
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018 5013

Hamming Distance Computation in
Unreliable Resistive Memory

Zehui Chen , Student Member, IEEE, Clayton Schoeny , Student Member, IEEE,

and Lara Dolecek , Senior Member, IEEE

Abstract— Enabled by new storage mediums, Computation-in-
Memory is a novel architecture that has shown great potential
in reducing the burden of massive data processing by bypassing
the communication and memory access bottleneck. Suggested by
Cassuto and Crammer, allowing for ultra-fast Hamming distance
computations to be performed in resistive memory with low-level
conductance measurements has the potential to drastically speed
up many modern machine learning algorithms. Meanwhile,
Hamming distance Computation-in-Memory remains a challeng-
ing task as a result of the non-negligible device variability in
practical resistive memory. In this paper, build upon the work of
Cassuto and Crammer, we study memristor variability due to two
distinct sources: resistance variation, and the non-deterministic
write process. First, we introduce a technique for estimating
the Hamming distance under resistance variation alone. Then,
we propose error-detection and error-correction schemes to deal
with non-ideal write process. We then combine these results
to concurrently address both sources of memristor variabilities.
In order to preserve the low latency property of Computation-in-
Memory, all of our approaches rely on only a single vector-level
conductance measurement. We use so-called inversion coding as
a key ingredient in our solutions and we prove the optimality
of this code given the restrictions on bit-accessible information.
Finally, we demonstrate the efficacy of our approaches on the
k-nearest neighbors classifier.

Index Terms— Computation-in-memory, error detection and
correction, resistive RAM, k-nearest neighbors classification,
Hamming distance.

I. INTRODUCTION

W ITH MANY emerging data-intensive applications,
it has become imperative to have the means to store

and quickly process vast amounts of high dimensional data.
However, current computer architectures largely suffer from
communication and memory access bottlenecks. Additionally,
CMOS technology faces limited scalability issues [2], [3].
Resistive Random-Access Memory (ReRAM), also simply

Manuscript received December 12, 2017; revised March 22, 2018; accepted
May 15, 2018. Date of publication May 25, 2018; date of current version
November 16, 2018. This research is supported in part by a grant from UC
MEXUS and an NSF-BSF grant no.1718389. This paper was presented at
the IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, 2017 [1]. The associate editor coordinating the review of this
paper and approving it for publication was V. Y. F. Tan. (Corresponding
author: Zehui Chen.)

The authors are with the Electrical and Computer Engineering Department,
University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: chen1046@ucla.edu; cschoeny@ucla.edu; dolecek@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2840717

known as resistive memory, has been shown to have promis-
ing scalability with novel crossbar structure, and is thus
a promising candidate for next generation none-volatile
memories [4]. Enabled by this new technology, Computation-
in-Memory (CIM) Architecture has been proposed, in which
certain computations are performed in the physical memory
itself [3], [5]. CIM architecture offers the promising speed as
it bypasses the traditional time-consuming data transfer from
storage to CPU by performing the calculations on the data
directly in the memory.

Computing similarity metrics between vectors is a critical
component in machine learning algorithms; image recogni-
tion and natural language processing are just some of many
examples. It has already been shown that hashing higher
dimensional data into binary space, and using Hamming
distance as the distance metric is well suited for large-scale
applications [6], [7]. Allowing for Hamming distance to be
computed under the CIM Architecture is thus a promising
technique to speed up many modern machine learning applica-
tions. Recently, a technique (to which we refer as Hamming
distance Computation-in-Memory (HD-CIM)) has been pro-
posed to compute Hamming distance in resistive memory,
assuming an ideal model for the memristors [8]. We build
upon [8] by expanding HD-CIM to more sophisticated models.
We develop feasible and reliable HD-CIM schemes under
two main (and complementary) sources of memristor variabil-
ity: resistance variation, and the non-deterministic switching
mechanism during the memristor write process. In order to
preserve the low-latency property of HD-CIM, we assume
limited accessibility to information. First, only vector-level
conductance measurement can be used, and second, only one
measurement can be used per Hamming distance computa-
tion. Dealing with the two sources of memristor variability
is thus more challenging due to these limited accessibility
assumptions, in particular, traditional ECCs based on bit-level
information do not apply. Simple yet effective solutions are
proposed to deal with these sources of memristor variability
when the information that can be read is limited. We prove
the optimality of a code (introduced in [8]) that maps a
message to a constant weight codeword while preserving the
Hamming distance and use this code as the foundation for
our solutions. The efficacy of our approaches under these
sources of memristor variability are studied in detail for the
k-nearest neighbors classifier, one promising application for
HD-CIM.

0090-6778 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7636-2476
https://orcid.org/0000-0001-9519-5143
https://orcid.org/0000-0003-3736-4345

5014 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

Fig. 1. Example of an equivalent circuit for a measurement between two
vectors.

The content of this paper is organized as follows. Section II
provides background on resistive memory, memristors, and the
two sources of memristor variability. The solutions that deal
with the adverse effects the variability sources are at first stud-
ied separately. Section III provides a solution to estimate the
Hamming distance from a single conductance measurement in
resistive memory where the resistances of memristors are for-
mulated as Gaussian random variables. To generalize our solu-
tion, inversion coding is used to provide a priori knowledge
about vector weights. The estimation error probability and its
bound are also studied in Section III. In Section IV, we present
the performance of our estimation scheme on a k-nearest
neighbors classifier as our main application; experimental
result are provided. Next, we turn our attention toward the sec-
ond memristor variability. In Section V, error-detection and
error-correction schemes are provided as solutions to single bit
errors caused by the non-ideal write process. In Section VI,
we continue with our k-nearest neighbors classifier application
and present the experimental results, implementing the scheme
from the previous section. The two sources of memristor
variability are combined in Section VII, and the corresponding
estimation/correcting scheme is discussed.

II. BACKGROUND ON MEMRISTORS AND

SOURCES OF VARIABILITY

A. Memristors and Resistive Memory

In this paper, we focus on resistive memory which uses a
crossbar structure [9]. In crossbar resistive memory, a resistive
switching device (also referred to as a memristor) is placed
at the intersection of each row and column [9]. The logical
states of “0” and “1” are represented by the internal resistance
state of memristor, “High Resistance State (HRS)” and “Low
Resistance State (LRS),” respectively. The state of the mem-
ristor can be programmed by applying different voltages to its
terminals and can be sensed by measuring the corresponding
current. In this paper, under the same model used in [8],
we are interested in inferring the Hamming distance between
vectors from the conductance measurement between rows of
memristors where the two vectors are stored. Figure 1 shows
an example of the circuit representation that stores two vectors,
x = (0, 0, 0, 1, 1) and y = (0, 1, 1, 0, 1), and the example
conductance measurement between the two vectors, G(x, y).
Using conductance in our calculations (instead of resistance)
allows for a simple summation of each branch. We assume
throughout the paper that measurements between the two
rows of memristors in resistive memory can be reliably
performed.

B. Variability Due to Resistance Variation

While an on/off ratio from ∼ 10 to above 1000 has been
shown in many ReRAM papers as proof of a large memory
operation window, the variations of HRS and LRS are both
common and significant [10]. Previous work on HD-CIM
assumed constant valued LRS and HRS resistances [8]. It is
therefore of interest to take resistance variation into account
and develop corresponding schemes in order to perform
Hamming distance computation in practical resistive memory.
In practice, the resistance variation is affected by many oper-
ational parameters. It is reported that LRS variability depends
on two main parameters, the write current limit Ilimit, and
the write pulse width [10]. A smaller Ilimit favors low-power
operation but increases the variation of LRS. A shorter pulse
width favors fast speed operation but it also increases the
variation of LRS. As a result, studying HD-CIM solutions that
tolerate resistance variation not only makes HD-CIM feasible
in practice but also provides useful insight into the trade-off
between performance and operation parameters, i.e., pulse
width and Ilimit.

Many papers have shown that the resistance distribution
of LRS and HRS are Gaussian-like [11]–[13]. The reported
resistances of LRS and HRS are both positive and large, i.e., on
the order kΩ and MΩ. It is therefore reasonable to assume
that the conductance also follows a Gaussian distribution if
the corresponding resistance is Gaussian-like. We assume that
the process variability in each memristor is identical and
independent. For a memristor i, let Li and Hi be random
variables denoting the state “0” conductance and the state “1”
conductance, respectively. We assume Li and Hi follow the
following Gaussian distributions:

Li ∼ N (μL, σ2
L), Hi ∼ N (μH , σ2

H). (1)

In the above model, μL and μH are the mean of state “0”
and state “1” conductance, and σ2

L and σ2
H are the variance of

state “0” and state “1” conductance, respectively. We define
ε = μL/μH which is also the “On/Off” resistance ratio, a key
characteristic of memristor devices [9].

C. Variability Due to Non-deterministic
Switching Mechanism

As is the case with resistance variation, the switch-
ing mechanism of the memristor is also non-deterministic.
It is reported that the switching time of some memris-
tors, e.g., T iO2 cells, follows a log-normal distribution
with the median switching time exponentially dependent on
the external voltage [14]. Either increasing the programming
voltage or increasing the switching time will increase the
switching probability. Meanwhile, increasing the program-
ming voltage will increase energy consumption and increasing
the switching time will slow down the write progress and
increase energy consumption [15], [16]. Instances of unsuc-
cessful memristor switching are inevitable; studying the effect
of the non-deterministic switching mechanism in HD-CIM and
the corresponding solution is thus necessary to make HD-CIM
practical.

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5015

Unsuccessful write operations lead to bit errors when the
former state of a memristor is different from the data to be
written. We thus model this variability as a binary symmetric
channel (BSC) when writing to resistive memory. The vectors
to be stored are viewed as the input to this channel, while the
vectors actually written to the resistive memory are the output.

