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Prioritizing Ground-Motion Validation Metrics Using
Semisupervised and Supervised Learning

by Naeem Khoshnevis and Ricardo Taborda

Abstract It has become common practice to validate ground-motion simulations
based on a variety of time and frequency metrics scaled to quantify the level of agree-
ment between synthetics and data or other reference solutions. There is, however, no
agreement about the importance or weight that it ought to be given to each metric. This
leads to their selection often being subjective, either based on intended applications or
personal preferences. As a consequence, it is difficult for simulators to identify what
modeling improvements are needed, which would be easier if they could focus on a
reduced number of metrics. We present an analysis that looks into 11 ground-motion
validation metrics using semisupervised and supervised machine learning techniques.
These techniques help label and classify goodness-of-fit results with the objective of
prioritizing and narrowing the choice of these metrics. In particular, we use a vali-
dation dataset of a series of physics-based ground-motion simulations done for the
2008 M, 5.4 Chino Hills, California, earthquake. We study the relationships that exist
between 11 metrics and carry out a process where these metrics are understood as part
of a multidimensional space. We use a constrained k-means method and conduct a
subspace clustering analysis to address the implicit high-dimensional effects. This
allows us to label the data in our dataset into four validation categories (poor, fair,
good, and excellent) following previous studies. We then develop a family of decision
trees using the C5.0 algorithm, from which we select a few trees that help narrow the
number of metrics leading to a validation prediction into the four referenced catego-
ries. These decision trees can be understood as rapid predictors of the quality of a
simulation, or as data-informed classifiers that can help prioritize validation metrics.
Our analysis, although limited to the particular dataset used here, indicates that among
the 11 metrics considered, the acceleration response spectra and total energy of veloc-
ity are the most dominant ones, followed by the peak ground response in terms of
acceleration and velocity.

Introduction

Verification and validation of ground-motion synthetics
have received increasing attention in recent years due to
advances in deterministic and nondeterministic physics-based
earthquake ground-motion simulation, as well as a growing
interest in the use of synthetic seismograms for engineering
applications. Validation entails the comparison of simulations
with observations, whereas verification involves the compari-
son of simulations with exact or alternative solutions (see Bie-
lak et al., 2010; Taborda and Bielak, 2013, and references
therein). Various methods or schemes have been proposed to
evaluate, through direct signal-to-signal quantitative compar-
isons or overall statistical analyses, the similarity between
simulation synthetics and recorded data, or with respect to
other reference solutions (Anderson, 2004; Kristekova et al.,
2006, 2009; Olsen and Mayhew, 2010; Burks and Baker,

2014; Rezaeian et al., 2015). Some of these methods are better
suited for verification purposes because they compare the
signals at the waveforms level (Kristekova er al., 20006,
2009), whereas others are better suited for validation. Burks
and Baker (2014) and Rezaeian et al. (2015), for instance, are
used for validation in the context of engineering applications,
that is, at the level of the dynamic response of buildings. An-
derson (2004) and Olsen and Mayhew (2010), on the other
hand, are used for validation in the context of the overall char-
acteristics of seismograms when comparing synthetics with
data, in both time and frequency. These methods are preferred
for validating high-frequency or broadband simulations,
where applications may be undefined or the expectation of
matching seismograms at the waveforms level is less relevant
(unless dealing with low frequencies, f..« <1 Hz), and
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because they offer simple schemes to quantify the goodness-
of-fit (GOF) of the simulation results.

Out of the various validation methods just described,
Anderson (2004) is perhaps the most widely used today (e.g.,
Bielak ez al., 2010; Chaljub et al., 2010; Guidotti et al., 2011;
Maufroy et al., 2015). In essence, this method assesses the
similarity of two signals based on the average score of 10 met-
rics. These metrics measure the cumulative strength of the sig-
nals (in terms of Arias intensity and absolute energy), the
comparative evolution of the signals in time (through normal-
ized Arias and energy integrals), their peak values (in accel-
eration, velocity, and displacement), frequency content (in
terms of Fourier and response spectra), and their time synchro-
nization (through cross correlation). We, in particular, have
consistently relied on a modified version of Anderson’s
method for the validation of a series of simulations of the 2008
M, 5.4 Chino Hills earthquake (Taborda and Bielak, 2013,
2014), and for the evaluation of velocity models in southern
California through the validation of a large suite of moderate-
magnitude earthquake simulations (Taborda et al., 2016).

The strength of the method proposed by Anderson
(2004) is that its metrics convey physical meaning to both
seismologists and engineers. However, it has been pointed
out that some of these metrics are redundant, or that other
relevant metrics need to be added. Taborda and Bielak
(2013), for instance, included—explicitly—the strong-mo-
tion duration (Trifunac and Brady, 1975) as an additional
metric, and averaged the Arias-intensity-related and en-
ergy-integral-related scores to avoid duplication. In the same
spirit, Maufroy et al. (2015) reduced the number of metrics,
limiting them to only those with comparable units. Unfortu-
nately, none of these alternatives addresses the underlying
questions regarding what are the most important parameters
that ought to be taken into account when validating ground-
motion simulations for a specific application and what level
of priority should these parameters be given.

Lack of consensus about how to answer these questions
makes the choice of validation methods and the selection of
the comparison metrics a subjective one, mostly based on
personal preferences and—arguably—on the application in-
tended for the simulation and/or the validation itself. At the
same time, with the current multiplicity of metrics, to give to
all metrics the same weight in a validation analysis, makes it
difficult for simulators to identify the sort of changes needed
in their models that could lead to better ground-motion pre-
dictions. We think that this situation can be corrected if we
can offer data-informed arguments that can help simulators
justify focusing on a reduced number of alternative metrics.

To that end, we study the relationships that exist between
11 different metrics—those proposed by Anderson (2004),
plus the strong-motion duration—with the objective of offer-
ing a prioritized reduced number of metrics that can help
predict validation results. We initially treat these metrics as
independent variables defining a multidimensional space, and
analyze them using machine learning techniques. In particular,
we use semisupervised and supervised methods. In machine
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learning, whether a method is considered unsupervised, semi-
supervised, or supervised, depends on the level of constraints
applied to the process or prior level of classification given to
the data. Here, we first use a semisupervised method called
constrained k-means to conduct a subspace clustering analysis
to label data samples in a given validation dataset (e.g., Mac-
Queen, 1967; Wagstaff et al., 2001). This dataset corresponds
to the validation results from a series of simulations done for
the 2008 M, 5.4 Chino Hills, California, earthquake (Taborda
and Bielak, 2014). Here, the clustering done by the con-
strained k-means method allows us to label the data using
for validation categories: poor, fair, good, and excellent. These
categories were defined by Anderson (2004) and have been
adopted—despite some differences—by other GOF methods
used in verification and validation (e.g., Kristekova et al.,
2009; Olsen and Mayhew, 2010). Upon labeling the data sam-
ples in our dataset into these four categories, we use a super-
vised learning method as implemented in the C5.0 algorithm
to obtain a family of decision trees (Quinlan, 1993, 1996). We
then select a few of these trees to gain insight about and pri-
oritize the metrics involved in the validation process. The de-
cision trees narrow the number of metrics offering a prediction
algorithm into the aforementioned validation categories.

