and g* are known by the leader at time ¢.

We also modify the definition of standard feedback; specifically we replace S4 by S4E:

S4E: For any new learned activity a € A, the leader learns the value of ¢, (instead of learning
the value of Fy, for all d € Cp(a)UC%). The rest of the assumption is as S4.

Moreover, in this setting Value-Perfect feedback is extended to account for the values of the

constraint matrix. That is, we refine the concept of Value-Perfect feedback as follows

DEFINITION 5. In the matrix model, standard feedback F is called Value-Perfect if and only if at

any time t € T the leader learns the value of F, for all a such that y! >0 and d€ CLUCr(a). m

Note that the definition of Value-Perfect feedback in the previous sections is a particular case
of the above. On the other hand, we do not make additional assumptions on Response-Perfect
feedback.

Finally, we modify the definition of an instance. The initial information in this setting consists
of the vector D°:= (A%, 1°,C%, CY,U°, H° h° L°, f° "), and G(D") becomes

G(D°) :={(A,I,Cp,Cy,F,H h,L, f, c): conditions C1,C2 and C3E-C5E below hold}

C3E: U° has valid upper and lower bounds for all F,,, d € C%, a € A°.

CA4E: (F;,: deCac A%) eU°.

C5E: H°, h°, L°, f°, ¢ are submatrices and subvectors of H, h, L, f, c.

The above definitions are straightforward extensions of the assumptions and definitions of the basic

cost model in Section 2. Using them, we extend most of the results in the next sections.

4.2. Extended Greedy and Robust Policies

In what follows we generalize the greedy and robust policies in A to the matrix model which we
denote by Ag. Policies in Ag are greedy because they maximize the follower’s costs at the next time
period, and they are robust because they consider all possible realizations of F' over U*. As shown
below, these policies share most properties of the policies in A under the different modes of feedback.

For any t € T, and given any z € X" define the “robust” region Y} (x) as
Yi(x) = {y € let‘ . Fly+ Lz < f'VF! Eut}.

The robustness of Y£(x) follows from the fact that any element of this set must be feasible for any

possible realization of the uncertain data in U*. Define
2h(x) = min{(ct)Ty s yeYi(z)}, € X' and 2y =max{zh(z) : z€ X'} teT.

Additionally, for any policy m define £f, :=£™(D°, D) as £f :=min{t € T : 2" =2""}.
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DEFINITION 6. We say that A € Ag CIIif and only if 2"* € argmax{z%(z) : =€ X'} for all t <&,

and 2 =28 for all £} <t <T. n

As before, 2 is the first time period when the follower uses a solution with the cost expected by

the leader. Finally, from £ onwards, policies in Ap repeat the same solution used at time &£2.

4.2.1. Policies in Ar under Standard and Value-Perfect Feedback The following
proposition states that the standard feedback results that hold for A in Section 3.1, (i.e., Theorem
1 and Proposition 1) also hold for Ag.

PROPOSITION 4. Let A € Ag be given and assume that F is standard. Then, (i) For any given
t €T it follows that 2t < 2* < 23"; (i) ™ < &y; and (iii) Given t € T, if dim(U*) =0 and y! =0
for all a & At, then &3 <t, and, in particular, > <t.

In addition, given the extended definition of Value-Perfect feedback, Lemma 1 and Theorem 2
can be generalized in a straightforward fashion for the policies in Ag. Indeed, define ;PE as the set

of the follower’s activities for which the leader knows (with certainty) the values of the columns

of A associated with them, that is, gfg ={a€ A" : VEcUt By, =F,, Vde CL}.

PROPOSITION 5. Suppose A € Ap and that feedback F is Value-Perfect. Then, (i) If 28> < zg* then
AN AL #£0; and (i) TN < &Y < |A\ AY].

4.2.2. Policies in Ar under Response-Perfect Feedback In this section we establish
convergence under Response-Perfect feedback for policies in Ag. In contrast with the Value-Perfect

case, the extended results are more involved. We begin with the following observation.

LEMMA 3. Let A € Ag, and suppose that z** < 23" and that y! =0 for all a ¢ A*. Then there exist

a F' el and a lower-level constraint d € C. such that
\T .
(Fi) o> fa—(@t) ot (10)

The above result implies that the leader can remove matrix F! from the uncertainty set at time t,
as equation (10) means that F'+ F*. For any given t € T and A € Ay, let us define D** as the set

of constraints for which equation (10) holds at time ¢, that is
_ ~\T
D i={deCl : IF U’ st. (Fj) YA > fa— (L) 2t

Suppose that z'* < zi;* and 3% =0 for all a € A'. Under the assumption of Response-Perfect feed-

back, one direct way to remove those elements of U* that satisfy equation (10) is to define U**! as

. AT
Ut ={Freu s (Bf) y* < fo- (LY ot vde DY, (11)
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where we note that "' C Y* by Lemma 3. On the other hand, if y’ > 0 for some a & A?, then, in
general, the existence of a F' such that (10) holds cannot be guaranteed, and hence the update
in equation (11) can be vacuous (i.e., Ut =U").

From the above discussion it is clear that whenever the leader does not learn a new follower
activity, then her uncertainty set reduces its size. However, the update defined by (11) does not
necessarily reduce the dimension of U, and hence an upper bound similar to that of Theorem
3 cannot be proved in this setting by using the polyhedral dimension arguments. However, if we
make additional assumptions about the lower-level problem or about the leader’s ability to observe
the said problem, a finite upper bound can be established. These assumptions guarantee that the

uncertainty update reduces the dimension of the uncertainty polyhedron at least by one.

PROPOSITION 6. Let A € Ag and suppose that F is Response-Perfect.

(i) If all constraints of the lower-level problem are equalities, then T < & < dim(U°) +
ZaeA\AO |Cr(a)].

(i) If for any period t € T such that y., =0 for all a & A" the leader observes the slack associated
with at least one of the constraints in D', then 7 <& <dim(U®) + 37, ¢ 4y 10 (|Cr(a)| +1).
Observe that all of the upper-bound results for policies in A (or Ag) proved so far rely on the fact
that whenever the leader does not learn a new activity, then the dimension of /™! can be made
strictly less than the dimension of U*. For the matrix model and under Response-Perfect feedback,
if no additional assumptions are made, then this reduction in dimension cannot be guaranteed. In
this general setting, however, we can prove that every time U" is updated, the difference in ‘size’

between U™ and U* is sufficiently large, see Borrero (2017).

5. Semi-Oracle Lower Bounds

In online optimization, the performance of a policy is compared against that of an oracle, who repre-
sents an ideal decision-maker who has all information of the problem beforehand, see Cesa-Bianchi
and Lugosi (2006). Such an oracle faces no uncertainty and is able to make the best possible decision.
In our problem setting, the oracle solves problem (2) at every period, and thus always attains a time-
stability of zero. Unfortunately, such a lower bound is rather trivial and of not particular interest.

Consider instead a weaker oracle that, albeit knowing all the information of the problem in
advance, has restrictions in the way she can use this information. Specifically, at any period such
a weaker oracle can only use resources that she initially knows at time ¢ = 0, or that have been
revealed to her by the follower in previous periods. Hence, this semi-oracle, see Borrero et al.
(2016), represents a decision-maker that combines both the practical limitations of the leader, with
all the knowledge of the traditional oracle. Specifically, the semi-oracle solves:

min ) " Lgeryic (12a)
teT
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st.ateX teT (12b)
y' €argmin{c'y: y € Y (")} teT (12¢)
2t =0 ieI\NI'teT (12d)
rt=ru (J Ia) te T\{T}, (12¢)

a: yh>0

where constraint (12d) prevents the semi-oracle from using activities which she does not know by
time ¢. Observe that absent this constraint, the formulation corresponds to what the oracle (with
full information) would solve. Constraints (12b) and (12c), on the other hand, imply that the semi-
oracle has all the information of the problem. As a consequence, the leader cannot be expected to
formulate nor optimally solve (at least, consistently) the problem given by (12) in practice.

