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Abstract—Mutation testing is a powerful technique for evalu-
ating the quality of test suite which plays a key role in ensuring
software quality. The concept of mutation testing has also been
widely used in other software engineering studies, e.g., test
generation, fault localization, and program repair. During the
process of mutation testing, large number of mutants may be
generated and then executed against the test suite to examine
whether they can be killed, making the process extremely
computational expensive. Several techniques have been proposed
to speed up this process, including selective, weakened, and
predictive mutation testing. Among those techniques, Predictive
Mutation Testing (PMT) tries to build a classification model based
on an amount of mutant execution records to predict whether
coming new mutants would be killed or alive without mutant
execution, and can achieve significant mutation cost reduction.
In PMT, each mutant is represented as a list of features related
to the mutant itself and the test suite, transforming the mutation
testing problem to a binary classification problem. In this paper,
we perform an extensive study on the effectiveness and efficiency
of the promising PMT technique under the cross-project setting
using a total 654 real world projects with more than 4 Million
mutants. Our work also complements the original PMT work by
considering more features and the powerful deep learning models.
The experimental results show an average of over 0.85 prediction
accuracy on 654 projects using cross validation, demonstrating
the effectiveness of PMT. Meanwhile, a clear speed up is also
observed with an average of 28.7X compared to traditional
mutation testing with 5 threads. In addition, we analyze the
importance of different groups of features in classification model,
which provides important implications for the future research.

Index Terms—software quality, software testing, mutation
testing, machine learning, deep learning

I. INTRODUCTION

Mutation testing [1], [2] is a powerful technique for eval-

uating test suite quality. In the process of mutation testing,

numbers of mutants will be generated. Every mutant is a

program variant that is generated from the original program

based on a set of transformation rules which are called

mutation operators. Then those mutants (program variants)

will be executed against the test suite associated with the

original program to see if the test suite can kill them. A

mutant is said to be killed if there exist any test in the test

suite showing a different execution result between the mutant

and the original program; otherwise, the mutant is said to

be alive, or survived. By calculating the ratio between killed

and non-equivalent (by equivalent, it means that the mutant

is semantically equivalent to the original program, which can

never be killed) mutants, we obtain a metric called mutation

score, which is widely used to evaluate the powerfulness of

the test suite.

Mutation testing is considered as a powerful technique in

test suite quality evaluation [3], [4] and is gaining more and

more attentions in both software engineering research [5]–

[8] and real-world applications [9]–[11]. Besides the directly

usage in evaluation of test suite quality, mutation testing has

also shown it powerfulness in other testing and debugging

problems, such as real fault simulation [12]–[14], fault lo-

calization [15]–[18], test generation [19]–[22], and program

repair [23]–[29].

One of the main limitations of mutation testing resides in

its computational expenses [5], [30], as usually large numbers

of mutants are generated for the original program and then

executed against the test suite. Both the generation and execu-

tion of mutants can be costly. The mutant generation cost has

been reduced by various techniques [31], [32] to an acceptable

level. While for mutant execution, researchers have proposed

many techniques to reduce its cost, e.g., selective mutation

testing [33]–[36], weak mutation testing [37], high-order mu-

tation testing [38], optimized mutation testing [39], [40], etc.

However, the cost of running mutants is still extremely high

despite of those refinement techniques [5].

Recently, an interesting technique called predictive mutation

testing (PMT) [41] was proposed to try to “obtain mutation

testing results without mutant execution”. The key idea of PMT

is to train a classification model based on an amount of mutant

execution records to predict whether coming new mutants

would be killed or alive without execution. In PMT, each

mutant is represented as a list of features related to the mutant

itself and the test suite, and the prediction phase is usually

very fast, making it a very efficient approach. The experiment

results in [41], [42] showed that the PMT framework is both

effective and efficient under both cross-version and cross-

project settings. However, the prior work only evaluated PMT

with a limited set of features and classification algorithms on

a limited number of projects.

The key part of the PMT is feature design, which is a

crucial step in most machine learning tasks [43]. In the original

PMT work [41], a list of 14 features are identified based

on PIE theory [44]. In PIE theory, a mutant can be killed

if all following three conditions are satisfied: 1) Execution,
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the mutated statement is executed by the test; 2) Infection, the

program state changes after the execution of the mutated state-

ment; 3) Propagation, the infected program state propagates

to test output causing the output to be different from original

program. Then for each condition, a list of features is identified

or designed based on the analysis of the possible relation of

each feature to the condition definition. Those features can be

further categorized into two groups, i.e., static and dynamic

features. Static features are selected from list of software

metrics, while dynamic features are manually designed based

on the execution traces of test suite. The main limitation of

the prior PMT implementation in [41], [42] lies in the feature

design part. Although it seems reasonable to manually inspect

the definition of software metrics and then relate them to one

of the PIE theory aspect to make feature selection, there is no

guarantee that when using other software metrics, PMT will

perform worse. In fact, there are many other software metrics

in different granularity, i.e., package, class, or method level

metrics, that may relate to whether a mutant can be killed.

In this paper, we enrich the PMT feature list by adding

more static software metrics in different granularity. Espe-

cially, JHawk tool1 is used to extract a total of 89 static

software metrics from package, class, and method level. By

combining those static metrics with 4 dynamic features and

mutator type that also used in [41], a total 95 features are

considered in our evaluation. Using dataset with the larger

feature list, individual feature’s importance is calculated based

on Random Forest [45] classification model, which is shown

to perform the best in the original PMT work [41], and

then those importance scores are further used to perform

feature selection to try to improve PMT performance. Also,

inspired by the recent successes of deep learning in software

engineering studies [46]–[50], 11 popular machine learning

models, including three widely used deep learning models such

as Multi-Layer Perceptron [51], Convolutional Neural Network

(CNN) [52], and Cascading Forest (caForest) [53], are studied

in PMT.