III. HAMMING DISTANCE ESTIMATION-IN-MEMORY

UNDER RESISTANCE VARIATION

In Subsection A, we first provide a scheme (Hamming
Distance Estimation-In-Memory) to estimate the Hamming
distance between two vectors whose Hamming weights are
a priori known, assuming the conductance of each memristor
state is modeled as a random variable. In this subsection,
we also provide a simplified scheme in the regime of small
“On/Off” resistance ratios. In Subsection B, an inversion
coding technique is used to generalize Hamming distance
Estimation-In-Memory to be applicable to arbitrary vectors
with unknown Hamming weights, using a single conductance
measurement. We then prove the optimality of this code
and present a modified estimation scheme. In Subsection C,
we provide analysis of the estimation error and show that
inversion coding also provides benefits in terms of estimation
accuracy.

A. Hamming Distance Estimation-In-Memory (HD-EIM)

For two vectors x, y ∈ {0, 1}n stored in resistive memory
where conductances of the two states of each memristor
are modeled as Gaussian random variables, the conductance
between the two rows of memristors is as follows:

G(x, y) =
n∑

i=1

[
xiyi

Hi,xHi,y

Hi,x + Hi,y
+ xi(1 − yi)

Hi,xLi,y

Hi,x + Li,y

+(1 − xi)yi
Li,xHi,y

Li,x + Hi,y

+(1 − xi)(1 − yi)
Li,xLi,y

Li,x + Li,y

]
. (2)

Here, xi, yi denote the i-th entry of vectors x, y respec-
tively. Hi,x and Hi,y are random variables denoting the
“1” state conductances of memristors that store xi and yi

respectively, and they are modeled as Gaussian random vari-
able in (1). Li,x and Li,y are similarly defined for the “0”
state conductances. Equation (2) follows by summing up the
conductances of each branch i, which is composed of the
serial conductance of memristors that store xi and yi. Note
that Equation (2) is analogous to Equation (1) in [8] with the
substitution of our new variability model.

The following approximation can be made when μH >>
σH and μL >> σL:

Hi,xHi,y

Hi,x + Hi,y
≈ Fi ∼ N (μH/2, σ2

H/8),

Li,xLi,y

Li,x + Li,y
≈ Ti ∼ N (μL/2, σ2

L/8),

Hi,xLi,y

Hi,x + Li,y
≈ Si ∼ N

(
μL

1 + ε
,

σ2
L

(1 + ε)4

)
. (3)

These approximations are made in order to facilitate further
calculation (see Appendix A for justification of approxima-
tions). We define ε = μL/μH and provide examples of ε in
Appendix A, Table IV.

For two vectors x, y ∈ {0, 1}n, we define N00 to be
the number of element pairs that have xi = yi = 0 for
i ∈ {1, . . . , n}. Similarly we define N01 to be the number
of element pairs that have xi = 0, yi = 1, N10 to be the
number of element pairs that have xi = 1, yi = 0, and N11

to be the number of element pairs that have xi = yi = 1.
Using our approximations, the conductance measurement can
be expressed as follows,

G(x, y) ≈ Ḡ(x, y) =
N11∑

i=1

Fi +
N01+N10∑

i=1

Si +
N00∑

i=1

Ti,

We normalize Fi, Si, and Ti by μH/2 and denote the
normalized random variables by fi, si, and ti, yielding:

fi ∼ N (1, σ2
H/2μ2

H), si ∼ N
(

2ε

1 + ε
,

4σ2
L

μ2
H(1 + ε)4

)
,

ti ∼ N (ε, σ2
L/2μ2

H).

Similarly, we compute the normalized conductance measure-
ment, G̃(x, y), as follows:

G̃(x, y) =
Ḡ(x, y) × 2

μH
=

N11∑

i=1

fi +
N01+N10∑

i=1

si +
N00∑

i=1

ti.

Using elementary properties of independent Gaussian distrib-
utions, we have

G̃(x, y) ∼ N
(

N11 + (N01 + N10)
2ε

1 + ε
+ N00ε,

N11σ
2
H

2μ2
H

+
(N01 + N10)8σ2

L

2μ2
H(1 + ε)4

+
N00σ

2
L

2μ2
H

)
.

(4)

We define wx and wy to be the a priori known Hamming
weights of x and y, respectively. We define D(x, y) to be
the Hamming distance between x and y. Using the following
facts,

N11 = [wx + wy − D(x, y)]/2,

N01 + N10 = D(x, y),
N00 = n − N11 − N01 − N10, (5)

we can compute the following:

D̃(x, y) =
1 + ε

(1 − ε)2
[(1 − ε)(wx + wy) + 2nε − 2G̃(x, y)].

(6)

Note that Equation (6) is a substitution of the noisy D(x, y)
into Equation (5) from [8]. Based on (4), (5) and (6), D̃(x, y)
has the following distribution:

D̃(x, y) ∼ N
(

D(x, y),
2(1 + ε)2N11σ

2
H

μ2
H(1 − ε)4

+
(N01 + N10)16σ2

L

μ2
H(1 + ε)2(1 − ε)4

+
2(1 + ε)2N00σ

2
L

μ2
H(1 − ε)4

)
.

(7)

5016 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

D̃(x, y) is an intermediate random variable computed using
the conductance measurement from which we can estimate
D(x, y). Note that D̃(x, y) and G̃(x, y) will be redefined
per section and subsection for the appropriate context. We can
now view the problem of estimating Hamming distance
from a conductance measurement as a classic communication
problem. The transmitter sends D(x, y) and the channel is
Gaussian with zero mean and variance σ2(D̃(x, y)), as spec-
ified in (7). The receiver sees D̃(x, y) and estimates D(x, y)
from the observation.

We note that D(x, y) takes only integer values from 0 to n.
We also observe that for any two nearby distributions which
center at DH and DH + 1, their variances only differ by a
small amount when σH and σL are relatively close. Based
on these observations, we propose an estimator D̂(x, y) =
nint(D̃(x, y)). We refer to this estimator as the nearest integer
estimator. The nearest integer estimator completes the last
step of HD-EIM, which estimates D(x, y) from a single
measurement G(x, y).

1) Simplified Approximations for Memristor Technology
with small ε: The approximation in (3), which leads to (7),
is suitable for a variety of “On/Off” resistance ratios. However,
smaller “On/Off” resistance ratios are usually reported in
literature, e.g., ε = 0.01 [10]. Therefore, we seek to further
simplify our equations in order provide a single parameter
characterization for the estimation error. When ε is small,
the simplified approximations readily follow:

Hi,xHi,y

Hi,x + Hi,y
≈ Fi ∼ N (μH/2, σ2

H/8),

Li,xLi,y

Li,x + Li,y
≈ Ti ∼ N (μL/2, σ2

L/8),

Hi,xLi,y

Hi,x + Li,y
≈ Si ∼ N (μL, σ2

L). (8)

With the simplified approximations, the distribution of
G̃(x, y) and the calculation of D̃(x, y) change accordingly:

G̃(x, y) ∼ N
(

N11 + (N01 + N10)2ε + N00ε,

N11σ
2
H

2μ2
H

+
(N01 + N10)8σ2

L

2μ2
H

+
N00σ

2
L

2μ2
H

)
.

(9)

We then compute D̃(x, y) as:

D̃(x, y) =
1

1 − 3ε
[(1 − ε)(wx + wy) + 2nε − 2G̃(x, y)],

(10)

where

D̃(x, y)

∼ N
(
D(x, y),

2N11σ
2
H + 2N00σ

2
L + (N01 + N10)16σ2

L

μ2
H(1 − 3ε)2

)
.

(11)

The estimation of D(x, y) is performed using the nearest
integer estimator. This simplification is used in the remaining
parts of this section, Section IV, and Section VII.

B. Inversion Coding

In the previous discussion, we proposed the HD-EIM
scheme which estimates the Hamming distance between two
vectors from a single conductance measurement, with the
assumption that the weights of both vectors are a priori
known. However, this assumption may not be valid for many
applications. Therefore, in order to generalize our HD-EIM
scheme to applications where vectors with arbitrary weights
are of interest, we require a method to gain knowledge of
vector weights. In this section we discuss two approaches
to get vector weights before HD-EIM is performed: weight
estimation and inversion coding. We briefly describe the idea
of weight estimation and elaborate on the inversion coding
technique.

In [8], where the ideal two-state conductance model of
a memristor is considered, the weight of a vector can be
computed from the measurement between the vector itself and
some preset vector, e.g., the all-1 vector. We can use this idea,
in conjunction with the techniques described in Subsection A,
to estimate the weight of a vector in the presence of variability
due to resistance variation. After the weights of two vectors
are estimated, the Hamming distance can be then estimated
using the HD-EIM scheme. This approach of estimating the
weight of both vectors first, and then estimating the Hamming
distance requires a total of three conductance measurements
in order to complete one Hamming distance estimation. The
extra two measurements introduce extra latency which is not
favored by frequent read applications. The overall estimation
accuracy then also suffers from additional estimation errors
when estimating the weights of vectors.

Alternatively, in applications where latency is the primary
concern, we use the following coding technique to force every
vector to have the same Hamming weight prior to the data
being written to resistive memory, thus enabling Hamming
distance Estimation-In-Memory with only one conductance
measurement.

Auxiliary Code 1: (cf. [8]). We define an inversion encod-
ing of the vector x to be x(c) = [x|¬x], where ¬x is the
bitwise complement of x and | denotes concatenation.