There are two main advantages of using the notion of the semi-oracle, rather than the oracle,
as a benchmark. First, it yields a more informative lower bound on the performance of any policy:
the time-stability attained by the semi-oracle is not always zero; moreover, by using it we can
evaluate the effect that the initial information has on the performance of any policy. Second,
for any given instance, there is always a policy that attains the time-stability of the semi-oracle
policy. Specifically, for any policy, any interaction between the leader and the follower can be
mapped into a feasible solution of (12), and more importantly, given a fized instance, there must
exist a policy that yields the same values of z* and y' as an optimal solution of (12).

It is important to note, however, that the semi-oracle decision process does not constitute a
feasible policy: given a same history H!(D°, D), the semi-oracle might determine two different values
for z¢ for different instances, see an example for the sequential shortest path interdiction in Borrero
et al. (2016). This, because problem (12) is a function of the instance (D°, D), rather than a function
of the history (as it is the case with any admissible policies; recall their definition in Section 2.1).

It can be readily seen that the semi-oracle optimization problem (12) is N P-hard. Small and
moderately sized instances of the problem, however, can be tackled by state-of-the-art MIP solvers.
Indeed, a single-level MIP reformulation of (12) can be obtained by using reformulation techniques
of bilevel optimization, and can be found in the online supplement along with an algorithm to

speed-up the solution time of the MIP.

6. Numerical lllustration

In this section we demonstrate the numerical performance of the policies in A. For this, we use a
simple extension of the AD Knapsack problem of Example 1 where the follower has two budgetary
constraints. We consider both Value-Perfect and Response-Perfect feedbacks, two different models

for the initial uncertainty set along with the uncertainty either in the profits, or in the budgetary
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constraints, or in both the profits and the constraints. In order to provide a broader picture of the
performance of the policies in A, we compare them against reasonable benchmark policies in the
context of SIPI, and with respect to the semi-oracle lower-bounding procedure of the previous
section. Our results show that the policies in A outperform the benchmark, and compare rather
favorably with respect to the semi-oracle lower bound.

The decisions generated by the policies in A are computed by solving a one-level MIP reformu-
lation of the bilevel problem (6), see Section A.3 of the Appendix for further details. Generally
speaking, the transformation of optimization problem (6) into an MIP involves application of
methods from bilevel optimization (to transform the hierarchical problem into a single-level
problem) and robust optimization (to adequately optimize over the uncertainty set U") areas. We
note that, in general, problem (6) is N P-hard, as bilevel linear optimization is its special case.

Additional results regarding the performance of the policies in A can be found in Borrero et al.
(2016). There, the numerical experiments are shown for when the interdiction problem is a shortest
path interdiction problem, the feedback is Value-Perfect, and there is interval uncertainty for the
cost coefficients. We note that the results obtained for such configuration largely conform with the
findings we obtain in this section.

Test Instances. We consider an extension of the AD knapsack problem from Example 1, where
the defender has n =15 assets (thus |A| = |I|=15). The upper-level information is given by r =1
and R = 3, thus the Attacker can disable at most three assets at any given time. In this extension the
follower faces two budgetary constraints Y7, bgk)yj <BW, k=1,2, with B® =[U(1,10-n)/3],
U(a,b) denoting a number drawn from a uniform discrete distribution between a and b. We consider
two models of initial uncertainty sets, namely, hypercube and simplex:

e In the hypercube model the defender’s profits satisfy p, € [¢?,u?], a € A, where for each a € A
the values of /2, p,, and u? are drawn at random (and ordered) from a random variable V', V =
Vi + Vi, where V; and V;, follow a U(1,5) and a U(1,20) distribution, respectively. Likewise, the
budgets satisfy that b € [((F) u] a € A, where for each k =1,2 and each a € A the values of
(R p®) and ulP) are drawn at random (and ordered) from a random variable W, W = W, + W,
where W, and W, follow a U(1,10) and a U(1,20) distribution, respectively.

e For the simplex model we assume that (besides non-negativity constraints) G° and g° represent

three inequalities, one for the profits, and one for each of the budgetary constraints:
n n n
A 7(1 7(2
ZGljijQM Zwa; ' < g, Zngb§ ' < gs.
j=1 j=1 j=1

The coefficients G4, j =1,...,n, are drawn at random from a U(1,5) distribution. Similarly for
the budgets, G
hand sides satisfy that g; = 5n Z;;l Gij, i =1,2,3. The real values for the profits are generated

i, 1=2,3,j=1,...,n, are drawn at random from a U (1, 10) distribution. The right-
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as p; = (g1/G;)RwY, j=1,...,n, where R is a random number between 0 and 1, and the w}s
are weight values drawn at random from a continuous U (0, 1) distribution and normalized so that
Z;;l wﬁ’ < 1. The real values for the budgets bgk), j=1,...,n, k=1,2, are generated following the
same logic.

Given the polyhedron P obtained by either of the above methods, we generate ° by adding
to P° the constraints that specify the data that the leader knows with certainty. For instance,
if the budgets are known with certainty, we add the constraints I;gk) < bgk) and _ng) < —b;k) for
j=1,...,n, k=1,2. If there is uncertainty for the profits and both constraints, then ¢/° = P°.

For each of the uncertainty models, we generated at random N = 30 instances, and assume the
leader uses both Value-Perfect and Response-Perfect feedbacks. We consider three sets of initial
information A°: in the first, the leader knows five activities of the follower; in the second, she knows
ten activities; and in the last, she knows all activities. Finally, we set T"= 20 periods.

Benchmark Policies. In addition to policies in A, we consider the following benchmarks:

e The analytical center policy m,: At each time t € T the policy computes 2™ by solving the
deterministic bilevel problem

b7 Eargmax{(—ﬁt)Ty : (gt’(k))TygB(k) k=1,2, y+x§1,y€R‘At‘}, (13)
zeXt

where (ﬁt,gt’(l),gt’@)) is the analytical center of the polytope U!, see Bertsimas and Tsitsiklis
(1997).

e The random policy m,.: At each time t € T the policy computes z*™ by solving problem
(13) with (p*,b"® bt®) used instead of (p',b"1 b-(?). Here we have that (p',b-(1) bt?)
is a randomly generated extreme point of U' that is obtained by solving the linear program
(P!, b4 bt @) € argmax{(€") "v: v €U'}. In this problem, at each time t € T each entry of vector
£' is drawn at random from a Bernoulli distribution with parameter 1/2, i.e., each entry is zero
or one with equal probability.

e The “stopped” random policy m,: At each time t € T the policy computes z"™ in the same
manner as policy .. However, whenever the follower’s costs are as expected by the leader (i.e.,
27 is the same as the value of (13) with (', 5@, b%®) in place of (p',b®),b4™)), then the
policy keeps using the same solution thereafter.

e We also consider the lower bound provided by the semi-oracle approach discussed in Section
5. While it is not an admissible policy, with a slight abuse of notation we denote it by 7* hereafter.

Results and Discussion. In Tables 1- 4 we show the mean time-stability and mean absolute
deviation (MAD) of the time-stability across the N = 30 replications for each configuration. We
make the convention that whenever a policy does not find the optimal full-information solution,

then the time-stability is set to 77 =21 (i.e., 7" =T +1).
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Table 1 Mean and MAD for time-stability for the hypercube uncertainty model and Value-Perfect feedback.