In summary, although specific to the chosen dataset
(from the given set of simulations for a single event), our
results indicate that among the 11 metrics considered in the
analysis, the acceleration response spectra and total energy of
velocity are the most dominant ones, followed by the peak
ground response in terms of acceleration and velocity. We
test our prediction model and offer a discussion about its
implications and potential use in future validation efforts.

Validation Metrics

There are various methods and algorithms available to
evaluate the similarity between two or more seismograms,
both through direct signal-to-signal quantitative comparisons
or overall statistical analyses (e.g., Anderson, 2004; Kriste-
kova et al., 2006, 2009; Olsen and Mayhew, 2010; Burks and
Baker, 2014; Rezaeian et al., 2015). In earthquake ground-
motion simulation, they are used primarily for verification
with respect to benchmark or analytical solutions, and for
validation with respect to data (i.e., ground-motion records).
Here, we focus on the list of metrics proposed by Anderson
(2004), with an additional metric for duration, as suggested
by others (Olsen and Mayhew, 2010; Maufroy et al., 2015)
and as implemented in Taborda and Bielak (2013). These
metrics are listed in Table 1.

Following Anderson (2004), when applied to a pair of
signals, each one of these metrics yields a GOF score ranging
from O to 10, where a value of 10 corresponds to two signals
having identical characteristics. This scoring scale varies
according to the following exponential function:

P1— D2

2
S(p1,pa) = 10exp|:—(m) jI, (1)
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Table 1

Validation Metrics
Code Metric
C1 Arias intensity integral
c2 Energy integral
C3 Arias intensity
C4 Total energy
C5 Peak acceleration
C6 Peak velocity
C7 Peak displacement
C8 Response spectrum
c9 Fourier amplitude spectrum
C10 Cross correlation
Cl1 Strong phase duration

in which S is the GOF score that results from comparing
values p; and p, from signals 1 and 2, respectively, for each
one of the different metrics in Table 1. In the case of C8 and
C9, where the values p; and p, are function of the period (7"
and frequency (f), respectively, S is computed for all values
of T and f and averaged to produce a single mean score.
Anderson also provided guidelines for the process to be ap-
plied to the original signals as well as to those resulting from
a sequential set of band-pass filters covering the whole fre-
quency range of interest. In his method, this frequency-
domain decomposition should have passbands defined
following a logarithmic distribution to give more weight to
the low frequencies, and the GOF scores of all sub-bands and
the broadband be averaged into a single GOF final score.
However, in this study, to avoid the additional parameters
that would result from this approach (i.e., sub-bands width
and filter characteristics, Khoshnevis and Taborda, 2015), we
use only the broadband (f = 0—4 Hz) results.

One important aspect of Anderson (2004) is that the
results of the GOF scores were calibrated by comparing
horizontal components of recorded seismograms and other
simulations using the first 10 metrics (C1-C10) in Table 1
to find out how the scores were distributed throughout the
scoring scale. Anderson concluded that for a typical distri-
bution of scores, the GOF values could be classified into four
validation categories: poor (for scores from 0 to 4), fair (4 to
6), good (6 to 8), and excellent (for scores from 8 to 10).
Although these categories are arguably subjective, over the
years they have been adopted—despite some differences in
the ranges—by other GOF methods employed in verification
and validation (e.g., Kristekovad et al, 2009; Olsen and
Mayhew, 2010). As a result, Anderson’s method has been
used as a reference baseline for various validation studies
(e.g., Bielak et al., 2010; Chaljub et al., 2010; Guidotti et al.,
2011; Maufroy et al., 2015).

Here, we focus our analysis on the 11 metrics included
in Table 1 and investigate the relationships that exist between
them to prioritize a reduced number of metrics that can help
predict the outcome category one would use to label the
results of a given simulation.
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Study Dataset

We select the simulation results and validation analysis
done by Taborda and Bielak (2014) as our validation dataset.
In that study, the authors carried out deterministic simula-
tions for the 2008 M,, 5.4 Chino Hills, California, earth-
quake using a finite-element approach. The simulations,
done for a kinematic finite-fault model of the earthquake,
were computed for a maximum frequency f.. = 4 Hz and
a minimum shear-wave velocity Vg = 200 m/s. In total,
Taborda and Bielak (2014) did three simulations, each for a
different velocity model (CVM-S4, CVM-H, CVM-H+GTL;
see Small er al., 2017). The modeling domain covered an
area of 180 km x 135 km that included all the major sedi-
mentary basins and other relevant geologic structures in the
greater Los Angeles region. Their validation analysis con-
sisted of comparisons with data recorded during the event
at 336 ground-motion monitoring stations, for the three com-
ponents of motion (east—west, north—south, and up—down).
The simulation domain and the stations used in that study
are shown in Figure 1, and a sample of the validation results
obtained by the authors using Anderson’s approach is shown
in Figure 2. This figure, in particular, shows the spatial dis-
tribution of GOF scores (interpolated from the values at each
station) for the comparison of the broadband synthetics and
data, for the three velocity models used by Taborda and Bie-
lak (2014). In each case, the results are the average of the
GOF results for the three components of motion and the
scores for the 11 metrics from Table 1. A subsequent study
by Taborda et al. (2016) using multiple events found that the
model CVM-S (v.4.26.MO01; see Small et al., 2017) to be the
model that most consistently led to better simulation results.
Here, however, we use the GOF scores obtained by Taborda
and Bielak (2014) independently of the velocity models
and/or the components of motion.