We refer to Auxiliary Code 1 as inversion coding throughout
this paper. Let us define the weight of a vector x as w(x). With
inversion coding, we have w(x(c)) = n, ∀x ∈ {0, 1}n. With
inversion coded vectors stored in resistive memory, the weights
are known to be n, thus HD-EIM can be readily used.
By the nature of inversion coding, we have D(x(c), y(c)) =
2D(x, y). This relationship can thus be used to estimate
D(x, y) from the G̃(x(c), y(c)) using the following equation
of the redefined D̃(x, y):

D̃(x, y) =
1
2
D̃(x(c), y(c)), (12)

where

D̃(x(c), y(c)) =
1

1 − 3ε
[2n(1 − ε) + 4nε − 2G̃(x(c), y(c))].

(13)

The random variables G̃(x(c), y(c)) denote the normalized
conductance measurements between two rows that store the

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5017

coded vectors x(c) and y(c); G̃(x(c), y(c)) will be redefined
per section for the appropriate context. Adapting (9), we have
the distribution of G̃(x(c), y(c)) as follows:

G̃(x(c), y(c)) ∼ N
(

N ′
11 + (N ′

01 + N ′
10)2ε + N ′

00ε,
N ′

11σ
2
H

2μ2
H

+
(N ′

01 + N ′
10)8σ2

L

2μ2
H

+
N ′

00σ
2
L

2μ2
H

)
. (14)

Here N ′
gh is defined to be the number of coordinates having

bit g in x(c) and bit h in y(c), for g, h ∈ {0, 1}. We therefore
have:

D̃(x(c), y(c)) ∼ N
(

D(x(c), y(c)),

2N ′
11σ

2
H + 2N ′

00σ
2
L + (N ′

01 + N ′
10)16σ2

L

μ2
H(1 − 3ε)2

)
,

(15)

and

D̃(x, y) ∼ N
(

D(x, y),

2N ′
11σ

2
H + 2N ′

00σ
2
L + (N ′

01 + N ′
10)16σ2

L

4μ2
H(1 − 3ε)2

)
.

(16)

We can thus estimate D(x, y) from D̃(x, y) using the near-
est integer estimator D̂(x, y) = nint(D̃(x, y)), thus adapting
the HD-EIM scheme to the case where an inversion coding
is used. We now show the optimality of inversion coding in
terms of its redundancy among all constant weight codes.

Lemma 1: Define a code to be an injective mapping that
maps a message x ∈ {0, 1}a to a codeword x̄ ∈ {0, 1}b. Let
D(x, y) denote the Hamming distance between two vectors
x and y. We define a code to be Hamming distance preserving
if and only if D(x̄, ȳ) = f (D(x, y)) for some bijective
function f . We also define a constant weight code to be a
code that satisfies the property w(x̄) = w0, ∀x̄ ∈ {0, 1}b and
some constant w0. The necessary conditions for a constant
weight code to be Hamming distance preserving are:

w0 ≥ a, b ≥ 2a.

Proof: Define D1 to be the range of D(x, y) for x, y ∈
{0, 1}a. We have |D1| = a + 1. Define C1 to be the set
of length-b binary vectors that have weight w0. Also define
C2 to be the set of length-b codewords generated by any
constant weight code with weight w0. Due to the nature
of codes, C2 ⊆ C1. Define D2 to be the range of D(x̄, ȳ)
for x̄, ȳ ∈ C1, define D3 to be the range of D(x̄, ȳ) for
x̄, ȳ ∈ C2. The following relationship can be easily verified,
|D2| = min(w0 + 1, b − w0 + 1). In order for the code to be
Hamming distance preserving, i.e., f to be a bijective function,
we need |D3| = |D1| = a + 1. Since C2 ⊆ C1, we have
|D3| = a+1 ≤ |D2| = min(w0 +1, b−w0+1), which proves
our necessary conditions.

Due to the limited read accessibility to resistive memory,
there is no direct access to x̄, ȳ. For any constant weight code
we could use, we can only estimate the Hamming distance
between between pairs of codewords using HD-EIM scheme.

It is therefore necessary for our constant weight code to be
Hamming distance preserving so that we can directly recover
the Hamming distance between the corresponding pairs of
messages. Since the rate of this code is a/b, Lemma 1 implies
that the maximum rate of a code of this type is 1/2. The
inversion coding indeed has rate 1/2 and is thus optimal in
term of redundancy.

C. Estimation Error Probability and Bounds

In previous subsections, we built upon the HD-CIM method
from [8] by considering conductance variation in two set-ups:
one in which vectors with known weights are stored and
the other in which inversion coded vectors are stored. Due
to resistance variation, estimation errors can occur when
determining the Hamming distance between vectors. In this
subsection, the estimation error probability is studied for the
two cases and the results are compared.

Lemma 2: When two vectors x, y ∈ {0, 1}n with known
weight are stored in resistive memory, relying on approx-
imation (8), we can estimate D(x, y) using D̂(x, y) =
nint(D̃(x, y)), with D̃(x, y) computed from (10), and the
normalized conductance measurement G̃(x, y) from (9). Then,
the conditional estimation error probability has the following
bound:

P (D̂(x, y) 	= D(x, y) | D(x, y))

≤ 2Q

(
1

2
√

β(n + 7D(x, y))

)
, (17)

where β = 2 max(σ2
L,σ2

H)

μ2
H(1−3ε)2

and Q(·) is the Q-function,

i.e., Q(x) = 1√
2π

∫∞
x

exp(−u2

2)du.

Proof: From D̂(x, y) = nint(D̃(x, y)) and (11),
the probability of erroneous estimation can be calculated as:

P (D̂(x, y) 	= D(x, y) | D(x, y)) = 2Q

(
1

2σ(D̃(x, y))

)
,

Define σ2
max = max(σ2

H , σ2
L). The standard deviation of

D̃(x, y) can be upper bounded:

σ(D̃(x, y))

=

√
2N11σ2

H + 2N00σ2
L + (N01 + N10)16σ2

L

μ2
H(1 − 3ε)2

≤
√

2N11σ2
max + 2N00σ2

max + (N01 + N10)16σ2
max

μ2
H(1 − 3ε)2

=
√

β(n + 7D(x, y)).

Using elementary properties of the Q-function, Lemma 2 is
proved.

Lemma 2 provides us with a single parameter relation
between β and the estimation error probability. The parameter
β serves as a measure of device reliability and examples of
β are provided in Appendix A Table IV. It is also observed
that the estimation error probability is largely dependent on the
Hamming distance. A smaller Hamming distance is associated
with a smaller estimation error probability. This property is

5018 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

well suited for classification problems in which objects with
smaller distances are of interest.

We also provide a bound of the unconditional estima-
tion error probability of HD-EIM when vectors with known
weights are stored.

Corollary 1: The unconditional estimation error probability
of HD-EIM, when vectors with known weights are stored,
is upper bounded as:

P (D̂(x, y) 	= D(x, y)) ≤ 2Q

(
1

4
√

2βn

)
.

Proof: Follows immediately from D(x, y) ≤ n, ∀ x, y
and Lemma 2.

This simple bound gives insight into the trade-off
between β, the device reliability and n, the vector length
(scalability). For instance, we can achieve the same level of
Hamming distance calculation accuracy with larger resistance
variation by shortening the vectors.

We next adapt Lemma 2 and Corollary 1 to the case where
inversion coding is used.

Lemma 3: When two inversion coded vectors, x(c), y(c) ∈
{0, 1}2n, corresponding to two original vectors x, y ∈
{0, 1}n, are stored in resistive memory, relying on approx-
imation (8), we can estimate D(x, y) using D̂(x, y) =
nint(D̃(x, y)), with D̃(x, y) computed from (12), and the
normalized conductance measurement G̃(x, y) from (14).
Then, the conditional estimation error probability is upper
bounded as:

P (D̂(x, y) 	= D(x, y) | D(x, y))

≤ 2Q

(
1√

2β(n + 7D(x, y))

)
, (18)

where β = 2max(σ2
L,σ2

H)

μ2
H (1−3ε)2

.

Proof: The proof of this lemma is similar to proof of
Lemma 2 with σ2(D̃(x, y)) following from (16) in conjunc-
tion with the following properties of inversion coding:

N ′
11 = N ′

00 = N11 + N00, N ′
01 = N ′

10 = N01 + N10.

We also provide a simple bound of the estimation error
probability of HD-EIM when inversion coded vectors are
stored.

Corollary 2: The unconditional estimation error probability
of HD-EIM, when inversion coded vectors are stored, is upper
bounded as:

P (D̂(x, y) 	= D(x, y)) ≤ 2Q

(
1

4
√

βn

)

Proof: Follows immediately from D(x, y) ≤ n, ∀ x, y
and Lemma 3.

The bounds in Lemmas 2 and 3 are tight when σ2
H = σ2

L.
We observe that when these bounds are tight, the estimation
error probability using coded vectors is smaller than the one
using uncoded vectors. This observation shows that inversion
coding also improves the estimation accuracy, in addition to
its ability to generalize HD-EIM to vectors with unknown
weights. Note that additional coding, e.g., encoding x to be

[x|¬x|x|¬x], further improves estimation accuracy but may
not be favorable in terms of redundancy. The single inversion
coding technique is the maximum rate constant weight code
that preserves Hamming distance, thus allowing HD-EIM to be
efficiently performed with a single conductance measurement.
However, additional coding only improves estimation accuracy
with diminishing returns.

