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Abstract—In crossbar resistive memory, in which a memristor
is positioned on each row-column intersection, the sneak-path
problem is one of the main challenges for reliable readout.
The sneak-path event can be described combinatorially and
its adverse effect can be modeled as a parallel interference. In
this paper, based on a high-rate coding scheme, we characterize
the inter-cell dependency of sneak-path events probabilistically.
Utilizing this dependency, we propose adaptive thresholding
schemes for resistive memory readout using side information
provided by precoded bits. This estimation theoretic approach
effectively reduces the bit-error rate while maintaining low
redundancy overhead and low complexity.

I. INTRODUCTION

Crossbar resistive memory, in which a memristor is po-
sitioned on each row-column intersection of the crossbar
structure, is considered to be a promising candidate to be used
as a non-volatile memory device because of its many unique
advantages including a simple structure and high density [1].
One fundamental problem in resistive memory that demands
great attention from the research community is the sneak-
path problem [2]. When a cell in a crossbar array is read,
a voltage is applied on the memristor and the resistance is
measured to determine whether it is in Low-Resistance State
(logic 1) or High-Resistance State (logic 0). Sneak paths are
undesirable paths in parallel of the selected cell traversing
through unselected cells; the current going through the sneak
paths makes the read operation unreliable. This problem is
especially severe when a cell in High-Resistance State (logic
0) is read because parallel low resistances, due to sneak-
paths, lower the resistance measured from the cell at High-
Resistance State, thus causing difficulties in distinguishing
between the Low-Resistance State and the High-Resistance
State. Numerous works, at various system levels, propose
treatments devoted to addressing the sneak-path problem.
Different memory architectures, including modification of the
cell and/or array structure, have been proposed to alleviate or
eliminate the sneak-path problem [3], [4], [5], [6]. Circuit
level approaches including grounding unselected cells and
multi-stage reading have also been proposed [7], [4]. Progress
in cell material that incorporates nonlinearities has also shown
ability to alleviate the sneak-path problem [8]. The application
of noise estimation is studied in [9]. Finally, information the-
oretic studies of sneak-path free arrays with coding solutions
are carried out in [10], [11], [12].

Despite these intensive research efforts over the past few
years, the sneak-path issue remains an open problem for
future memory architecture designers. In [11], the sneak-path
problem is formulated as an estimation problem in communi-
cation, and the effect of the sneak-path event is viewed as

a parallel interference. The dependency of the sneak-path
problem between two cells on the same row/column is studied
in [10]. Based on these two previous works, we propose
adaptive thresholding schemes dependent on side-information
gathered through precoded bits, utilizing a high-rate coding
construction and our probabilistic characterization of inter-
cell dependency. This is the first work that exploits the inter-
cell dependency in resistive memory to improve estimation
accuracy, i.e., to mitigate the adverse effect of sneak-path
problem. Simulation results show an order of magnitude
improvement in terms of bit-error rate can be achieved.

The content of this paper is organized as follows. Section
II provides modeling of the sneak-path event and its adverse
effect. The coding construction used in this paper is also
introduced in Section II. Section III formally characterizes the
dependency between the precoded bits and the information
bits by calculating their joint probabilities of the sneak-
path event. In Section IV, the adaptive thresholding idea is
introduced and the optimal thresholds for different cases are
derived. Section V provides simulation results comparing our
proposed scheme with the naive formulation. We conclude
and discuss future research in Section VI.

II. SNEAK PATH MODELING AND THE DIAGONAL-0
CODING

A. Sneak path Modeling

In this paper, as an initial step, we use the sneak-path
definition in [10] with modification, and also restrict ourselves
to a sneak-path of length 3. Other factor that affects the
occurrence of sneak-path, such as wire resistance, is not
considered in this paper and is left for future work. Cell
selectors are widely used hardware to mitigate the problem
of sneak-path. To each memristor cell, a selector device is
added in series in order to prevent reverse current flowing in
sneak paths [11]. Our model assumes cell selectors fail i.i.d.
with probability p; [11]. Let A € {0,1}™*" denote the data
matrix representing data stored in a crossbar resistive memory
of size n x n, and let A;; denote the bit value at cell (¢, j).
By our definition, a sneak-path event occurs at cell (i, ) if
the following three conditions are met:

1) The bit value stored is 0.