We refer to the set of 11 scores associated with a pair of
signals from the work done by Taborda and Bielak (2014) as
one of the data samples that compose our dataset. Although at
times we will make distinctions between the velocity models
and the components of motion for visualization purposes, the
clustering analysis to be described in the Data Analysis
Method section was done using all the data samples in the
validation dataset. The motivation behind this choice was that
the dataset, as a collection of GOF values, was independent of
the simulations and serves here as a generic set of data samples
for the purpose of identifying the correlations that exist
between the different metrics in Table 1. As such, given the
simulations for each velocity model (3), the components of
motion (3), and the number of stations used in the validation
(336), gave us a large enough dataset, with 3024 data samples.
Figure 3 illustrates the idea of a lack of dependence on the
simulations by comparing the statistical distribution of the
GOF scores of the simulations organized by velocity models
and components. It is clear that although there are some differ-
ences between them, these are negligible. In other words, the
statistical distribution of the data for each metric is about the
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Figure 1. (a) Region of interest used by Taborda and Bielak (2014) for the simulations of the 2008 M,, 5.4 Chino Hills earthquake,
including the epicenter, focal mechanism, and major quaternary faults. In the background, the main roads and topography are shown for
visual reference. (b) Distribution of the 336 stations (gray dots) used by Taborda and Bielak (2014) for the validation analysis of their
simulations within the modeling domain shown in (a). Roads, city names, and the hillshade topography are also shown here in the back-
ground for reference. The color version of this figure is available only in the electronic edition.
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Figure 2. Validation results obtained by Taborda and Bielak (2014) in the form of goodness-of-fit (GOF) values across the region of
interest obtained from comparisons between data recorded at ground-motion monitoring stations and simulations for three different velocity
models: (a) CVM-S, (b) CVM-H, and (c) CVM-H+GTL. The distribution of the results at the bottom shows the count of stations on the GOF
scale defined by Anderson (2004) and the ranges of the validation categories: poor, fair, good, and excellent. The color version of this figure is
available only in the electronic edition.

same independently of model or component. Consequently, (i.e., our dataset). A common method to do this is to identify
and to use a dataset as large as possible, we thought it accept-  rules with disjunctive characteristics, in the form of decision
able to combine all the data samples into a single dataset. trees, that lead to outcomes representative of the overall

validation analysis. In our case, we define such outcome in

Data Analysis Method terms of four validation categories or classes representative

We are interested in proposing an algorithm with a  ©of the quality of the validation, namely, poor (P), fair (F),
reduced and prioritized number of validation metrics based ~ good (G), and excellent (E). The development of such
on previously acquired collection of validation data samples decision trees requires a proper classification of the data,

Downloaded from https://pubs.geoscienceworld.org/ssa/bssalarticle-pdf/108/4/2248/4275576/bssa-2018056.1.pdf
bv lIniversitv of Southern California user



GOF scores

—
o
~—

1hi
jud!

L'y

ik
iy
1y

10
8 -
6 -
44t
2 228
0
ct
Figure 3.

C4 C5

C6

c7

cg C9 C10 Cn

GOF metrics

Statistical distribution of the GOF dataset obtained
from Taborda and Bielak (2014) shown in the form of box plots
for each metric (C1-C11, see Table 1), and components of motion
(north—south [NS], east-west [EW], and up—down [UD]), for the
simulations done with velocity models: (a) CVM-S, (b) CVM-H,
and (c) CVM-H+GTL. In each case, the boxes represent the inter-
quartile range (IQR = Q3 — Q1), the medians are indicated by a
notch in the boxes, and the vertical lines show the range of the data,
with outliers (data less than Q1 — 1.5IQR and greater than
Q3 + 1.5IQR) shown as scattered dots. The color version of this
figure is available only in the electronic edition.

which can be done through a clustering process. This implies
applying the labels P, F, G, and E to the data samples in our
dataset. The Clustering section explains the data processing
analysis we put in place to label the data samples in our data-
set and subsequently obtain three alternative decision trees.

(@)

Clustering

The first step toward obtaining a decision tree is to label
the data according to their attributes. The inherent attribute of

(b)
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our data are the GOF values, but because of the multiplicity
of metrics and lack of clarity about their relationships, we
need to label the data according to the validation categories.
We do this by means of a clustering process.

Clustering is an unsupervised data-mining process used
to group data in a multidimensional space based on their
attributes (Fayyad, 1996). According to Jain et al. (1999),
clustering can be classified in two categories: hierarchical
and partitional. Technical details aside, the basic difference
is that hierarchical algorithms create nested partitions,
whereas partitional algorithms produce singular partitions.

There is no single clustering process that can be applied
to every dataset (Hartigan, 1985; Jain and Dubes, 1988; Dy
and Brodley, 2004). Consequently, one needs to make a
choice. We use a partitional, distance-based method known
as constrained k-means. The standard k-means method is an
unsupervised process for partitioning an n-dimensional pop-
ulation into k clusters with a minimum within-cluster attrib-
utes variance (e.g., MacQueen, 1967). The constrained
k-means method, on the other hand, is a semisupervised
approach that extends the standard method by allowing the
use of background information in the form of clustering
restrictions—thus the upgrade to a semisupervised method.

Given a k number of clusters, where each cluster is iden-
tified by its center, the standard process starts by computing
the distances of all other data points to the center of the clus-
ters, and grouping them based on their proximity to the clus-
ters’ centers. Once this is done, the center of each cluster is
updated based on the average attributes of its data points, and
the process is repeated until the clusters become stable.

This process is sensitive to the initial selection of the
number of clusters and their centers. To mitigate this, con-
strained k-means introduces two types of constraints: must-
link and cannot-link (Wagstaff et al., 2001). The must-link
constraint specifies instances in which two data points must
be linked, that is, be in the same cluster. The cannot-link con-
straint specifies instances in which data cannot be in the same
cluster. This prevents the process from converging into a
local minimum and defines constrained k-means as a semi-

supervised method. Figure 4 illustrates the
differences between the standard and con-
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strained k-means methods for a single
clustering iteration on a small 2D dataset.

In our implementation, we limit the
clustering to four validation categories:
poor (P), fair (F), good (G), and excellent
(E). The cluster centers are randomly se-
lected at the start, but we apply constraints
by adding a subset of four artificial data
samples into our dataset such that they

Figure 4.

