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Summary

Bounding surface plasticity models based on one-dimensional hardening func-
tions are broadly accepted as a valid approach to represent the multiaxial cyclic
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ory variables. This article presents a formulation that achieves the same goal
without the need of such additional variables. The proposed formulation oper-
ates on a generic hardening function under multiaxial loading while preserving

the simplicity inherited from pure deviatoric bounding surface models. In addi-
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tion, the approach presented here allows the implementation of Masing-type
rules, as well as the use of reduction factors to mitigate the overdamping effects
of large hysteresis loops. The formulation is tested using well-known hyperbolic
backbone functions under radial and nonradial multiaxial loading cycles, and it
is shown to have good agreement with reference solutions.
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1 | INTRODUCTION

There exist a variety of one-dimensional nonlinear soil constitutive models based on the concept of backbone curves
(eg, previous studies'*) and Masing-type rules’ to control the evolution of the stress-strain relationship during nonlinear
excursions under cyclic loading conditions. These models are broadly used in different engineering applications, from
earth structures to seismic site response.

One-dimensional nonlinear soil models are often preferred because they are better than other approximate approaches
such as the linear equivalent method®’ and because—in most cases—their parameters can be easily related to laboratory
test (eg, shear moduli degradation curves and evolution of damping with level of deformation). However, it is well known
that three-dimensional effects due to geometric or input motion complexities play a significant role in the mechanical
performance of geomaterials (eg, Xu et al® and Taborda et al®). Therefore, adequate models that can simulate nonlinear
soil behavior under multiaxial, arbitrary (cyclic) loading conditions are necessary.

From a geomechanical perspective, this problem has been most successfully addressed using models based on the
theories of bounding surface plasticity (eg, Dafalias and Popov'®!!) and multiyield surface plasticity (eg, Prévost'*3).
These methods offer robust frameworks for representing the multiaxial mechanical behavior of geomaterials, but from a
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practical perspective, the constitutive models arising from them often pose computational disadvantages. They tend to be
more difficult to implement, have large numbers of parameters, and be calibrated for specific applications (eg, Kramer '#).

Alternatively, the formulation proposed by Borja and Amies' provides a link between the theory of bounding sur-
face plasticity and the one-dimensional method. Initially formulated for the case of undrained cohesive soils, Borja and
Amies" adopt a von Mises bounding surface fixed in the stress space and consider a material with a vanishing elastic
region. As aresult, hardening depends only on the distance from the current stress point to its image point on the bounding
surface and the last stress-strain reversal. This reduces the integration of the constitutive model to solving two nonlinear
equations (as opposed to the solution of nonlinear tensorial equations in more sophisticated models) and allows one to
adopt a hardening function compatible with typical modulus reduction curves from one-dimensional formulations.

The methodology introduced by Borja and Amies' has since then been used in different types of problems in site
response and soil-structure interaction (eg, previous studies'®'®), and its ideas have been extended to other soil types
(eg, Pisano and Jeremic'). Its success notwithstanding, there are shortcomings known to the methodology. In particular,
setting the bounding surface fixed in the stress space causes the hysteresis loops not to close upon reaching the point
of reversal after complete cycles.”® Likewise, if unloading from the virgin curve occurs at a particular strain reversal,
the absolute value of the unloading stress associated with the opposite strain reversal is always smaller than the reverse
stress at loading. The same problem occurs—but more pronouncedly—in the form of overshooting generated by partial
unloading-reloading cycles. As a result, the method does not comply with the first and extended Masing rules.

Montans® offered a solution by artificially shifting the bounding surface to a virtual position determined by the last
stress reversal. This approach modifies the original formulation and increases the complexity of the numerical integration.
Others implemented fixes by adding thresholds to either the minimum distance between the current stress and the image
stress (eg, Fardis et al* and Voyiadjis and Abu-Lebdeh??) or the accumulated plastic strain (eg, Dafalias* and Mojtaba and
Taiebat*). While these solutions adequately address the aforementioned problems, the thresholds are nonunique, and
their implementation requires the use of additional (arbitrary) memory variables. More recently, Numanoglu et al*® pre-
sented a generalized model for cyclic loading, but the reported results were based on a parallel-series distributed element
model.