A T T s *
Uncertainty A% | Mean MAD | Mean MAD | Mean MAD | Mean MAD | Mean MAD
{1...5} 2.47 0.59 6.27 6.77 | 11.93 7.36 9.43 7.36 1.47 0.63
Profits {1...10} 2.53 0.55 7.93 8.05 | 15.50 5.58 | 11.93 6.16 1.03 0.53

{1...15} 2.57 0.71 6.83 8.22 | 18.10 3.83 | 16.33 6.40 0.00 0.00

{1...5} | 227 o071| 487 5.28| 7.60 551 | 7.20 6.29 | 1.47  0.63
First Constraint {1...10} | 1.83 0.80| 593 5.60| 917 7.56| 7.83 7.70 | 1.03  0.53
{1...15} | 1.17 090 | 510 6.76 | 9.47 829 | 857 881 | 0.00 0.00

{1...5} | 247 067 5.67 5.88| 13.33 7.50 | 9.97 8.12 | 1.47 0.63
First and second constraints {1...10} | 243 070 | 6.90 7.45| 17.03 4.94 | 17.30 5.67 | 1.03  0.53
{1...15} | 217 0.63| 9.73 9.67 | 19.60 2.24 | 16.80 6.11 | 0.00  0.00

o {1...5}| 277 062 | 580 529 | 18.37 295 | 15.60 6.86 | 1.47  0.63
Profits, first, and second {1...10} 3.00 0.51| 893 7.40 | 20.53 0.60 | 17.53  5.33 | 1.03  0.53
constraints {1...15} | 3.13 0.45 | 11.50 6.42 | 20.80  0.32 | 21.00  0.00 | 0.00  0.00

Table 2 Mean and MAD for time-stability for the hypercube uncertainty model and Response-Perfect feedback.

A T T T T
Uncertainty A% | Mean MAD | Mean MAD | Mean MAD | Mean MAD | Mean MAD
{1...5} 3.37 0.67 8.60 7.41 | 14.00 6.67 | 10.97 8.10 1.47 0.63
Profits {1...10} 3.30 0.79 9.00 7.62 | 16.40 5.45 | 14.57 6.99 1.03 0.53

{1...15} 3.23 0.75 8.77 7.29 | 18.20 3.68 | 18.10 4.50 0.00 0.00

{1...5} | 280 097| 7.80 7.53| 12.03 7.03| 7.23 6.81 | 1.47 0.63
First Constraint {1...10} | 2.30 15| 770 7.78 | 10.67 8.83 | 9.73 9.12 | 1.03 0.53
{1...15} | 1.60 21| 7.63 8.86 | 12.27 885 | 9.30 9.49 | 0.00 0.00

{1...5} | 3.60
{1...10} | 3.57
{1...15} | 3.30

27 | 14.83 7.25 | 18.53 3.43 | 15.77 6.85 1.47 0.63
25 | 16.23 6.25 | 20.20 1.35 | 17.50 4.93 1.03 0.53
43 | 17.07 5.46 | 20.80 0.32 | 19.97 1.52 0.00 0.00

First and second constraints

el Rl

o {1...5} | 4.33 1.20| 1460 7.30 | 20.53  0.55 | 16.90  5.09 1.47  0.63
Profits, first, and second {1...10} 4.47 1.21 | 15.87 6.41 | 20.67 0.48 | 20.77 0.41 1.03 0.53
constraints {1...15} | 4.73 1.33| 16.20 5.71 | 20.77 0.38 | 19.77  2.03 | 0.00  0.00

Table 3 Mean and MAD for time-stability for the simplex uncertainty model and Value-Perfect feedback.

A Ty T Ts T

Uncertainty A% | Mean MAD | Mean MAD | Mean MAD | Mean MAD | Mean MAD

{1...5} | 177 071 | 850 7.24 | 20.83 0.17 | 17.90  5.09 | 1.23  0.37
Profits {t...10} | 177 071 | 4.10 3.38 | 21.00 0.00 | 19.73  2.28 | 1.00  0.20
{1...15} | 177 071 | 253 0.46 | 21.00  0.00 | 19.03  3.27 [ 0.00  0.00

{1...5} | 217 043 | 533 6.27 | 7.47 592 | 7.27 7.23| 1.23 0.7
First Constraint {1...10} | 227 049 | 11.73 9.25| 12.90 7.61 | 12.23 859 | 1.00  0.20
{1...15} | 237 047 | 1270 9.12| 1543 6.17 | 1457 827 | 0.00  0.00

{1...5} | 220 037 810 7.99 | 11.53 7.87 | 11.17 850 | 1.23  0.37
First and second constraints {1...10} | 220 0.39 | 1430 6.70 | 15.43 6.43 | 1590 529 | 1.00  0.20
{1...15} | 2.37 043 | 14.83 8.35 | 17.67 4.68 | 18.83 2.87 | 0.00  0.00

{1...5} | 177 071 10.73 951 | 19.10 1.79 | 13.93 887 | 1.23  0.37
Profits, first, and second {1...10} 1.77  0.71 | 10.13  9.07 | 20.60  0.59 | 15.87 7.43 | 1.00 0.20
constraints {1...15} | 177 071 | 5.63 5.89| 20.63  0.47 | 16.07 7.15| 0.00  0.00

Table 4 Mean and MAD for time-stability for the simplex uncertainty model and Response-Perfect feedback.

A Ty T Ts *

Uncertainty A9 | Mean MAD | Mean MAD | Mean MAD | Mean MAD | Mean MAD

{1...5} | 640 1.10| 9.47 3.63 | 20.70 0.47 | 19.40 2.31 | 1.23  0.37
Profits {1...10} | 6.40 1.10 | 9.70 3.89 | 21.00  0.00 | 20.50 0.80 | 1.00  0.20
{1...15} | 6.40 1.10| 8.07 3.97 | 21.00 0.00 | 21.00  0.00 | 0.00  0.00

{1...5} | 5.50 .55 | 14.60 8.19 | 16.07  6.43 | 13.97 7.08 | 1.23  0.37
First Constraint {1...10} | 5.23 72 | 13.73  8.60 | 16.43  6.11 | 14.00 8.23 | 1.00  0.20
{1...15} | 4.97 1.69 | 13.40 898 | 16.57 5.65 | 1543 6.55 | 0.00  0.00

{1...5} | 5.43

First and second constraints {1...10} 5.20
{1...15} | 5.03

{1...5} | 7.80
Profits, first, and second {1...10} 7.80

constraints {1...15} 7.80

=

.56 | 18.27 4.16 | 18.63 3.15 | 18.93 2.70 1.23 0.37
.59 | 19.33 2.93 | 19.10 2.84 | 19.03 3.01 1.00 0.20
.53 | 19.13 3.03 | 19.27 2.78 | 18.83 3.33 0.00 0.00

==

-

43 | 17.63 4.51 | 20.77 0.37 | 19.80 1.83 1.23 0.37
43 | 16.80 5.49 | 20.90 0.17 | 20.80 0.36 1.00 0.20
.43 | 16.23 6.22 | 20.97 0.06 | 20.37 1.14 0.00 0.00

-

-

We observe that the proposed policies A € A consistently outperform the benchmark by a large

margin except for the semi-oracle lower bound 7*, which is to be expected. For virtually all con-
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figurations, policies 7, and 7, yield very poor time-stability results, while m, is somewhat better.
Moreover, these policies, in contrast with A, are not able to find an optimal solution for most cases
within the time horizon. These results reflect one of the key advantages of the greedy and robust
nature of the policies in A, namely, the fact that the leader is guaranteed to eventually find an opti-
mal solution to the full information problem. In addition, it is remarkable that the time-stability
of the policies in \ is considerable better than their theoretical worst-case of |A|.