Representation of the (a) ordinary, and (b) constrained k-means ap-
proaches for four data points (P) and four cluster centers (C) in a 2D space, where, for
the case of the constrained k-means approach, all the data points are set to be cannot-link
points. The color version of this figure is available only in the electronic edition.
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have cannot-link conditions. These artifi-
cial data samples are associated with the
different validation categories and are such
that they have GOF scores equal to 3, 5, 7,
and 9, across all metrics.
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The concepts of cluster centers and distances, as exem-
plified in Figure 4, imply the existence of a 2D space. Here,
the dimensions are defined by the GOF metrics. We are
therefore dealing with an 11D space. In clustering, the term
“dimensions” is equivalent to the concept of the data fea-
tures. Within this context, the GOF metrics are the features
defining a multidimensional space. In such multidimensional
space defined by the 11 features, the distances are obtained
using the Euclidean expression:

d(xi»xj) = (2)

corresponding to the distance d between the data point x; and
the cluster center x ; in the n-dimensional domain, in which
x;; is the Ith feature of the data point x;, and x;,; is the /th
feature of the cluster center x - It is, however, unpractical to
expect the patterns defining the clusters to be observable
across all features. Such high-dimensional issues are well
known (see, for instance, Dy and Brodley, 2004; Parsons
et al., 2004), and can be tackled using subspaces. Therefore,
instead of analyzing all 2'' possible subspaces, we focus
only on subspaces with two, three, and four features. In total,
we analyze 550 subspaces, 55 subspaces with two features,
165 with three features, and 330 with four features.
Unfortunately, not all the subspaces will have clearly
distinguishable clusters (i.e., some will not satisfy the can-
not-link constraints even after a large number of iterations).
Such subspaces are discarded, and all others are used to label
the data. In an ideal case, each subset of data samples
corresponding to the comparisons—between synthetic and
recorded signals at a particular location (or station) in a sim-
ulation—done using the 11 metrics will be labeled 550 times,
and the final label is taken as the mode. For example, if after
all the subspaces are accounted for, a station has labels
{F,F,F,P,F,G,E,F,F}, then such a station will be given
a final label F. Once all the samples in the dataset have been
properly labeled, we proceed with the decision-tree analysis.

Decision Trees

Building decision trees is a supervised learning process
used to approximate a target function as a sequence of dis-
junctive conditions designed to measure the effectiveness of
a set of attributes to classify data and predict outcomes. The
theory behind decision trees is well established (e.g.,
Quinlan, 1986, 1993; Mitchell, 1997). Decision trees are,
however, nonunique. They depend on the dataset, the user
parameters, and the algorithm employed to build them
(Murthy, 1998). Therefore, before describing our choice of
the decision-tree algorithm and parameters, we revise three
aspects about the dataset: data classes, attributes equivalence,
and dataset balance.

First, by data classes we refer to whether the classes of
data are properly distinguishable or not, and to whether the
data attributes contribute to those classes or not. In our case,
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data classes are handled by means of the clustering process.
As we described before, at the end of the clustering process,
all the data, samples in our dataset are labeled into one out of
the four validation categories. In decision trees, however, we
refer to these categories as classes. We are therefore inter-
ested in working with a labeled dataset or a properly classi-
fied dataset using the validation classes P, F, G, and E, which
is something that has been guaranteed by the prior clustering
process.

Second, by attributes equivalence, we refer to whether
the data attributes are comparable with each other on equiv-
alent terms or not. There are cases, either because of the
method or because of the data, that the data attributes need
to be standardized. In artificial neural networks, for instance,
the data need to be normalized on a [—1, 1] or [0,1] scale.
Normalization is also necessary when data attributes come
in different unit scales or value ranges (e.g., Wu et al.,
2010). In our case, the concept of attributes in the context of
the decision-tree analysis is the same as the concept of fea-
tures in clustering or GOF metrics in validation. Because all
our metrics are dimensionless and defined within the same
numerical scale (varying from O to 10), normalization is not
necessary and the process of building a decision tree is not
susceptible to the attributes scales.

Last, there is the issue of balance. A balanced dataset is
one that has about the same number of samples per class.
Algorithms used for building decision trees tend to perform
better with balanced datasets (e.g., Weiss and Provost, 2003;
Branco et al., 2016). Imbalanced datasets, on the other hand,
are those with a significant disparity in the number of
samples in each class. Imbalanced datasets can be improved
by a resampling process. There are two basic resampling
approaches: undersampling and oversampling (Branco et al.,
2016). Undersampling discards data from the subsets with
larger number of samples. Oversampling replicates data until
reaching appropriate number of samples. Both processes are
done by randomly picking data to either be discarded or
replicated. In our case, as we will see later, we apply over-
sampling to one of our dataset classes.

In general, oversampling increases the possibility of
overfitting, which occurs when the training data lead the
algorithm to produce a decision tree that predicts outcomes
too close to or exactly the same as the training data. This is
not desirable because such a tree would lead to inaccurate
predictions for other unseen data. Overfitting can be avoided
by applying heavy pruning methods. (Pruning, as the word
implies, is the process of cutting branches off a tree. Heavy
pruning methods limit the complexity of the tree by
constraining the number of branches and/or depth of a tree.)

Upon completing the clustering and resampling proc-
esses, the next step is to subdivide the dataset in two, a train-
ing dataset (with 70% of the samples, picked randomly), and
a testing dataset (with the remaining 30%). We first use the
training dataset to build a large suite of potential decision
trees, and then use the testing dataset to evaluate and pick the
best possible decision tree(s). There are several algorithms
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for building decision trees (e.g., ID3, C4.5, C5.0, CART; see
Breiman et al., 1984; Quinlan, 1986, 1993, 1996). Here, we
use the C5.0 algorithm as implemented by Kuhn et al
(2017). This algorithm is the latest update to the original ID3
and subsequent C4.5 algorithms (Quinlan, 1993, 1996). C5.0
is superior to its predecessors because it reduces the limita-
tions for handling numerical attributes and missing data, and
it has additional features such as the development of boosted
models. Discussing the differences between these algorithms
is out of the scope of the article.

In general, given a dataset, the process of building the
tree consists of recursively identifying the attributes in the
training data that are most likely to predict an outcome. The
process is recursive because new branches and decision
nodes are created based on the remaining data at every
branch and level, until the tree reaches a certain depth or
when other conditions are met. The effectiveness of an attrib-
ute A in classifying any subset S from the training data is
measured through the information gain G as

1S,
S|

G(S.A) =E®) - )

vEAa]

E(S,), 3)

in which Afa] is the discrete set of all possible values of
attribute A, S, is the subset of S for which attribute A has
value v, and E(-) is the entropy function given by

E(S) =) (=piloga(p), (4)
i=1

in which p; is the proportion of S belonging to class i, and ¢
are the different values that a given target attribute can take.

Entropy measures the homogeneity of a set of data. The
higher the entropy, the more even the distribution of the data
across classes. Conversely, an extremely low value of
entropy would mean most of the data fall within a particular
class. With this in mind, the information gain G of an attrib-
ute A for the dataset S, or G(S,A) in equation (3), is the
expected reduction in entropy caused by partitioning the
dataset according to the attribute A (Mitchell, 1997), which
we consider to be discrete. For the selection of a threshold for
a continuous attribute A(a), please refer to Quinlan (1996).