This article presents a formulation that solves the same problems without the need of additional (artificial or
user-defined) memory variables beyond those naturally required to recover the previous stress-strain reference condi-
tions. The proposed formulation operates on the hardening function and introduces new functions for the unloading
branches while preserving the simplicity inherited from the original framework (ie, Borja and Amies'*). The proposed
formulation works well under multiaxial loading and allows the implementation of Masing-type rules, as well as the use
of the reduction factors proposed by Darendeli*® and Phillips and Hashash? to mitigate the overdamping effects of large
hysteresis loops. The formulation is tested using the Konder-Zelasko or KZ,* the modified Konder-Zelasko or MKZ,* and
the GQ/H* hyperbolic hardening functions under radial and nonradial multiaxial loading cycles, and it is shown to have
good agreement with provided reference solutions.

2 | MATERIAL UPDATE

Consider a J, material of vanishing elastic region, associative flow rule, and Prager’s translation rule for the back-stress
tensor, for which its rate magnitude is defined as

leell = 2/3H'4, (€]

where H’ is the hardening function and A is the plastic consistency parameter. Given such a material, Borja and Amies®
showed that the deviatoric stress s and the deviatoric strain e tensors observe the relationship

. 3G . .
5+ < I;,lax>s=2GmaXe, @)
given in terms of their rates, § and é, respectively. Here, Gp,ax represents the maximum shear modulus.

The fact that the material is purely deviatoric implies that § and é are in the same direction. That being the case, the
integral of Equation 2 can be expressed as a nonlinear scalar equation of the form
il

! q
Hn Hn+1

1
v+ 3Gmaxl// < > = 2Gmax (3)
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where Hy and H,,, are the hardening values corresponding to the n (known) and n + 1 (unknown) states, § is the inte-
gration parameter, and y is an unknown positive scalar representing an equivalent shear modulus. This latter parameter
is such that it satisfies a proportionality between the changes (A) in stress and strain as

As = yAe. 4)

In turn, in the context of bounding surface plasticity, the hardening function depends on the positive scalar x, which
satisfies the interpolation function
Is+x(s—s,) Il =R, (5)
where s is the last unloading deviatoric stress tensor and R is the maximum material capacity, which is defined in terms
of the undrained shear strength S, as
R =5,4/8/3. (6)

Using Equation 4, the discrete version of (5) can be written in terms of the known deviatoric stress at n and its change
with deviatoric strain as
lIsn + wAe + kni1 (8, +wAe—s,) || =R. 7

Both Equations 3 and 7 are nonlinear in two variables, w and k. They can therefore be solved simultaneously to
provide for the material update of the total stress 6, ; in terms of previous stress ¢, and the increments of total (¢) and
deviatoric (e) strains as

Ont1 = 6, + KTr(Ae)l + yAe, ®)

where K is the elastic bulk modulus, Tr is the trace operator, and 1 is the second order unit tensor.
In the work presented here, the numerical integration of these equations is done explicitly with substepping and an
automatic error control method (see Sloan et al® and Andrianopoulos et al®).

3 | HARDENING FUNCTION

It follows from the previous section that the hardening function H’ is essential to the material update. This section reviews
the general formulation of H' in terms of an arbitrary 1D backbone function ffollowing standard concepts of 1D plasticity.