In this work, we focus on evaluating PMT under cross-

project setting because the performance of PMT in cross-

version setting has been shown to be quite good [41] and

cross-version setting can be viewed as an easier instance of

the cross-project setting if we take different versions as dif-

ferent projects; furthermore, the cross-version setting requires

mutation testing results on earlier versions which may not

always be available in practice. In summary, a total of 654

Java projects with over 4M mutants are used in this study.

Different from [41] where only 9 base projects are used in the

training phase, a more rigorous 5-fold cross validation is used

to evaluate the effectiveness of PMT.

Our study has found various interesting findings that may

further advance future PMT, such as:

• PMT performs well on extensive cross-project prediction,

achieving a mean error rate of around 0.15 with a

28.7X mean speedup compared with traditional mutation

1http://www.virtualmachinery.com/jhawkprod.htm

testing using 5 threads (our study also demonstrates a

theoretically best mean speedup of 51.7X).

• The simple Random Forest algorithm achieves nearly the

same effectiveness for PMT compared to the advanced

deep learning models such as CNN, and caForest.

• Larger feature sets benefits deep learning more than

traditional learning algorithms for PMT.

• Dynamic features dominate the prediction process and

cause high recalls (near 1.0) for most subjects.

• Package level static software metrics are more important

than class and method level metrics for PMT and deserve

more investigations.

To sum up, this paper makes the following contributions:

• An extensive study of PMT on 654 real world Java

projects with more than 4 Million mutant records under

cross-project setting.

• A total of 11 popular classification algorithms including 3

state-of-the-art deep learning ones are evaluated in PMT

framework using various metrics related to prediction

quality and time under their preferred data and model

settings.

• A large list of features’ contributions in the classification

model are analyzed, which provide important guidance to

refine PMT implementation in the future.

The rest of the paper is organized as follows. Section II

introduces the details of the studied PMT approach. Section III

introduces experimental setup. Section IV presents the exper-

imental results and analysis. Related work will be introduced

in section V and section VI concludes this paper.

II. STUDIED APPROACH

Mutation testing is costly because usually large number of

mutants need to be executed against the test suite [5]. In

predictive mutation testing (PMT) framework, the execution

of mutants is replaced by a binary classification process using

a pre-trained classifier. As the feature collection phase and

prediction phase usually cost much less time than running the

whole mutants, PMT can achieve high efficiency.

In this section, we introduce the details of our PMT imple-

mentation, especially:

• The PMT framework (see Section II-A).

• What features are used to build the classification models:

We introduce each type of features used in our imple-

mentation in details (see Section II-B).

• What classification algorithms are selected for evaluation:

We give a brief introduction to three of them that show

good performance (see Section II-C).

A. PMT Framework

The general framework of PMT is shown in Fig. 1. In

mutation testing, a list of mutation operators is applied to

different locations of program source/byte code to generate

different mutants, those mutants are then executed against

the test suite associated with the original program to check

whether they can be killed or not. While in PMT, we are
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interested in predicting the mutant execution results without

the execution process.

As shown in Fig. 1, PMT has two main stages:

1) Feature Extraction. In this stage, a list of features from

different categories (e.g., static and dynamic features) are

extracted for each mutant. Mutation operation location,

mutator type, and tests execution traces are needed to

prepare those features.

2) Training or Prediction. This stage has two working

modes, training and prediction. In the training working

mode, classifier is trained with a dataset containing his-

torical mutant execution records, each record is a list of

feature values extracted using the former stage with a

label (killed or alive) associated with this record. In the

prediction working mode, the classifier is used to predict

whether a mutant can be killed or not based on the feature

value list associated with this mutant.

As extracting more useful features may boost machine

learning approach significantly [43], feature extraction is the

key stage in PMT. While considering adding more useful

features to help improve effectiveness, we also need to be

careful to avoid making feature extraction consume too much

time and incur efficiency issue.

B. Feature Extraction

In mutation testing, each mutation operation applies to

one location of program source/byte code and generates a

corresponding program mutant using specific mutation op-

erator (mutator). For example, “�” and “�” are used to

represent some code elements as shown in Fig. 1, the mutation

operation generates a mutant by replacing “�” with “�” in the

source/byte code in one location. Therefore, features for each

mutant can be designed and extracted based on the mutation

operation location, mutator type, tests execution traces in test

suite (which test covers which lines in the source/byte code),

or other available information.

The PMT implementation in [41] tries to relate designed

features to three conditions in PIE theory. The limitation here

is that when choosing static software metric features, manually

inspecting the relation between definition of software metrics

and PIE conditions is not appropriate enough to get the best

match. In fact, there are many more software metrics that can

be added into consideration. Therefore, in our implementation,

we first try to add more software metrics and then conduct

feature selection process for a better performance.

In this paper, static and dynamic features are identified as

following:

1) Static Features: We use a list of software metrics as

static features. A software metric is a measure of a software

system characteristic which is quantifiable. Software metrics

are important in many applications, including measuring soft-

ware complexity [54], assessing software maintainability [55],

measuring software quality [56], and so on. Recent studies

have shown the successes of using software metrics in many

research, including defect prediction [57], [58] and time cost

reduction in mutation testing [42], [59].

In our implementation, we use JHawk tool1, which has been

widely used in prior research [60]–[62], to extract method,

class, and package level metrics as features. Totally 89 soft-

ware metrics are used, as shown in TABLE I. Note that for any

enumerate type metric, i.e. instanceVariables metric in class

level, we replace its enumeration set by the size of the set,

making all metrics real-valued. For the complete definitions

of the metrics, please refer to the tool’s website.

Despite those software metrics, following the implemen-

tation in [42], we add return type of the mutated method

(returnType) as a static feature, which is an important charac-

teristic of a method and should be considered in feature design.

Specifically, we use type descriptors in ASM2 to annotate Java

types, and “OTHERTYPE” is used to annotate user defined

types. Method return type can be directly extracted from PIT3

mutation testing report, and then matching to the designed

annotation style. Note that returnType is a categorical feature.