2) There exists at least one combination of ci,r; €
[1,---,n]l,c1 # j,r1 # @ that induces a sneak-path
defined by

Ai01 = Arlcl = Ale = 1' (1)

3) The selector at cell location (r1,¢1) fails.



We define e;; to be a boolean random variable denoting
the occurrence of the sneak-path event at location (i, ),
conditioned on the bit value stored at (é,j) being 0. That
is, e;; = 1 if and only if the cell stores a 0 and (4, j) incurs a
sneak-path event. We also refer to e;; as the sneak-path state
of cell (7, 7). Note that the sneak-path event is defined only
for those cells that store Os because the adverse effect of a
sneak-path event on a cell that stores 1 is not detrimental to
the read process.

Our modeling of the adverse effect of a sneak-path event
is adapted from [11], and this adverse effect is modeled as
a parallel interference as follows. We first define the O state
resistance of memristor to be Ry and the 1 state resistance of
memristor to be R;. We then denote r;; to be the measured
resistance value of cell (i,j) through some sensing circuit
with a measurement noise 7. Throughout this paper, 7 is
assumed to be Gaussian with variance o2 [11]. The adverse
effect of a sneak-path event is modeled as a parasitic resistor
with value R, that is parallel to the read cell. Together, we
have the following model:

~1
(I% + %) +n when 0 is stored, 2

Tij =

Ri+1n when 1 is stored.

In this paper, we assume Ry < (1/Ro+1/R,)~! to prevent
degenerate scenarios in the following sections (in practice,
this is a safe assumption).

B. The Diagonal-0 coding

In crossbar resistive memory, as noted in [10], it is not
hard to observe that the occurrence of a sneak-path event at
one cell is not independent of the occurrence of a sneak-path

event at another cell. For example, knowing that e;; = 1
increase the probability of e;;; = 1,5' € [1,--- ,n],5’ # j,
as well as e;; = 1,4/ € [1,---,n],i' # 4. This special

behavior of resistive memory presents natural difficulty to
coding solutions when viewing the sneak-path event as a
bit error. However, when viewing the effect of sneak-path
event as a parallel interference, one can utilize this inter-cell
dependency to develop better estimation schemes based on
side information provided by cells with known bit values.

We note that two cells are correlated the most when they are
on the same row or column. It is also observed in [2] that the
location of the cell (z and 7) does not affect the probability of
e;j. More specifically, in this context, knowledge of a sneak-
path occurrence at a cell provides the same information for
all other cells on the same row(column). We then propose the
following coding construction to better utilize this inter-cell
dependency.

Construction 1. We defined A to be “diagonal-0” coded if
A satisfy the following:

A, =0,Vi € {1, ,7’7,}

An example of a diagonal-0 coded array is shown in Figure
1 where X denotes an arbitrary information bit. With this
simple coding construction, each cell at location (4, j), with
(i # j), has a cell that stores a 0 in its row and a cell that
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Fig. 1: Diagonal-0 coded 4 x 4 array

stores a 0 in its column; we will use this knowledge for our

improved estimation schemes. In this work, we restrict the

resistive memory array to be square for simplicity. Note that

this construction has a code rate (n — 1)/n which goes to 1

asymptotically.