Furthermore, we observe that the performance of the proposed policies is better for the case
of Value-Perfect feedback when compared to Response-Perfect feedback, under both uncertainty
models, and is particularly pronounced in the simplex model with Response-Perfect feedback. This
is to be expected: under Value-Perfect feedback more linearly independent equations are added
on average to U' at each time period. It is also noticeable that the amount of initial information
does not seem to have any significant impact on policy performance under both feedback types
and uncertainty models. However, we note that in other bilevel settings the amount of initial
information does have a very important effect (see, e.g., discussion in Borrero et al. (2016) for an
example in the context of the shortest path interdiction).

An important feature of the policies in A is their extremely low variability, not much larger
than the semi-oracle’s. In contrast, the benchmark policies are orders of magnitude more variable.
Importantly, while these policies have low MAD values some cases, this is due to the fact that for
most instances their time-stability is infinity (recall our earlier remark that policies that do not find
an optimal solution within the first 20 periods of an instance are assigned the value 77 =T = 21).

We observe that our numerical experiments do not yield a clear conclusion regarding what type
of uncertainty is more challenging for the leader. That is, note that for policy A the results are fairly
similar whether there is uncertainty only in the constraints or uncertainty only in the profits. In fact,
for some configurations the time-stability is better for profit uncertainty while in other is better for
constraint uncertainty. Note that the performance when there is uncertainty in both constraints is
slightly worse than the case where only one constraint is uncertain. Interestingly, this is not always
true, see, e.g., the simplex model for both Value-Perfect and Response-Perfect feedback.

For most configurations the worst performance is observed when there is uncertainty across both
profits and budget constraints. The only exception being Value-Perfect feedback under the simplex
model, where the results are the same as the case of profit uncertainty. Importantly, we observe
that the policies in A have a very good performance for Response-Perfect feedback whenever there
is uncertainty in the constraints. Such behavior is remarkable, since as mentioned in Section 4.2.2,
no theoretical results that upper bound the time-stability are yet available for these cases. This
suggests that theoretical upper bounds for the matrix model under Response-Perfect feedback

might be found, however their derivation might not depend on the notion of polyhedral dimension.
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7. Conclusions

This paper presents a framework for addressing a class of max—min bilevel problems where at each
period a leader allocates resources so as to degrade the performance of a follower. The follower, in
turn, aims at minimizing the cost of performing his activities given the leader’s actions. In order
to solve the problem, we propose a class of policies A that are both greedy and robust. Under
reasonable assumptions on the information that the leader collects from the follower’s response,
our theoretical results show that in this class of problems exploitation always implies exploration
as long as the leader is using policies in A. Moreover, the greediness and robustness of policies
in A are sufficient to guarantee weak optimality and we also show that these policies provide the
leader with a real-time certificate of optimality.

The implementation of the proposed policies requires solving a linear MIP in each period: these
problems can be solved by available commercial solvers. We also present a lower bound on the best
possible achievable performance based on the actions of a semi-oracle, which can also be computed
via an MIP. Our theoretical results are supported by a series of numerical experiments that show
that the proposed policies consistently outperform other benchmark policies.

Several questions remain open at this point with regard to sequential bilevel problems with
incomplete information. One of the most relevant is to study up to what point the results in this
work can be extended to general bilevel programs. The key challenge for this broader class of
problems is that, as it can be readily checked, Theorem 1 and Lemmas 1 and 2 do not hold for
greedy and robust policies. This implies that these policies (i) no longer provide a certificate of
optimality; (i7) do not imply that an optimal solution has been found whenever the expected cost
of the leader is the same as that of the follower; and (#4) do not imply that the leader learns new
information whenever the expectation and the value observed are different.

In addition, the study of models with more general assumptions on uncertainty, where, for
instance, the leader is not certain about her upper-level data, provide an attractive avenue of future
research. For instance, the question of determining whether finite time-stability upper bounds
can be proved for the matrix model under Response-Perfect feedback with no extra assumptions
remains open, as well as to determine alternative feedback settings where finite bounds, and weak

optimality, can be also be attained.

8. Acknowledgments

We thank the associate editor, and two anonymous referees for their constructive and helpful
comments. The research of the first two authors was supported in part by the grants from AFOSR
FA2386-12-1-3032, DTRA HDTRA1-14-1-0065 and NSF CMMI- 1634835. The research of the
third author is supported in part by the Complex Engineering Systems Institute, ISCI (ICM-FIC:
P05-004-F, CONICYT: FB0816).



Borrero, Prokopyev, and Sauré: Sequential Interdiction with Learning 29

References

Agrawal, S., Wang, Z. and Ye, Y. (2014), ‘A dynamic near-optimal algorithm for online linear programming’,
Operations Research 62(4), 876-890.

Audet, C., Hansen, P., Jaumard, B. and Savard, G. (1997), ‘Links between linear bilevel and mixed 0-1
programming problems’, Journal of Optimization Theory and Applications 93(2), 273-300.

Audibert, J.-Y. and Bubeck, S. (2009), Minimax policies for adversarial and stochastic bandits, in S. Das-
gupta and A. Klivans, eds, ‘Proceedings of the 21st Annual Conference on Learning Theory (COLT)’,
Omnipress, pp. 217-226.

Audibert, J.-Y., Bubeck, S. and Lugosi, G. (2013), ‘Regret in online combinatorial optimization’, Mathematics
of Operations Research 39(1), 31-45.

Aver, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (2002), ‘The nonstochastic multiarmed bandit
problem’; SIAM Journal on Computing 32(1), 48-77.

Bard, J. F., Plummer, J. and Sourie, J. C. (2000), ‘A bilevel programming approach to determining tax
credits for biofuel production’, European Journal of Operational Research 120(1), 30-46.

Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009), Robust optimization, Princeton University Press.

Bertsimas, D. and Tsitsiklis, J. N. (1997), Introduction to linear optimization, Vol. 6, Athena Scientific
Belmont, MA.

Borrero, J. S. (2017), Sequential Bilevel Linear Programming with Incomplete Information and Learning,

PhD dissertation, University of Pittsburgh.

Borrero, J. S., Prokopyev, O. A. and Sauré, D. (2016), ‘Sequential shortest path interdiction with incomplete
information’, Decision Analysis 13(1), 68-98.

Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K. (2005), ‘A two-sided optimization for theater
ballistic missile defense’, Operations Research 53(5), 745-763.

Brown, G., Carlyle, M., Salmerén, J. and Wood, K. (2006), ‘Defending critical infrastructure’, Interfaces
36(6), 530-544.

Bubeck, S. and Cesa-Bianchi, N. (2012), ‘Regret analysis of stochastic and nonstochastic multi-armed bandit
problems’;, CoRR abs/1204.5721, http://arxiv.org/abs/1204.5721.

Caprara, A., Carvalho, M., Lodi, A. and Woeginger, G. J. (2013), A complexity and approximability study
of the bilevel knapsack problem, in ‘Integer programming and combinatorial optimization’, Springer,

pp- 98-109.
Cesa-Bianchi, N. and Lugosi, G. (2006), Prediction, learning, and games, Cambridge University Press.

Colson, B., Marcotte, P. and Savard, G. (2007), ‘An overview of bilevel optimization’, Annals of Operations

Research 153(1), 235-256.