The type of mutator (MutatorClass) used to generate the

mutant is also used as a static feature. Specifically, PIT3 is used

as mutation testing tool, the mutation operators implemented

in PIT are used as feature values. Clearly, MutatorClass is

also a categorical feature.

2) Dynamic Features: Dynamic features are designed based

on mutation operation location and execution traces of tests in

the test suite. Those features are shown to be very important

in PMT. Following the implementation in [42], we consider 4

dynamic features, including:

• numExecuted, which refers to the number of times the

mutated statement gets executed by the whole test suite.

• numTestCover, which refers to the number of test methods

from the test suite covering the mutated statement.

• numAssertInTM, which refers to the total number of asser-

tions in the test methods covering the mutated statement.

• numAssertInTC, which refers to the total number of asser-

tions in the test classes testing the mutated statement.

Totally, we have 91 static features + 4 dynamic features = 95

features, TABLE II summarizes the features considered in our

PMT implementation. Note that those features subsume all

features implemented in [42], except instability which can be

derived by a division using two other features in our features.

C. Classification Algorithm

Machine learning technique has shown its success in many

software engineering research [18], [42], [48], [63], [64]. In

mutation testing, what we care about is whether a mutant can

be killed by the test suite, i.e., there are only two available

status, killed or alive for each mutant after execution, reducing

PMT to a binary classification problem.

Choosing a good classification algorithm is vital for training

and prediction stage in PMT framework. In this paper, a total

of 11 popular classification algorithms are investigated when

applying them to PMT, including:

2https://asm.ow2.io
3http://pitest.org
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Fig. 1: The general framework of PMT.

TABLE I: List of Software Metrics Used as Features

Level Metric List:

package

abstractness, avcc, cumulativeNumberOfCommentLines, cumulativeNumberOfComments, distance, fanin, fanout, halsteadCumula-
tiveBugs, halsteadCumulativeLength, halsteadCumulativeVolume, halsteadEffort, instability, loc, maintainabilityIndex, maintainabili-
tyIndexNC, maxcc, numberOfClasses, numberOfMethods, numberOfStatements, RVF, tcc

class

avcc, cbo, coh, cumulativeNumberOfCommentLines, cumulativeNumberOfComments, dit, externalMethodCalls, fanIn, fanOut,
halsteadCumulativeBugs, halsteadCumulativeLength, halsteadCumulativeVolume, halsteadEffort, hierarchyMethodCalls, imported-
Packages, instanceVariables, interfaces, lcom, lcom2, loc, localMethodCalls, maintainabilityIndex, maintainabilityIndexNC, maxcc,
messagePassingCoupling, modifiers, numberOfCommands, numberOfMethods, numberOfQueries, numberOfStatements, numberOf-
Subclasses, numberOfSuperclasses, responseForClass, reuseRatio, REVF, six, specializationRatio, tcc, unweightedClassSize

method

classesReferenced, cyclomaticComplexity, exceptionsThrown, externalMethodsCalled, halsteadBugs, halsteadDifficulty, halstead-
Effort, halsteadLength, halsteadVocabulary, halsteadVolume, instanceVariablesReferenced, loc, localInstanceVariablesReferenced,
maxDepthOfNesting, modifiers, numberOfArguments, numberOfCasts, numberOfCommentLines, numberOfComments, numberOf-
Expressions, numberOfLoops, numberOfOperands, numberOfOperators, numberOfStatements, numberOfVariableDeclarations, num-
berOfVariableReferences, totalNesting, variablesDeclared, variablesReferenced

TABLE II: Features Summary

Type Metric List:

static features-in-TABLE I, returnType, MutatorClass

dynamic
numExecuted, numTestCover, numAssertInTM, nu-
mAssertInTC

• Tree Structured Algorithms: Random Forest [45], Extra

Trees [65], Decision Stumps [66], C4.5 [67], caForest [53]

• Neural Network Structured Algorithms: Multilayer Percep-

tron [51], Deep Multilayer Perceptron [51], Convolutional

Neural Network [68]

• Others: SVM [69] with linear kernel, k-Nearest Neigh-

bors [70], Gaussian Naı̈ve Bayes [71]

For disambiguation, we use MLP to denote Multilayer Per-

ceptron and deep MLP to denote Deep Multilayer Perceptron

in the following discussion.

Here we briefly introduce three algorithms that show best

performance in our evaluation:

Random Forest [45] is an ensemble learning method for

classification, regression, and other tasks. It works by con-

structing a bunch of decision trees at training phase. During

the training process, each tree grows by randomly selecting√
d (d is number of features) number of features as candidates

and choosing the one with the best gini value to split at each

tree node, until leaf node contains only instances with the same

class or the tree depth reaches certain pre-defined value. When

used for classification, the class (label) for an input instance

will be the mode of the classes of the ensembled decision

trees.

Convolutional Neural Network [68] (CNN) is an efficient

feedforward neural network architecture to extract statistical

patterns in large-scale and high-dimensional datasets. It ex-

tracts local property of training data by revealing local features

that share across the data domain. These similar features are

identified with localized convolutional filters that are learnt

from the data. CNN’s ability of learning local structures in

a hierarchical way has led the successes when applying it to

image, video, sound, and graph related tasks [68], [72]–[74].

caForest [53] (gcForest without multi-grained scanning) is

a decision tree ensemble approach that employs a cascade

learning structure. Each level of the cascade is a bunch of

decision forests that receive feature information processed by

its preceding level and output its processing result to the next

level. Different types of forests can be chosen in the cascade

level to add model diversity. caForest has been shown to be

competitive to deep neural network models in a board range

of tasks. Fewer hyper-parameters and more interpretable are

two main advantages of caForest when compared with deep

neural network models.

III. EXPERIMENTAL SETUP

A. Research Questions

Our experiments investigate the following research ques-

tions:

• RQ1: How do different data and classifier configurations

impact the effectiveness of PMT?