III. PROBABILITIES AND JOINT PROBABILITIES OF SNEAK
PATH EVENT

In the previous section, we proposed the diagonal-0 coding
construction for the resistive memory array. In order to utilize
the known Os on the diagonal for more informed estimation
schemes, several important probabilities need to be calculated
analytically. In this section, we first point out the important
probabilities that will be used in the following section; we
then focus on the calculation of those probabilities. First, in
order to determine the sneak-path state of a precoded diagonal
bit, we need P(e;;). Second, in order to use the sneak-path
state at diagonal cells for more informed estimation schemes,
we need P(81j|6”,Aij = 0) = P(eij\ejj,Aij = 0) and
P(e;jles,ejj, Aij = 0) for i # j. The two sets of condi-
tional probabilities are used in different estimation schemes
in the following section. To make a comparison with the
scheme that does not use any side information, we also need
P(e;j]A;; = 0). Note that all probabilities calculated in this
section are conditioned on the fact that the array is diagonal-
0 coded (we omit this condition for clarity). We assume that
the information bits are chosen i.i.d. Bernoulli with parameter
q representing the prior probability of a 1 being stored. We
start with the calculation of P(e;;) by calculating P(e;; = 0).
For the rest of this work, we use the two indexes, ¢ and j,
where i # j.

Lemma 1. In an nxn diagonal-0 coded array, the probability
that no sneak-path event occurs at cell (i,1) is

D VN (G [

u=0 v=0 k=max(0,u+v—n+1)

n—1-u u+v n—1—-u+n—1—v wv—k
1-— 1-— .
( ok )q (1-9) (1—psq)
(3)

Proof. We derive this probability by conditioning on the
number of 1s in the i-th row (v), the number of 1s in the i-th
column (u), and the number of overlapping indexes between
the columns that contain the v ones and the rows that contain
the u ones (k). For certain u, v, and k, there is no sneak-path
event affecting cell (4, %) if each of the cells on the intersection

Pe;; =0) =



of the v columns and u rows, excluding the precoded & cells,
either contains 0 or contains 1 and the selector does not fail.
Summing the probabilities of bit assignments gives (3). W

Next we calculate P(e;;|A;; = 0) by calculating P(e;; =
0|A4;; = 0).

Lemma 2. In an nxn diagonal-0 coded array, the probability
that no sneak-path event occurs at cell (i, j), given a 0 stored
at cell (i,7), is

n—2n—2
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Next we compute P(e;jle;;, A;; = 0) by first computing
P(eij = O,Bjj = 0|A” = 0)

Lemma 3. In an n X n diagonal-0 coded array, the joint
probability that no sneak-path events occur at cell (i,j) and
cell (4,7), given a 0 stored at cell (i,j), can be calculated
with Equation (5), as shown at bottom of the page, where

pe
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Proof. The proof proceeds by summing up the probabilities of
two cases, A;j; = 0 and A;; = 1. When A;; = 0, we condition
on the number of 1s on the i-th row (v), the number of 1s on
the j-th column (u), the number of 1s on the i-th column (u'),
the number of overlapping indexes between the u rows and
u’ rows (0), and the number of overlapping indexes between
the u + v’ — o rows and the v columns (k). When Aj; =1,
we use the same conditions and have u+u’ — o+ 1 rows that
have 1s at either the ¢-th column or the j-th column. The rest
of the proof is similar to the proof of Lemma 1. |

Using (5) together with the marginal probabilities
P(ei;j|A;; = 0) and P(e;;|A;; = 0) (see Corollary 3.1 in
our long version [13]), we can calculate P(e;;le;;, A;; = 0).
We can also calculate P(e;jjlej;,e;j,A;; = 0) in a similar
manner but due to limited space, we refer readers to our long
version [13] to see the equations and proofs.

IV. ADAPTIVE THRESHOLDING SCHEMES

With all conditional probabilities calculated, we propose
our adaptive thresholding schemes. We propose two schemes,
the Double Threshold Scheme based on single precoded 0 on
the diagonal and the Triple Threshold Scheme based on two
precoded Os. We also state the Single Threshold Scheme which
uses no side information for comparison. For the two adaptive
thresholding schemes, first we determine the sneak-path states
of the precoded Os on the diagonal, then based on these
sneak-path states of the Os, we choose appropriate thresholds
to decide the states of the cells to be read. All decisions
are made through a sub-optimal threshold estimators for
implementation simplicity. We deduce the optimal thresholds
for the threshold estimators in the next sections. In following
subsections, the probability density function of the Gaussian
addictive noise 7 in Equation (2) is defined to be f,(-).