Let the stress-strain relationship of the material be described by a function fsuch as that one represented by the thick
line along the initial loading path D in Figure 1. This function can be written as

=1, C)

where T = 7/1er and 7 = y /yrer are the relative stress and strain, measured with respect to a reference state satisfying the
condition e = GmaxYref-

It follows from this that the tangent modulus E; of the backbone function can be directly obtained by differentiating f
with respect to ¥ to obtain

d
E; = 2Gmaxd_{- (10)
4
Then, according to standard concepts from the theory of elastoplasticity, the hardening function H’ can be defined as

2

H = K. (1)
where K, is the 1D plastic modulus given by
2E;
Ky=——"7-—. (12)
P 2 - Et/Gmax

Using Equation 10 in Equation 12, and subsequently replacing K, in Equation 11, the hardening function can be written
in terms of the relative strain as

H'(y) _  df/dy
3Gmax 1—df/dy’

13)
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FIGURE 1 Schematic description of hysteresis cycles representing the stress-strain relationship in terms of the relative stress 7 and the
relative strain 7. The thick continuous line represents the initial loading path or backbone curve as indicated. Subsequent loading and
unloading paths follow the second extended Masing rule, with their orientations indicated by arrows along the lines. Circled numbers are
used for select paths for reference [Colour figure can be viewed at wileyonlinelibrary.com]

In the bounding surface framework, H' must be specified in terms of «, with x being such that the extreme conditions
where the material transitions from perfect elasticity at unloading (ie, k = o) to perfect plasticity at the bounding surface
(ie, « = 0) are fulfilled from the scalar form of Equation 5, in which case s and R become 7 and 7, respectively, leading to

1
T+0 (14)

T =

Note that Equation 14 provides a T — k relationship for the backbone curve, and that 7y,,x = 7ref is assumed. Then,
substituting Equation 14 in Equation 9, the latter becomes
1
1+«x)

=@ . (15)

This means that for any given «, H' can be determined by solving Equation 15 for 7 and using the result in Equation 13.

4 | PROPOSED FORMULATION

Obviating some of the details, the method put forward by Borja and Amies" is based on the combination of Equations 8
and 13 and the other companion expressions described in the previous two sections. This approach has proven to be very
useful in geotechnical modeling. However, as pointed out by Montéans,” the cycles in this formulation do not recover
the initial loading curve, nor do they become stable upon the first cycle or comply with Masing rules, causing loading
and unloading curves to change with the stress level. The proposed formulation described ahead provides a solution to
these problems while preserving the simplicity inherited from Borja and Amies' and avoiding the additional complex-
ities introduced by other alternative solutions (eg, previous studies®*?*). This is done by introducing new functions for
unloading branches and partial cycles, while also allowing the use of damping reduction factors.

4.1 | Masing rules and damping reduction

Traditional 1D models rely on extended Masing rules to define the course of loading and unloading paths in hysteresis
loops. In particular, using Figure 1 as reference, the second extended Masing rule establishes that if reverse loading occurs
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at (Trev, Frev), the unloading path @ is controlled by

'L_'rev -7 _ 7_’rev - ?7

which is nothing but a doubled-and-reversed version of the backbone loading path (D.

It is broadly recognized that this approach results in hysteresis loops that overestimate damping (¢). To limit this effect,
a modulus reduction and damping-curve fitting procedure was proposed by Phillips and Hashash* on the basis of the
damping reduction factor F, introduced by Darendeli.** Although the formulation proposed by Phillips and Hashash®
is restricted to hyperbolic backbone functions, it can be adapted for more general loading/unloading criteria through a
simple manipulation, leading to a modified version of Equation 16 expressed as

Trev_T:Fyf<}’rev_y>+(1_Fy )Gy <yrev_y>. (17)
2 " 2 " " 2

Here, (_}ym = G,, /Gmax, Where G, is the secant shear modulus at the maximum shear strain y,,. It should be noted
that Equation 17 is equivalent to the generalized formulation recently presented by Numanoglu et al* in an otherwise
simultaneous and uncoordinated effort to the one presented here.