IV. AN AVERAGE CASE STUDY ON THE K-NN
CLASSIFIER UNDER COMPUTATION NOISE

In the previous section we analyzed the estimation error
of the Hamming distance Computation-in-Memory scheme
from [8] under device variability due to resistance variation.
Due to resistance variation, the Hamming distance between
vectors has to be estimated and could lead to estimation
error. From the application point of view, the estimation error
can be viewed as computation noise when Hamming distance
computation is performed. We have provided a bound on the
conditional error probability. Meanwhile, erroneous Hamming
distance computations may not necessarily lead to erroneous
results due to the error-tolerant nature of some applications,
e.g., the k-nearest neighbors classifier. In this section, we focus
on the k-nearest neighbors classifier as our main application
and provide analysis on how this computation noise affects
the classification accuracy. Throughout this whole section,
we assume binary attributes (vectors) are inversion coded and
stored in resistive memory. We next introduce the framework
we use to analyze the k-nearest neighbors classifier under
computation noise.

The average-case analysis framework, introduced by
Pazzani and Sarrett [17], is a useful theoretical framework to
understand the behavior of learning algorithms. This frame-
work is based on the formal computation of the expected
accuracy of a learning algorithm for a certain fixed class of
concepts [18]. In Subsection A, we use this framework to
formally compute the expected accuracy of the k-NN classifier
to learn the m-of-n/� concept, a boolean threshold function,
under computation noise. The m-of-n/� concept is defined by
the number of relevant attributes (n), the number of irrelevant
attributes (�), and the threshold (m). Under this concept,
an instance is positive if m or more relevant attributes exist
and is negative if fewer than m relevant attributes exist. Note
that n is redefined in this section in order to be consistent
with [18]. We assume that relevant and irrelevant attributes
occur with probabilities p and q, respectively. The k-NN
classifier classifies an instance as positive if more than half
of its k nearest neighbors are positive. When a tie occurs,
the classifier randomly decides the class. We compute the
expected accuracy when the bound is tight, i.e., σ2

H = σ2
L

and the computation noise is parameterized by β, as stated in
Lemma 3. The expected classification accuracy is a function
of n, m, p, q, k, N, and β, where N is the size of the training
space.

We use the next example to demonstrate how on a k-nearest
neighbors classifier, erroneous Hamming distance computation
does not necessarily result in erroneous classification.

Example 1: In this example, we are interested in the clas-
sification of the testing instance based on the 5 training

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5019

TABLE I

K-NN EXAMPLE

instances using a k-nearest neighbors classifier. The 1 testing
instance and 5 training instances are listed in the next Table.
We set k to be 3 for the k-NN classifier. The training instances
are generated according to the 4-of-8/0 concept and we use
1/0 to mark positive/negative class labels.

In the error-free case, i.e., all Hamming distances are
computed correctly, the k-NN classifier classifies the testing
instance as positive because its 3 nearest neighbors (instance
#1, #2, and #3) have class labels 1, 0, and 1 respectively.
Positive is the correct class label for the testing instance based
on the 4-of-8/0 concept.

Next, we consider the case where Hamming distance compu-
tation is prone to estimation error due to resistance variation.
We consider the case where the Hamming distance between
the testing instance (11111000) and training instance #2
(11100000) is erroneously computed to be 3. Note that there
are two training instances (#2 and #4) at distance 3 w.r.t. the
testing instance; the k-NN classifier will randomly choose one
to be the nearest neighbor of the testing instance. Observe
that although the Hamming distance computation is erroneous,
the classification result is still positive because the 2 closest
training instance (#1 and #3) are both positive. This example
illustrates how erroneous Hamming distance computation may
not lead to erroneous classification.

A. Formal Calculation of Expected Accuracy

Okamoto and Yugami [18], used the average-case study
framework to analyze noisy attributes and class labels.
We adapt some of their equations to the scenario involving
computation noise. For the calculations of expected accuracy
that have already been done by Okamoto and Nobuhiro,
we simply state their results here (we refer readers to [18] for
further details). We modify the equations to incorporate the
computation noise and to reflect the fact that in our model,
the attributes and class labels are noise-free.

The probability that an instance consists of x relevant
attributes and y irrelevant attributes can be calculated as [18]:

Poc(x, y) =
(

n

x

)(
l

y

)
px(1 − p)n−xqy(1 − q)l−y .

Then the expected classification accuracy can be calculated
as [18]:

A(k) =
l∑

y=0

[m−1∑

x=0

Poc(x, y)(1 − Ppos(k, x, y))

+
n∑

x=m

Poc(x, y)Ppos(k, x, y)
]
,

where Ppos(k, x, y) represents the probability that the k-NN
classifier classifies an arbitrary test instance with x relevant
attributes and y irrelevant attributes as positive.

To calculate Ppos(k, x, y), we first calculate Pdp(x, y, e)
(Pdn(x, y, e), resp.) which is the probability that an arbitrary
positive (negative, resp.) training instance has Hamming dis-
tance e from the arbitrary testing instance in I(x, y). I(x, y)
represents the set of instances in which x relevant attributes
and y irrelevant attributes simultaneously occur. The Hamming
distance e is assumed to be estimated by HD-EIM scheme
from an observation ẽ. Pdp(x, y, e) and Pdn(x, y, e) can be
represented as:

Pdp(x, y, e) =
n∑

ê=0

l∑

ŷ=0

n∑

x̂=m

Poc(x̂, ŷ)

×Pdis(x, y, x̂, ŷ, ê)PH(e, ê), (19)

and

Pdn(x, y, e) =
n∑

ê=0

l∑

ŷ=0

m−1∑

x̂=0

Poc(x̂, ŷ)

×Pdis(x, y, x̂, ŷ, ê)PH(e, ê). (20)

Pdis(x, y, x̂, ŷ, e) is the probability that an arbitrary instance
in I(x̂, ŷ) has Hamming distance e from an arbitrary instance
in I(x, y). PH(e, ê) is the probability that the original
Hamming distance ê is estimated to be e.

In order to compute PH(e, ê), we consider the following
scenario where the observation ẽ is a random variable with dis-
tribution N (ê, 1

2β(n + 7ê)). This corresponds to the case that
two attribute vectors with Hamming distance ê are inversion
coded and then stored in resistive memory. For e = nint(ẽ) if
0 ≤ ẽ ≤ n, e = 0 if ẽ < 0, and e = n if ẽ > n, using
elementary properties of Gaussian distribution, PH(e, ê) is
calculated as follows:

PH(e, ê)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − Q

(1
2 − ê√

1
2β(n + 7ê)

)
if e = 0,

Q

(
n − 1

2 − ê√
1
2β(n + 7ê)

)
if e = n,

Q

(
e − ê − 1

2√
1
2β(n + 7ê)

)
− Q

(
e − ê + 1

2√
1
2β(n + 7ê)

)
otherwise.

The remaining equations in this subsection are stated
directly from [18]; we include them here for completeness.

5020 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

Pdis(x, y, x̂, ŷ, e) can be calculated as follows [18]:

Pdis(x, y, x̂, ŷ, e) =
∑

(zr,zi)∈S

(
x
zr

)(
n−x
x̂−zr

)
(
n
x̂

)
(

y
zi

)(
l−y
ŷ−zi

)
(

l
ŷ

) ,

where S is a set of all pairs of zr and zi that satisfy the
following conditions:

max(0, x + x̂ − n) ≤ zr ≤ min(x, x̂),
max(0, y + ŷ − l) ≤ zi ≤ min(y, ŷ),

zr + zi =
x + y + x̂ + ŷ − e

2
.

Ppos(k, x, y) can be then calculated.

Ppos(k, x, y) =
n+l∑

d=0

k−1∑

a=0

N−a∑

b=k−a

Pnum(x, y, d, a, b)

×Psp(x, y, d, a, b).

where

Pnum(x, y, d, a, b)

=
(

N

a

)(
N − a

b

)
Pl(x, y, d)a × Pd(x, y, d)b

× (1 − Pl(x, y, d) − Pd(x, y, d)N−a−b,

Pl(x, y, d) =
d−1∑

e=0

(Pdp(x, y, e) + Pdn(x, y, e)),

Pd(x, y, d) = Pdp(x, y, d) + Pdn(x, y, d),

and

Psp(k, x, y, d, a, b) =
a∑

u=0

b∑

v=0

{
P

(u)
lp (a, u)P (v)

dp (b, v)

×
v∑

w=�k+1
2 �−u

{
P

(w)
dp (k, a, b, v, w)

+
1
2
P

(w)
dp (k, a, b, v,

k

2
− u)

}}
,

where

P
(u)
lp (a, u) =

(
a

u

)
(
∑d−1

e=0 Pdp(x, y, e)
Pl(x, y, d)

)u

× (
∑d−1

e=0 Pdn(x, y, e)
Pl(x, y, d)

)a−u,

P
(v)
dp (b, v) =

(
b

v

)
(
Pdp(x, y, d)
Pd(x, y, d)

)v(
Pdn(x, y, d)
Pd(x, y, d)

)b−v,

P
(w)
dp (k, a, b, v, w) =

(
v
w

)(
b−v

k−a−w

)
(

b
k−a

) .

This ends our derivation for the expected accuracy.

B. Average-Case Study Results on Computation Noise

First we study the effects of different levels of computation
noise on the 3-of-5/2 concept. In Figure 2, we fix N to be
32 and we report two device reliability (noise-level), β = 0.01
and β = 0.1, for k spanning from 1 to 16.

In Figure 2, the upper line is the theoretical result for
the noise-free classification accuracy, which is consistent with

Fig. 2. 3-of-5/2 concept under computation noise.

Fig. 3. Computation noise v.s. max accuracy.

the results in [18]. The two lower lines are the theoretical
accuracy with different device parameter β. When k is an
even number, it is observed that the classification accuracy of
the k-NN classifier drops remarkably due to the randomness
when a tie occurs. Figure 2 shows that the computation noise
decreases the classification accuracy for all k and the amount
of decrement largely depends on the noise level β.

