# Hamming Distance Computation in Unreliable Resistive Memory

Zehui Chen<sup>®</sup>, Student Member, IEEE, Clayton Schoeny<sup>®</sup>, Student Member, IEEE, and Lara Dolecek<sup>®</sup>, Senior Member, IEEE

Abstract—Enabled by new storage mediums, Computation-in-Memory is a novel architecture that has shown great potential in reducing the burden of massive data processing by bypassing the communication and memory access bottleneck. Suggested by Cassuto and Crammer, allowing for ultra-fast Hamming distance computations to be performed in resistive memory with low-level conductance measurements has the potential to drastically speed up many modern machine learning algorithms. Meanwhile, Hamming distance Computation-in-Memory remains a challenging task as a result of the non-negligible device variability in practical resistive memory. In this paper, build upon the work of Cassuto and Crammer, we study memristor variability due to two distinct sources: resistance variation, and the non-deterministic write process. First, we introduce a technique for estimating the Hamming distance under resistance variation alone. Then, we propose error-detection and error-correction schemes to deal with non-ideal write process. We then combine these results to concurrently address both sources of memristor variabilities. In order to preserve the low latency property of Computation-in-Memory, all of our approaches rely on only a single vector-level conductance measurement. We use so-called inversion coding as a key ingredient in our solutions and we prove the optimality of this code given the restrictions on bit-accessible information. Finally, we demonstrate the efficacy of our approaches on the k-nearest neighbors classifier.

Index Terms—Computation-in-memory, error detection and correction, resistive RAM, k-nearest neighbors classification, Hamming distance.

#### I. INTRODUCTION

WITH MANY emerging data-intensive applications, it has become imperative to have the means to store and quickly process vast amounts of high dimensional data. However, current computer architectures largely suffer from communication and memory access bottlenecks. Additionally, CMOS technology faces limited scalability issues [2], [3]. Resistive Random-Access Memory (ReRAM), also simply

Manuscript received December 12, 2017; revised March 22, 2018; accepted May 15, 2018. Date of publication May 25, 2018; date of current version November 16, 2018. This research is supported in part by a grant from UC MEXUS and an NSF-BSF grant no.1718389. This paper was presented at the IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2017 [1]. The associate editor coordinating the review of this paper and approving it for publication was V. Y. F. Tan. (Corresponding author: Zehui Chen.)

The authors are with the Electrical and Computer Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095 USA (e-mail: chen1046@ucla.edu; cschoeny@ucla.edu; dolecek@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2840717

known as resistive memory, has been shown to have promising scalability with novel crossbar structure, and is thus a promising candidate for next generation none-volatile memories [4]. Enabled by this new technology, Computation-in-Memory (CIM) Architecture has been proposed, in which certain computations are performed in the physical memory itself [3], [5]. CIM architecture offers the promising speed as it bypasses the traditional time-consuming data transfer from storage to CPU by performing the calculations on the data directly in the memory.

Computing similarity metrics between vectors is a critical component in machine learning algorithms; image recognition and natural language processing are just some of many examples. It has already been shown that hashing higher dimensional data into binary space, and using Hamming distance as the distance metric is well suited for large-scale applications [6], [7]. Allowing for Hamming distance to be computed under the CIM Architecture is thus a promising technique to speed up many modern machine learning applications. Recently, a technique (to which we refer as Hamming distance Computation-in-Memory (HD-CIM)) has been proposed to compute Hamming distance in resistive memory, assuming an ideal model for the memristors [8]. We build upon [8] by expanding HD-CIM to more sophisticated models. We develop feasible and reliable HD-CIM schemes under two main (and complementary) sources of memristor variability: resistance variation, and the non-deterministic switching mechanism during the memristor write process. In order to preserve the low-latency property of HD-CIM, we assume limited accessibility to information. First, only vector-level conductance measurement can be used, and second, only one measurement can be used per Hamming distance computation. Dealing with the two sources of memristor variability is thus more challenging due to these limited accessibility assumptions, in particular, traditional ECCs based on bit-level information do not apply. Simple yet effective solutions are proposed to deal with these sources of memristor variability when the information that can be read is limited. We prove the optimality of a code (introduced in [8]) that maps a message to a constant weight codeword while preserving the Hamming distance and use this code as the foundation for our solutions. The efficacy of our approaches under these sources of memristor variability are studied in detail for the k-nearest neighbors classifier, one promising application for HD-CIM.

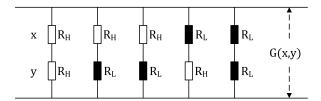


Fig. 1. Example of an equivalent circuit for a measurement between two vectors.

The content of this paper is organized as follows. Section II provides background on resistive memory, memristors, and the two sources of memristor variability. The solutions that deal with the adverse effects the variability sources are at first studied separately. Section III provides a solution to estimate the Hamming distance from a single conductance measurement in resistive memory where the resistances of memristors are formulated as Gaussian random variables. To generalize our solution, inversion coding is used to provide a priori knowledge about vector weights. The estimation error probability and its bound are also studied in Section III. In Section IV, we present the performance of our estimation scheme on a k-nearest neighbors classifier as our main application; experimental result are provided. Next, we turn our attention toward the second memristor variability. In Section V, error-detection and error-correction schemes are provided as solutions to single bit errors caused by the non-ideal write process. In Section VI, we continue with our k-nearest neighbors classifier application and present the experimental results, implementing the scheme from the previous section. The two sources of memristor variability are combined in Section VII, and the corresponding estimation/correcting scheme is discussed.

# II. BACKGROUND ON MEMRISTORS AND SOURCES OF VARIABILITY

#### A. Memristors and Resistive Memory

In this paper, we focus on resistive memory which uses a crossbar structure [9]. In crossbar resistive memory, a resistive switching device (also referred to as a memristor) is placed at the intersection of each row and column [9]. The logical states of "0" and "1" are represented by the internal resistance state of memristor, "High Resistance State (HRS)" and "Low Resistance State (LRS)," respectively. The state of the memristor can be programmed by applying different voltages to its terminals and can be sensed by measuring the corresponding current. In this paper, under the same model used in [8], we are interested in inferring the Hamming distance between vectors from the conductance measurement between rows of memristors where the two vectors are stored. Figure 1 shows an example of the circuit representation that stores two vectors, x = (0, 0, 0, 1, 1) and y = (0, 1, 1, 0, 1), and the example conductance measurement between the two vectors, G(x, y). Using conductance in our calculations (instead of resistance) allows for a simple summation of each branch. We assume throughout the paper that measurements between the two rows of memristors in resistive memory can be reliably performed.

#### B. Variability Due to Resistance Variation

While an on/off ratio from  $\sim 10$  to above 1000 has been shown in many ReRAM papers as proof of a large memory operation window, the variations of HRS and LRS are both common and significant [10]. Previous work on HD-CIM assumed constant valued LRS and HRS resistances [8]. It is therefore of interest to take resistance variation into account and develop corresponding schemes in order to perform Hamming distance computation in practical resistive memory. In practice, the resistance variation is affected by many operational parameters. It is reported that LRS variability depends on two main parameters, the write current limit  $I_{limit}$ , and the write pulse width [10]. A smaller  $I_{limit}$  favors low-power operation but increases the variation of LRS. A shorter pulse width favors fast speed operation but it also increases the variation of LRS. As a result, studying HD-CIM solutions that tolerate resistance variation not only makes HD-CIM feasible in practice but also provides useful insight into the trade-off between performance and operation parameters, i.e., pulse width and  $I_{limit}$ .

Many papers have shown that the resistance distribution of LRS and HRS are Gaussian-like [11]–[13]. The reported resistances of LRS and HRS are both positive and large, i.e., on the order  $k\Omega$  and  $M\Omega$ . It is therefore reasonable to assume that the conductance also follows a Gaussian distribution if the corresponding resistance is Gaussian-like. We assume that the process variability in each memristor is identical and independent. For a memristor i, let  $L_i$  and  $H_i$  be random variables denoting the state "0" conductance and the state "1" conductance, respectively. We assume  $L_i$  and  $H_i$  follow the following Gaussian distributions:

$$L_i \sim \mathcal{N}(\mu_L, \sigma_L^2), \quad H_i \sim \mathcal{N}(\mu_H, \sigma_H^2).$$
 (1)

In the above model,  $\mu_L$  and  $\mu_H$  are the mean of state "0" and state "1" conductance, and  $\sigma_L^2$  and  $\sigma_H^2$  are the variance of state "0" and state "1" conductance, respectively. We define  $\epsilon = \mu_L/\mu_H$  which is also the "On/Off" resistance ratio, a key characteristic of memristor devices [9].