A. Optimal Threshold Estimation for Precoded Cells

We define 7, to be the threshold for the estimation of
a sneak-path event on the precoded diagonal cells. For the
precoded Os on the diagonal, we have two hypotheses, e;; = 0
and e;; = 1. Based on our modeling in Equation (2), the
posterior function of each hypothesis can be expressed as

1 e\
A, (rii) = fn (r - <Ro + ;) ) Plei).  (8)

For a given resistance measurement 7;;, the output of this
threshold estimator is

. 1 if 0<ry <7,
Cii = . ©))
0 if 74 <ry<oo.

Minimizing the error probability of this threshold estimator
by Bayes Criterion gives the condition:

Aemzl(TS) = A(in:O(TS)' (10)

Solving (10) gives the following optimal 7:

1 1\ P(eii=1)
le—(Rf—i—RfS) +20210g( )

0 P(eii=

2 -1
Ro— (7 + %)
B. Optimal Threshold Estimation for Read Cells

In this subsection, we calculate the optimal thresholds
for the three thresholding schemes, assuming the sneak-path
states of the precoded cells are known. The three thresholding
schemes are alike and only differ on the side-information used
for each scheme. Therefore, we use the variable ¢ to denote
the side-information used in each scheme to describe the three
schemes collectively. We let ¢ = {} for the Single Threshold
Scheme, ¢ = {e;;} for the Double Threshold Scheme, and
c = {e;i,¢€j;} for the Triple Threshold Scheme.

). (11)

T =

n—2n—2n—2 min(u,u’) min(utu’—o,v)

=22 X 2

v=0u=0u'=0 o=max(0, k=max(0,utu’—
o+v—n+2)

P(eij = 0, ejj = O|Aw == 0

utu’ —n+2)

3 3) v
lpi,g,u',o,k |:( )Pe(O|u v,u’,0 k+qu(O\u v,u’ 0 k(lipfq) :|]
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For the read cell (4, j), we have two hypotheses, A;; = 0
and A;; = 1. Based on different thresholding schemes and the
actual value of ¢, the posterior functions of each hypothesis
given r;; are

Aa;;=o0(rij) = (1 = q) | fy(rij — Ro)P(ei; = 0|Ai; = 0,¢)

1 1\!
+f77 (T’ij — <R0 + R) ) P(@ij = 1|AU = O,C) s

(12)

and
Aa=1(rij) = qfy(rij — R1). (13)

We define 7,4i,e to be the threshold used in the Single
Threshold Scheme; 19 and 7 to be the thresholds used in
the Double Threshold Scheme; T4, To1, and 711 to be the
thresholds used in the Triple Threshold Scheme. We match
TnaivesT0,T1,700, and 711 with the conditions ¢ = {}, {e;; =
0},{(3]‘]‘ = 1},{6,‘1' = 0,€jj = 0},311(31{6“‘ = 1,€jj = 1},
respectively. The threshold 791 is used for the conditions
c = {BM‘ = O,ejj = 1}and cC = {6” = 1,6]‘]' = 0} due
to symmetry. Denoting these thresholds collectively by 7,
for each thresholding schemes and corresponding conditions,
when reading cell (i, j), the output of that threshold estimator

1S
du=4
0

Minimizing the error probability of this threshold estimator
by Bayes Criterion gives the condition:

Aay=1(7e) = Aa=o(7e). (15)

Although numerical solution of (15) can be found, similar

to [11], we give an approximate solution to highlight the
dependency on parameters. This approximation follows by
approximating the two Gaussian functions in (12) with a
single Gaussian function that is closest to the Gaussian
function in (13). This approximation captures the locally
behavior of (12) near the threshold as the two Gaussian
functions are sufficiently apart. The threshold values with this
approximation are

if 0<ry <7,

. (14)
if 7. <1y <oo.

—2
1 1 2 2
(Rio + E) - Rl + 20 log ((l—q)P(eiiillAi]‘:O,C)>

Te <

(h+a) -R "

These thresholds can be precomputed and stored in a table if
the Double Threshold Scheme is used.

Note that although Gaussian measurement noise is used for
mathematical simplicity, other models of the measurement
noise, such as log-normal distribution [14], can be easily
adopted with only changes in the thresholds calculations.