In the particular case of the C5.0 algorithm, in addition
to the general steps just described, the result of the process of
building a decision tree depends on other logical and numeri-
cal parameters. We set the options to (a) perform feature
selection or winnowing, (b) evaluate possible advanced splits
of data, (c) use a confidence factor (CF), and (d) use a thresh-
old for the number of samples that go in the tree leaves. The
feature selection option is used by the algorithm to choose
the most important attribute over others; the option of evalu-
ating advanced splits prevents the use of a hard threshold
during the classification by considering different probabil-
ities in assigning data to different classes; the CF is used to
control the level of pruning; and the threshold for the number
of samples in a leaf is set to a minimum number S,;, (also
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known as minCases) to limit the level of complexity of the
tree. Additional details about these options are available in
Quinlan (1993) and Kuhn et al. (2017). For this study, to
obtain a variety of tree options, we build trees for varying
values of CF and S,;,.

Each tree resulting from this process has different
qualities. We are interested in selecting a tree that is highly
effective, but with a low level of complexity. In other words,
we seek a tree with a good ratio of accuracy for predicting the
classification outcome of the data, while using a reduced
number of attributes (GOF metrics) in only a few number of
steps (as given by a small number of decision nodes or a tree
with shallow depth). The number of metrics, the number of
nodes, and the depth of a tree are directly seen from the top-
ology of the tree, and are often proportional (shallow trees
tend to use less nodes and thus less metrics). In general,
smaller trees are preferable because they are easy to under-
stand and often more accurate predictors (Quinlan, 1996).

The effectiveness of the tree, on the other hand, needs to
be measured. To that end, we use the factor F; proposed by
van Rijsbergen (1979) as

_ (1+p*PR

VERPER ©)

in which P and R are the precision and recall factors, respec-
tively, and p is a weighting factor between the two. P and R
are defined as

TP
" TP + FP

TP

P b
TP + FN

and R = (6)

respectively. Here, TP, FP, and FN are the number of samples
in the testing dataset considered to be true positives, false
positives, and false negatives, respectively.

These values are typically ordered in a confusion matrix.
For the simplest case of two categories, a confusion matrix
takes the form

Prediction
Positive Negative
Positive TP FN ’
Actual Value oo otive |:FP TN]

in which TN is the number of true negative samples. Con-
fusion matrices can be larger depending on the number of
classes. In our case, the confusion matrices are size 4 x 4, to
compare the actual number of data samples classified as P, F,
G, and E with the number of samples predicted by the
decision trees for each one of the same validation classes.
We compute Fy in equation (5) using =1 to give
equal weight to P and R (McCarthy and Lehnert, 1995). This
is done for all the trees obtained using all possible combina-
tions of CF and S,;, values. Then, we select trees with high
levels of effectiveness as measured by F;, commensurate to
such trees having low complexities, that is, reduced number
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Figure 5. A sample of the results from the multidimensional clustering analysis showing the clusters from a 2D perspective into the
relationships between different GOF metrics. In each case, the labels near the upper left corner indicate the features considered in the sub-
space analysis, and the features associated with the horizontal (x) and vertical (y) axes in the plot. (a) Two-, (b) three-, and (c) four-feature
subspace analyses. In each case, the poor, fair, good, and excellent clusters are indicated with circle, triangle, square, and cross symbols,
respectively. Empty circles indicate the location of the artificial cannot-link stations we introduced as background knowledge to the clustering
process. The color version of this figure is available only in the electronic edition.

of metrics and shallow depths, which is precisely the goal set
at the start. F; is obtained based on the testing dataset as
opposed to the training dataset.

Results

As explained in the methodology, the first step is to carry
out a clustering process on the dataset to properly label the
data samples according to the classes to be used in the
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decision-tree algorithm. Figure 5 presents a sample of the
results obtained after applying the constrained k-means
method, including subspacing. Recall that there are a total
of 550 subspaces. Figure 5 shows three examples for each
one of the subspaces considered, that is, three for each one
of the two-, three-, and four-feature subspace analyses. How-
ever, because it is not practical or possible to present three- or
higher-dimensional plots, we display the results from a 2D
perspective into the subspaces by picking two metrics at a
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Statistical distribution of the dataset after the clustering analysis, as partitioned into the four validation categories: (a) poor,

(b) fair, (c) good, and (d) excellent. The distributions are shown in the form of box plots for each metric (C1-C11). In each case, the medians
are indicated by a notch in the boxes of the central quartiles, and the vertical lines represent the interquartile range, with outliers shown as
scattered dots. Dashed lines and background shadows represent the boundaries of the poor, fair, good, and excellent categories as defined by
Anderson (2004). The color version of this figure is available only in the electronic edition.

time. (The only cases in which this is a direct view into the
clustering results are the two-feature analysis cases.)

Some aspects of Figure 5 are worth discussing. First of
all, one must keep in mind that these are not typical corre-
lation plots. How well defined the clusters are from each
other or with respect to the metrics are important aspects to
consider. Although in most plots all four clusters are clearly
distinguishable, there are others in which that is not the case.
In the combinations in the three-feature analysis, for in-
stance, the excellent cluster has a limited presence. This is
due to the influence of the lower C9 values (see Fig. 3) on
the correlations with C5 and C7. This is not necessarily a bad
thing, as it helps understand the different relationships
between the various GOF metrics. In the best of cases, the
combinations C1-C2 and C5—C8 in the two- and four-feature
analysis, for instance, exhibit an almost perfect proportion-
ality between the metrics. That means either one of the met-
rics in those combinations is redundant. Relationships with
redundant features are those where knowledge about one of
the features provides a direct view into the other. On the other
hand, the combination C1-C7 in the two-feature analysis
presents an example of an irrelevant feature. We say Cl1 is
irrelevant because it provides no insight about the outcome
of C7 or that of the clusters. Identifying subspaces with re-
dundant and irrelevant features is important because, on the
one hand, the former help reduce the number of necessary
features, whereas on the other hand, the latter can essentially
be discarded because of their weak contribution to the deci-
sion-making process (Dy and Brodley, 2004).