## C. Variability Due to Non-deterministic Switching Mechanism

As is the case with resistance variation, the switching mechanism of the memristor is also non-deterministic. It is reported that the switching time of some memristors, e.g.,  $TiO_2$  cells, follows a log-normal distribution with the median switching time exponentially dependent on the external voltage [14]. Either increasing the programming voltage or increasing the switching time will increase the switching probability. Meanwhile, increasing the programming voltage will increase energy consumption and increasing the switching time will slow down the write progress and increase energy consumption [15], [16]. Instances of unsuccessful memristor switching are inevitable; studying the effect of the non-deterministic switching mechanism in HD-CIM and the corresponding solution is thus necessary to make HD-CIM practical.

Unsuccessful write operations lead to bit errors when the former state of a memristor is different from the data to be written. We thus model this variability as a binary symmetric channel (BSC) when writing to resistive memory. The vectors to be stored are viewed as the input to this channel, while the vectors actually written to the resistive memory are the output.

# III. HAMMING DISTANCE ESTIMATION-IN-MEMORY UNDER RESISTANCE VARIATION

In Subsection A, we first provide a scheme (Hamming Distance Estimation-In-Memory) to estimate the Hamming distance between two vectors whose Hamming weights are a priori known, assuming the conductance of each memristor state is modeled as a random variable. In this subsection, we also provide a simplified scheme in the regime of small "On/Off" resistance ratios. In Subsection B, an inversion coding technique is used to generalize Hamming distance Estimation-In-Memory to be applicable to arbitrary vectors with unknown Hamming weights, using a single conductance measurement. We then prove the optimality of this code and present a modified estimation scheme. In Subsection C, we provide analysis of the estimation error and show that inversion coding also provides benefits in terms of estimation accuracy.

#### A. Hamming Distance Estimation-In-Memory (HD-EIM)

For two vectors  $x, y \in \{0, 1\}^n$  stored in resistive memory where conductances of the two states of each memristor are modeled as Gaussian random variables, the conductance between the two rows of memristors is as follows:

$$G(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \left[ x_{i} y_{i} \frac{H_{i, \boldsymbol{x}} H_{i, \boldsymbol{y}}}{H_{i, \boldsymbol{x}} + H_{i, \boldsymbol{y}}} + x_{i} (1 - y_{i}) \frac{H_{i, \boldsymbol{x}} L_{i, \boldsymbol{y}}}{H_{i, \boldsymbol{x}} + L_{i, \boldsymbol{y}}} + (1 - x_{i}) y_{i} \frac{L_{i, \boldsymbol{x}} H_{i, \boldsymbol{y}}}{L_{i, \boldsymbol{x}} + H_{i, \boldsymbol{y}}} + (1 - x_{i}) (1 - y_{i}) \frac{L_{i, \boldsymbol{x}} L_{i, \boldsymbol{y}}}{L_{i, \boldsymbol{x}} + L_{i, \boldsymbol{y}}} \right].$$
(2)

Here,  $x_i, y_i$  denote the *i*-th entry of vectors x, y respectively.  $H_{i,x}$  and  $H_{i,y}$  are random variables denoting the "1" state conductances of memristors that store  $x_i$  and  $y_i$  respectively, and they are modeled as Gaussian random variable in (1).  $L_{i,x}$  and  $L_{i,y}$  are similarly defined for the "0" state conductances. Equation (2) follows by summing up the conductances of each branch i, which is composed of the serial conductance of memristors that store  $x_i$  and  $y_i$ . Note that Equation (2) is analogous to Equation (1) in [8] with the substitution of our new variability model.

The following approximation can be made when  $\mu_H >> \sigma_H$  and  $\mu_L >> \sigma_L$ :

$$\frac{H_{i,x}H_{i,y}}{H_{i,x}+H_{i,y}} \approx F_i \sim \mathcal{N}(\mu_H/2, \sigma_H^2/8),$$

$$\frac{L_{i,x}L_{i,y}}{L_{i,x}+L_{i,y}} \approx T_i \sim \mathcal{N}(\mu_L/2, \sigma_L^2/8),$$

$$\frac{H_{i,x}L_{i,y}}{H_{i,x}+L_{i,y}} \approx S_i \sim \mathcal{N}\left(\frac{\mu_L}{1+\epsilon}, \frac{\sigma_L^2}{(1+\epsilon)^4}\right). \tag{3}$$

These approximations are made in order to facilitate further calculation (see Appendix A for justification of approximations). We define  $\epsilon = \mu_L/\mu_H$  and provide examples of  $\epsilon$  in Appendix A, Table IV.

For two vectors x,  $y \in \{0,1\}^n$ , we define  $N_{00}$  to be the number of element pairs that have  $x_i = y_i = 0$  for  $i \in \{1, ..., n\}$ . Similarly we define  $N_{01}$  to be the number of element pairs that have  $x_i = 0, y_i = 1, N_{10}$  to be the number of element pairs that have  $x_i = 1, y_i = 0$ , and  $N_{11}$  to be the number of element pairs that have  $x_i = y_i = 1$ . Using our approximations, the conductance measurement can be expressed as follows,

$$G(\boldsymbol{x}, \boldsymbol{y}) pprox \bar{G}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N_{11}} F_i + \sum_{i=1}^{N_{01} + N_{10}} S_i + \sum_{i=1}^{N_{00}} T_i,$$

We normalize  $F_i$ ,  $S_i$ , and  $T_i$  by  $\mu_H/2$  and denote the normalized random variables by  $f_i$ ,  $s_i$ , and  $t_i$ , yielding:

$$f_i \sim \mathcal{N}(1, \sigma_H^2/2\mu_H^2), \quad s_i \sim \mathcal{N}\left(\frac{2\epsilon}{1+\epsilon}, \frac{4\sigma_L^2}{\mu_H^2(1+\epsilon)^4}\right),$$
  
 $t_i \sim \mathcal{N}(\epsilon, \sigma_L^2/2\mu_H^2).$ 

Similarly, we compute the normalized conductance measurement,  $\tilde{G}(x, y)$ , as follows:

$$\tilde{G}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\bar{G}(\boldsymbol{x}, \boldsymbol{y}) \times 2}{\mu_H} = \sum_{i=1}^{N_{11}} f_i + \sum_{i=1}^{N_{01} + N_{10}} s_i + \sum_{i=1}^{N_{00}} t_i.$$

Using elementary properties of independent Gaussian distributions, we have

$$\tilde{G}(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{N} \left( N_{11} + (N_{01} + N_{10}) \frac{2\epsilon}{1 + \epsilon} + N_{00}\epsilon, \frac{N_{11}\sigma_H^2}{2\mu_H^2} + \frac{(N_{01} + N_{10})8\sigma_L^2}{2\mu_H^2(1 + \epsilon)^4} + \frac{N_{00}\sigma_L^2}{2\mu_H^2} \right).$$
(4)

We define  $w_x$  and  $w_y$  to be the *a priori* known Hamming weights of x and y, respectively. We define D(x, y) to be the Hamming distance between x and y. Using the following facts,

$$N_{11} = [w_x + w_y - D(\boldsymbol{x}, \boldsymbol{y})]/2,$$

$$N_{01} + N_{10} = D(\boldsymbol{x}, \boldsymbol{y}),$$

$$N_{00} = n - N_{11} - N_{01} - N_{10},$$
(5)

we can compute the following:

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1+\epsilon}{(1-\epsilon)^2} [(1-\epsilon)(w_x + w_y) + 2n\epsilon - 2\tilde{G}(\boldsymbol{x}, \boldsymbol{y})].$$
(6)

Note that Equation (6) is a substitution of the noisy D(x,y) into Equation (5) from [8]. Based on (4), (5) and (6),  $\tilde{D}(x,y)$  has the following distribution:

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{N} \left( D(\boldsymbol{x}, \boldsymbol{y}), \frac{2(1+\epsilon)^2 N_{11} \sigma_H^2}{\mu_H^2 (1-\epsilon)^4} + \frac{(N_{01} + N_{10}) 16 \sigma_L^2}{\mu_H^2 (1+\epsilon)^2 (1-\epsilon)^4} + \frac{2(1+\epsilon)^2 N_{00} \sigma_L^2}{\mu_H^2 (1-\epsilon)^4} \right).$$
(7)

 $\tilde{D}(x,y)$  is an intermediate random variable computed using the conductance measurement from which we can estimate D(x,y). Note that  $\tilde{D}(x,y)$  and  $\tilde{G}(x,y)$  will be redefined per section and subsection for the appropriate context. We can now view the problem of estimating Hamming distance from a conductance measurement as a classic communication problem. The transmitter sends D(x,y) and the channel is Gaussian with zero mean and variance  $\sigma^2(\tilde{D}(x,y))$ , as specified in (7). The receiver sees  $\tilde{D}(x,y)$  and estimates D(x,y) from the observation.