We next show the effects of computation noise for a
wide range of noise levels on a variety of different concepts
in Figure 3. The classification accuracy of k-NN at each noise
level for each concept is chosen to be the maximum accuracy
out of the range 2 ≤ k ≤ 16.

In Figure 3, β ranges from 10−3 to 1 in order to see
a clear trend. However, from a realistic point of view,
β = 2max(σ2

L,σ2
H)

μ2
H (1−3ε)2

= 1 is unlikely to occur in a real device.

We observe that for small β, i.e., β < 10−2, the influence
of the estimation error is negligible. It is interesting to note
that the impact of the estimation error decreases as the
dimension of concepts increases, which could be beneficial
for applications with many attributes, e.g., n = 22.

V. ERROR-DETECTION AND ERROR-CORRECTION

SCHEME UNDER WRITE BSC

In this section we consider memristor variability due to
an unreliable write operation. This memristor variability

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5021

can be modeled as a write BSC and therefore can
be viewed as attribute noise in learning problems.
Okamoto and Yugami [18] provide an average-case study and
observed that attribute noise decreases classification accuracy.
In order to keep the low latency property of HD-CIM,
we are restricted to the conductance measurements between
rows of memristors. Therefore, traditional ECCs based on
entry-wise access can not be used to deal with the write
BSC and this fact motivates us to provide error-detection and
error-correction schemes based on conductance measurements
only. In this section, an error-detection scheme is explored
and a low-cost error-correction scheme is proposed to
improve the classification accuracy. Throughout this section,
we assume the memristors have no resistance variation,
i.e., σ2

H = σ2
L = 0. We again assume inversion coded vectors

are stored in the resistive memory.
Define x(c) and y(c) to be two inversion coded vectors

corresponding to two length-n vectors x and y. Let x̃(c) and
ỹ(c) be the noisy vectors actually stored due to the write noise
(BSC). We first establish necessary equations to compute the
Hamming distance between x and y from a measurement
between rows of memristors that store x̃(c) and ỹ(c). Define
the normalized conductance measurement to be G̃(x̃(c), ỹ(c)).
As resistance variability is not considered in this section,
G̃(x̃(c), ỹ(c)) is a constant rather than a random variable.
We thus have:

G̃(x̃(c), ỹ(c)) = Ñ ′
11 + (Ñ ′

10 + Ñ ′
01)

2ε

1 + ε
+ Ñ ′

00ε. (21)

Here Ñ ′
gh is defined to be the number of coordinates having

bit g in x̃(c) and bit h in ỹ(c), for g, h ∈ {0, 1}.
A variable denoting the normalized conductance measure-

ment between rows of memristors that store x(c) and y(c) can
be defined as:

G̃(x(c), y(c)) = N ′
11 + (N ′

10 + N ′
01)

2ε

1 + ε
+ N ′

00ε. (22)

Here N ′
gh is defined to be the number of coordinates having

bit g in x(c) and bit h in y(c), for g, h ∈ {0, 1}.
We again use an intermediate variable D̃(x, y) to denote

the result calculated from the measurement as follows:

D̃(x̃(c), ỹ(c)) =
1 + ε

(1 − ε)2
[2n(1 − ε) + 4nε − 2G̃(x̃(c), ỹ(c))].

(23)

D̃(x, y) =
1
2
D̃(x̃(c), ỹ(c))

=
1 + ε

(1 − ε)2
[n + nε − G̃(x̃(c), ỹ(c))]. (24)

Note that when no error occurs, D̃(x, y) = D(x, y).
Equation (23) is adapted from Equation (6) when inversion
coding is used and write BSC is considered.

It is useful to denote the difference in conductance mea-
surements between the noisy and the noise-free case as:

ΔG̃(x(c), y(c), x̃(c), ỹ(c)) = G̃(x̃(c), ỹ(c)) − G̃(x(c), y(c)).

TABLE II

THE 4 TYPES OF ERRORS

Similarly, let us define ΔD(x, y, x̂, ŷ), which is later used
to characterize bit errors, as follows:

ΔD̃(x, y, x̃, ỹ) = D̃(x, y) − D(x, y)

= − (1 + ε)ΔG̃(x(c), y(c), x̃(c), ỹ(c))
(1 − ε)2

. (25)

We now calculate how ΔG̃(x(c), y(c), x̃(c), ỹ(c)) and
ΔD̃(x, y, x̃, ỹ) are affected by a single bit error, i.e., t = 1.
Due to the symmetry of this problem, there are only four
different fundamental types of errors for a pair of elements
x

(c)
i and y

(c)
i , (0, 0) → (0, 1), (0, 1) → (0, 0), (0, 1) → (1, 1),

and (1, 1) → (0, 1), which we denote as error types A, B,
C, and D, respectively. All other error types are expressed
in terms of these four error types. Each of these error types
affects the relationship between {N ′

00, N
′
01, N

′
10, N

′
11} and

{Ñ ′
00, Ñ

′
01, Ñ

′
10, Ñ

′
11}. For example, an error that changes

(0, 0) into (0, 1) will result in Ñ ′
01 = N ′

01+1, Ñ ′
00 = N ′

00−1,
Ñ ′

11 = N ′
11 and Ñ ′

10 = N ′
10. Table II lists the resulting

values of ΔG̃(x(c), y(c), x̃(c), ỹ(c)) and ΔD̃(x, y, x̃, ỹ) for
each error type. The above two variables are abbreviated as
ΔG̃(x(c), y(c)) and ΔD̃(x, y) since the relative relationship
is clear.

We use the following lemma to detect a single bit error.
Lemma 4: If exactly one of x̃(c) or ỹ(c) contains a single bit

error, i.e., D(x(c), x̃(c)) + D(y(c), ỹ(c)) = 1 and 0 < ε < 1
2 ,

then we can detect that D̃(x, y) 	= D(x, y).
Proof: If no error is present, we have D(x, y) = D̃(x, y),

i.e., ΔD̃(x, y) = 0. For 0 < ε < 1
2 , each error type will cause

the value of ΔD̃(x, y) to be a non-integer and in turn lead to
non-integer D̃(x, y) (since D(x, y) is always an integer and
D̃(x, y) = D(x, y) + ΔD̃(x, y)). A single bit error can thus
be detected by first computing D̃(x, y) and checking whether
it is an integer or not.

This process of error detection is later referred to as an inte-
ger check. When error-free, D̂(x, y) = D̃(x, y) = D(x, y)
where D̂(x, y) is the estimated result from the intermediate
variable D̃(x, y).

Lemma 4 suggests that a single bit error is detectable under
certain reasonable constraints on ε. However, the error type
can not be uniquely determined from D̃(x, y). For example,
a vector with D(x, y) = DH incurring error type B would
result in an identical value for D̃(x, y) as a vector with
D(x, y) = DH − 1 incurring error type D. Note that this

5022 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

multiple solution result is due to the nature of the underlying
problem and is thus unavoidable if only vector-level informa-
tion is used.

Although the error type can not be uniquely determined,
with further constrains on ε, we are able to determine whether
the error is of type {B, D} or {A, C} .

Corollary 3: If D(x(c), x̃(c)) + D(y(c), ỹ(c)) = 1 and 0 <
ε < 1

3 , then we conclude that D̃(x, y) 	= D(x, y) and we
determine whether the error is of type {B, D} or {A, C}.

Proof: The ε range here, 0 < ε < 1
3 , falls within the

range of ε in Lemma 4, thus a single bit error is detectable.
Since | ε

1−ε |< 1
2 , if the error belongs to type {B, D},

D̃(x, y)−nint(D̃(x, y)) < 1/2. Similarly, if the error belongs
to type {A, C}, we have nint(D̃(x, y))−D̃(x, y) < 1/2. This
relationship between D̃(x, y) and its nearest integer uniquely
determine whether the error is of type {A, C} or {B, D}.

We say D̃(x, y) lies on the right-hand-side (or left-hand-
side) of its nearest integer if D̃(x, y) − nint(D̃(x, y)) < 1/2
(or nint(D̃(x, y)) − D̃(x, y) < 1/2).

As a result of Corollary 3, if 0 < ε < 1
3 , for the detected

single bit error, we have two possible Hamming distances that
could be the original one. We summarize the candidate original
Hamming distance as follows:

If D̃(x, y) − nint(D̃(x, y)) < 1/2,

then D(x, y) = nint(D̃(x, y)) or D(x, y)
= nint(D̃(x, y)) − 1;

if nint(D̃(x, y)) − D̃(x, y) < 1/2,

then D(x, y) = nint(D̃(x, y)) or D(x, y)
= nint(D̃(x, y)) + 1.

We now seek to provide a correction scheme to the detected
single bit error. We first realize that choosing randomly
between the two candidate solutions is functionally the same
as always choosing D̂(x, y) = nint(D̃(x, y)). Therefore,
choosing randomly would not be wise because it does not
take advantage of the extra information we can get from
Corollary 3.

It is also possible to acquire bit-level information when
an error is detected and to localize the error to two pos-
sible locations by comparing each vector with some preset
vectors [1]. Then, with the help of extra encoding, this single
bit error can be corrected and the original Hamming distance
can be determined accordingly. However, doing so requires
extra encoding which requires more redundancy. It also takes
additional time to perform error-correction when an error
is detected. Consider that the machine learning applications
for which HD-CIM can be used have some level of noise
tolerance, the approach that finds the exact solution may not
be favorable considering its cost in space and time.

We propose the following scheme for error-detection and
error-correction.