• RQ2: How does PMT perform in predicting mutation

testing results in terms of efficiency?

• RQ3: How does PMT perform in predicting mutation

testing results in terms of effectiveness?

• RQ4: How do different features impact the effectiveness

of PMT in predicting mutation testing results?

RQ1. In this research question, we investigate various

settings or configurations in data and classification algorithms

that help improve the effectiveness of PMT. For data, we

consider if sample weighting, the classical imbalance strategy,

or data scaling, help improve the prediction accuracy. In

addition, we try to manipulate the dynamic features to refine

data scaling. For classification algorithms, we try to find the
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best data and parameter settings for each classifier model. In

RQ1 we focus on finding the best settings for each classifier

in a reduced dataset using cross validation. Specifically, 40

subjects’ corresponding mutant dataset are used, which contain

a total of more than 335k mutant record. Then the classifiers

with best setting in our search space are used in the following

part to fully evaluate PMT on the whole subjects’ dataset.

RQ2. This research question is answered by comparing

the running time of executing the whole mutants against the

test suite and the running time of feature extraction, mutant

generation, and classifier prediction in PMT for each subject,

and then summarize the speedup statistics of all the subjects. In

PMT, different classifiers differ in their training time. However,

the training process can be done in an offline mode (i.e., a

trained model can be applied to any future projects without

retraining), thus it will not be counted into this efficiency

comparison. Note that this comparison is conducted on the

reduced subject set used in RQ1, where the corresponding

running time data are recorded.

RQ3. In this research question, we focus on comparing the

effectiveness of different classification algorithms in PMT us-

ing various statistics. Specifically, the mutant dataset from all

654 subjects are used. Classification algorithms with the best

data and parameter settings gotten from RQ1’s experiments are

evaluated using cross validation to see if they can generalize

well on the full dataset.

RQ4. This research question is answered by investigating

the importance of each individual feature in the classification

algorithm. Especially, we use Random Forest, which is shown

to generalize well in full dataset, to extract the importance

score for each feature. The importance calculation is based

on the implementation in scikit-learn4. Then we try to find

patterns based on features importance scores and types. We

also dive into specific subjects’ datasets to see why the

classification algorithms perform well or poorly. Considering

the importance of feature design, those findings are vital for

refining the PMT in the future.

B. Subject Systems

To extensively evaluate different aspects of our PMT im-

plementation, we collect mutant record datasets for 654 real-

world Java subjects from GitHub5. In details, we collected

8841 unique Java projects with over 20 forks from GitHub;

4928 of them support Maven6 build system; 2953 of them have

a green test suite; where PIT3 and our coverage collection

tool can be executed successfully on 654 of them. As we

focus on the cross-project setting, each mutant record dataset

corresponds to one revision of the related project. Summary

of statistics of those projects can be find in TABLE III. A total

more than 4M mutant records joins our evaluation.

Within the 654 projects’ datasets, 40 of them (reduced

subjects) are selected to construct a reduced dataset. This

4http://scikit-learn.org
5https://github.com
6https://maven.apache.org

TABLE III: Summary of Subject Statistics

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.
LOC 25 704 1655 8183 5748 464156
# Packages 1 2 5 12 11 477
# Classes 2 14 37 130 110 5400
# Methods 3 64 173 786 618 33811
# Tests 1 5 15 113 63 10881
# Mutants 5 401 1156 6227 4128 356520
# Killed 0 58 277 1395 1045 78184
Killed Pct. 0.00 0.08 0.32 0.36 0.60 1.00

TABLE IV: Summary Statistics of Reduced Subjects

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.
LOC 1272 5164 7695 29426 21004 464156
# Packages 1 5 9 16 16 120
# Classes 9 102 128 341 379 3571
# Methods 219 505 752 2080 2298 17341
# Tests 20 106 211 745 393 10881
# Mutants 522 1908 4561 8393 9224 38541
# Killed 349 1341 2304 4660 4975 32272
Killed Pct. 0.04 0.44 0.65 0.60 0.76 0.98

*Those subjects are used for RQ1, RQ2, and RQ4.

reduced dataset is used to help data preprocessing and pa-

rameter settings for each classifier (RQ1). Also, the mutation

testing time and feature collection time for each project are

recorded to evaluate the efficiency of PMT (RQ2) because

mutation testing time for other subjects are not collected. In

addition, the feature ranking calculated using this reduced

dataset is also used for analysis of feature importance (RQ4).

Specifically, follow the implementation in [42], we include the

9 base projects in this reduced dataset, those projects have been

widely used in previous software testing research [4], [75],

[76]. Then we collect another 31 projects to enrich the dataset

to make the settings in RQ1 more convincing considering

the scale of our experiments. The summary statistics of the

reduced subjects are shown in TABLE IV. Note that to

get more representative data and parameter settings for the

classifiers, we use more complex subjects than average in the

reduced subject set (we limit the minimum LOC to be 1k and

randomly select the other 31 subjects from all 654 subjects

to form the reduced subject set), while in the full subject list,

all subjects (including small ones) are included to reduce the

threats to external validity, causing the difference in statistics

between TABLE III and TABLE IV.

C. Supporting Tools and Implementation

We summarize the tools we used in our PMT implementa-

tion as following:

Mutation test tool. We choose the popular Java mutation

tool, PIT3, as our mutation testing tool. PIT is a state-of-the-art

mutation testing system, it is fast, scalable, and can be integrate

with modern test and building tool like Maven6. PIT has been

shown to be both efficient and robust [77], enabling its usage

in large-scale experimental study and making it widely used

in software engineering research [18], [42], [76].

Feature collection tools. To collect static and dynamic

features, we use the following tools and methods:

• Static. To collect static features, both JHawk1 and PIT are

used. PIT report contains the mutated statement information
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which can be used to match JHawk report to get the

corresponding package, class, and method metrics. Mutator

used to generate each mutant can be directly extracted from

PIT report. PIT report also contains the return type of

mutated method, which can be used to match to our type

annotations as described in section II.