We note that  $D(\boldsymbol{x}, \boldsymbol{y})$  takes only integer values from 0 to n. We also observe that for any two nearby distributions which center at  $D_H$  and  $D_H + 1$ , their variances only differ by a small amount when  $\sigma_H$  and  $\sigma_L$  are relatively close. Based on these observations, we propose an estimator  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = \min(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}))$ . We refer to this estimator as the *nearest integer estimator*. The nearest integer estimator completes the last step of HD-EIM, which estimates  $D(\boldsymbol{x}, \boldsymbol{y})$  from a single measurement  $G(\boldsymbol{x}, \boldsymbol{y})$ .

1) Simplified Approximations for Memristor Technology with small  $\epsilon$ : The approximation in (3), which leads to (7), is suitable for a variety of "On/Off" resistance ratios. However, smaller "On/Off" resistance ratios are usually reported in literature, e.g.,  $\epsilon=0.01$  [10]. Therefore, we seek to further simplify our equations in order provide a single parameter characterization for the estimation error. When  $\epsilon$  is small, the simplified approximations readily follow:

$$\frac{H_{i,x}H_{i,y}}{H_{i,x}+H_{i,y}} \approx F_i \sim \mathcal{N}(\mu_H/2, \sigma_H^2/8),$$

$$\frac{L_{i,x}L_{i,y}}{L_{i,x}+L_{i,y}} \approx T_i \sim \mathcal{N}(\mu_L/2, \sigma_L^2/8),$$

$$\frac{H_{i,x}L_{i,y}}{H_{i,x}+L_{i,y}} \approx S_i \sim \mathcal{N}(\mu_L, \sigma_L^2).$$
(8)

With the simplified approximations, the distribution of  $\tilde{G}(x,y)$  and the calculation of  $\tilde{D}(x,y)$  change accordingly:

$$\tilde{G}(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{N} \left( N_{11} + (N_{01} + N_{10}) 2\epsilon + N_{00} \epsilon, \frac{N_{11} \sigma_H^2}{2\mu_H^2} + \frac{(N_{01} + N_{10}) 8\sigma_L^2}{2\mu_H^2} + \frac{N_{00} \sigma_L^2}{2\mu_H^2} \right).$$

We then compute  $\tilde{D}(x, y)$  as:

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{1 - 3\epsilon} [(1 - \epsilon)(w_x + w_y) + 2n\epsilon - 2\tilde{G}(\boldsymbol{x}, \boldsymbol{y})],$$
(10)

where

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{N}\Big(D(\boldsymbol{x}, \boldsymbol{y}), \frac{2N_{11}\sigma_H^2 + 2N_{00}\sigma_L^2 + (N_{01} + N_{10})16\sigma_L^2}{\mu_H^2 (1 - 3\epsilon)^2}\Big). \tag{11}$$

The estimation of D(x, y) is performed using the nearest integer estimator. This simplification is used in the remaining parts of this section, Section IV, and Section VII.

#### B. Inversion Coding

In the previous discussion, we proposed the HD-EIM scheme which estimates the Hamming distance between two vectors from a single conductance measurement, with the assumption that the weights of both vectors are *a priori* known. However, this assumption may not be valid for many applications. Therefore, in order to generalize our HD-EIM scheme to applications where vectors with arbitrary weights are of interest, we require a method to gain knowledge of vector weights. In this section we discuss two approaches to get vector weights before HD-EIM is performed: weight estimation and inversion coding. We briefly describe the idea of weight estimation and elaborate on the inversion coding technique.

In [8], where the ideal two-state conductance model of a memristor is considered, the weight of a vector can be computed from the measurement between the vector itself and some preset vector, e.g., the all-1 vector. We can use this idea, in conjunction with the techniques described in Subsection A, to estimate the weight of a vector in the presence of variability due to resistance variation. After the weights of two vectors are estimated, the Hamming distance can be then estimated using the HD-EIM scheme. This approach of estimating the weight of both vectors first, and then estimating the Hamming distance requires a total of three conductance measurements in order to complete one Hamming distance estimation. The extra two measurements introduce extra latency which is not favored by frequent read applications. The overall estimation accuracy then also suffers from additional estimation errors when estimating the weights of vectors.

Alternatively, in applications where latency is the primary concern, we use the following coding technique to force every vector to have the same Hamming weight prior to the data being written to resistive memory, thus enabling Hamming distance Estimation-In-Memory with only one conductance measurement.

Auxiliary Code 1: (cf. [8]). We define an inversion encoding of the vector x to be  $x^{(c)} = [x|\neg x]$ , where  $\neg x$  is the bitwise complement of x and | denotes concatenation.

We refer to Auxiliary Code 1 as inversion coding throughout this paper. Let us define the weight of a vector  $\boldsymbol{x}$  as  $w(\boldsymbol{x})$ . With inversion coding, we have  $w(\boldsymbol{x}^{(c)}) = n, \forall \boldsymbol{x} \in \{0,1\}^n$ . With inversion coded vectors stored in resistive memory, the weights are known to be n, thus HD-EIM can be readily used. By the nature of inversion coding, we have  $D(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}) = 2D(\boldsymbol{x}, \boldsymbol{y})$ . This relationship can thus be used to estimate  $D(\boldsymbol{x}, \boldsymbol{y})$  from the  $\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})$  using the following equation of the redefined  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y})$ :

$$\tilde{D}(x, y) = \frac{1}{2}\tilde{D}(x^{(c)}, y^{(c)}),$$
 (12)

where

$$\tilde{D}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}) = \frac{1}{1 - 3\epsilon} [2n(1 - \epsilon) + 4n\epsilon - 2\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})].$$
(13)

The random variables  $\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})$  denote the normalized conductance measurements between two rows that store the

coded vectors  $\boldsymbol{x}^{(c)}$  and  $\boldsymbol{y}^{(c)}$ ;  $\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})$  will be redefined per section for the appropriate context. Adapting (9), we have the distribution of  $\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})$  as follows:

$$\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}) \sim \mathcal{N}\left(N'_{11} + (N'_{01} + N'_{10})2\epsilon + N'_{00}\epsilon, \frac{N'_{11}\sigma_H^2}{2\mu_H^2} + \frac{(N'_{01} + N'_{10})8\sigma_L^2}{2\mu_H^2} + \frac{N'_{00}\sigma_L^2}{2\mu_H^2}\right).$$
(14)

Here  $N'_{gh}$  is defined to be the number of coordinates having bit g in  $\boldsymbol{x}^{(c)}$  and bit h in  $\boldsymbol{y}^{(c)}$ , for  $g,h\in\{0,1\}$ . We therefore have:

$$\tilde{D}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}) \sim \mathcal{N}\bigg(D(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}), \frac{2N'_{11}\sigma_H^2 + 2N'_{00}\sigma_L^2 + (N'_{01} + N'_{10})16\sigma_L^2}{\mu_H^2(1 - 3\epsilon)^2}\bigg),$$
(15)

and

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{N} \bigg( D(\boldsymbol{x}, \boldsymbol{y}), \\ \frac{2N'_{11}\sigma_H^2 + 2N'_{00}\sigma_L^2 + (N'_{01} + N'_{10})16\sigma_L^2}{4\mu_H^2 (1 - 3\epsilon)^2} \bigg).$$
(16)

We can thus estimate D(x,y) from  $\tilde{D}(x,y)$  using the nearest integer estimator  $\hat{D}(x,y) = \operatorname{nint}(\tilde{D}(x,y))$ , thus adapting the HD-EIM scheme to the case where an inversion coding is used. We now show the optimality of inversion coding in terms of its redundancy among all constant weight codes.