Figure 6 shows the statistical distribution (box plots) of
the samples once the dataset is partitioned into the four GOF
validation classes. This is similar to Figure 3, but after the
clustering process is completed. Separately, we prepared
similar plots to look at the influence of the velocity models
and components of motions on the results of the clustering
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process, and as observed before, they had no significant
differences with the aggregate of all the samples in the data-
set. Figure 6 is particularly important because it highlights
the outcome of the clustering process and provides a preview
into the decision-tree analysis results. Metrics C5—C8 consis-
tently fall within Anderson’s poor, fair, good, and excellent
classifications, and that metrics C3 and C4 also show a
progressive variation in sync with these categories. This
means that these metrics are likely the best predictors for
the outcome of the validation process, as we will see upon
performing the decision-tree analysis. On the other hand,
metrics C1 and C2, and C9—C11 are almost invariant, there-
fore less or not decisive in the validation process. C11, in
particular, shows a broader (larger boxes) distribution, which
indicates that it is less effective in predicting the final
validation class.

In total, the clustering process results in 816, 1253, 879,
and 76 data samples for the poor, fair, good, and excellent
classes, respectively. These groups are shown in Figure 7. As
it can be seen in this figure, the number of samples in the
excellent class is significantly less than those in the poor, fair,
and good classes. Therefore, before moving on with the
decision-tree analysis, it is necessary to resample the subset
of the excellent class, for which we use the oversampling
approach described in the Data Analysis Method section.
Oversampling is nothing else but a replication of data sam-
ples. This process is done randomly, that is, through a ran-
dom selection of data samples from the original set to be
duplicated until one increases the number of total samples
in the oversampled set to a desired target number. In the case
of the excellent class, we applied oversampling until reach-
ing a total of 760 samples, as indicated with the dashed line
in Figure 7. Because the original size was 76 samples, that
means we applied an oversampling ratio of 10x. According
to Weiss and Provost (2003), an oversample rate of 10x is
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Figure 7. Number of data samples in each class (poor, fair,
good, and excellent) after conducting a multidimensional con-
strained k-means clustering process using subspace analysis for
two, three, and four features (GOF metrics). The dashed-line bar
indicates the number of samples in the excellent class after oversam-
pling. The color version of this figure is available only in the elec-
tronic edition.

considered to be acceptable in this type of data processing.
(Arguably, we could have undersampled the fair class as well
but we deemed that unnecessary. Besides, we used a heavy
pruning process to prevent overfitting.) Once this process
was completed, we went on with the decision-tree analysis.
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In total, we generated 20,000 trees using the C5.0 algo-
rithm for all possible combinations of the parameters CF and
Smin> in Which CF was chosen to vary between O and 1 at
intervals of size 0.01, and S,,;, was chosen to vary between
1 and 200 at unitary intervals. Despite our choice for small
intervals, the algorithm often reached recurrent tree struc-
tures for different CF and S,;;, values. Therefore, in reality,
from the 20,000 combinations for which we ran the algo-
rithm, only 66 unique trees were found.

For each one of these unique trees, we computed the
effectiveness factor F; from equation (5) and extracted
the total number of nodes in the trees and their depth. Figure 8
shows the results of F'; for all the trees and its distribution in
terms of the number of decision attributes or GOF metrics
used in the trees as a function of the number of nodes
and the depth of each tree. Recall that we are interested
in finding a sequence of decisions (represented by disjunc-
tive decision nodes in a tree) that can lead to good GOF pre-
dictions (i.e., high values of F'}) using a reduced number of
attributes (GOF metrics). In general, all the trees obtained
with the C5.0 algorithm are good in terms of the effective-
ness factor (F; values close to 1). Then, our choice comes
down to using a reduced number of metrics. Having several
trees with 2, 3, and 4 metrics (as opposed to 11), the follow-
ing factor in the decision is choosing trees with algorithms
using a small number of steps to reach the prediction. This is
given by a combination between the depth of the tree and the
number of nodes in the tree (i.e., trees with low complexity).

Based on these criteria, we selected three candidate
trees: T1, T2, and T3. These trees are shown in Figure 9.
T1 is the simplest of the three, and T2 and T3 share some
of their topology on the right side. T3 is the most complex
of them. More complex trees tend to be deeper, have more
nodes, and employ more attributes, all of which depends—in
part—on the pruning process. More complex trees have

8 0.96

= 10 0O @ @ ® — o o o©

g T66 T66

L 9 @DOo® O — o 0.95

@)

G 8- (o)) o — © o

@ 094 =

L 74 @ @ - o 0o o ®
Q

Ee] =]

% 6 —| o 00 — o o 093

c [

S 5 o® — o o 0.92 8

(2] =

3 T3 T3 e

§ 44 @ o@o a @ e o

5 T2 T2

° 34 ‘@um™ . ® o 0.91

[}

Qo

E 2@ o - @ o ° 0.90

z T T

1 T T T T T T T T T T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 0 2 4 6 8 10 12
Tree nodes Tree depth

Figure 8.  Accuracy of tree predictions in terms of the factor (F;) from equation (5) as indicated by dots distributed with respect to the
number of attributes (GOF metrics) as a function of: (a) the number of nodes and (b) the depth of the trees. The rings around some of the dots
indicate select trees used as reference in the Results and Testing sections, Figures 9-11, and Tables 2—7. The color version of this figure is

available only in the electronic edition.
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Figure 9. Selected trees (a) T1, (b) T2, and (c) T3. In each case, the decision nodes of the trees contain the code corresponding to the
metric (see Table 1) used and the branches beneath each node show the limit value to be used to select the next level in the tree. At the bottom,
normalized histograms are shown to indicate the distribution of the samples at each leaf node according to the validation classes with codes P,
F, G, and E for poor, fair, good, and excellent, respectively. At the top of each histogram is the total count of samples at the corresponding leaf
node. Histograms highlight the dominant validation class. The color version of this figure is available only in the electronic edition.
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Table 2
Confusion Matrix Results for Decision Tree T1
Prediction
P F G E
Actual P 242 11 0 0
F 13 313 16 0
G 0 42 207 15
E 0 0 23 231

Table 3
Confusion Matrix Results for Decision Tree T3
Prediction
P F G E
Actual P 248 14 0 0
F 7 343 18 0
G 0 9 221 33
E 0 0 7 213

higher F'; values, but they may not necessarily be more prac-
tical. In total, T1, T2, and T3 use 2, 3, and 4 attributes,
respectively. All coincide in the use of the total energy (C4)
and response spectra (C8) as key metrics. T2 adds the peak
acceleration (C5), and T3 adds the peak velocity (C6) to the
previous metrics.

At the bottom of each tree in Figure 9 are the histograms
of the data that land on each leaf node. (The count of samples
here is done based on the training dataset.) The decision tree
assigns the final validation category based on the dominant
class in each leaf. As such, the samples in the second leaf
node from the right in T3 are categorized as good despite
a significant portion of them being excellent. This is a natural
trade-off embedded in the use of decision trees.