If D̃(x, y) = nint(D̃(x, y)),

then D̂(x, y) = nint(D̃(x, y));

if D̃(x, y) − nint(D̃(x, y)) < 1/2,

then D̂(x, y) = nint(D̃(x, y)) − 1/2;

if nint(D̃(x, y)) − D̃(x, y) < 1/2,

then D̂(x, y) = nint(D̃(x, y)) + 1/2. (26)

The previous scheme is derived by taking the average of the
two candidate Hamming distances after an error is classified
as either type {A, C} or {B, D}. As this error-detection
and correction scheme has the possibility to give non-integer
Hamming distance as the result, we refer it as the Soft
Hamming scheme. Analysis of this Soft Hamming scheme on
the k-nearest neighbors classifier will be provided in the next
section.

Multiple errors are sometimes detectable by an integer
check, [1]. The exact number of errors can be determined
through comparisons with other preset vectors; for more
details, see [1]. However, doing so will incur costly read
operations. We therefore propose the use of the Soft Hamming
scheme, since it addresses the most probable error pattern,
i.e., the single bit error in the write BSC channel.

VI. STUDY ON THE K-NN CLASSIFIER UNDER ATTRIBUTE

NOISE USING THE SOFT HAMMING SCHEME

In order to incorporate the Soft Hamming scheme into the
average case study framework, we assume all error patterns,
except the undetectable errors, are detectable and can be sep-
arated into the two classes—{A, C} or {B, D}. We elaborate
on the combinations of error types that are undetectable in [1].
We assume ε is sufficiently small and the Soft Hamming
Scheme is used to correct the detected error.

The next example helps to illustrate how the Soft Hamming
Scheme can be used to improve classification accuracy under
the write BSC.

Example 2: In this example we use the same setup as
Example 1. Consider the case that under the adverse effect
of write BSC, the attribute of training instance #3 (11110100)
is changed to 01110100. Without the Soft Hamming scheme,
the Hamming distance between training instance #3 and the
testing instance is 3. Both instance #3 (class: positive) and
instance #4 (class: negative) now have distance 3 w.r.t. the
testing instance. Choosing randomly among instance #3 and
#4 to be the third nearest neighbor of the testing instance,
the k-NN classifier has 50% chance to have erroneous classi-
fication.

If we implement the Soft Hamming scheme, the error pattern
(1, 1) → (0, 1) can be detected when computing the Hamming
distance between the testing instance and training instance
#3. The Soft Hamming scheme will therefore set the Hamming
distance between them to be 2.5 based on previous discussions.
As a result, the k-NN classifier can correctly classify the testing
instance as positive.

To calculate the expected accuracy using the Soft Hamming
scheme, we define an augmented variable e(s) = 2D̂(x, y),
where D̂(x, y) is the result of the Soft Hamming scheme.
For example, e(s) = 3 corresponds to the case that either
D̃(x, y) is on the left-hand-side of 1 or D̃(x, y) is on
the right-hand-side of 2. As another example, e(s) = 4
corresponds to the case that D̃(x, y) = D̂(x, y) = 2.

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5023

Most calculations from Section IV are applicable in this
context by setting β = 0 since resistance variation is not con-
sidered. We recalculate P

(s)
dp (x, y, e(s)) (P (s)

dn (x, y, e(s)), resp.)
which is the probability of an arbitrary positive (negative,
resp.) training instance having distance e(s) from the arbitrary
testing instance t(x, y) ∈ I(x, y). This calculation is separated
into two cases. We assume, in this section, an arbitrary
attribute is flipped with probability p.

In the first case, we consider an even value for e(s) where
no error is detected. From previous discussion, no error is
detected when the number of bit flips from 0 to 1, s, is equals
to the number of bit flips from 1 to 0, r. When e(s)is even,
P

(s)
dp (x, y, e(s)) and P

(s)
dn (x, y, e(s)) can be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑

ê=0

Pdp(x, y, ê)P s=r
dif (ê, e(s)/2),

P
(s)
dn (x, y, e(s)) =

n+l∑

ê=0

Pdn(x, y, ê)P s=r
dif (ê, e(s)/2), (27)

where Pdp(x, y, e) and Pdn(x, y, e) are the probabilities calcu-
lated from Section IV and P s=r

dif (ê, ê′) is the probability that
D̂(x, y) = ê′ given that D(x, y) = ê and s = r. We can
calculate this probability by examining Table 1. We observe
that each bit flip from 0 to 1, neglecting the fraction parts,
will either decrease D̃(x, y) by 1 or keep it the same. Also,
each bit flip from 1 to 0, neglecting the fraction parts, will
either increase D̃(x, y) by 1 or keep it the same. P s=r

dif (ê, ê′)
can therefore be calculated as:

P s=r
dif (ê, ê′) =

n+l∑

s=|ê′−ê|

min(s+|ê′−ê|,s)∑

w=|ê′−ê|

×
[(

s

w

)(
1
2

)s(
s

w− | ê′ − ê |
)

×
(

1
2

)s(
n + l

s

)(
n + l

s

)
p2s(1−p)2n+2l−2s

]
.

(28)

In the case that e(s) is an odd number, e(s) can arise from two
cases: either D̃(x, y) is on the left-hand-side of (e(s) − 1)/2,
i.e., r < s, or D̃(x, y) is on the right-hand-side of (e(s)+1)/2,
i.e., r > s. When e(s)is odd, P (s)

dp (x, y, e) and P
(s)
dn (x, y, e) can

be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑

ê=0

{Pdp(x, y, ê)[P s>r
dif (ê, (e(s) − 1)/2)

+ P s<r
dif (ê, (e(s) + 1)/2)]},

P
(s)
dn (x, y, e(s)) =

n+l∑

ê=0

{Pdn(x, y, ê)[P s>r
dif (ê, (e(s) − 1)/2)

+ P s<r
dif (ê, (e(s) + 1)/2)]}.

P s>r
dif (ê, ê′) is defined to be the probability that

nint(D̃(x, y)) = ê′ given D(x, y) = ê and s > r. P s<r
dif (ê, ê′)

is defined to be the probability that nint(D̃(x, y)) = ê′ given
D(x, y) = ê and s < r.

From Table II, we can express P s>r
dif (ê, ê′) and P s>r

dif (ê, ê′)
as following:

P s>r
dif (ê, ê′) = 1(ê > ê′)

n+l∑

s=ê−ê′

s−1∑

r=0

min(r+ê−ê′,s)∑

w=ê−ê′

{(
s

w

)

× (
1
2
)s+r

(
r

w − ê + ê′

)(
n + l

s

)(
n + l

r

)

× ps+r(1 − p)2n+2l−s−r

}

+1(ê ≤ ê′)
n+l∑

r=ê−ê′

n+l∑

s=r+1

min(r+ê−ê′,s)∑

h=ê−ê′

{(
s

h

)

× (
1
2
)s+r

(
r

h − ê + ê′

)(
n + l

s

)(
n + l

r

)

× ps+r(1 − p)2n+2l−s−r

}

P s<r
dif (ê, ê′) = 1(ê ≥ ê′)

n+l∑

s=ê−ê′

n+l∑

r=s+1

min(r+ê−ê′,s)∑

w=ê−ê′

{(
s

w

)

× (
1
2
)s+r

(
r

w − ê + ê′

)(
n + l

s

)(
n + l

r

)

× ps+r(1 − p)2n+2l−s−r

}

+1(ê < ê′)
n+l∑

r=ê−ê′

s−1∑

s=0

min(r+ê−ê′,s)∑

h=ê−ê′

{(
s

h

)

× (
1
2
)s+r

(
r

h − ê + ê′

)(
n + l

s

)(
n + l

r

)

× ps+r(1 − p)2n+2l−s−r

}
,

where 1 denotes the indicator function.
This ends our derivation for P

(s)
dp (x, y, e(s)) and

P
(s)
dn (x, y, e(s)). These two probabilities can then be used

in place of Pdp(x, y, e) and Pdn(x, y, e) from Section IV.
We proceed with the rest of the calculation in Section IV
using e(s) instead of e and calculate the classification accuracy
accordingly.

1) Average Case Study Result: We use the above equations
to calculate the expected accuracy of the k-NN classifier
where the Hamming distance is computed using the Soft
Hamming scheme on the 3-of-5/2 concept. We set N = 32
and the accuracy is selected to be the maximum accuracy for
2 ≤ k ≤ 16. The attribute noise levels are characterized by the
cross over probabilities of the write BSC, Pbsc.

We also plot the expected classification accuracy of
the noise-free case and the expected classification accu-
racy under attribute noise without error-detection/correction.
We observe that in the region where attribute noise is small,
e.g., pbsc < 10−2, the attribute noise has little effect on classi-
fication accuracy. In the region where attribute noise is large,
e.g., pbsc > 10−2, our Soft Hamming scheme can successfully
improve the classification accuracy under attribute noise.

5024 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

Fig. 4. Attribute noise v.s. max accuracy.

VII. ERROR DETECTION AND CORRECTION UNDER

RESISTANCE VARIATION AND WRITE BSC

In previous sections, we proposed HD-EIM to feasibly
compute Hamming distance in resistive memory under the
adverse effect of memristor variability due to resistance vari-
ation. We also provided the Soft Hamming scheme to deal
with single bit errors introduced by memristor variability
due to nondeterministic switching mechanism. In this section,
we seek to combine the two approaches in order to deal with
memristor variability due to both sources. Again, we suppose
x(c) and y(c) are inversion coded vectors to be stored. And we
define x̃(c) and ỹ(c) to be the noisy vectors actually stored due
to write BSC. In order to make the math tractable, we provide
a solution to a simpler problem, where σ2

H = σ2
L = σ2

0 .
With resistance variation taken into account, the normalized

conductance measurement is a random variable that is addi-
tionally affected by the write BSC. Combining Equations (14)
and (21), we have the distribution of the normalized conduc-
tance measurement as follows:

G̃(x̃(c), ỹ(c)) ∼ N
(

Ñ ′
11 + (Ñ ′

01 + Ñ ′
10)2ε + Ñ ′

00ε,

Ñ ′
11σ

2
0

2μ2
H

+
(Ñ ′

01 + Ñ ′
10)8σ2

0

2μ2
H

+
Ñ ′

00σ
2
0

2μ2
H

)
.