Lemma 1: Define a code to be an injective mapping that maps a message  $\mathbf{x} \in \{0,1\}^a$  to a codeword  $\bar{\mathbf{x}} \in \{0,1\}^b$ . Let  $D(\mathbf{x},\mathbf{y})$  denote the Hamming distance between two vectors  $\mathbf{x}$  and  $\mathbf{y}$ . We define a code to be Hamming distance preserving if and only if  $D(\bar{\mathbf{x}},\bar{\mathbf{y}}) = f(D(\mathbf{x},\mathbf{y}))$  for some bijective function f. We also define a constant weight code to be a code that satisfies the property  $w(\bar{\mathbf{x}}) = w_0, \forall \bar{\mathbf{x}} \in \{0,1\}^b$  and some constant  $w_0$ . The necessary conditions for a constant weight code to be Hamming distance preserving are:

$$w_0 \ge a, \quad b \ge 2a.$$

*Proof:* Define  $\mathcal{D}_1$  to be the range of D(x,y) for  $x,y \in \{0,1\}^a$ . We have  $|\mathcal{D}_1|=a+1$ . Define  $\mathcal{C}_1$  to be the set of length-b binary vectors that have weight  $w_0$ . Also define  $\mathcal{C}_2$  to be the set of length-b codewords generated by any constant weight code with weight  $w_0$ . Due to the nature of codes,  $\mathcal{C}_2 \subseteq \mathcal{C}_1$ . Define  $\mathcal{D}_2$  to be the range of  $D(\bar{x},\bar{y})$  for  $\bar{x},\bar{y}\in\mathcal{C}_1$ , define  $\mathcal{D}_3$  to be the range of  $D(\bar{x},\bar{y})$  for  $\bar{x},\bar{y}\in\mathcal{C}_2$ . The following relationship can be easily verified,  $|\mathcal{D}_2|=\min(w_0+1,b-w_0+1)$ . In order for the code to be Hamming distance preserving, i.e., f to be a bijective function, we need  $|\mathcal{D}_3|=|\mathcal{D}_1|=a+1$ . Since  $\mathcal{C}_2\subseteq\mathcal{C}_1$ , we have  $|\mathcal{D}_3|=a+1\leq |\mathcal{D}_2|=\min(w_0+1,b-w_0+1)$ , which proves our necessary conditions.

Due to the limited read accessibility to resistive memory, there is no direct access to  $\bar{x}, \bar{y}$ . For any constant weight code we could use, we can only estimate the Hamming distance between between pairs of codewords using HD-EIM scheme.

It is therefore necessary for our constant weight code to be Hamming distance preserving so that we can directly recover the Hamming distance between the corresponding pairs of messages. Since the rate of this code is a/b, Lemma 1 implies that the maximum rate of a code of this type is 1/2. The inversion coding indeed has rate 1/2 and is thus optimal in term of redundancy.

## C. Estimation Error Probability and Bounds

In previous subsections, we built upon the HD-CIM method from [8] by considering conductance variation in two set-ups: one in which vectors with known weights are stored and the other in which inversion coded vectors are stored. Due to resistance variation, estimation errors can occur when determining the Hamming distance between vectors. In this subsection, the estimation error probability is studied for the two cases and the results are compared.

Lemma 2: When two vectors  $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$  with known weight are stored in resistive memory, relying on approximation (8), we can estimate  $D(\mathbf{x}, \mathbf{y})$  using  $\hat{D}(\mathbf{x}, \mathbf{y}) = \min(\tilde{D}(\mathbf{x}, \mathbf{y}))$ , with  $\tilde{D}(\mathbf{x}, \mathbf{y})$  computed from (10), and the normalized conductance measurement  $\tilde{G}(\mathbf{x}, \mathbf{y})$  from (9). Then, the conditional estimation error probability has the following bound:

$$P(\hat{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}))$$

$$\leq 2Q \left( \frac{1}{2\sqrt{\beta(n + 7D(\boldsymbol{x}, \boldsymbol{y}))}} \right), \quad (17)$$

where  $\beta=\frac{2\max(\sigma_L^2,\sigma_H^2)}{\mu_H^2(1-3\epsilon)^2}$  and  $Q(\cdot)$  is the Q-function, i.e.,  $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty \exp(-\frac{u^2}{2})du$ .

*Proof:* From  $\hat{D}(x, y) = nint(\tilde{D}(x, y))$  and (11), the probability of erroneous estimation can be calculated as:

$$P(\hat{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y})) = 2Q\left(\frac{1}{2\sigma(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}))}\right),$$

Define  $\sigma_{max}^2 = \max(\sigma_H^2, \sigma_L^2)$ . The standard deviation of  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y})$  can be upper bounded:

$$\begin{split} &r(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) \\ &= \sqrt{\frac{2N_{11}\sigma_H^2 + 2N_{00}\sigma_L^2 + (N_{01} + N_{10})16\sigma_L^2}{\mu_H^2(1 - 3\epsilon)^2}} \\ &\leq \sqrt{\frac{2N_{11}\sigma_{max}^2 + 2N_{00}\sigma_{max}^2 + (N_{01} + N_{10})16\sigma_{max}^2}{\mu_H^2(1 - 3\epsilon)^2}} \\ &= \sqrt{\beta(n + 7D(\boldsymbol{x}, \boldsymbol{y}))}. \end{split}$$

Using elementary properties of the *Q*-function, Lemma 2 is proved.

Lemma 2 provides us with a single parameter relation between  $\beta$  and the estimation error probability. The parameter  $\beta$  serves as a measure of device reliability and examples of  $\beta$  are provided in Appendix A Table IV. It is also observed that the estimation error probability is largely dependent on the Hamming distance. A smaller Hamming distance is associated with a smaller estimation error probability. This property is

well suited for classification problems in which objects with smaller distances are of interest.

We also provide a bound of the unconditional estimation error probability of HD-EIM when vectors with known weights are stored.

Corollary 1: The unconditional estimation error probability of HD-EIM, when vectors with known weights are stored, is upper bounded as:

$$P(\hat{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y})) \leq 2Q\left(\frac{1}{4\sqrt{2\beta n}}\right).$$

*Proof:* Follows immediately from  $D(x, y) \leq n, \forall x, y$ and Lemma 2.

This simple bound gives insight into the trade-off between  $\beta$ , the device reliability and n, the vector length (scalability). For instance, we can achieve the same level of Hamming distance calculation accuracy with larger resistance variation by shortening the vectors.

We next adapt Lemma 2 and Corollary 1 to the case where inversion coding is used.

Lemma 3: When two inversion coded vectors,  $\mathbf{x}^{(c)}, \mathbf{y}^{(c)} \in$  $\{0,1\}^{2n}$ , corresponding to two original vectors  $x,y \in$  $\{0,1\}^n$ , are stored in resistive memory, relying on approximation (8), we can estimate D(x, y) using D(x, y) =nint(D(x,y)), with D(x,y) computed from (12), and the normalized conductance measurement G(x, y) from (14). Then, the conditional estimation error probability is upper bounded as:

$$P(\hat{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}))$$

$$\leq 2Q\left(\frac{1}{\sqrt{2\beta(n + 7D(\boldsymbol{x}, \boldsymbol{y}))}}\right), \quad (18)$$

where  $\beta=\frac{2\max(\sigma_L^2,\sigma_H^2)}{\mu_H^2(1-3\epsilon)^2}$ . Proof: The proof of this lemma is similar to proof of Lemma 2 with  $\sigma^2(D(x,y))$  following from (16) in conjunction with the following properties of inversion coding:

$$N'_{11} = N'_{00} = N_{11} + N_{00}, \quad N'_{01} = N'_{10} = N_{01} + N_{10}.$$

We also provide a simple bound of the estimation error probability of HD-EIM when inversion coded vectors are

Corollary 2: The unconditional estimation error probability of HD-EIM, when inversion coded vectors are stored, is upper bounded as:

$$P(\hat{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y})) \leq 2Q\left(\frac{1}{4\sqrt{\beta n}}\right)$$

*Proof:* Follows immediately from  $D(x, y) \leq n, \forall x, y$ and Lemma 3.

The bounds in Lemmas 2 and 3 are tight when  $\sigma_H^2 = \sigma_L^2$ . We observe that when these bounds are tight, the estimation error probability using coded vectors is smaller than the one using uncoded vectors. This observation shows that inversion coding also improves the estimation accuracy, in addition to its ability to generalize HD-EIM to vectors with unknown weights. Note that additional coding, e.g., encoding x to be

 $[x|\neg x|x|\neg x]$ , further improves estimation accuracy but may not be favorable in terms of redundancy. The single inversion coding technique is the maximum rate constant weight code that preserves Hamming distance, thus allowing HD-EIM to be efficiently performed with a single conductance measurement. However, additional coding only improves estimation accuracy with diminishing returns.

## IV. AN AVERAGE CASE STUDY ON THE K-NN CLASSIFIER UNDER COMPUTATION NOISE

In the previous section we analyzed the estimation error of the Hamming distance Computation-in-Memory scheme from [8] under device variability due to resistance variation. Due to resistance variation, the Hamming distance between vectors has to be estimated and could lead to estimation error. From the application point of view, the estimation error can be viewed as computation noise when Hamming distance computation is performed. We have provided a bound on the conditional error probability. Meanwhile, erroneous Hamming distance computations may not necessarily lead to erroneous results due to the error-tolerant nature of some applications, e.g., the k-nearest neighbors classifier. In this section, we focus on the k-nearest neighbors classifier as our main application and provide analysis on how this computation noise affects the classification accuracy. Throughout this whole section, we assume binary attributes (vectors) are inversion coded and stored in resistive memory. We next introduce the framework we use to analyze the k-nearest neighbors classifier under computation noise.