The actual effectiveness (i.e., the average F; values
shown in Fig. 8), however, is measured based on the testing
dataset. Recall that F; depends on the number of true
predictions and false predictions measured by the confusion
matrix and the precision and recall factors. Tables 2 and 3
show the confusion matrices for T1 and T3, respectively; and
Tables 4 and 5 show the corresponding results for P, R, and
F|. As it can be seen in Tables 2 and 3, both trees lead to
strong diagonal confusion matrices, meaning that the classi-
fication into poor, fair, good, and excellent is well defined.
The differences between both matrices are actually minor
and small with respect to their diagonal values, and the F;
values in Tables 4 and 5 are all near to or above 0.9. The values
obtained for tree T2 are consistent with these observations.

Another aspect of interest is the level of participation of
each metric in the analysis of data, as the GOF values are run
through the nodes of the decision trees (i.e., as the tree is
traversed). The results of such level of participation are listed
in Table 6 for trees T1, T2, T3, and T66. (The tree T66 is the
most complex of them all as inferred from the number of
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Table 4
T1 Precision, Recall, and F; Values per Class
Class P R F,
P 0.96 0.95 0.95
F 0.92 0.86 0.88
G 0.78 0.84 0.81
E 0.91 0.94 0.92
Mean 0.90
Table 5
T3 Precision, Recall, and F; Values per Class
Class P R F,
P 0.95 0.97 0.95
F 0.93 0.93 0.93
G 0.84 0.89 0.86
E 0.96 0.86 0.91
Mean 0.91
Table 6
Data Analysis Participation (in Percent) for Select Trees
Code Metric Tl T2 T3 T66
Cl1 Arias integral — — — 1.5
C2 Energy integral — — — 0.5
C3 Arias intensity — — — 9.6
C4 Total energy 46.8 52.4 60.2  100.0
C5 Peak acceleration — 21.5 21.5 72.2
C6 Peak velocity — — 37.0 56.3
C7 Peak displacement — — — 19.4
C8 Response spectrum 100.0 100.0 100.0 100.0
9 Fourier spectrum — — — 23.8
C10  Cross correlation — — — 22.2
Cl11  Strong phase duration — — — —

metrics involved and the number of nodes and levels seen
in Fig. 8.) The percentages in this table represent the amount
of data that is seen by a decision node associated with any
particular metric. The nodes are not unique, and metrics are
often used in different nodes in a given tree. Therefore, these
percentages accumulate for each metric as the tree is trav-
ersed. A percentage of 100 means that a given metric has the
opportunity to see all the data samples through one or multi-
ple nodes, a low percentage means only a few data samples
are evaluated by that metric, and a null percentage means the
metric plays no role in the decision tree (it is not present in
any node).

The results in Table 6 highlight the fact that, for all trees,
the metrics for total energy (C4) and response spectra (C8) are
consistently the most relevant ones in the decision algorithms.
They are followed by the peak acceleration (C5) and peak
velocity (C6). On the other end, the strong phase duration
(C11) plays no role whatsoever in any of the trees, and the
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Table 7

Data Analysis Participation (in Percent) for Select Trees after Removing Certain Metrics

Without C8 Without C5 and C8
Code Metric T1 T2 T3 T66 Tl T2 T3 T66
C1 Arias integral — — — — — — — —
Cc2 Energy integral — — — 2.3 — — — —
C3 Arias intensity — — — 532 — 60.4 61.2 99.1
C4 Total energy 44.3 81.8 81.8 83.2 47.44 48.7 80.5 54.6
C5 Peak acceleration 100.0  100.0 100.0 100.0 — — — —
C6 Peak velocity 58.6 63.5 62.8 82.4  100.0 100.0  100.0  100.0
C7 Peak displacement — — — 324 — — — 43.2
C8 Response spectrum — — — — — — — —
C9 Fourier spectrum — — — 48.6 — — — 72.2
C10  Cross correlation — — — 249 — — — 20.5
Cll1  Strong phase duration — — — — — — — 8.1

Arias integral (C1), energy integral (C2), and Arias intensity
(C3) have only small to marginal participations. The remain-
ing metrics—peak displacement (C7), Fourier spectrum (C9),
and cross correlation (C10)—have a somewhat significant par-
ticipation, but only in the more complex trees.

An additional aspect worth highlighting here is the fact
that the clustering and decision-tree processes address the
problem of correlation between the metrics in a natural
way. For instance, one would expect the Arias intensity
(C3) and peak acceleration (C5), or the Arias intensity
(C3) and total energy (C4) to be related. Considering them
all without distinction could lead to double weighing their
influence, and assuming a 1-to-1 relationship may overstate
their level of correlation. Instead, the process used here de-
termines which of them has a better chance to predict the
outcome in the presence of the other and preserves that
metric as part of the decision tree.

One can put this to test by removing one or more metrics
and see how the participation of the metrics rearranges. Table 7
shows these participations for trees with similar topologies
(1) when removing the response spectrum (C8), and (2) when
removing both the peak acceleration (C5) and the response
spectrum (C8). In the first case, the peak acceleration (C5)
takes the place of the most determinant metric, followed by
the total energy (C4) and peak velocity (C6), depending on the
tree. In the second case, the peak velocity (C6) becomes the
most dominant, followed by the Arias intensity (C3) and
the total energy (C4), which vary in their level of participation
depending on the tree. These additional alternatives emphasize
the role of the total energy (C4) and the peak velocity (C6),
and show that other metrics such as the peak acceleration (C5),
peak displacement (C7), and Fourier spectrum (C9) are also
relevant. They also reaffirm the low or null levels of contri-
bution of the metrics associated with the shape of the Arias
integral (C1), the energy integral (C2), and the cross correla-
tion (C10) and strong phase duration (C11). All this is
consistent with what we observed in Figure 6.

That being said, a low participation does not necessarily
mean that a given metric is not relevant at all. Arguably, the
strong phase duration is highly regarded as an important
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parameter for strong-motion records in engineering. What
the results we present here mean is that, in the context of this
particular set of 11 metrics, to classify whether a simulation
result is poor, fair, good, or excellent, other metrics such as the
total energy (C4) are much more influential in the final result
than the strong phase duration (C11). This, of course, is done
under the assumption that one seeks to narrow the selection of
metrics without loss of insight about the outcome of the val-
idation process when compared with the outcome obtained
with the whole suite of the 11 metrics used here.

In the end, the final selection of a preferred tree comes
down to reducing complexity in the analysis without compro-
mising the interpretation of results. We favor tree T1 because it
is based only on three decision steps, and two GOF metrics:
the total energy (C4) and response spectra (C8).