• Dynamic. To collect dynamic features. We implement our

own tool based on ASM2. Specifically, our coverage col-

lection tool is implemented via extending IntelliFL7, on

which we add one Maven plugin to extend its original

statement coverage collection utilities to collect the detailed

coverage information for each test in the test suite. Then the

designed four dynamic features can be calculated based on

the mutation location and the detailed coverage report.

Machine learning tools. scikit-learn3 and Keras8 are used

to implement eight non-deep models and two deep neural

network models respectively. They are both popular machine

learning libraries and have been used in many research. We

use the official implementation of gcForest9 to implement the

caForest model.

Subject 

JHawk 

CovTool 

PIT 

PMT time 

Mutation Testing time 

Dataset ML …
. 

…
. 

Fig. 2: Tool usage in the experiment.

Fig. 2 shows the tool usage in our experiment. For each

subject, we run JHawk and the coverage collection tool to

generate software metric report and statement coverage report,

these two tools’ running time are recorded and summed as

parts of PMT running time for subject in the reduced subject

set. PIT is used to run mutation testing for each subject

to generate mutation testing report, also, for subject in the

reduced subject set, we record PIT’s running time as mutation

testing time. We then generate dataset from these three reports

and used it in the machine learning part where we build

different classifiers to evaluate the performance of PMT.

More details of all dataset and machine learning model

implementation can be found in our project homepage10.

All the experiments were performed on a platform with 14-

core Intel Xeon E5-2660 CPU (2.0GHz) and 220 GiB RAM

running Java 1.8.0 181 on Ubuntu 14.04.5 LTS.

D. Measurements

We evaluate the effectiveness of our PMT implementation

using prediction accuracy, error, precision, recall, F1-score,

and AUROC for each subject using 5-fold cross validation

and then summarize (e.g. use mean, median) those statistics to

compare the performance of different classification algorithms.

In this paper, we label killed mutants as positive, alive mutants

7http://www.intellifl.org
8https://keras.io
9https://github.com/kingfengji/gcForest
10https://github.com/SElab2019/ExtPMT

TABLE V: Accuracy Summary of two Scaling Strategies

Strategy Min. 1st Qu. Median Mean 3rd Qu. Max.
+ log 0.6150 0.8456 0.8815 0.8762 0.9187 0.9870
− log 0.6145 0.8470 0.8802 0.8748 0.9169 0.9870

*Best ones are shown in bold.

as negative, and calculate the measures for each subject as

follows (denote TP as true positive, TN as true negative, FP

as false positive, FN as false negative):

• Accuracy = (TP + TN) / (TP + FP + TN + FN).

• Precision = TP / (TP + FP), Recall = TP / (TP + FN).

• F1-score is the harmonic mean of precision and recall.

• AUROC is the area under ROC [78].

IV. EXPERIMENT RESULTS

A. RQ1: Data Preprocessing and Classifier Settings

Scaling strategy. In data preprocessing, we consider whether

scaling non-categorical features helps improve the perfor-

mance of each classifier. Specifically, we notice that in many

datasets, some mutant records have very large dynamic feature

values than average. If directly apply scaling to raw data, the

dynamic feature values for many mutant records that are very

small will be hard to distinguish. Thus we investigate whether

applying log to dynamic feature values before scaling helps

improve the performance. We use Random Forest with 5-fold

cross validation, the accuracy summary is shown in TABLE V.

Clearly, we should apply log before scaling.

Feature selection. In the total 95 features, we consider

whether using a subset of these features helps improve the

performance of each classifier. First, the importance score for

each feature is calculated based on Random Forest classifier

using the reduced subject set, which is shown to be suitable

for PMT [41]. Second, we rank the features according to

their importance scores. Third, we consider using 10 to 40

top ranked features and try to find the best subset using 5-

fold cross validation in the reduced subject set. Note that we

choose step size as 2 to reduce the time consumption used in

this process. Also, the feature importance scores are calculated

3 times and then averaged considering the randomness when

building the Random Forest classifier. Our result shows that

using 12 top ranked features can acquire best performance in

mean and median of the prediction accuracies.

Classifier settings. For all 11 classification algorithms, we

first test if scaling helps improve prediction accuracies. Then

we test if sample weighting helps improve the prediction

accuracies, note that MLP and caForest have no sample

weighing option so we omit it. For tree-based classifiers,

we use default depth settings in the supporting tools and

search number of trees that help produce the best performance.

For neural network-based classifiers, we try different hyper-

parameter settings to get the best results. For deep-MLP and

CNN, we first tune activation type and optimizer using a

reasonable layer setting, and then tune the layers. Specifically,

for CNN, we use 1-d convolutional layers. Note that for deep

models, considering their representation learning ability, we
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also consider using full feature list. The details of classifier

settings are as following:

• Random Forest: no-scaling, no-weighting, 150 trees;

• Extra Trees: scaling, no-weighting, 100 trees;

• Decision Stumps: no-scaling, weighting, 100 trees;

• C4.5: scaling, no-weighting;

• Naı̈ve Bayes: scaling, no-weighting;

• SVM: scaling, no-weighting;

• k-Neighbors: scaling, k=13;

• MLP: scaling, hidden layers=[5, 4];

• deep-MLP: scaling, no-weighting, hidden layers=[95, 45,

45] (full features) or [24, 24, 24] (12 features), sigmoid

activation, Adagrad [79] optimizer;

• CNN: no-scaling, no-weighting, filters=[36, 36] (for both

full and 12 features), kernel and step size are set to 6,

Adadelta [80] optimizer;

• caForest: no-scaling, use Random Forest and Extra Trees in

each layer both with 50 trees.
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Fig. 3: Accuracy of CNN (full features) with different filters.