The average-case analysis framework, introduced by Pazzani and Sarrett [17], is a useful theoretical framework to understand the behavior of learning algorithms. This framework is based on the formal computation of the expected accuracy of a learning algorithm for a certain fixed class of concepts [18]. In Subsection A, we use this framework to formally compute the expected accuracy of the k-NN classifier to learn the m-of- $n/\ell$  concept, a boolean threshold function, under computation noise. The m-of- $n/\ell$  concept is defined by the number of relevant attributes (n), the number of irrelevant attributes  $(\ell)$ , and the threshold (m). Under this concept, an instance is positive if m or more relevant attributes exist and is negative if fewer than m relevant attributes exist. Note that n is redefined in this section in order to be consistent with [18]. We assume that relevant and irrelevant attributes occur with probabilities p and q, respectively. The k-NN classifier classifies an instance as positive if more than half of its k nearest neighbors are positive. When a tie occurs, the classifier randomly decides the class. We compute the expected accuracy when the bound is tight, i.e.,  $\sigma_H^2 = \sigma_L^2$ and the computation noise is parameterized by  $\beta$ , as stated in Lemma 3. The expected classification accuracy is a function of n, m, p, q, k, N, and  $\beta$ , where N is the size of the training

We use the next example to demonstrate how on a k-nearest neighbors classifier, erroneous Hamming distance computation does not necessarily result in erroneous classification.

Example 1: In this example, we are interested in the classification of the testing instance based on the 5 training

| K-NN EXAMPLE |
|--------------|
|              |

| Testing Instance                     |           |          |          |          |          |  |  |
|--------------------------------------|-----------|----------|----------|----------|----------|--|--|
| Attribute                            | 11111000  |          |          |          |          |  |  |
| Training Instances                   |           |          |          |          |          |  |  |
| Instance #                           | 1         | 2        | 3        | 4        | 5        |  |  |
| Class Label                          | 1         | 0        | 1        | 0        | 0        |  |  |
| Attribute                            | 111111100 | 11100000 | 11110100 | 11000000 | 11000100 |  |  |
| Hamming Distance to Testing Instance | 1         | 2        | 2        | 3        | 4        |  |  |

TABLE I

instances using a k-nearest neighbors classifier. The 1 testing instance and 5 training instances are listed in the next Table. We set k to be 3 for the k-NN classifier. The training instances are generated according to the 4-of-8/0 concept and we use 1/0 to mark positive/negative class labels.

In the error-free case, i.e., all Hamming distances are computed correctly, the k-NN classifier classifies the testing instance as positive because its 3 nearest neighbors (instance #1, #2, and #3) have class labels 1, 0, and 1 respectively. Positive is the correct class label for the testing instance based on the 4-of-8/0 concept.

Next, we consider the case where Hamming distance computation is prone to estimation error due to resistance variation. We consider the case where the Hamming distance between the testing instance (1111000) and training instance #2 (1110000) is erroneously computed to be 3. Note that there are two training instances (#2 and #4) at distance 3 w.r.t. the testing instance; the k-NN classifier will randomly choose one to be the nearest neighbor of the testing instance. Observe that although the Hamming distance computation is erroneous, the classification result is still positive because the 2 closest training instance (#1 and #3) are both positive. This example illustrates how erroneous Hamming distance computation may not lead to erroneous classification.

#### A. Formal Calculation of Expected Accuracy

Okamoto and Yugami [18], used the average-case study framework to analyze noisy attributes and class labels. We adapt some of their equations to the scenario involving computation noise. For the calculations of expected accuracy that have already been done by Okamoto and Nobuhiro, we simply state their results here (we refer readers to [18] for further details). We modify the equations to incorporate the computation noise and to reflect the fact that in our model, the attributes and class labels are noise-free.

The probability that an instance consists of x relevant attributes and y irrelevant attributes can be calculated as [18]:

$$P_{oc}(x,y) = \binom{n}{x} \binom{l}{y} p^x (1-p)^{n-x} q^y (1-q)^{l-y}.$$

Then the expected classification accuracy can be calculated as [18]:

$$A(k) = \sum_{y=0}^{l} \left[ \sum_{x=0}^{m-1} P_{oc}(x,y) (1 - P_{pos}(k,x,y)) + \sum_{x=m}^{n} P_{oc}(x,y) P_{pos}(k,x,y) \right],$$

where  $P_{pos}(k, x, y)$  represents the probability that the k-NN classifier classifies an arbitrary test instance with x relevant attributes and y irrelevant attributes as positive.

To calculate  $P_{pos}(k,x,y)$ , we first calculate  $P_{dp}(x,y,e)$  ( $P_{dn}(x,y,e)$ , resp.) which is the probability that an arbitrary positive (negative, resp.) training instance has Hamming distance e from the arbitrary testing instance in I(x,y). I(x,y) represents the set of instances in which x relevant attributes and y irrelevant attributes simultaneously occur. The Hamming distance e is assumed to be estimated by HD-EIM scheme from an observation  $\tilde{e}$ .  $P_{dp}(x,y,e)$  and  $P_{dn}(x,y,e)$  can be represented as:

$$P_{dp}(x, y, e) = \sum_{\hat{e}=0}^{n} \sum_{\hat{y}=0}^{l} \sum_{\hat{x}=m}^{n} P_{oc}(\hat{x}, \hat{y}) \times P_{dis}(x, y, \hat{x}, \hat{y}, \hat{e}) P_{H}(e, \hat{e}), \quad (19)$$

and

$$P_{dn}(x, y, e) = \sum_{\hat{e}=0}^{n} \sum_{\hat{y}=0}^{l} \sum_{\hat{x}=0}^{m-1} P_{oc}(\hat{x}, \hat{y}) \times P_{dis}(x, y, \hat{x}, \hat{y}, \hat{e}) P_{H}(e, \hat{e}).$$
(20)

 $P_{dis}(x,y,\hat{x},\hat{y},e)$  is the probability that an arbitrary instance in  $I(\hat{x},\hat{y})$  has Hamming distance e from an arbitrary instance in I(x,y).  $P_H(e,\hat{e})$  is the probability that the original Hamming distance  $\hat{e}$  is estimated to be e.

In order to compute  $P_H(e,\hat{e})$ , we consider the following scenario where the observation  $\tilde{e}$  is a random variable with distribution  $\mathcal{N}(\hat{e},\frac{1}{2}\beta(n+7\hat{e}))$ . This corresponds to the case that two attribute vectors with Hamming distance  $\hat{e}$  are inversion coded and then stored in resistive memory. For  $e=\mathrm{nint}(\tilde{e})$  if  $0 \leq \tilde{e} \leq n$ , e=0 if  $\tilde{e} < 0$ , and e=n if  $\tilde{e} > n$ , using elementary properties of Gaussian distribution,  $P_H(e,\hat{e})$  is calculated as follows:

$$\begin{split} P_{H}(e,\hat{e}) &= \begin{cases} 1 - Q\bigg(\frac{\frac{1}{2} - \hat{e}}{\sqrt{\frac{1}{2}\beta(n + 7\hat{e})}}\bigg) & \text{if } e = 0, \\ Q\bigg(\frac{n - \frac{1}{2} - \hat{e}}{\sqrt{\frac{1}{2}\beta(n + 7\hat{e})}}\bigg) & \text{if } e = n, \\ Q\bigg(\frac{e - \hat{e} - \frac{1}{2}}{\sqrt{\frac{1}{2}\beta(n + 7\hat{e})}}\bigg) - Q\bigg(\frac{e - \hat{e} + \frac{1}{2}}{\sqrt{\frac{1}{2}\beta(n + 7\hat{e})}}\bigg) & \text{otherwise.} \end{cases} \end{split}$$

The remaining equations in this subsection are stated directly from [18]; we include them here for completeness.