There are two alternative expressions for F, . These are respectively given by Darendeli* and Phillips and Hashash* as

By, =i(Gy, )" (182)
and
F, =pi—-p:(1-G, )", (18b)
where p,, p,, and p, are parameters that are calibrated to fit a given y-£ curve.
Introducing
fd — frev -7 ,
2
- _ 77rev - 77
Ya = 5
and

nym = (1 - Fym) Gym ’
Equation 17 can be reduced to

Tg=F, fFa)+ny,7d- (19)

It follows from this that 7, is equivalent to 7. Therefore, a similar approach to that used before for Equation 13 can be
used here to write a hardening function for the unloading/reloading paths as

H'() _ F,df/dy+un,

= — . (20)
3Gmax 1-F, df/dy — 1y,
Notice that when F(y,,) = 1, Equation 20 is the same as Equation 13.
On the other hand, in the x-space, the unloading stress path is such that it satisfies
K = Tref + 7 . (21)
Trev — T
which can be written as
_ KTrey — 1
= . 22
’ 1+« (22)
Here, Trey = Trev/ Tref- Replacing Equation 22 in Equation 19, the latter becomes
Prev _ _
S| vt )+, 7 (23)

where @rey = (1 + Trey)/2. It is important to point out that Equation 15 can be recovered from Equation 23 ifboth F,, =1
and ¢, = 1(ie, no damping reduction applied, and 7oy = Tref)-
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Equations 20 and 23 define the hardening function of the unloading branch in accordance with the second Masing
rule. Moreover, since the reloading path @ is the mirrored version of the unloading path @ with respect to the axis that
runs through the points (—7Zey, —7rev) and (Trev, 7rev) in Figure 1, these equations also represent the hardening reloading
function.

Attention is now drawn to the third Masing rule. This rule establishes that after the unloading curve intersects the
backbone function, the stress-strain relationship must follow the backbone curve until the next reload/unload occurs. The
intersection stress with the backbone curve occurs at 7 = —7,y, which if replaced in Equation 21 provides the transition

point
0 = Zret 7 Prev = — -1 24
K Tref — Trev 1 1

2Trey 2 \ Trev
between the unloading and skeleton curves.

Now, to use the hardening functions in the multiaxial space, one needs to define the reversal stress 7,,. Therefore, in
the general stress state, it is proposed here to make 7., equal to the norm of the deviatoric component of the reversal
Stress tensor |[Srey|| =1/Srev :Srev and to normalize this tensor with respect to the radius of the bounding surface R. This
means that

Trey = Trev _ M (25)
Tref R
which implies that Equation 24 becomes
_ R — ||Srevl| (26)
C 2SI

In summary, given x and 7.y, Equation 20 provides a general function for the backbone and unloading-reloading curves
in accordance with the second and third Masing rules in terms of a normalized strain 7 satisfying Equation 23 such that

Prev =1, and

F}'m =1

(27a)

ifx < «,,0r
Prev = R+ |[sev]l)/2R, and

F,  from Equation 18 (27b)

otherwise.

4.2 | Partial cycles

A complete formulation should also provide for partial cycles that originate at secondary stress reversals within the major
branches of the hysteresis loops. Since inner loops must satisfy the fourth extended Masing rule, then some minor modi-
fications to ¢, and x, must be done to reflect the fact that partial cycles span across fixed stress intervals of magnitude
lower than 7 ey.

Consider, for instance, the inner reloading path @ in Figure 1 in the one-dimensional formulation. Here, the current
stress . = 7, and the former stress 7y = 7 are such that z.zy < 0. In the general stress state case, this condition is
equivalent to

Ke < —r ) (28)
sl
where the bounding surface parameter of the current stress reversal k. is defined as
R — |s¢]]
= (29)
lIs¢]l + [Iscll

and s, and sy are the current and former reverse stress tensors, respectively (ie, the start point and end point of the inner
branch @).

If another stress reversal occurs during reloading (see 7, and path © in Figure 1), then s¢ and s. need to be reset to the
particular values of the nested branch, and Equations 28 and 29 are recomputed accordingly.