Figure 2 provides an example of the posterior distribution
of the two hypotheses given the following conditions: no side
information, e;; = 0, and e;; = 1. It is clear that changing the
threshold adaptively decreases the probability of estimation
error. In the example, when e;; = 1, the error probability is
higher if 7,,4ive 1 used as the threshold.
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Fig. 2: Example of posterior distributions and the optimal
thresholds: Ry = 100§, Ry = 100012, R, = 2509, py =
1073, and o = 30.

C. Estimation Procedures

For the Double Threshold Scheme and the Triple Threshold
Scheme, the following procedure is performed every time a
page of resistive memory is written:

e Measure the resistances of cells on the diagonal and

determine é;;,7 € [1,--- ,n] using 7s.
This step can be thought of as a form of channel estimation
and is not necessary for the Single Threshold Scheme. The
following is then performed:

o If the Double Threshold Scheme is used, since every
cells on the same row(column) will be using the same
threshold value, the threshold values 7y and 7; can be
hardware configured for each row(column) based on
€ii(€55)-

o If the Triple Threshold Scheme is used, the sneak-path
state is stored for future use.

When reading cell (7, j), the estimator does the following:

o If the Single Threshold Scheme is used, measure r;; and
US€ Tnaive to decide Ai]‘.

o If the Double Threshold Scheme is used, measure 7;; and
use the pre-configured threshold to decide Aij.

o If the Triple Threshold Scheme is used, measure 7;;,
look for é;; and €;; in a table, and use the appropriate
threshold to decide Aij.

V. SIMULATION RESULTS

In this section, the two adaptive thresholding schemes
proposed in this paper are evaluated via simulation and are
compared with the Single Threshold Scheme. Bit-error rate
(BER) is used as our performance metric for these schemes.
In the simulations, we use prior probability ¢ = 0.5 and the
following resistance values: R; = 1002, Ry = 1000f2, and
R, = 25012, (same as [11]). In different simulations, we
vary the parameters o, n and py to test their influence on the
performance of our schemes.

First, we fix py = 1072 and n = 8 to study the influence
of noise on the thresholding schemes. Figure 3 shows that
both Double Threshold Scheme and Triple Threshold Scheme
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Fig. 3: BER of thresholding schemes at various noise levels

show notable improvements on BER in a noise regime of
20% — 50% of R;. The two schemes both saturate together
with the Single Threshold Scheme at high noise level. This can
be explained by observing that when two Gaussian already
overlap by a lot, moving the threshold have no significant
effect on the error probability. At low noise regime, while the
Double Threshold Scheme shows similar performance with
the Single Threshold Scheme, the Triple Threshold Scheme
still shows an order of magnitude improvement, thus a single
precoded O does not provide enough information to move the
threshold at low noise levels compared with two precoded Os.
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Fig. 4: BER of thresholding schemes under various py and n

We then compare the thresholding schemes under various
py and n; the results are shown in Figure 4. As the array
scales, the improvement of using the adaptive thresholding
schemes decreases, e.g., comparing the Single Threshold
Scheme and Triple Threshold Scheme, the improvement comes
from a factor of 4.26 (n = 8) down to a factor of 2.99
(n = 16). As the cell selectors are more prone to failure, the
improvement of using the adaptive thresholding schemes also

decreases. These two observations are explained as follows:
increasing either n or py increases the probability of a sneak-
path event. An increased probability of a sneak-path event
results in optimal thresholds under different conditions that
are close to each other. Thus, small changes in the threshold
values cause the improvement from adaptive thresholding
schemes to be insignificant.

VI. CONCLUSION

In this paper, utilizing the inter-cell dependency of sneak-
path events, we provide a light-weight estimation theoretic
scheme to mitigate the sneak-path problem in resistive mem-
ory. This work can be extended in many directions. For
future theoretical developments, a theoretical analysis of BER
performance can be developed. These adaptive thresholding
techniques can be combined with constraint coding solutions
to alleviate sneak-path problem in arrays without cell selec-
tors. SPICE simulation with real memristor model can be
also done to test our adaptive thresholding schemes.
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