30 Borrero, Prokopyev, and Sauré: Sequential Interdiction with Learning

Coté, J.-P., Marcotte, P. and Savard, G. (2003), ‘A bilevel modelling approach to pricing and fare optimisation

in the airline industry’, Journal of Revenue and Pricing Management 2(1), 23-36.
DeNegre, S. (2011), Interdiction and discrete bilevel linear programming, PhD thesis, Lehigh University.

Hazan, E. (2015), ‘Introduction to online convex optimization (Draft)’, Foundations and Trends in Opti-

mization, http://ocobook.cs.princeton.edu/OCObook.pdf.

Held, H., Hemmecke, R. and Woodruff, D. (2005), ‘A decomposition algorithm applied to planning the
interdiction of stochastic networks’, Naval Research Logistics 52(4), 321-328.

Israeli, E. and Wood, R. (2002), ‘Shortest-path network interdiction’, Networks 40(2), 97-111.

Lucotte, M. and Nguyen, S. (2013), Equilibrium and advanced transportation modelling, Springer Science &

Business Media.
Morton, D., Pan, F. and Saeger, K. (2007), ‘Models for nuclear smuggling interdiction’, IIE Transactions
39(1), 3-14.

Salmeron, J., Wood, K. and Baldick, R. (2004), ‘Analysis of electric grid security under terrorist threat’,
IEEE Transactions on Power Systems 19(2), 905-912.

Sherali, H. D., Soyster, A. L. and Murphy, F. H. (1983), ‘Stackelberg-Nash-Cournot equilibria: characteriza-
tions and computations’, Operations Research 31(2), 253-276.

Smith, J. C. and Lim, C. (2008), Algorithms for network interdiction and fortification games, in ‘Pareto
optimality, game theory and equilibria’, Springer, pp. 609-644.
Wolsey, L. A. and Nemhauser, G. L. (2014), Integer and combinatorial optimization, John Wiley & Sons.

Wood, R. K. (1993), ‘Deterministic network interdiction’, Mathematical and Computer Modelling 17(2), 1-
18.

Wood, R. K. (2011), ‘Bilevel network interdiction models: Formulations and solutions’, Wiley Encyclopedia

of Operations Research and Management Science .

Zare, M. H., Borrero, J. S., Prokopyev, O. A. and Zeng, B. (2017), ‘A note on linearized reformulations for

a class of bilevel linear integer problems’, To appear in Annals of Operations Research .

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradient ascent, in T. Fawcett
and N. Mishra, eds, ‘Proceedings of the Twentieth International Conference on Machine Learning’,

AAAIL pp. 928-936.



Borrero, Prokopyev, and Sauré: Sequential Interdiction with Learning 1

Appendix A: Additional Results and Complementary Material

Proof of Lemma 1. First, note that if y%* > 0 for some a & A?, then the result follows from the
assumption of Value-Perfect feedback. Therefore, suppose that y2* =0 for all a ¢ A*. We claim that
there exists an activity a € A"\ At such that yi* > 0; the existence of such an activity implies the
desired result from the assumption of Value-Perfect feedback. Indeed, to proceed by contradiction,
suppose that this is not the case, i.e., y»* =0 for all a € A'\ A*. As y"* € Y (z'*) (see Equation (7))
and y! =0 for all a & A’, then it must be that (y'*),cac € Y(2"*). Now, because ¢, = ¢, for all
a € A, one has that for all ét € U!

Aty T T
(ct) (yfz))\)aeAt:(ct> (yZ)A)aeA“

and therefore ((€!) (42 )acats (YoM )acat) € Yii(2). Thus, by the definition of 2 we have that
. T
25 <) (Y aear- (A-1)

On the other hand, because g = 0 for all a & A’, one has that z"* = (¢!) " (y:*),eat, and hence, by

Theorem 1 along with (A-1), we have that 2 = 2%, yielding the desired contradiction. n

Proof of Proposition 2. First, observe that equation (8) is an immediate consequence of Theorem
2. In order to prove weak optimality, we show that for any given policy 7 and any s = (n,n") € S
there exists an instance (D°, D)™ of size s such that 77((D°,D)™) > n.

Let A={1,2...,n%n°+1,....n}, A°={1,...,n°} and T = A, I° = A°. Let X (and hence H
and h) be given by

X:{JUEZTJr : Za}j:no—l, ijgn—l, acj§1Vj:1,...,n},

jero Jjel

and let X° (and hence, H° and h°) be given by

XO:{wEZi : Za:j:no—l, xjglw':l,...,no}.

jero

On the other hand, for any x € X define Y (z) as
Y(x):= {yeRi : Zngl, y;+a; <1 ijl,...,n}.
j=1

That is, F=[1";I] and L =[0";I], where I is an identity matrix of size n, and f is a column
vector of ones. Define F°, L° and f° as the corresponding submatrices of F', L and f associated
with j=1,...,n° Finally, consider ¢ to be such that ¢,0,, < ¢,04441, for ¢g=1,...n—n"—1, and
for the cost coefficients of the first n° activities we assume that the leader knows that they belong

to U°, where U’ ={¢° € R (< & <u, j=1,...,n°}, where we assume that ¢, <{<u <0.
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In order to adequately define the instance, a particular é° in U° has to be fixed. However,
independent of which specific ¢° is chosen (which will depend on the policy, see below), the above
defined data constitutes an instance, i.e., D™ € G((D°)™), and its size is given by (n,n°). Particularly,
note that from the leader perspective, the problem consist of blocking those n — 1 activities that
are most profitable to the follower, constrained to the fact the she always need to block exactly
n® — 1 out of the n® activities she knows at time ¢t = 0. In addition, from the assumptions on ¢, the
follower’s profit from any of the n —n® activities that the leader does not initially know is better
than the profit generated by any activity that the leader initially knows.

From the definition of (D°,D) it is clear that if 2* is an optimal oracle decision, then % =1 for
j=n"+1,...,n, which implies that the leader must learn all those activities before implementing a
solution where 2™ = 2*. Hence, if ¢, denotes the first time after which the leader learns all activities
from A\ A°, it is clear from the structure of the instance that to > n —n°. In addition, note that
until ¢, the follower has only used activities in A\ A°, so by Value-Perfect feedback, he has not
revealed to the leader any of the real costs of the activities in A°.

In order to prove weak optimality we show that for any given policy 7 there is a cost vector
c® € U° such that it takes the leader at least another n° time periods to consistently implement z*
(this would imply that 7 ((D°,D)™) > n, yielding the desired result). First, assume that 7 does not
repeat any solution from time ¢y, until time ¢, =ty +n" — 1. For any t =t,...,t,, let 7! be the
(unique) follower activity in A° that "™ does not block at time ¢, and choose the values of ¢y, . .., ¢,0
such that £ < cjmto+1 < Cjmigre < ... < Cjmin < Cjmtg < u, and note that these values are admitted by
U°. Observe that fixing the costs of the actions in A° in this way, we have that z* satisfies x;=1,

for j # j™' and x},,to =0, and that 2" = ¢;=.to. On the other hand, for t =t,+1,...,t,,
2T < e < 2 (A-2)

(we note the first inequality above is, in general, not an equality, as it is not necessary for ™ to
block all the activities j with j > n"). Henceforth, equation (A-2) implies that 77((D°,D)™) > t,,
and hence, as to >n—n", 77((D°,D)™) > n, and the result follows.