Therefore, once Equation 28 is satisfied, the lower limit of k associated with the inner branch becomes x, = «,[, where

R — ||st|l

= (30)
lIscll + llsc|l

ol
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On the other hand, unloading branches such as stress path 6) in Figure 1 are represented by the inequality

(31

Ke > ——.
[Is¢]l

In this case, the current and former stresses, respectively givenby 7. = 7y, and 7y = 7,1, satisfy z.z¢ > 0. Subsequently,
the lower limit of ¥ becomes x, = |x,m|, Where

R—Istll
Kol = ——— . (32)
lIsell — llscll
In either case, one should use ||srev|| = [|Sc|| in Equation 27b.

5 | FORMULATION EVALUATION

The following two sections present an evaluation of the proposed formulation. In particular, Equation 20 and the other
expressions put forward to satisfy the Masing rules during complete and partial loading and unloading cycles are tested
for three well-known hyperbolic models, namely, the KZ,? the MKZ?, and the GQ/H* models. These models are chosen
because they formulate the hardening function in a continuous analytical form, which facilitates obtaining closed-form
solutions for numerical verification—at least for the no damping reduction case. It should be noted that this choice is one
of convenience given that there is no limitation to using the proposed formulation for models formulated in piecewise or
discrete forms.

5.1 | The KZ model

Konder and Zelasko? define the normalized backbone stress-strain relationship with the hyperbolic function

== (33)

Substituting Equation 33 in Equations 20 and 23 yields
H,, F, /A+7)?+n,

_ _ (34)
3Gmax I_Fym/(1+7)2 — My,

and

Prev Y _
=F, + . 35
A+x) ™14y ¥ (35)

Equation 35 is quadratic in 7. Therefore, in the most general case

y= 1 (—b + Vb2 — 4ac> , (36a)

2a
with
a= nym ’
b=F, +n, — @rev/(1+x),and (36b)
C=—@rv/(1+K).

Then, upon solving 7 using Equation 36 for any given x and 7.y condition, one can solve Equation 34.
Toillustrate this, the simpler case of no damping reduction is considered here, where F, =1,#, =0,and the normalized
strain becomes ®
rev
=" 37
Ym 14K — grey 37
Substituting Equation 37 in Equation 34 leads to

HK)  (1+k— )

= ) (38)
3Gmax Prev (2 + 2K — Prev)

Recall that for ¢, = 1, the general hardening function is the hardening function of the backbone curve. In that case,
Equation 38 becomes
H'(x)  «?
3Gmax 1+2x

) (39)
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FIGURE 2 Stress-strain evolution as an implicit function of time for a cyclic shear loading sequence using the Konder-Zelasko model. The
thick line represents the backbone function, the dots represent the exact solution from the hyperbolic function, and the thin line represents
the results of the multiaxial material integration. A, Loading sequence in terms of imposed shear strain. B, Results including the proposed
extended Masing rules. C, Results obtained using the backbone hardening function without considering Masing rules [Colour figure can be
viewed at wileyonlinelibrary.com]

which is identical to the hardening function of the hyperbolic model presented in equation 24 of Borja and Amies."
Replacing ¢rey = (1 + Trev)/2 in Equations 38 and 39 and combining these two equations result in
2

K .
H(c 7)) | (1+26) if K <Ko
s ‘rev
— = o (40a)
3Gmax Crk+1— Tey) .
— — otherwise
1 + Trev) (4K + 3 — Trey)
with
K0=M=l<_l _1>7 (40b)
2Trey 2\ Trey