From the experiment results, we have the following impor-

tant findings:

• Data preprocessing helps improve the classification perfor-

mance of PMT. In this paper, we consider applying log to

dynamic features before scaling and get better prediction

accuracies as shown in TABLE V.

• Different classifiers have different preferences on data pre-

processing. As shown in the classifier setting part, some

classifiers prefer scaling, or weighting, while others prefer

raw data.

• Hyper-parameter tuning is vital for classifiers in PMT,

especially for deep models. For example, Fig. 3 presents

the prediction accuracies when we try to find the best filter

settings for CNN with the full feature set. We can see clear

differences in the boxplots, specifically, the mean prediction

accuracy increases by 4% if we choose [36, 36] as filter

settings rather than [12, 12].

B. RQ2: Efficiency

We compare the running time of our PMT implementation

with mutation testing. PMT running time is calculated by

summing JHawk and coverage tool running time, mutant gen-

eration time, feature collection time, and classifier prediction

time (use Random Forest with feature list in [41] as example).

Note that when running mutation testing, we use 5 threads to

speed up the process and record the time for comparison. We
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(b) Speed-up relation.

Fig. 4: Speed-up ratios in our PMT implementation v.s. theo-

retical best speed-up ratios. One outlier subject with very large

speed-up ratios (233.7X in our implementation and 519.0X in

theoretical best) is omitted for better demonstration.

also calculate the theoretically minimum predictive mutation

testing time by only summing up the test execution time and

mutation generation time11. Fig. 4a shows the comparison

between our PMT implementation and the theoretically best

speedup. Specifically, in statistics, our implementation shows

speed-up ratios with an average of 28.7X and a median

of 13.4X, where the theoretically best technique shows an

average 51.7X and a median 36.0X.

From the experiment results, we have the following impor-

tant findings:

• PMT is highly efficient compared with running mutation

testing. In fact, 75% subjects in the reduced set get a speed-

up more than 9X with our PMT implementation (compared

to traditional mutation testing with 5 threads).

• A near linear relation can be found between the speed-up

of our PMT implementation and the theoretically fastest

implementation (Fig. 4b). Exceptions come from when

coverage collection or software metric collection cost much

more time than expected, which can be refined to make the

implementation more efficient.

C. RQ3: Effectiveness

We evaluate the effectiveness of PMT using 5-fold cross

validation on all 654 subjects. Specifically, in each fold, 80%

of the subjects’ datasets are used for training and the remaining

20% are used for testing. The prediction statistics (accuracy,

error, precision, recall, F1 score, and AUROC) are recorded

for each subject. The median and mean of these statistics for

each classifier are listed in TABLE VI. For deep structured

classifiers and Random Forest, we implement them with subset

(12) and full (95) features, denoted as classifier name followed

with “(12)” and “(95)”. Other non-deep structured classifiers

are implemented with subset features. In addition, Random

Forest is also implemented using features designed in [41] as

comparison, denoted as “Random Forest [41]”.

11Note that only mutant generation and test execution time are unavoidable
for any precise predictive mutation testing, since test execution is necessary
to obtain precise test information, while mutant generation is the first step to
perform predictive mutation testing.
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TABLE VI: PMT Performance Comparison of Different Classifiers

Classifier
Accuracy Error Precision Recall F1 score AUROC

Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean
Random Forest (12) 0.8859 0.8466 0.1141 0.1534 0.7695 0.6554 0.9709 0.7773 0.8299 0.6879 0.8979 0.7779
Random Forest (95) 0.8841 0.8442 0.1160 0.1558 0.7667 0.6545 0.9726 0.7625 0.8235 0.6764 0.8981 0.7770
Random Forest [41] 0.8838 0.8447 0.1162 0.1553 0.7656 0.6591 0.9408 0.7656 0.8255 0.6877 0.8993 0.7774
Extra Trees 0.8802 0.8397 0.1198 0.1603 0.7494 0.6407 0.9834 0.8032 0.8343 0.6945 0.8872 0.7635
Decision Stumps 0.8745 0.8358 0.1255 0.1642 0.7573 0.6452 0.9432 0.7653 0.8121 0.6781 0.8843 0.7590
C4.5 0.8000 0.7878 0.2000 0.2122 0.7625 0.6453 0.6714 0.5820 0.6953 0.5911 0.7618 0.6698
Naı̈ve Bayes 0.8533 0.8140 0.1467 0.1860 0.7675 0.6575 0.8665 0.7391 0.7819 0.6695 0.8752 0.7559
SVM 0.8491 0.8038 0.1509 0.1962 0.7667 0.6294 0.7505 0.6327 0.7209 0.6012 0.8739 0.7493
k-Neighbors 0.8338 0.8131 0.1662 0.1869 0.7684 0.6510 0.8063 0.6858 0.7622 0.6454 0.8497 0.7424
MLP 0.8806 0.8362 0.1194 0.1638 0.7427 0.6358 0.9958 0.8185 0.8338 0.6978 0.8685 0.7517
deep-MLP (12) 0.8820 0.8379 0.1180 0.1621 0.7529 0.6467 0.9984 0.8362 0.8379 0.7094 0.8742 0.7481
deep-MLP (95) 0.8748 0.8348 0.1252 0.1652 0.7579 0.6468 0.9823 0.7919 0.8255 0.6898 0.8700 0.7562
CNN (12) 0.8872 0.8445 0.1128 0.1555 0.7495 0.6334 0.9995 0.8047 0.8392 0.6913 0.8856 0.7639
CNN (95) 0.8893 0.8453 0.1107 0.1547 0.7487 0.6387 1.0000 0.8299 0.8432 0.7038 0.8780 0.7551
caForest (12) 0.8761 0.8448 0.1239 0.1552 0.7661 0.6595 0.9313 0.7803 0.8225 0.6965 0.8918 0.7742
caForest (95) 0.8874 0.8467 0.1126 0.1533 0.7519 0.6454 0.9973 0.8356 0.8466 0.7103 0.8927 0.7722

* Top 3 values for each statistic are shown in bold.