Now, suppose that 7 repeats a solution once between t; and t,, thus there exist ¢, <u <wv <t,
such that z*™ = z*™. In this case j™* = j™, and there exist 1 < b < n° such that b # 5™ for all
t=0,...,n. Let ¢ satisfy £ < ¢jrt < ¢jmis1 fort =tg,...,v—2, ¢jrt < ¢jmes1 fort=v+1,...,t,, and
assume that ¢;r.t, < ¢, <wu. Observe that ¢® belongs to U, and hence (D°, D) is a valid instance,
and moreover, x* is given by x; =1 for all j # b, z; =0, with 2* = ¢,. In addition, it is seen that
for t =to,...,t, it follows that z*™ < ¢+ < z*, and hence 7™ ((D",D)™) > n, as desired. Also, note

that if 7 repeats a solution between t, and t,, the same argument as above yields the result. g
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Proof of Lemma 2. As z* < 25 there exists é € U' such that z* < (&) (y5*)aeat. Because
A = A* we have that U = {é& e R (&) (yi) geur = 2%, é € U'}, and therefore & ¢ UM,

Now, in view of the definition of A'*! under Response-Perfect feedback, G'*! = (G*; (y**) ") and
g'tt = (g';2"). For any t € T let us denote by C;~ those inequalities in the definition of &* that
must be satisfied as strict equalities, i.e., j € Cp~ < Gic' = g; Ve' eU’, where G denotes j-th
row of G*. Let us denote by G*= and g"~ the corresponding submatrix and subvector of G* and

g’ associated with those elements in Cf;~. We have that (see, e.g., Wolsey and Nemhauser (2014))
dim(U*) = |A*| — rank(G"~,g"7). (A-3)

We claim that rank(G'*h=, g"""=) > rank(G"=,¢g"~) + 1, and the desired result then follows
from equation (A-3). Indeed, arguing by contradiction, suppose that rank(G't'= g‘*t1=) =
rank(G*=,g"=). This implies that ((y"*)scat;2"*)T can be written as a linear combination of the
rows of (G*=,g"~), and thus it is readily seen that {¢' : G'T'=¢' =gt~} ={¢' : GH=él =g~}
Because ¢' € U, it belongs to {é': G"=¢' = g"=}, which by the above equation implies that it
also belongs to {¢': G**1=¢! = g"™=} and thus to U™, which yields the desired contradiction. g
A.1. Proof of Proposition 6
Before proceeding with the proof of Proposition 6, additional notation, concepts and results need
to be introduced. In the discussion that follows, let us suppose that in Response-Perfect feedback,
besides observing the values of y! the leader is also able to observe the value of the left-hand
side (or, equivalently, the slack ¢) for all constraints d € Cit'. For simplicity, let us denote 1Y, :=
D ytso Faalo = fa— az — L] x'. Then, by using the information from the feedback, the leader
updates U' by including the linear constraints

Z Y F, =1t forall de LY, (A-4)

acyl >0
in the definition of polyhedron U'*!. Recall that for any d € Ck, nl, denotes the number of the
follower’s activities in A’ that d restricts, that is n},:=[{a € A": d € Cr(a)}|. As such, for any given
time ¢ € 7 we have that
Ut C RZ4ck ™

Denote m' = |C%| and let us write C% ={d,,...,d,,:}. We organize the elements of &* into blocks,
so that F' e Y* is given by

F= [ﬁ’dl;ﬁ‘dQ; .. .;det],
where F'4 € R for all d € (.. We also assume that the columns of matrix G* are organized in this

way. Using the conventions above, for any d € CL™, constraint (A-4) can be rewritten as

v;ﬁ‘ =rh, (A-5)
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s . dy. ,.d d,t+1
where vector v, is divided in subvectors as v, := [V ;v5%; ... v, ]

nttl ] ]
R % . If d #d;, then vjj is a vector of zeros, i.e., vjj =0",,,. Otherwise, if d =d;, then it has
ng

d.;
, and each subvector v,” €

the information of y** for those activities in A**! that are restricted by d, i.e, (v}), =y-* for all
a € A" such that d € Cr(a).

Let D° and D € G(D°) be given, and suppose that T is sufficiently large. For any 7, define
S™(D°,D):={t € T:3Ja g A" s.t. y. > 0}, that is, ST(D, D) is the set of time periods when at
least a new activity is learned by the leader (who is using policy 7). Suppose that S™(D°, D) =
{s1,82,...,5,}, where w.l.o.g. we suppose that s, < sy41 for all k <p—1 (observe p depends on
7, we drop it for the notation for simplicity). In addition, for any k=1,...,p, define N* :={a €
A\ Ak ysk >0}, ie., N* is the set of activities the leader learns by the end of time period sy.

LEMMA 4. Let A € A, suppose that feedback F is Response-Perfect and that the leader observes the
values of all the slack variables of the follower problem at any time t € T. If £* > s, then,

u Cr(a) —|U, Cr(a)|, ift=sy for some k <p,
dim(U) — dim(U') < Zuaewt [Cr(@)] = |Uiene Crla)], 1 =5 (A-6)

-1, otherwise.
Proof. Let k < pbe given. Observe that at the end of period s, the leader learns all the activities in
N*_ and as such introduces a new variable Fjy, into U5+ for all d € Cr(a) and a € N*. Hence, U1
has ) . v# |Cr(a)| more variables (columns) than Z/** (observe that there is no new variable Ey, for
a € A" from the standard feedback assumption). On the other hand, for every d € |J . y» Cr(a) the
leader includes the linear constraint (A-5) into U***! (in addition to the potentially new constraints
associated with each d € C%).

From the definition of vy in equation (A-5), it is readily seen that if d # d’, and both d,d' €
U.ent Cr(a), then (vg;r)*) and (vg;r)) are linearly independent. Moreover, it is also readily
observed that these vectors are linearly independent of all the other (expanded) vectors that give
equality constraints in U*k.

The above analysis implies that, with respect to dim(U®¢), dim(U*+*!) increases by

> went |Cr(a)| because of the new variables, but dim(Z/***') decreases by (at least)

because of the newly introduced linearly independent equality constraints. In other words,

dim(@+ ) < dim@*) + Y |Cp(a)]—‘ U CF(a)(. (A-7)

a€NFk a€ENk
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On the other hand, let t < &* such that t € §*; i.e., y! =0 for all a ¢ A*. Note that because £* >t
one has that ¢"y"* < 2z (by part (i) of Proposition 4). We claim that (recall from the proof of

Lemma 2 the definition of G~ and g"~)
rank([G'T1=, g"7]) > rank([G"=, g"7)).
Indeed, because the assumptions of Lemma 3 hold, let F' such that
it T £\ T b
(F)dy’ > fa— (L"), ™.

Now consider U after adding the equation v] F' = r%. Because ¢} > 0, one has that FTy" >
fa— (Lt) x' — ¢!, and hence F ¢ U+, Therefore, F* € U \ U™ and, by the same arguments of
Lemma 2, the vector (vy; kq) must be linearly independent from all the rows of (G*, g"). Therefore,

the desired claim follows and we can conclude that dim(U*™') < dim(U*) — 1, as desired. n

LEMMA 5. Let A € A be given, suppose that the feedback F is Response-Perfect and that the leader
observes the values of all the slack variables of the follower’s problem at any time t € T. Then,

51 +dim(U*) < dim(U°), and

sepn HdIm@UH) < s+ dim@UE) + 14+ S ycF(a)|—( U CF(a)‘ k=1,....p—1.

a€ENk aENk
Proof. By the definition of s, at periods t =0,1,2,...,s; — 1 we have that the leader does not
learn any activity and hence, by Lemma 4, dim(U") — dim(U*~') < —1 for t =1,...,s;. This implies
that dim(U*1) < dim(U°) — s; and the result follows. Suppose that k=1,...,p — 1 is given. By
definition of sgyq, from t =s,+1,...,5,:1 — 1 the leader does not learn any activity and Lemma 4

again implies that dim(U") — dim(U*~') < —1, t =s, +2,..., Sg41. This observation implies that
dim(U%+1) < dimU ) — (sp1 — s — 1).
Now, the above equation along with equation (A-7) imply that

dim(@*+1) < dim@*) + |Cp(a)|—‘ g C’F(a)‘ g1 se 1,

a€NFk a€NFk
which yields the desired result. ]

Using the above Lemma 5 we have the following important result.