Testing

We now test tree T1 on the original simulation results
from Taborda and Bielak (2014), for different velocity mod-
els and components of motion. In this case, we no longer
aggregate all data from the simulation but now look at indi-
vidual simulations done with different velocity models, and
the three components of motion separately, as it would nor-
mally be done during any ground-motion simulation valida-
tion. The results obtained with the T1 validation algorithm
are shown in Figure 10. We should note that they are not
supposed to be the same as those obtained by Taborda and
Bielak (2014) because T1 no longer gives the same weight to
all metrics but relies only on the two metrics C4 and C8. A
drawback of the T1 algorithm is that because its outcomes
are GOF validation classes (poor, fair, good, and excellent)
as opposed to GOF validation scores (with values from 0 to
10), once one obtains the results for the validation process for
different components of motion (as shown in the rows of
Fig. 10), there is no natural way of taking averages as one
would do for scores in a numerical scale (i.e., as typically done
when using Anderson, 2004). Therefore, to combine results
from the three components into a single validation classifica-
tion for each station, we define the following rules:
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Figure 10. Results obtained using the validation algorithm of the selected decision tree T1 on the 2008 Chino Hills earthquake sim-
ulation results reported by Taborda and Bielak (2014). Here, the validation process is carried out separately for each component of motion
(EW, NS, and UD), for three different simulations corresponding to simulations done using the southern California velocity models: CVM-S,
CVM-H, and CVM-H+GTL. Contours maps are drawn for illustration purposes only based on the spatial distribution of the GOF validation
class assigned to each station. The bottom histograms show the count of stations in each validation class. Stations are indicated with dots, and
the epicenter with a star. The color version of this figure is available only in the electronic edition.

¢ If the three components share the same validation class, * If all three components have different validation classes,
then that class is assigned as the combination result. then the final combination result is set as the lower class

* If two components share the same validation class, but one of the three, penalizing the lack of conclusive results.
differs, then the class shared by the former two is assigned We call the result of applying these rules a tree T1 com-
as the combination result, thus favoring the majority. bination. Applying them to the validation results shown in
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Comparison of GOF validation scores obtained using (a) an 11-metric Anderson (2004)-type GOF scoring, and (b) the T1

combination GOF validation classification. In both cases, the top plots show maps with a distribution of the scores or classes outcome at each
station, where the contours are drawn for illustration purposes only; while the bottom plots show histograms with the count of stations for
each GOF score interval or validation class. On the right side, the results of both methods are compared by superimposing the results of the
counts from using Anderson’s method (dashed-line empty bars) next to those obtained using the T1 algorithm (filled bars). The color version

of this figure is available only in the electronic edition.

Figure 10 for the case of the simulation done using the model
CVM-S is shown in Figure 11, which compares the outcome
with the result of the average scores obtained using the tradi-
tional Anderson (2004)-type GOF method. This figure exem-
plifies the differences or similarities between the numeric
GOF validation-scores scale and the proposed T1 GOF vali-
dation classes.

In our view, the T1 results are simpler to assimilate and
equally informative. Looking at both plots in Figure 11, it is
possible to argue that they lead to similar conclusions in
respect to the overall validation of the simulation, and in re-
spect to some particular areas and specific locations. None-
theless, it must be said that we do not expect to see a 1-to-1
relationship, as evidenced by the differences in the histo-
grams when compared in equal terms (see dashed line counts
on the right side corresponding to the count of the original
results from the left side histogram drawn next to the counts
of the results from the T1 algorithm). Finding the best pos-
sible match is the scope of a future work, whereas here our
focus was on identifying the relevance of the different met-
rics. This is important because the original approach pro-
posed by Anderson (2004) favors a uniform weighing of
metrics, and the results shown here indicate this may not
be the preferred strategy.
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Conclusions

We present the results of a machine learning analysis
using semisupervised and supervised methods on a large da-
taset comparing synthetics and data based on multiple GOF
metrics used in ground-motion validation with the goal of
prioritizing and reducing the number of metrics, and develop
an application independent decision algorithm. As a result of
the data processing analysis, we propose a simplified algo-
rithm based on a decision tree which uses only two metrics as
opposed to the initial 11 available in the dataset. In particular,
the proposed algorithm uses three (disjunctive decision)
steps based on the values obtained for the metrics of the total
energy and acceleration response spectra. We also propose
rules to allow for the new class-based validation criteria to
combine results obtained from different components of mo-
tion, and demonstrate that the results obtained with the pro-
posed algorithm using two metrics are comparable to those
obtained with the score-based validation results used in other
recent validation studies. One could implement similar rules
to combine results from a frequency-band analysis, using, for
example, the mode or majority validation class.

We recognize, however, that the proposed decision-tree
algorithm may not be a definitive one because of a potential
bias on the fact that the dataset used here, although large
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enough from a statistical point of view, came from simula-
tions done for a particular earthquake, in a particular region,
and using a particular set of metrics. In a future follow-up
study, it would be ideal to refine the tree adding other sim-
ulation datasets (i.e., from different earthquakes, regions,
models, and using additional metrics) to arrive to a suffi-
ciently sound and robust decision tree. The procedural steps
laid out here, nonetheless, remain valid, and there is no rea-
son why not to use it also in other contexts utilizing other
metrics (e.g., structural responses metrics such as drift ratio)
provided that they are properly normalized. In summary, we
can say that for the case of the metrics used here, we showed
that the procedure and background information used for clus-
tering and decision making is stable, and it is likely that—
despite the limitations just described—the metrics of energy
and response spectra (along with peak acceleration and
velocity as suggested by the additional trees) will prevail as
those among the most decisive ones.

Identifying the total energy and response spectra metrics
as decisive metrics in the comparisons between synthetics
and observations is a key contribution to validation of
ground-motion simulations. This contributes to clarifying
a standing question in the area of validation, and it provides
an indication to simulators about where to focus in the search
for improvements in their models.

Data and Resources

Calculations, data processing, and some initial figures
were done using R, the language and environment for stat-
istical computing and graphics (https://www.r-project.org,
last accessed May 2018), and the C5.0 package
(https://CRAN.R-project.org/package=C50, last accessed
May 2018). Additional calculations and figures were done
using MATLAB (http://www.mathworks.com, last accessed
May 2018). Map figures were prepared using the Generic
Mapping Tools (GMT; http://gmt.soest.hawaii.edu/, last ac-
cessed May 2018). Additional editing of figures was done
using Adobe Illustrator (http://www.adobe.com/Illustrator,
last accessed May 2018). The validation dataset used here
was readily available to the authors and can be provided
without restrictions upon request.
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