where when in the general stress state, Trey = ||Stev|| and Trey = ||Srev||/R-

As an example, consider a material characterized by the KZ stress-strain relationship with Gpn,x = 12 800 kPa
and 7.¢ = 22 kPa under an applied loading cycle consisting of the imposed simple shear strain sequence y(%) =
{1.25,0.125,0.5, —1.25, — 0.025, — 0.175,1.5} shown in Figure 2A. Then, Figure 2B and 2C illustrates the outcome of
the numerical and exact solutions for the original and modified formulations proposed in this study. Here, for the case
without Masing, Figure 2C is nothing else but a direct comparison between the proposed numerical formulation and the
original work of Borja and Amies.” Likewise, in similar subsequent figures for the MKZ and GQ/H models, the compar-
isons for the cases without Masing will correspond to implementations of the original mathematical framework of Borja
and Amies."”
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For the particular example shown in Figure 2, no damping reduction is assumed. It should be noted that in the multiaxial
space, the strain regime is addressed by making zero all the components of the total stress tensor except €23 = €3, =y /2.
As it can be seen from this figure, in both cases, with and without adopting Masing rules, the numerical results perfectly
match the exact solutions.

5.2 | The MKZ model

The MKZ model emerged as an improvement to the KZ model to better represent the behavior of soils at moderate strain

levels. Matasovic® defines the normalized backbone function of this model as
Y

1+ g7’

where g and s are material parameters calibrated to fit a target G/Gmax curve and 7 = 7 /7rf, Where 7y is arbitrarily set

as the upper shear stress resistance in the 1% to 3% strain range. Then, following similar steps to those in the previous

section, one obtains the H’ and 7 expressions for the MKZ model as

7= fu (V) = (41)

H,,  n,0+pr)+F, [1+1-5)pp] (2a)
3Gmax  (1—n,,) 1+ A7)’ —F,, [1+ 1 —s) p7*]
and
.
L o (42b)

l+x  1+p7

Unlike in the case of the KZ model, here it is necessary to solve 7 in Equation 42b numerically before replacing
it in Equation 42a. To that end, in this study, the Pegasus method proposed by King* is preferred over conventional
Newton-Raphson techniques to avoid computing Jacobian terms.

As an example, consider the case of no damping reduction (ie, F,, =1 and 5, = 0), where Equation 42a becomes

Hy, _ 1+0-9p7°

3Gmax A7 (L+s+p79)
and a clayey material of properties—zrf = 15 kPa, Gnax = 12800 kPa, Poisson ratio v = 0.49, effective vertical stress o,
= 100 kPa, overconsolidation ratio OCR = 4, coefficient of lateral earth pressure Ky = 0.65, and plastic index PI = 20,
under N = 10 number of loading cycles, at a loading frequency f= 5 Hz—for which f = 1.545 and s = 0.915 are calibrated
using the software Deepsoil® to fit the G/Gpax curve proposed by Darendeli*® for clays.

Then consider this soil specimen subjected to the same strain regime used in the previous section for the KZ model.
Under these conditions, one obtains the results presented in Figure 3. As in the case of the KZ model, the results shown
in Figure 3 for the MKZ model render an excellent agreement between the numerical and exact solutions. Of particular
interest is the fact that in this case, for these conditions and model, the results suggest a larger deviation from the reloading
stress with respect to the backbone curve than in the previous KZ model.

It should be noted that in the z-plane, this (and the previous) numerical experiment fall in the category of radial loading,
with a Lode angle 6 = 0°. As a result, the multiaxial response naturally reduces itself to a scalar equation, which is what
facilitates the direct comparison with the backbone function.

Another instance where radial loading emerges is that of undrained cyclic triaxial tests, ie, when 6 = 90°. This condition
is tested for the same overconsolidated clay material just used. In this case, the specimen is subjected to a loading/reloading
cycle at a maximum axial strain of €17 = £0.5%. To ensure a truly undrained response, the radial strains are set to €5, = €33
= —g11/2. Unlike the previous two experiments, this case considers damping reduction. In particular, Equation 24 is used
adopting F, as given by Equation 18b with parameters p; = 0.654, p, = 0.248, and p, = 3.25. In addition, to compute G, ,
a generalization in terms of the maximum deviatoric total strain and stress tensors where Gm =||smll/]lemll/(2Gmax) Was
adopted. This approach renders Gym =0.0941.