LEMMA 6. Let A € A be given, suppose that the feedback F is Response-Perfect and that the leader

observes the values of all the slack variables of the follower problem at any time t € T. Then,

T <§’\<d1ml/{0 —I—p—l—Z(Z |Cr(a \—‘ U Cr(a D (A-8)

k=1 qeNFk a€ENk
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Proof. By repeated application of Lemma 5 it is verified that

sp—i—dim(l/lsp)Sdim(uo)—l—(p—l)+§<Z |CF(a)|—‘ U C’F(a)D. (A-9)

k=1 aenNk aeNk
Because by definition no new action is learned after s,, dim(U*) — dim(U'~') < —1 for ¢t > s, + 2.
This implies that at most by time s, + ¢, where t:= " _ ., |Cr(a)| — ’UaeNp C’F(a)‘ + 1, it must
be the case that dim(U/*»*?) = 0. Henceforth, part (iii) of Proposition 4 implies that &* < sp + 1,

and hence equation (A-9) and the selection of ¢ yield the desired result. ™

Proof of Proposition 6. Suppose first that (i) holds, i.e., that all the constraints are equality
constraints, thus the leader always knows that their slack is zero. Hence, a direct application of

Lemma 6 implies that

T*§§A§dim(uo)+}0+zp:(z (@]~ | U cr(@))

k=1 qeNk ac Nk
The desired result follows by noting that >3y, >, i [Cr(a)] = 30,440 [Cr(a)l and that
U.ent Cr(a)| > 1. On the other hand, consider (ii), i.e., that the leader observes the slack of one
of the constraints in D** at every period ¢ € T such that y! =0 for all a ¢ A’. In this case, following
the same arguments as in Lemma 4, equation (A-6) can be simplified to:

dim(ut+1) ~ dim(Ut) < ZaENk |Cr(a)], if t= s, for some k <p,

-1, otherwise.
The result follows from Lemma 6, after mimicking the proofs of the previous results, as in this case

equation (A-8) becomes

< <dimU) +p+Y > [Cr(a)]-

k=1 ge Nk

A.2. Semi-Oracle Algorithm

In this section we show a one-level MIP reformulation of the semi—oracle optimization problem (12)

and provide an algorithm that can speed—up its solution. The MIP reformulation is given by (A-1):

min Z wt (A-1a)
u,v,w,Yy,T,0 Py

st. Hr' <h teT (A-1b)

Fy'+Lz'<f, -F'0'<c teT (A-lc)

o' < M ul, y' < MY 0! teT (A-1d)
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f—Fy' —La' < M"(1—u') teT (A-le)

c+FT0 <MY (1—v") teT (A-1f)

xng"”ii Z v teT,iel\I° (A-1g)
5=0 ge A(i)\ A0

21— M w') <c'y' teT (A-1h)

ut € {0,1}1971 ot € {0, 1} wt € {0,1} teT (A-1i)

yteRIA ot e RIF 5 zk 0t e RICT! teT, (A-1j)

where ' is the solution of the semi-oracle at time ¢, and y' is the solution of the follower at time
t € T. The fact that y' € argmin{c'y: y € Y(a!)} is represented by its linear programming (LP)
optimality conditions via constraints (A-1c) (primal and dual feasibility) and (A-1d), (A-le), and
(A-1f) (the linearized complementary slackness conditions). In these constraints, M? , M?"| MY',
and M? are diagonal matrices that are upper bounds on ¢, f — Fyt — Lat, yt, and ¢+ F 6,
respectively. We refer the reader to Audet et al. (1997) for more details on single-level MIP
reformulations of bilevel problems with the lower-level problem given by an LP.

Variable w' is binary and takes the value of zero if ¢"y' = z*, i.e., if the optimal semi-oracle
solution is used at time ¢, see constraint (A-1h). Here, M = (2* —/)/z* and / is a valid lower bound
on the value of ¢"y for any feasible y. Finally, constraint (A-1g) implies that a resource cannot be
used if it has not been revealed by the follower or if it is not in I°. In this constraint, A(4) is the set
of follower activities that i interferes with, i.e., A(i)={a€ A: i€ I(a)}, and M =u'/{;, where u’
is an upper bound on the value of the i-th entry of any x € X, and ¢; is a strictly positive lower
bound on the value that any y,, a € A(i), can take whenever y, > 0. In general, the computation
of these lower bounds can be highly involved, but for specific applications they can be computed
rather efficiently from the problem’s data, see Section 6 for an example.

Although the MIP problem (A-1) can be solved directly for moderately sized instances, it might
require lengthy computational times due to the large number of variables and constraints, particu-
larly if T is large. It turns out, however, that this problem can be made somewhat less “dependent”
on the time horizon T by computing a time-stability upper bound, which is constructed by forcing
the follower to reveal an ‘optimal’ set of resources I* as soon as possible. Once this upper bound
T° is computed, MIP (A-1) is solved by truncating the time to T, which, as it will be seen, can
be bounded by the cardinality of I*. Then, the optimal solution of the original MIP is obtained by
extending the truncated solution until time T

Before proceeding, we introduce some additional notation. Let x* be an optimal solution of the

full-information problem, and let I* :={i € I: 7 > 0} be the set of resources that x* uses. For any
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J C I* define 2*7 as 27"/ := x7 if i € J and zero otherwise, thus 2*7 is the restriction of z* to the

resources in J. In addition, for any y define (with a slight abuse of notation)

a: Yya>0

i.e., I(y) is the set of resources that interfere with the activities that y performs.

The computation of the upper bound T is based on the two following observations: (i) as soon
as the semi-oracle enforces the follower to reveal all the resources in I*, then she can implement the
optimal solution x*; (i) if for a given J C I* the semi-oracle implements x*/, then the response
of the follower must reveal a new resource in I*\ J, or else the response yields the optimal value

z*. While the proof of (i) is straightforward, the proof of (i) is a consequence of the following:
LEMMA 7. Let J CI* and y’ € argmin{c"y: y€ Y (x*7)}. If I(y/)NI* C J, then z* <c'y’.

Proof. We proceed to prove that y” € Y (z*). Note that if this holds, then z* < "y’ by the
definition of z*. Indeed, let d € Cr and note that

Y Fuyl+ Y Law; =Y Fuyl+ Y Luwi+ Y Lz}

acA iel* acA icJ ieI*\J
_ J * * *
= E Fay, + g Lgx; + E Lgx; + g Lgix;, (A-2)
acA icd €Ky i€k

where in the last equation K, = (I*\ J)N1(y”’) and Ky, = (I*\ J)\ I(y’). Our objective is to prove
that the expression in (A-2) is at most f,; for all d € C; from this the desired result follows.

First, suppose that d € C satisfies that > __, Fi.y! = 0; then (A-2) is at most f; by Assumption
A4. Hence, suppose that d € C satisfies that Y _, Fu.y; # 0. Note that K =I*N(I\J)NI(y’) =
(I\J)N(I(y")NI*) =0, because by hypothesis I(y”) N I* C J; therefore, >~ . Laiz; =0. On the
other hand, suppose that i € K. Then i € I(y’) and, since Y ach Fuay? #0, it must be the case
that L4 =0. As this holds for any i € K5, we have that Lgz; =0.