 $P_{dis}(x, y, \hat{x}, \hat{y}, e)$  can be calculated as follows [18]:

$$P_{dis}(x, y, \hat{x}, \hat{y}, e) = \sum_{\substack{(z_r, z_i) \in S}} \frac{\binom{x}{z_r} \binom{n-x}{\hat{x}-z_r}}{\binom{n}{\hat{x}}} \frac{\binom{y}{z_i} \binom{l-y}{\hat{y}-z_i}}{\binom{l}{\hat{y}}},$$

where S is a set of all pairs of  $z_r$  and  $z_i$  that satisfy the following conditions:

$$\max(0, x + \hat{x} - n) \le z_r \le \min(x, \hat{x}),$$
  

$$\max(0, y + \hat{y} - l) \le z_i \le \min(y, \hat{y}),$$
  

$$z_r + z_i = \frac{x + y + \hat{x} + \hat{y} - e}{2}.$$

 $P_{pos}(k, x, y)$  can be then calculated.

$$P_{pos}(k, x, y) = \sum_{d=0}^{n+l} \sum_{a=0}^{k-1} \sum_{b=k-a}^{N-a} P_{num}(x, y, d, a, b) \times P_{sp}(x, y, d, a, b).$$

where

$$P_{num}(x, y, d, a, b) = {N \choose a} {N-a \choose b} P_l(x, y, d)^a \times P_d(x, y, d)^b \times (1 - P_l(x, y, d) - P_d(x, y, d)^{N-a-b},$$

$$P_l(x, y, d) = \sum_{e=0}^{d-1} (P_{dp}(x, y, e) + P_{dn}(x, y, e)),$$

$$P_d(x, y, d) = P_{dp}(x, y, d) + P_{dn}(x, y, d),$$

and

$$P_{sp}(k, x, y, d, a, b) = \sum_{u=0}^{a} \sum_{v=0}^{b} \left\{ P_{lp}^{(u)}(a, u) P_{dp}^{(v)}(b, v) \right.$$

$$\times \sum_{w=\lceil \frac{k+1}{2} \rceil - u}^{v} \left\{ P_{dp}^{(w)}(k, a, b, v, w) + \frac{1}{2} P_{dp}^{(w)}(k, a, b, v, \frac{k}{2} - u) \right\} \right\},$$

where

$$\begin{split} P_{lp}^{(u)}(a,u) &= \binom{a}{u} (\frac{\sum_{e=0}^{d-1} P_{dp}(x,y,e)}{P_l(x,y,d)})^u \\ &\times (\frac{\sum_{e=0}^{d-1} P_{dn}(x,y,e)}{P_l(x,y,d)})^{a-u}, \\ P_{dp}^{(v)}(b,v) &= \binom{b}{v} (\frac{P_{dp}(x,y,d)}{P_d(x,y,d)})^v (\frac{P_{dn}(x,y,d)}{P_d(x,y,d)})^{b-v}, \\ P_{dp}^{(w)}(k,a,b,v,w) &= \frac{\binom{v}{w}\binom{b-v}{k-a-w}}{\binom{b}{v}}. \end{split}$$

This ends our derivation for the expected accuracy.

## B. Average-Case Study Results on Computation Noise

First we study the effects of different levels of computation noise on the 3-of-5/2 concept. In Figure 2, we fix N to be 32 and we report two device reliability (noise-level),  $\beta = 0.01$  and  $\beta = 0.1$ , for k spanning from 1 to 16.

In Figure 2, the upper line is the theoretical result for the noise-free classification accuracy, which is consistent with

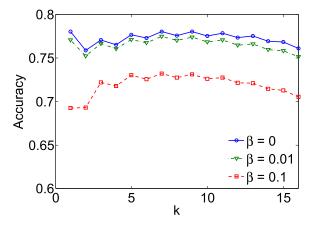


Fig. 2. 3-of-5/2 concept under computation noise.

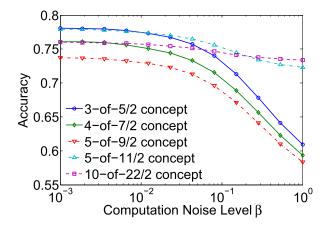


Fig. 3. Computation noise v.s. max accuracy.

the results in [18]. The two lower lines are the theoretical accuracy with different device parameter  $\beta$ . When k is an even number, it is observed that the classification accuracy of the k-NN classifier drops remarkably due to the randomness when a tie occurs. Figure 2 shows that the computation noise decreases the classification accuracy for all k and the amount of decrement largely depends on the noise level  $\beta$ .

We next show the effects of computation noise for a wide range of noise levels on a variety of different concepts in Figure 3. The classification accuracy of k-NN at each noise level for each concept is chosen to be the maximum accuracy out of the range  $2 \le k \le 16$ .

In Figure 3,  $\beta$  ranges from  $10^{-3}$  to 1 in order to see a clear trend. However, from a realistic point of view,  $\beta = \frac{2\max(\sigma_L^2,\sigma_H^2)}{\mu_H^2(1-3\epsilon)^2} = 1$  is unlikely to occur in a real device. We observe that for small  $\beta$ , i.e.,  $\beta < 10^{-2}$ , the influence of the estimation error is negligible. It is interesting to note that the impact of the estimation error decreases as the dimension of concepts increases, which could be beneficial for applications with many attributes, e.g., n = 22.

# V. ERROR-DETECTION AND ERROR-CORRECTION SCHEME UNDER WRITE BSC

In this section we consider memristor variability due to an unreliable write operation. This memristor variability can be modeled as a write BSC and therefore can be viewed as attribute noise in learning problems. Okamoto and Yugami [18] provide an average-case study and observed that attribute noise decreases classification accuracy. In order to keep the low latency property of HD-CIM, we are restricted to the conductance measurements between rows of memristors. Therefore, traditional ECCs based on entry-wise access can not be used to deal with the write BSC and this fact motivates us to provide error-detection and error-correction schemes based on conductance measurements only. In this section, an error-detection scheme is explored and a low-cost error-correction scheme is proposed to improve the classification accuracy. Throughout this section, we assume the memristors have no resistance variation, i.e.,  $\sigma_H^2 = \sigma_L^2 = 0$ . We again assume inversion coded vectors are stored in the resistive memory.

Define  $\boldsymbol{x}^{(c)}$  and  $\boldsymbol{y}^{(c)}$  to be two inversion coded vectors corresponding to two length-n vectors  $\boldsymbol{x}$  and  $\boldsymbol{y}$ . Let  $\tilde{\boldsymbol{x}}^{(c)}$  and  $\tilde{\boldsymbol{y}}^{(c)}$  be the noisy vectors actually stored due to the write noise (BSC). We first establish necessary equations to compute the Hamming distance between  $\boldsymbol{x}$  and  $\boldsymbol{y}$  from a measurement between rows of memristors that store  $\tilde{\boldsymbol{x}}^{(c)}$  and  $\tilde{\boldsymbol{y}}^{(c)}$ . Define the normalized conductance measurement to be  $\tilde{G}(\tilde{\boldsymbol{x}}^{(c)},\tilde{\boldsymbol{y}}^{(c)})$ . As resistance variability is not considered in this section,  $\tilde{G}(\tilde{\boldsymbol{x}}^{(c)},\tilde{\boldsymbol{y}}^{(c)})$  is a constant rather than a random variable. We thus have:

$$\tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) = \tilde{N}'_{11} + (\tilde{N}'_{10} + \tilde{N}'_{01}) \frac{2\epsilon}{1+\epsilon} + \tilde{N}'_{00}\epsilon.$$
 (21)

Here  $\tilde{N}'_{gh}$  is defined to be the number of coordinates having bit g in  $\tilde{\boldsymbol{x}}^{(c)}$  and bit h in  $\tilde{\boldsymbol{y}}^{(c)}$ , for  $g,h\in\{0,1\}$ .

A variable denoting the normalized conductance measurement between rows of memristors that store  $x^{(c)}$  and  $y^{(c)}$  can be defined as:

$$\tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}) = N'_{11} + (N'_{10} + N'_{01}) \frac{2\epsilon}{1 + \epsilon} + N'_{00}\epsilon.$$
 (22)

Here  $N'_{gh}$  is defined to be the number of coordinates having bit g in  $\boldsymbol{x}^{(c)}$  and bit h in  $\boldsymbol{y}^{(c)}$ , for  $g,h\in\{0,1\}$ .

We again use an intermediate variable  $\hat{D}(x, y)$  to denote the result calculated from the measurement as follows:

$$\tilde{D}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) = \frac{1+\epsilon}{(1-\epsilon)^2} [2n(1-\epsilon) + 4n\epsilon - 2\tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})].$$
(23)

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \tilde{D}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) 
= \frac{1+\epsilon}{(1-\epsilon)^2} [n + n\epsilon - \tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})].$$
(24)

Note that when no error occurs,  $\tilde{D}(x, y) = D(x, y)$ . Equation (23) is adapted from Equation (6) when inversion coding is used and write BSC is considered.