For comparison, we conduct a random guessing with prob-

ability. The probability of predicting a mutant to be killed

is set to be the proportion of killed mutants in all datasets.

The median and mean prediction accuracy of this random

guessing in the subject set are 0.6005 and 0.5756, much lower

than all the classifiers used in our evaluation, showing the

powerfulness of machine learning approach in PMT.

From TABLE VI, we have the following observations:

• Best classifiers (Random Forest, CNN, caForest) provide

cross validation accuracies and AUROCs with about 0.89

in median, which demonstrates the effectiveness of PMT.

• The median of prediction recalls is very high for many

classifiers, which means that for most subject, the killed

mutants can be almost figured out completely.

• Comparing with recall, the statistics for precision are much

lower. It means that inside the predicted killed mutants,

the real killed mutants’ proportion is not very high. The

reason lies in that dynamic features can trigger the prediction

result to be a killed one. We will investigate it in the next

subsection.

• More features tend to benefit the deep learning models more

than the traditional Random Forest model.

• The gap between median and mean of these statistics tells

that for some subjects, PMT shows a bad performance. We

discuss several interpretations in the next section.
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Fig. 5: Comparison of mutation score prediction.

Fig. 5 shows the comparison of different classifiers when

used for predicting mutation score. As we can see, for all

TABLE VII: Pairwise comparison of Random Forest (12) and

CNN (95) on 654 subjects

Statistic Random Forest (12) win Draw CNN (95) win
Accuracy 41.6% 25.7% 32.7%
F1 score 27.7% 29.0% 43.3%
AUROC 66.5% 15.1% 18.4%

classifiers, the absolute prediction error has a median of

0.1 or lower. However, it is clear that predicting mutation

score is more difficult because the average mutation score

for all subjects are about 0.36, meaning that the percentage

share of error is larger than that of predicting the label. It

is also interesting to note that k-Neighbors shows the best

performance in this task.

Next, we consider the comparison between classifiers. We

use Mann-Whitney U test to test if one classifier is better than

the other for a statistic, specifically, we set the confidence

level to be 95%. For prediction accuracy, consistent with prior

work [42], Random Forest based classifiers is shown to be

better than Decision Stumps, C4.5, Naı̈ve Bayes, SVM, and

k-Neighbors. However, the differences are not enough to tell

that it is better than the others like CNN and caForest.

TABLE VII shows a pairwise comparison between two

representative classifiers, Random Forest (12) and CNN (95),

in prediction accuracies, F1 scores, and AUROCs on all 654

subjects. We can see that Random Forest (12) has advantages

in accuracy and AUROC, while CNN (95) has advantages in

F1 score. Combined with the result showed in Fig. 5, we can

get an important finding:

• For different prediction tasks, PMT should consider different

classifiers or objectives for better performance. For example,

in this study, deep classifiers are designed to optimize

accuracy, if we change the focus to F1 score, we may use

it as objective to pursue a better result.

D. Q4: Feature Importance Analysis

Random Forest classifier is used to calculate feature impor-

tance as it shows good performance in PMT. Fig. 6 shows the

importance scores for all the 95 features and the selected 12

features calculated on full and reduced subject set. Note that

167



● ● ●● ●

●

●

● ●
●●

●
●● ● ●●● ●●●● ● ●●●

●
●

●

●
●

●●
●●● ●

●

●

●●
●●● ●● ●● ●● ●●●

●
● ● ● ●● ●

●●●
●

●
● ● ● ● ●●

●
●● ●

●

●●● ●● ●●
●

●
●

●●
● ● ●●● ●●0.00

0.05

0.10

0.15

0.20

95 features

Im
po

rt
an

ce

●

●● ●
●

●

● ●

● ●

●

●

0.0

0.1

0.2

M
ut

at
or

Clas
s

nu
m

Ass
er

tIn
TC

nu
m

Ass
er

tIn
TM

nu
m

Exe
cu

te
d

nu
m

Te
stC

ov
er

pp
av

cc
pp

loc

pp
m

ain
ta

ina
bil

ity
In

de
x

pp
m

ain
ta

ina
bil

ity
In

de
xN

C

pp
nu

m
be

rO
fC

las
se

s

pp
nu

m
be

rO
fS

ta
te

m
en

ts
pp

tcc

Im
po

rt
an

ce

Fig. 6: Feature importance scores for 95 (upper) and 12

(below) features calculated on full subject set (�) and reduced

subject set (×). Feature names are omitted due to space

limitation for the upper one, while the top-5 features share

the same label sequence in both figures.

considering the randomness, we build the classifier 3 times and

average the importance for each feature. From the results, we

observe that the top-5 features are 4 dynamic features and the

mutator type in all 4 calculation settings. Specifically, the sum

of importance of 4 dynamic features shares more than 60% of

the total importance in all settings, which means that dynamic

features dominate the prediction in the fitted classifier.

We also notice an interesting point that package-level soft-

ware metric features are more important than those of class

and method level. When calculating the feature importance

using all 654 subjects, more than 95% (20/21) package level

features ranked within top-40, while this statistic for class

and method level features are only 25% (10/39) and 17%

(5/29). The reason may lie in that for each subject, there are

usually much smaller number of packages than classes and

methods (TABLE III, TABLE IV), making the package-level

metrics able to represent more subject-level characteristics

than the metrics for individual classes and methods. From

the differences between mean and median of the prediction

statistics listed in TABLE VI, we see that different subjects

have different characteristics, while most of them enjoy good

performance when using PMT, some are not. The distinction

of each subject may cause the preferences of package level

metrics during the classifier training process.

The feature importance for each subject is also analyzed.

Fig. 7 summarizes the sum of importance for top-5 features

in all 654 subjects. We can see that for majority of subjects,

the top-5 features are much more important than the other

features. This explains why PMT works in one aspect because

the trained classifiers put more attention on dynamic features

and mutator type (top-5) which are important in most subjects

for distinguishing the killed mutants as shown in Fig. 6.