From the above observations, it follows that if >~ _, Fyy) # 0 then

> Faayl + Law; =Y Fayl + > Law) < fa,

acA iel* acA icJ

i€ Ko

where the inequality in the above expression is a consequence of the assumption that y/ € Y (z*7).
Thus, (A-2) is at most f, for any d € Cr and hence y” € Y (z*), as desired. n

Supported by the observations above, Algorithm 1 outputs an initial feasible solution. It starts
by computing z* and z*. At any time ¢ it implements the solution 2**, with J* = I* N I*. If the
follower’s solution at ¢ yields a value less than z*, then, per observation (i), the semi-oracle can use

a new resource in I* at the next time period; otherwise, the solution implemented at ¢ is optimal.
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The value of TV is set to be the first time that z* is equal to the follower’s cost. We note that T is
upper-bounded by |I*| since in at most |I*| periods the semi-oracle discovers all the resources in I*,
and once these resources are available, the solution of the semi-oracle is optimal, per observation

(7). The above considerations are formalized in Lemma 8.

Algorithm 1 Finding an initial feasible solution to (A-1).
Require: (D°, D), T

Compute z* and z*
JO=1°NT*, y° cargmin{c y: y € V(2" )}, 20 =¢c"4y°, t =0
while z* > 2! and t < T do
JH = JtU (I(yH) N T¥)
y*t eargmin{cTy: ye Yz~ )}, st =Tyttt t=t+1
end while
if 2* =2' then
TO=t, 25 =2* a*) =a* vy =y for s=t+1,...,T
else
T° =00
end if
return 7°, z*, {(z*'",y!): t € T}

LEMMA 8. Let T° be as computed by Algorithm 1. Then, T° is an upper bound on the optimal
value of problem (A-1), and if |I*\ I°| <T, then T° <|I*\ I"|.

Proof. First, if the algorithm outputs 7° = oo, the results holds trivially. Hence, suppose TV < co.
In this case, it is readily checked that T° is an upper bound as the solution {(z*7",y"): t € T}
output by Algorithm 1 is feasible in (A-1) and yields an objective value of T°.

On the other hand, suppose that [I*\ I°| <T and let s € T \ {0} be given such that z* > 2" for
all 7 < s. Because J* C I*, y° € argmin{c"y: y € Y (2*7")}, and 2° = ¢"y*, Lemma 7 implies that
there exist i € I(y*) N I* such that ¢ & J*. Henceforth, |J¥T\ J*| > 1.

In order to arrive at a contradiction, suppose that 7° > |[I*\ I°|. This implies that if we let
t=|I*\I°, then z* > 2° for all s <t, and,

[7\1°

=101 Y NI T 2 I N = | IO I\ = (1) (A-3)

s=1
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where the inequality follows as |J*\ J*7!| > 1 for all s <t. By construction, we have that J* C I*
for any t, thus inequality (A-3) implies that J' = I*, and hence, by observation (i) that z' = z*;
which yields the desired contradiction. ]

By using Algorithm 1, an optimal solution of (A-1) can be readily computed via Algorithm 2.
The correctness of Algorithm 2 follows from noting that 7 is an upper bound for the time-stability.

Hence, we have the following result, which we state without proof.

PROPOSITION 7. Algorithm 2 correctly solves program (A-1).

Algorithm 2 Finding an optimal solution to (A-1)

Require: (D°,D), T
Compute (77, z*,{(z",y"): t € T}) by calling Algorithm 1 using ((D°,D), T)
if T°<T then

Solve program (A-1) until time 7° passing {(z,y"): t=0,...,7°} as an initial feasible solution,
let 7* be the objective value
else
Solve program (A-1) until time T passing {(z',y"): t=0,...,T} as an initial feasible solution,
let 7* be the objective value
if 7*=T+1 then
T" =00
end if
end if

return 7*

A.3. Numerical Computation of Policies in A

Next we establish that z** and z’g* can be computed by solving a mixed-integer linear problem.

LEMMA 9. Let t € T be given and suppose that for all x € X' the problem z%(x) has an optimal

solution. Then,

2y =max (g") p (A-4a)
s.t. H'z <h' (A-4b)

(G ' p—y=0 (A-4c)

F'ly+ L'z < f* (A-4d)

G'¢'<g' (A-4e)
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—(FHY ¢g—¢'<0 (A-4f)
q<MW', f'—F'y— L'z < M?(1—v") (A-4g)
p< MP? g'—G'¢' < MP(1—v?) (A-4h)
y< MY, (FY)' g+¢ < MY(1—v%) (A-4i)
yeRA o e Rl g e RIF (A-4)
peRI ¢ e RIIIH » 7¥ (A-dk)
v €{0,1}%! % € {0,1}90! 3 € {0,1}14"!. (A-41)

where in the above equations MY, MP, and MY are diagonal matrices whose elements are large
enough numbers. Specifically, if (z,q,p,y,¢") satisfies equations (A-4b)—(A-4f), then M is such
that max{qq, f; — Fiy — Liax} < M}, for any given d € Ct (MP and MY are defined analogously).

Moreover, z** can be computed as x** =& where (%,q,p,7,¢) is an optimal solution of the pro-

gram (A-4a)—(A-41).

Proof. The optimization problem max{z%(z): z € X'} can be written as
max{min{yoz (ét)T y<yo Vé'eU', —F'y>L'z— f',yc R‘ftl,yo € R} Cx € Xt}. (A-5)

Recall that U* = {¢': G'¢" < g'}. The vector y satisfies the robust constraint (ét)T y <y Vet el
t
if and only if there exist p € RfUl such that

(g") p<yoand (GY) p=y

(see, e.g., Ben-Tal et al. (2009)). Moreover, due to the objective function and to the fact that there
are no other constraints on yg, it follows that problem (A-5) is equivalent to
: A T t.. ot |AY| Ic 1 . t
max mln{(g) p: —y+(G") p=0,—F'y>L'z—f,ycR, ", peR] }.:UEX . (A-6)
TE
Since for any x € X" it is assumed that z%(z) has an optimal solution, any optimal solution y
of the inner minimization problem satisfies its Karush-Kuhn-Tucker (KKT) optimality conditions

(and vice-versa). Hence, replacing the minimization problem by the KKT conditions yields

max (g p (A-Ta)
st. —y+ (G p=0 (A-7b)
—F'y>L'z— f* (A-Tc)
—(FY)"¢—¢'<0 (A-74d)
G'¢'<g' (A-Te)
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(ff—F'—L'2) q=0 (A-7f)
(g' =G'¢")'p=0 (A-7g)
(FY g+¢)Ty=0 (A-7h)
yeRY e RIF pe RV ot e RIAY, (A-T1)

Observe that problem (A-7) is a non-linear mixed-integer problem (due to the non-linear comple-
mentary slackness constraints). However, it can be linearized by introducing 0-1 variables. Indeed,
¢, y and z satisfy the constraint (f* — F* — L'z) "¢ =0 if and only if there exists v* € {0, 1}/°F! such
that (see, e.g., Audet et al. (1997)) ¢ < M%" and f — F'y — L'x < M%(1 —v'). A similar equiv-
alence exists between the other two set of complementary slackness constraints in problem (A-7).
|

We note that whenever the leader’s variables are all discrete, then zf{‘ and z** can be computed
using a different MILP. In this case, the transformation of problem (A-6) into a one-level problem
involves using the strong duality optimality conditions, and then linearizing any resulting nonlinear
product. We use this approach for the numerical experiments in Section 6 as it yields shorter

solution times; details can be found in Zare et al. (2017).