The results of this third numerical experiment are shown in Figure 4. This figure shows the normal stress-strain hys-
teresis loops for the cases with and without damping reduction and compares the numerical and exact solutions in terms
of the deviatoric stress ratio q/ \/grmax with respect to the normal strain €11, where g = \/3_J2 . As in the previous two exper-
iments, here, the numerical and exact solutions match perfectly. In addition, the effect of the damping reduction factor is
evident from the normal stress stress-strain loops, which become thinner than the case with no damping reduction.

43)
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FIGURE 3 Stress-strain evolution as an implicit function of time using the modified Konder-Zelasko model for the same loading sequence
shown in Figure 2A. The thick line represents the backbone function, the dots represent the exact solution from the hyperbolic function, and
the thin line represents the results of the multiaxial material integration. A, Results including the proposed extended Masing rules. B, Results
obtained using the backbone hardening function without considering Masing rules [Colour figure can be viewed at wileyonlinelibrary.com]
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15 —| Without ~ With Without damping reduction

damping - damping _ With damping reduction
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o Exact

10

o (kPa)
o
|
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FIGURE 4 Cyclic triaxial test considering the formulation proposed for Masing rules, with and without damping reduction for the
modified Konder-Zelasko model. A, Hysteresis loops of the normal stresses-strain relationship as an implicit function of time. B, Evolution of
the deviatoric stress ratio q/ \/gfmax with respect to normal strain, also as an implicit function of time, compared with respect to the exact
solution [Colour figure can be viewed at wileyonlinelibrary.com]|

5.3 | The GQ/H model

Finally, this section considers the case of the GQ/H model introduced by Groholski et al.* In this case, the backbone
function is defined as

_ 2y
T=fom = - (44)
1+7+VQA+7y) —40.y
and tref in T = 7/ 7 is taken equal to 7« Here, the parameter 6, is given by
047%
0. =0, +0,— <10, (45)

0% + 0477
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15 9 With Masing - Without Masing
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o
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Proposed formulation
° "

-15 - - Exact solution
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FIGURE 5 Stress-strain evolution as an implicit function of time using the GQ/H model for the same loading sequence shown in

Figure 2A. The thick line represents the backbone function, the dots represent the exact solution from the hyperbolic function, and the thin
line represents the results of the multiaxial material integration. A, Results including the proposed extended Masing rules. B, Results
obtained using the backbone hardening function without considering Masing rules [Colour figure can be viewed at wileyonlinelibrary.com]

where the coefficients 0; fori =1, ... , 5 are calibrated to fit a given degradation curve G/Gmnax.
Replacing Equation 44 in Equations 20 and 23, one obtains

Hiyw  2F, (T =700) +1, I (462)
3Gmax  (1—n, )2 =2F, (I'—7T2)
and
2F, ¥
Prev Ym? _
= 1, 7, 46b
1+«x I, ¥ ( )
where
M=1+7+1/0+7)°-40.7, (472)
1+7-200,+7T
r,=14 3+H7=20:+715) (47Db)
VA +7)* - 407
and
0 -
929 59495)/05_1
I'; = 3—2 (47¢)
(65 + 0477 )
In this case, the hardening function for no damping reduction becomes
!/ —
Higu _ 20 =71 48)

3Cmax  [2 =2 =7y

Equations 48 and 46a are used to solve the same two problems considered for the MKZ model. Here, the curve fitting
parameters were also obtained using Deepsoil (see Hashash et al*"), which delivered the values 6, = —1.02, 6, = 0.63,
05 =0.0145,6, =1, and 65 = 0.80. The results are shown in Figures 5 and 6 for the pure shear and undrained cyclic triaxial
tests, respectively. In the case of the triaxial test, Gm =0.115. Here, as well as in all previous cases, the match between the
numerical and exact solutions provides confidence on the proposed formulation.
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FIGURE 6 Cyclic triaxial test considering the formulation proposed for Masing rules, with and without damping reduction for the GQ/H
model. A, Hysteresis loops of the normal stresses-strain relationship as an implicit function of time. B, Evolution of the deviatoric stress ratio
q/ \/§me with respect to normal strain, also as an implicit function of time, compared with respect to the exact solution [Colour figure can
be viewed at wileyonlinelibrary.com]|