It is useful to denote the difference in conductance measurements between the noisy and the noise-free case as:

$$\Delta \tilde{G}(\mathbf{x}^{(c)}, \mathbf{y}^{(c)}, \tilde{\mathbf{x}}^{(c)}, \tilde{\mathbf{y}}^{(c)}) = \tilde{G}(\tilde{\mathbf{x}}^{(c)}, \tilde{\mathbf{y}}^{(c)}) - \tilde{G}(\mathbf{x}^{(c)}, \mathbf{y}^{(c)}).$$

| Error Type | $(x_i^{(c)}, y_i^{(c)}) \to (\tilde{x}_i^{(c)}, \tilde{y}_i^{(c)})$ | $\Delta 	ilde{G}(oldsymbol{x}^{(c)},oldsymbol{y}^{(c)})$ | $\Delta 	ilde{D}(oldsymbol{x},oldsymbol{y})$ |
|------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| A          | $(0,0) \to (0,1)$                                                   | $\frac{2\epsilon}{1+\epsilon} - \epsilon$                | $\frac{-\epsilon}{1-\epsilon}$               |
| В          | $(0,1) \to (0,0)$                                                   | $-\left(\frac{2\epsilon}{1+\epsilon}-\epsilon\right)$    | $\frac{\epsilon}{1-\epsilon}$                |
| С          | $(0,1) \to (1,1)$                                                   | $-\left(\frac{2\epsilon}{1+\epsilon}-1\right)$           | $\frac{-\epsilon}{1-\epsilon} - 1$           |
| D          | $(1,1) \to (0,1)$                                                   | $\frac{2\dot{\epsilon}}{1+\epsilon} - 1$                 | $\frac{\epsilon}{1-\epsilon} + 1$            |
|            |                                                                     |                                                          |                                              |

Similarly, let us define  $\Delta D(x, y, \hat{x}, \hat{y})$ , which is later used to characterize bit errors, as follows:

$$\Delta \tilde{D}(\boldsymbol{x}, \boldsymbol{y}, \tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) = \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) - D(\boldsymbol{x}, \boldsymbol{y})$$

$$= -\frac{(1+\epsilon)\Delta \tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}, \tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})}{(1-\epsilon)^2}. \quad (25)$$

We now calculate how  $\Delta \tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}, \tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})$  and  $\Delta \tilde{D}(\boldsymbol{x}, \boldsymbol{y}, \tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})$  are affected by a single bit error, i.e., t=1. Due to the symmetry of this problem, there are only four different fundamental types of errors for a pair of elements  $x_i^{(c)}$  and  $y_i^{(c)}$ ,  $(0,0) \rightarrow (0,1)$ ,  $(0,1) \rightarrow (0,0)$ ,  $(0,1) \rightarrow (1,1)$ , and  $(1,1) \rightarrow (0,1)$ , which we denote as error types A, B, C, and D, respectively. All other error types are expressed in terms of these four error types. Each of these error types affects the relationship between  $\{N'_{00}, N'_{01}, N'_{10}, N'_{11}\}$  and  $\{\tilde{N}'_{00}, \tilde{N}'_{01}, \tilde{N}'_{10}, \tilde{N}'_{11}\}$ . For example, an error that changes (0,0) into (0,1) will result in  $\tilde{N}'_{01} = N'_{01} + 1$ ,  $\tilde{N}'_{00} = N'_{00} - 1$ ,  $\tilde{N}'_{11} = N'_{11}$  and  $\tilde{N}'_{10} = N'_{10}$ . Table II lists the resulting values of  $\Delta \tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)}, \tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})$  and  $\Delta \tilde{D}(\boldsymbol{x}, \boldsymbol{y}, \tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})$  for each error type. The above two variables are abbreviated as  $\Delta \tilde{G}(\boldsymbol{x}^{(c)}, \boldsymbol{y}^{(c)})$  and  $\Delta \tilde{D}(\boldsymbol{x}, \boldsymbol{y})$  since the relative relationship is clear.

We use the following lemma to detect a single bit error.

Lemma 4: If exactly one of  $\tilde{\boldsymbol{x}}^{(c)}$  or  $\tilde{\boldsymbol{y}}^{(c)}$  contains a single bit error, i.e.,  $D(\boldsymbol{x}^{(c)}, \tilde{\boldsymbol{x}}^{(c)}) + D(\boldsymbol{y}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) = 1$  and  $0 < \epsilon < \frac{1}{2}$ , then we can detect that  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y})$ .

*Proof*: If no error is present, we have  $D(x,y) = \tilde{D}(x,y)$ , i.e.,  $\Delta \tilde{D}(x,y) = 0$ . For  $0 < \epsilon < \frac{1}{2}$ , each error type will cause the value of  $\Delta \tilde{D}(x,y)$  to be a non-integer and in turn lead to non-integer  $\tilde{D}(x,y)$  (since D(x,y) is always an integer and  $\tilde{D}(x,y) = D(x,y) + \Delta \tilde{D}(x,y)$ ). A single bit error can thus be detected by first computing  $\tilde{D}(x,y)$  and checking whether it is an integer or not.

This process of error detection is later referred to as an *inte-ger check*. When error-free,  $\hat{D}(x,y) = \tilde{D}(x,y) = D(x,y)$  where  $\hat{D}(x,y)$  is the estimated result from the intermediate variable  $\tilde{D}(x,y)$ .

Lemma 4 suggests that a single bit error is detectable under certain reasonable constraints on  $\epsilon$ . However, the error type can not be uniquely determined from  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$ . For example, a vector with  $D(\boldsymbol{x},\boldsymbol{y})=D_H$  incurring error type B would result in an identical value for  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  as a vector with  $D(\boldsymbol{x},\boldsymbol{y})=D_H-1$  incurring error type D. Note that this

multiple solution result is due to the nature of the underlying problem and is thus unavoidable if only vector-level information is used.

Although the error type can not be uniquely determined, with further constrains on  $\epsilon$ , we are able to determine whether the error is of type  $\{B, D\}$  or  $\{A, C\}$ .

Corollary 3: If  $D(\boldsymbol{x}^{(c)}, \tilde{\boldsymbol{x}}^{(c)}) + D(\boldsymbol{y}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) = 1$  and  $0 < \epsilon < \frac{1}{3}$ , then we conclude that  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \neq D(\boldsymbol{x}, \boldsymbol{y})$  and we determine whether the error is of type {B, D} or {A, C}.

*Proof:* The  $\epsilon$  range here,  $0 < \epsilon < \frac{1}{3}$ , falls within the range of  $\epsilon$  in Lemma 4, thus a single bit error is detectable. Since  $|\frac{\epsilon}{1-\epsilon}| < \frac{1}{2}$ , if the error belongs to type {B, D},  $\tilde{D}(x,y) - \min(\tilde{D}(x,y)) < 1/2$ . Similarly, if the error belongs to type {A, C}, we have  $\min(\tilde{D}(x,y)) - \tilde{D}(x,y) < 1/2$ . This relationship between  $\tilde{D}(x,y)$  and its nearest integer uniquely determine whether the error is of type {A, C} or {B, D}.

We say  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y})$  lies on the right-hand-side (or left-hand-side) of its nearest integer if  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) - \text{nint}(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) < 1/2$  (or  $\text{nint}(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) - \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) < 1/2$ ).

As a result of Corollary 3, if  $0 < \epsilon < \frac{1}{3}$ , for the detected single bit error, we have two possible Hamming distances that could be the original one. We summarize the candidate original Hamming distance as follows:

$$\begin{split} &\text{If } \tilde{D}(\boldsymbol{x},\boldsymbol{y}) - \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) < 1/2, \\ &\text{then } D(\boldsymbol{x},\boldsymbol{y}) = \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) \text{ or } D(\boldsymbol{x},\boldsymbol{y}) \\ &= \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) - 1; \\ &\text{if } \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) - \tilde{D}(\boldsymbol{x},\boldsymbol{y}) < 1/2, \\ &\text{then } D(\boldsymbol{x},\boldsymbol{y}) = \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) \text{ or } D(\boldsymbol{x},\boldsymbol{y}) \\ &= \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) + 1. \end{split}$$

We now seek to provide a correction scheme to the detected single bit error. We first realize that choosing randomly between the two candidate solutions is functionally the same as always choosing  $\hat{D}(x,y) = \min(\tilde{D}(x,y))$ . Therefore, choosing randomly would not be wise because it does not take advantage of the extra information we can get from Corollary 3.

It is also possible to acquire bit-level information when an error is detected and to localize the error to two possible locations by comparing each vector with some preset vectors [1]. Then, with the help of extra encoding, this single bit error can be corrected and the original Hamming distance can be determined accordingly. However, doing so requires extra encoding which requires more redundancy. It also takes additional time to perform error-correction when an error is detected. Consider that the machine learning applications for which HD-CIM can be used have some level of noise tolerance, the approach that finds the exact solution may not be favorable considering its cost in space and time.