(29)

Here G̃(x̃(c), ỹ(c)) is a random variable denoting the normal-
ized conductance measurement between rows of memristors
that store x̃(c) and ỹ(c). Ñ ′

gh is defined to be the number
of coordinates having bit g in x(c) and bit h in y(c), for
g, h ∈ {0, 1}. We use the following equation to calculate an
intermediate random variable D̃(x, y):

D̃(x, y) =
1

1 − 3ε
[n + nε − G̃(x̃(c), ỹ(c))]. (30)

Once again, there are four different fundamental types of
errors for a pair of elements x

(c)
i and y

(c)
i , (0, 0) → (0, 1),

(0, 1) → (0, 0), (0, 1) → (1, 1) and (1, 1) → (0, 1), which we
define them as error types A, B, C, and D, respectively.

TABLE III

FUNDAMENTAL ERROR TYPES UNDER RESISTANCE VARIATION

Let us define a random variable E that represents the error
type of a single bit error and whether the error occurs or not.

P (E) =

{
pe, if E = A, B, C, D

1 − 4pe if E = 0,

where E = A, B, C, D stands for the case that a single type
A, B, C or D error occurs, respectively; E = 0 stands for the
error-free case. We define pe to be the probability that a single
bit error occurs in a pair of coded vector x(c) and y(c), which
can be calculated from the BSC parameter.

We then study the conditional distribution of D̃(x, y).
Given D(x, y), for the error-free case, i.e., E = 0, D̃(x, y)
assumes the following distribution:

N
(

D(x, y),
(n + 7D(x, y))σ2

0

μ2
H(1 − 3ε)2

)
. (31)

In the Table III, we summarize the distribution of D̃(x, y)
for a single error of each type, in terms of its mean and
variance. To simplify notation, we define γ = ε

1−3ε and

λ = σ2
0

μ2
H (1−3ε)2

. Table III is derived by examining (29) and

Equation (30) for each error type.
From Table III and Equation (31), we have the conditional

pdf, f(D̃(x, y) | D(x, y), E) for each pair of D(x, y) ∈
{0, . . . , n} and E ∈ {0, A, B, C, D}. We can therefore
estimate E and D(x, y) given the observation D̃(x, y).
Denoting our estimation of the pair {E, D(x, y)} to be the
pair {Ê, D̂(x, y)}, respectively, we have the following MAP
(maximum a posteriori probability) estimator:

{Ê, D̂(x, y)}
= arg max

{E,D(x,y)}
f(D(x, y), E | D̃(x, y))

= arg max
{E,D(x,y)}

f(D̃(x, y) | D(x, y), E)f(D(x, y), E)
f(D̃(x, y))

= arg max
{E,D(x,y)}

f(D̃(x, y) | D(x, y), E)f(D(x, y), E)

= arg max
{E,D(x,y)}

f(D̃(x, y) | D(x, y), E)P (E)P (D(x, y))

= arg max
{E,D(x,y)}

f(D̃(x, y) | D(x, y), E)P (E). (32)

Next, we present a solution to the above MAP estimator.
Define sm(DH) for DH ∈ {0, . . . , n− 1} to be a solution of
equation:

f(D̃(x, y) | D(x, y) = DH , E = B)
= f(D̃(x, y) | D(x, y) = DH + 1, E = A), (33)

such that DH + γ < sm(DH) < DH + 1.

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5025

Note that for Equation (33), there always exists a solution
that satisfies the constraint of sm(DH) therefore sm(DH)
always exist.

We define s
(1)
0 and s

(2)
0 to be solutions of the following

equation:

f(D̃(x, y) | D(x, y) = 0, E = A)
= f(D̃(x, y) | D(x, y) = 0, E = C), (34)

such that:

−1 − γ < s
(1)
0 < −γ, and s

(2)
0 < −1 − γ.

We also define sn to be a solution of the equation:

f(D̃(x, y) | D(x, y) = n, E = B)
= f(D̃(x, y) | D(x, y) = n, E = D), (35)

such that:

n + γ < sn < n + 1 + γ.

We define s+(DH) for DH ∈ {0, . . . , n} to be a solution,
if exist, of the equation:

(1 − 4pe)f(D̃(x, y) | D(x, y) = DH , E = 0)
= pef(D̃(x, y) | D(x, y) = DH , E = B), (36)

such that:

DH < s+(DH) < sm(DH) for DH ∈ {0, . . . , n − 1},
n < s+(DH) < sn for DH = n.

Similarly, we define s−(DH), DH ∈ {0, . . . , n} to be a
solution, if exist, of the equation:

(1 − 4pe)f(D̃(x, y) | D(x, y) = DH , E = 0)
= pef(D̃(x, y) | D(x, y) = DH , E = A), (37)

such that:

sm(DH) < s−(DH) < DH for DH ∈ {1, . . . , n},
s
(1)
0 < s−(DH) < 0 for DH = 0.

Note that there exist cases where none of the solutions
of Equation (36) or Equation (37) satisfies the constraint of
s+(DH) or s−(DH). Hence s+(DH) or s−(DH) may not
exist for certain device parameters.

If s+(DH) and s−(DH) exist for all DH , and the following
conditions are true:

pef(sm(DH) | D(x, y) = DH , E = B)
= pef(sm(DH) | D(x, y) = DH + 1, E = A)
≥ (1 − 4pe)f(sm(DH) | D(x, y) = DH , E = 0),

for DH ∈ {0, . . . , n − 1};
and

pef(sm(DH) | D(x, y) = DH , E = B)
= pef(sm(DH) | D(x, y) = DH + 1, E = A)
≥ (1 − 4pe)f(sm(DH) | D(x, y) = DH + 1, E = 0),

for DH ∈ {0, . . . , n − 1};

and

pef(s(1)
0 | D(x, y) = 0, E = A)

= pef(s(1)
0 | D(x, y) = 0, E = C)

≥ (1 − 4pe)f(s(1)
0 | D(x, y) = 0, E = 0);

and

pef(sn | D(x, y) = n, E = B)
= pef(sn | D(x, y) = n, E = D)
≥ (1 − 4pe)f(sn | D(x, y) = n, E = 0);

then the MAP estimator has a solution as follows:

If s−(DH) < D̃(x, y) ≤ s+(DH) for some DH ,

then Ê = 0, D̂(x, y) = DH ;
If s+(DH) < D̃(x, y) ≤ sm(DH) for some DH ,

then Ê = B, D̂(x, y) = DH , or Ê = D, D̂(x, y)
= DH − 1;

If sm(DH − 1) < D̃(x, y) ≤ s−(DH) for some DH ,

then Ê = A, D̂(x, y) = DH , or Ê = C, D̂(x, y)
= DH + 1;

If s
(1)
0 < D̃(x, y) ≤ s−(0)
then Ê = A, D̂(x, y) = 0, or Ê = C, D̂(x, y) = 1;

If s+(n) < D̃(x, y) ≤ sn

then Ê = B, D̂(x, y) = n, or Ê = D, D̂(x, y) = n − 1;

If s
(2)
0 < D̃(x, y) ≤ s

(1)
0 ,

then Ê = C, D̂(x, y) = 0;
If D̃(x, y) > sn,

then Ê = D, D̂(x, y) = n;

If D̃(x, y) ≤ s
(2)
0 ,

then Ê = A, D̂(x, y) = 0, or Ê = C, D̂(x, y) = 1. (38)

Note that the MAP estimator has multiple solutions when
an error is detected, i.e., E 	= 0. This is similar to what
we observed in Section V and it is due to the underly-
ing problem, e.g., f(D̃(x, y)|D(x, y) = DH , E = B) =
f(D̃(x, y)|D(x, y) = DH − 1, E = D). As a solution,
we adapt the same idea of the Soft Hamming scheme and
propose the following estimator:

If s−(DH) < D̃(x, y) ≤ s+(DH) for some DH ,

then D̂(x, y) = DH ;
if s+(DH) < D̃(x, y) ≤ sm(DH) for some DH ,

then D̂(x, y) = DH − 1/2;
if sm(DH − 1) < D̃(x, y) ≤ s−(DH) for some DH ,

then D̂(x, y) = DH + 1/2;

if s
(1)
0 < D̃(x, y) ≤ s−(0), then D̂(x, y) = 1/2;

if s+(n) < D̃(x, y) ≤ sn, then D̂(x, y) = n − 1/2;

if s
(2)
0 < D̃(x, y) ≤ s

(1)
0 , then D̂(x, y) = 0;

if D̃(x, y) > sn, then D̂(x, y) = n;

if D̃(x, y) ≤ s
(2)
0 , then D̂(x, y) = n − 1

2
. (39)

5026 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

TABLE IV

RERAM MODELS AND BHATTACHARYYA DISTANCES

Note that we do not specify the error type in the above
estimator. D̂(x, y) is estimated by taking the average between
two candidate estimation in Estimator (38). This estimator
therefore can successfully estimate the Hamming distance
between vectors in resistive memory under the adverse effect
of resistance variation while also have the capability to correct
a single bit error caused by the write BSC. Also note that
the threshold values, e.g., s±(DH), can be precomputed and
stored in a table to improve efficiency.