FIGURE 7 Schematic representation of the loading sequence on the z-plane as used on a clay specimen with the proposed formulation
applied to the GQ/H model corresponding to the multiaxial response shown in Figure 8 [Colour figure can be viewed at
wileyonlinelibrary.com]

Finally, to present a more complete picture of the performance of the proposed formulation, the same clayey material is
subjected to aloading combination of cyclic triaxial, simple cyclic shear, and cyclic triaxial, as depicted by the loading paths
D, @, and @ in Figure 7. The response, computed using the hardening function associated with the GQ/H model without
damping reduction, is shown in Figure 8. In this case, the initial triaxial stage incorporates a small unloading/reloading
cycle as highlighted by a zoom-in lens in Figure 8. This triggers an overshooting effect and leads the non-Masing response
(dashed line) to reach a normal stress ratio near 1, whereas the formulation complying with the Masing rule returns to
the initial loading path (continuous line) reaching a maximum stress ratio of about 0.8.

Moving on, in the second loading stage (cyclic shear), the magnitude of the normal stress is locked. As a result, changes
in the total stress tensor correspond to those defined by the evolution of the off-diagonal stresses, shown in Figure 8B. The
third and final loading stage mobilizes the normal stresses once again. In general, one could argue that the discrepancy
originated by the small unloading/reloading cycle put aside, the results of this experiment seem to indicate that both
approaches, with and without applying Masing rules, lead to similar normal stresses at the end of the loading sequence.
In more complex conditions, however, the differences may be more significant.
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FIGURE 8 Multiaxial response of a clay specimen in accordance with the proposed formulation of the hardening function for the case of
the GQ/H material model for which the loading regime is composed of a sequence of cyclic triaxial, cyclic shear, and cyclic triaxial
corresponding to the loading paths (D, @), and @ in Figure 7. A, Evolution of axial stresses normalized with respect to 7., as an implicit
function of time, with a zoom-in detail at the unloading/reloading cycle in the initial loading path. B, Off-diagonal (shear) stresses also
normalized with respect to 7,,,x and shown as an implicit function of time [Colour figure can be viewed at wileyonlinelibrary.com]

6 | CONCLUDING REMARKS

This work lays out a formulation of hardening functions that satisfies the extended Masing rules and incorporates known
damping reduction factor expressions based on one-dimensional backbone functions. This formulation builds upon the
original work of Borja and Amies" in the context of the theory of bounding surface plasticity. In particular, it improves
the referenced work by solving previously identified issues with unloading/reloading cycles and provides a consistent
framework for partial and inner cycles using an explicit substepping material-update scheme with error control. This
formulation was tested for three hyperbolic models (KZ, MKZ, and GQ/H) broadly used in geotechnical engineering for
site response and soil-structure interaction applications. The numerical tests performed show that the formulation yields
excellent agreement with reference solutions under pure shear and triaxial conditions and exhibits a good behavior under
a more complex multiaxial loading condition. Although, generally speaking, the proposed approach remains within the
realm of an idealized material behavior, ie, radial loading, it is the view of the authors that the work presented here is
a step in the right direction towards the use of one-dimensional nonlinear models in the context of three-dimensional
ground motion analysis and simulation. To that end, additional efforts are currently underway to verify the proposed
framework with respect to international benchmarks and to validate its use in realistic loading conditions such as those
expected during earthquake shaking. Future work will also consider comparisons of the sensitivity of results to the use of
different constitutive models.
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