We also observe that there exist 82 subjects with zero

importance sum for top-5 features. We dive into these subjects
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Fig. 7: Distribution of importance sum for top-5 features.
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Fig. 8: t-SNE visualization (2-d) of subjects’ datasets (subtitles

are subject names) with low (left two) and high (right two)

prediction accuracies, (×) denotes killed mutants, (�) denotes

alive mutants. We sampled 250 mutant records in each dataset

to present.

and find that all of them are extremely imbalanced, i.e., all

mutants are killed or alive. The mean prediction accuracy in

these subjects is only 0.7068, clearly it is one reason that make

the difference between the mean and median of the statistics

as shown in TABLE VI.

In addition, we use t-SNE [81] to perform dimension reduc-

tion (mapping the original feature set into a two-dimensional

surface) and visualize each subject’s dataset. Fig. 8 shows

a selected of four visualizations from subjects with good or

bad prediction accuracy. Compared with the right two, clearly

the left ones show more overlapping between killed (×) and

alive (�) mutant records. It means that the features are not

powerful enough to separate killed and alive mutants, so more

powerful features should be designed to strengthen PMT for

those subjects.

In summary, to further improve the performance of PMT,

we have the following suggestions: 1) add more dynamic

features as they dominate the prediction; 2) add more high-

level (e.g., package-level) software metrics as they are shown

to be more important than the detailed class and method
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level metrics; 3) consider adding other type of features like

semantic features [63], data dependency and AST features [82]

to encode more program characteristics into the feature list.

E. Threats to Validity
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Fig. 9: Subject size vs prediction accuracy (use Random Forest

(12) as classifier), subjects with more than 7k LOCs are filtered

for better demonstration.

The threat to internal validity lies in the implementations,

we reduce this threat by using widely used tools to do mutation

testing, feature extraction, training and testing in our PMT

implementation. The threat to external validity lies in the

subject set, we will consider trying to characterize which types

of subjects benefit more from PMT. As an initial attempt, we

calculated the Pearson correlation between the subject size

(LOCs) and prediction accuracies (results from Random Forest

(12)), and found that the coefficient is only 0.08, indicating

that project size itself is not a good indicator for effectiveness

(as seen in fig. 9) and we should consider more useful features

in the future. Also, as our implementation only support Java

project now, we will consider extending it to support cross-

language setting. The threat to construct validity lies in the

measurements used to evaluate PMT, in this study we use

different measures and analyze the performance of our PMT

under them to reduce this threat. However, we may still lack

effective measurements, e.g., more detailed analysis about

whether fault revealing mutants belong to the reported error

margin or not [83].

V. RELATED WORK

Mutation testing is a powerful methodology to evaluate the

quality of test suite and is gaining more and more attention

in both academia and industry [5], [9]–[11]. One of the main

limitations of mutation testing lies in its efficiency as it is ex-

tremely time consuming to execute the whole generated mutant

set against the test suite [5]. Therefore, many researchers have

proposed various techniques to reduce the cost (discussed as

follows). Please refer to a recent survey for more details about

the limitations and optimizations for mutation testing [30].
Selective mutation testing focuses on reducing the number

of mutants. Wong and Mathur [33] found that several mutation

operators contribute most to the quality of the generated

mutants. Offutt et al. [35] Showed that selective mutation

testing performs comparable to non-selective mutation testing

and proposed a technique to reduce the number of mutants by

an order of magnitude. Following these works, many research

have focused on deciding an enough subset of mutation

operators for selective mutation testing [34], [36], [84]. Beside

the operator-based selection, random selection is also shown

to be a good strategy [4].

Weak mutation testing speeds up mutation testing by par-

tially executing mutants. The concept of weak mutation testing

is proposed by Howden [37]. The idea is that weak mutation

testing uses a weaker definition of mutant killing that judge

a mutant as killed if there are differences in program states

between mutant and original program executions. Weak mu-

tation testing is shown to be as effective as mutation testing

with significant computational savings [85].

There are also other ways proposed to improve the ef-

ficiency of mutation testing. DeMillo et al. [31] proposed

compiler-integrated method to support program mutation via

information generated at compile-time. Untch et al. [32]

proposed a method that uses program schemata to encode

all mutants for a program into one meta-program to speed

mutant execution. Some research [10], [86] also investigated

using parallel method to speed up the mutation execution

process. To speed up mutation testing for evolving system,

researchers have also proposed analyze program differences

to incrementally collect mutation testing results [40], [87].

Recently predictive mutation testing is proposed to predict

the mutant execution results using pre-trained classifier [42].

PMT characterizes each mutant to a list of features and then

train a classifier using a set of mutant execution records to

predict whether a new mutant will be kill or not by the test

suite. Because the mutant execution phase in mutation testing

is fully replaced by a classifier inference, PMT achieves a

significant speedup. This work further presents an extensive

study of the PMT work in the cross-project setting by consid-

ering more features, projects, and classifier settings, and also

investigating the importance of each feature to reveal important

guidance to the future work on this line.

VI. CONCLUSION

In this paper, we present an extensive study to evaluate the

performance of predictive mutation testing, a methodology

that aims to predict mutation testing results using machine

learning approach. We start our design by including more

static software metrics as features and considering powerful

deep learning algorithms. In summary, a total of 95 features

and 11 classification algorithms are evaluated in this study.

All classifiers are carefully tuned to select their preferred data

and parameter settings, then a costly 5-fold cross validation are

used on the datasets generated from 654 real-world projects

with 4M mutant records to evaluate the performance of our

PMT implementation. Our results show that PMT is both

efficient and effectiveness when applied to most subjects. We

also studied the importance of each feature and the results

show that dynamic features are dominant in prediction, which

provide an important guidance for refining PMT design. In the

future, we will extend our study by designing more powerful

features to improve the prediction quality, and also try to

evaluate PMT in subjects with other languages.
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