VIII. CONCLUSION

In this paper, under the assumption of limited accessible
information, we studied the feasibility of Hamming Distance
Computation-in-Memory (HD-CIM) under two main (and
complementary) sources of memristor variability. We use the
optimal constant weight code that preserves Hamming dis-
tance, i.e., inversion coding, to provide a priori knowledge of
vector weights. Analysis of the Hamming-distance estimation
is provided when the resistances of memristors are modeled
as Gaussian random variables. Our Soft Hamming scheme is
proposed to detect and correct a single bit error introduced by
the write BSC. The two schemes are evaluated for the k-NN
classifier using the average-case study framework. These two
schemes are combined at the end to tackle both resistance vari-
ation and non-deterministic write mechanism simultaneously.
Future research will focus on reliable HD-CIM suitable for
vectors whose weights are within a known range. Codes that
map a vector with arbitrary weight to a vector whose weight
is within a known range while preserving Hamming distance
will be studied to further reduce redundancy.

APPENDIX A
APPROXIMATION JUSTIFICATION

In Section III, the following approximations are made:

Hi,xHi,y

Hi,x + Hi,y
≈ Fi ∼ N (μH/2, σ2

H/8), (40)

Li,xLi,y

Li,x + Li,y
≈ Ti ∼ N (μL/2, σ2

L/8), (41)

Hi,xLi,y

Hi,x + Li,y
≈ Si ∼ N

(
μL

1 + ε
,

σ2
L

(1 + ε)4

)
, (42)

Li,xHi,y

Li,x + Hi,y
≈ Si ∼ N

(
μL

1 + ε
,

σ2
L

(1 + ε)4

)
. (43)

Here we show that the approximated distributions are close
to the original distributions by studying these approximations
using data from a variety of memristor technology reported in
the literature [10]. We model the reported resistance variations
for 9 types of ReRAM devices. For each ReRAM device, let
L and H denote the random variables for low state conduc-
tance and high state conductance, respectively. We assume
L and H follow the following two Gaussian distributions
respectively:

H ∼ N (μH , σ2
H), L ∼ N (μL, σ2

L). (44)

For each ReRAM device, μH and μL are set to be the
reciprocal value of its mean low-state resistance and high-state
resistance, i.e. RL

avg and RH
avg , respectively. σH and σL are

calculated using the following rule:

σH =
1
2

min
(

1
RH

min

− 1
RH

avg

,
1

RH
avg

− 1
RH

max

)
,

σL =
1
2

min
(

1
RL

min

− 1
RL

avg

,
1

RL
avg

− 1
RL

max

)
,

where RL
min and RL

max are the smallest and largest low-state
resistance value reported, respectively. Similarly, RH

min and
RH

max are the smallest and largest low-state resistance values
reported. The resulting models for the 9 ReRAM devices are
summarized in Table IV.

For each ReRAM device, we calculate four discretized dis-
tributions on the left hand side of the approximation. We first
generate 107 samples for Hi,x, Hi,y , Li,x and Li,y according
to the (44). Then we calculate the discretized distributions for
expressions on the left-hand-side of Approximation (40), (41),
(42) and (43) by dividing all samples into 100 bins with equal
bin width. We also calculate the discretized approximated
distributions (the right-hand-side of Approximation (40), (41),
(42) and (43) using the same bins. For each approximation

CHEN et al.: HAMMING DISTANCE COMPUTATION IN UNRELIABLE RESISTIVE MEMORY 5027

in (40), (41), (42) and (43) we calculate the Bhattacharyya
distance for each pair of distributions using the following
equations:

DB(p, q) = − ln(BC(p, q)), (45)

where

BC(p, q) =
∑

x∈X=1,..,100

√
p(x)q(x), (46)

where p is the discretized original distribution and q is the
discretized approximated distribution.

The four distance metrics for each ReRAM device, D1
B,

D2
B , D3

B and D4
B—the Bhattacharyya distance between

the left distribution and the right distribution of approxi-
mations (40), (41), (42) and (43), respectively—are listed
in Table III. Bhattacharyya distance close to zero means
the two distribution are close. Thus we have showed our
approximations are suitable for a variety of ReRAM devices
which have a large range of resistance variation.

REFERENCES

[1] Z. Chen, C. Schoeny, Y. Cassuto, and L. Dolecek, “A coding scheme for
reliable in-memory Hamming distance computation,” in Proc. Asilomar
Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, Oct./Nov. 2017,
pp. 1713–1717.

[2] C. L. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Inf. Sci., vol. 275,
pp. 314–347, Aug. 2014.

[3] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. IEEE Design Automat. Test
Eur. Conf. Exhib. (DATE), Grenoble, France, Mar. 2015, pp. 1718–1725.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The missing memristor found,” Nature, vol. 453, pp. 80–83,
May 2008.

[5] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[6] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. Neural Inf. Process. Syst. (NIPS), Vancouver, BC,
Canada, Dec. 2009, pp. 1042–1050.

[7] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in Hamming space
with multi-index hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Providence, RI, USA, Jun. 2012, pp. 3108–3115.

[8] Y. Cassuto and K. Crammer, “In-memory Hamming similarity compu-
tation in resistive arrays,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 819–823.

[9] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,
and R. S. Williams, “Writing to and reading from a nano-scale cross-
bar memory based on memristors,” Nanotechnology, vol. 20, no. 42,
p. 425204, 2009.

[10] A. Chen and M.-R. Lin, “Variability of resistive switching memories and
its impact on crossbar array performance,” in Proc. Int. IEEE Rel. Phys.
Symp. (IRPS), Monterey, CA, USA, Apr. 2011, pp. MY.7.1–MY.7.4.

[11] I. G. Baek et al., “Multi-layer cross-point binary oxide resistive memory
(OxRRAM) for post-NAND storage application,” in IEEE Int. Electron
Devices Meeting, (IEDM) Tech. Dig., Dec. 2005, pp. 750–753.

[12] X. Cao et al., “All-ZnO-based transparent resistance random access
memory device fully fabricated at room temperature,” J. Phys. D, Appl.
Phys., vol. 44, no. 25, p. 255104, 2011.

[13] M. Wang et al., “A novel CUxSiyO resistive memory in logic technology
with excellent data retention and resistance distribution for embedded
applications,” in Proc. IEEE Symp. Technol. (VLSIT), Honolulu, HI,
USA, Jun. 2010, pp. 89–90.

[14] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett,
and R. S. Williams, “Lognormal switching times for titanium dioxide
bipolar memristors: Origin and resolution,” Nanotechnology, vol. 22,
no. 9, p. 095702, 2011.

[15] D. Niu, Y. Xiao, and Y. Xie, “Low power memristor-based ReRAM
design with error correcting code,” in Proc. IEEE Design Automat. Conf.
Asia South Pacific (ASP-DAC), Sydney, NSW, Australia, Jan./Feb. 2012,
pp. 79–84.

[16] W. Yi et al., “Feedback write scheme for memristive switching devices,”
Appl. Phys. A, Mater. Sci. Process., vol. 102, no. 4, pp. 973–982, 2011.

[17] M. J. Pazzani and W. Sarrett, “A framework for average case analy-
sis of conjunctive learning algorithms,” Mach. Learn., vol. 9, no. 4,
pp. 349–372, 1992.

[18] S. Okamoto and N. Yugami, “An average-case analysis of the k-nearest
neighbor classifier for noisy domains,” in Proc. Int. Joint Conf. Artif.
Intel. (IJCAI), Nagoya, Japan, Aug. 1997, pp. 238–245.

Zehui Chen (S’17) received the B.S. degree in
electrical engineering from Purdue University, West
Lafayette, IN, USA, in 2016, and the M.S. degree
in electrical engineering from the University of
California at Los Angeles (UCLA) in 2018. He is
currently pursuing the Ph.D. degree with the Electri-
cal and Computer Engineering Department, UCLA.
He is also a Graduate Student Researcher with the
Laboratory for Robust Information Systems, UCLA.
His research interests include coding theory, infor-
mation theory and their applications in new memory
medium.

Clayton Schoeny (S’09) received the B.S. and M.S.
degrees in electrical engineering from the University
of California at Los Angeles (UCLA) in 2012 and
2014, respectively. He is currently pursuing the
Ph.D. degree with the Electrical and Computer Engi-
neering Department, UCLA. He was a recipient of
the Henry Samueli Excellence in Teaching Award,
the 2016 Qualcomm Innovation Fellowship, and the
2017 UCLA Dissertation Year Fellowship.

Lara Dolecek (S’05–M’10–SM’12) received the
B.S. (Hons.), M.S., and Ph.D. degrees in electri-
cal engineering and computer sciences, and the
M.A. degree in statistics from the University of
California at Berkeley. She was a Post-Doctoral
Researcher with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology. She is currently an Associate Professor with
the Electrical Engineering Department, University
of California at Los Angeles (UCLA). Her research
interests span coding and information theory, graph-

ical models, statistical algorithms, and computational methods, with applica-
tions to emerging systems for data storage, processing, and communication.
She received the 2007 David J. Sakrison Memorial Prize for the most
outstanding doctoral research in the Department of Electrical Engineering
and Computer Sciences at UC Berkeley. She received the Hellman Fellowship
Award in 2011, the NSF CAREER Award in 2012, the Northrop Grumman
Excellence in Teaching Award in 2013, the Intel Early Career Faculty Award
in 2013, the University of California Faculty Development Award in 2013,
the Okawa Research Grant in 2013, and the IBM Faculty Award in 2014.
With her research group, she received the Best Paper Award from the IEEE
GLOBECOM 2015 Conference. She currently serves as an Associate Editor
for the IEEE TRANSACTIONS ON COMMUNICATIONS.