We propose the following scheme for error-detection and error-correction.

$$\begin{split} &\text{If } \tilde{D}(\boldsymbol{x},\boldsymbol{y}) = \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})), \\ &\text{then } \hat{D}(\boldsymbol{x},\boldsymbol{y}) = \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})); \\ &\text{if } \tilde{D}(\boldsymbol{x},\boldsymbol{y}) - \text{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y})) < 1/2, \end{split}$$

then 
$$\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{nint}(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) - 1/2;$$
  
if  $\operatorname{nint}(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) - \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) < 1/2,$   
then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{nint}(\tilde{D}(\boldsymbol{x}, \boldsymbol{y})) + 1/2.$  (26)

The previous scheme is derived by taking the average of the two candidate Hamming distances after an error is classified as either type {A, C} or {B, D}. As this error-detection and correction scheme has the possibility to give non-integer Hamming distance as the result, we refer it as the Soft Hamming scheme. Analysis of this Soft Hamming scheme on the k-nearest neighbors classifier will be provided in the next section.

Multiple errors are sometimes detectable by an *integer check*, [1]. The exact number of errors can be determined through comparisons with other preset vectors; for more details, see [1]. However, doing so will incur costly read operations. We therefore propose the use of the Soft Hamming scheme, since it addresses the most probable error pattern, i.e., the single bit error in the write BSC channel.

## VI. STUDY ON THE K-NN CLASSIFIER UNDER ATTRIBUTE NOISE USING THE SOFT HAMMING SCHEME

In order to incorporate the Soft Hamming scheme into the average case study framework, we assume all error patterns, except the undetectable errors, are detectable and can be separated into the two classes— $\{A, C\}$  or  $\{B, D\}$ . We elaborate on the combinations of error types that are undetectable in [1]. We assume  $\epsilon$  is sufficiently small and the Soft Hamming Scheme is used to correct the detected error.

The next example helps to illustrate how the Soft Hamming Scheme can be used to improve classification accuracy under the write BSC.

Example 2: In this example we use the same setup as Example 1. Consider the case that under the adverse effect of write BSC, the attribute of training instance #3 (11110100) is changed to 01110100. Without the Soft Hamming scheme, the Hamming distance between training instance #3 and the testing instance is 3. Both instance #3 (class: positive) and instance #4 (class: negative) now have distance 3 w.r.t. the testing instance. Choosing randomly among instance #3 and #4 to be the third nearest neighbor of the testing instance, the k-NN classifier has 50% chance to have erroneous classification.

If we implement the Soft Hamming scheme, the error pattern  $(1,1) \rightarrow (0,1)$  can be detected when computing the Hamming distance between the testing instance and training instance #3. The Soft Hamming scheme will therefore set the Hamming distance between them to be 2.5 based on previous discussions. As a result, the k-NN classifier can correctly classify the testing instance as positive.

To calculate the expected accuracy using the Soft Hamming scheme, we define an augmented variable  $e^{(s)}=2\hat{D}(\boldsymbol{x},\boldsymbol{y})$ , where  $\hat{D}(\boldsymbol{x},\boldsymbol{y})$  is the result of the Soft Hamming scheme. For example,  $e^{(s)}=3$  corresponds to the case that either  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  is on the left-hand-side of 1 or  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  is on the right-hand-side of 2. As another example,  $e^{(s)}=4$  corresponds to the case that  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})=\hat{D}(\boldsymbol{x},\boldsymbol{y})=2$ .

Most calculations from Section IV are applicable in this context by setting  $\beta=0$  since resistance variation is not considered. We recalculate  $P_{dp}^{(s)}(x,y,e^{(s)})$  ( $P_{dn}^{(s)}(x,y,e^{(s)})$ , resp.) which is the probability of an arbitrary positive (negative, resp.) training instance having distance  $e^{(s)}$  from the arbitrary testing instance  $t(x,y)\in I(x,y)$ . This calculation is separated into two cases. We assume, in this section, an arbitrary attribute is flipped with probability p.

In the first case, we consider an even value for  $e^{(s)}$  where no error is detected. From previous discussion, no error is detected when the number of bit flips from 0 to 1, s, is equals to the number of bit flips from 1 to 0, r. When  $e^{(s)}$  is even,  $P_{dp}^{(s)}(x,y,e^{(s)})$  and  $P_{dn}^{(s)}(x,y,e^{(s)})$  can be expressed as:

$$P_{dp}^{(s)}(x,y,e^{(s)}) = \sum_{\hat{e}=0}^{n+l} P_{dp}(x,y,\hat{e}) P_{dif}^{s=r}(\hat{e},e^{(s)}/2),$$

$$P_{dn}^{(s)}(x,y,e^{(s)}) = \sum_{\hat{e}=0}^{n+l} P_{dn}(x,y,\hat{e}) P_{dif}^{s=r}(\hat{e},e^{(s)}/2), \quad (27)$$

where  $P_{dp}(x,y,e)$  and  $P_{dn}(x,y,e)$  are the probabilities calculated from Section IV and  $P_{dif}^{s=r}(\hat{e},\hat{e}')$  is the probability that  $\hat{D}(\boldsymbol{x},\boldsymbol{y})=\hat{e}'$  given that  $D(\boldsymbol{x},\boldsymbol{y})=\hat{e}$  and s=r. We can calculate this probability by examining Table 1. We observe that each bit flip from 0 to 1, neglecting the fraction parts, will either decrease  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  by 1 or keep it the same. Also, each bit flip from 1 to 0, neglecting the fraction parts, will either increase  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  by 1 or keep it the same.  $P_{dif}^{s=r}(\hat{e},\hat{e}')$  can therefore be calculated as:

$$P_{dif}^{s=r}(\hat{e}, \hat{e}') = \sum_{s=|\hat{e}'-\hat{e}|}^{n+l} \sum_{w=|\hat{e}'-\hat{e}|,s)} \sum_{w=|\hat{e}'-\hat{e}|} \times \left[ \binom{s}{w} \left( \frac{1}{2} \right)^s \binom{s}{w-|\hat{e}'-\hat{e}|} \times \left( \frac{1}{2} \right)^s \binom{n+l}{s} p^{2s} (1-p)^{2n+2l-2s} \right].$$
(28)

In the case that  $e^{(s)}$  is an odd number,  $e^{(s)}$  can arise from two cases: either  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  is on the left-hand-side of  $(e^{(s)}-1)/2$ , i.e., r < s, or  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$  is on the right-hand-side of  $(e^{(s)}+1)/2$ , i.e., r > s. When  $e^{(s)}$  is odd,  $P_{dp}^{(s)}(x,y,e)$  and  $P_{dn}^{(s)}(x,y,e)$  can be expressed as:

$$\begin{split} P_{dp}^{(s)}(x,y,e^{(s)}) &= \sum_{\hat{e}=0}^{n+l} \{P_{dp}(x,y,\hat{e})[P_{dif}^{s>r}(\hat{e},(e^{(s)}-1)/2) \\ &+ P_{dif}^{sr}(\hat{e},(e^{(s)}-1)/2) \\ &+ P_{dif}^{s$$

 $P^{s>r}_{dif}(\hat{e},\hat{e}')$  is defined to be the probability that  $\operatorname{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y}))=\hat{e}'$  given  $D(\boldsymbol{x},\boldsymbol{y})=\hat{e}$  and s>r.  $P^{s<r}_{dif}(\hat{e},\hat{e}')$  is defined to be the probability that  $\operatorname{nint}(\tilde{D}(\boldsymbol{x},\boldsymbol{y}))=\hat{e}'$  given  $D(\boldsymbol{x},\boldsymbol{y})=\hat{e}$  and s< r.

From Table II, we can express  $P^{s>r}_{dif}(\hat{e},\hat{e}')$  and  $P^{s>r}_{dif}(\hat{e},\hat{e}')$  as following:

$$\begin{split} P_{dif}^{s>r}(\hat{e},\hat{e}') &= \mathbb{1}(\hat{e} > \hat{e}') \sum_{s=\hat{e}-\hat{e}'}^{n+l} \sum_{r=0}^{s-1} \sum_{w=\hat{e}-\hat{e}'}^{\min(r+\hat{e}-\hat{e}',s)} \left\{ \begin{pmatrix} s \\ w \end{pmatrix} \right. \\ &\times (\frac{1}{2})^{s+r} \binom{r}{w-\hat{e}+\hat{e}'} \binom{n+l}{s} \binom{n+l}{r} \\ &\times p^{s+r} (1-p)^{2n+2l-s-r} \right\} \\ &+ \mathbb{1}(\hat{e} \leq \hat{e}') \sum_{r=\hat{e}-\hat{e}'}^{n+l} \sum_{s=r+1}^{\min(r+\hat{e}-\hat{e}',s)} \sum_{h=\hat{e}-\hat{e}'}^{n+l} \binom{s}{h} \\ &\times (\frac{1}{2})^{s+r} \binom{r}{h-\hat{e}+\hat{e}'} \binom{n+l}{s} \binom{n+l}{r} \\ &\times p^{s+r} (1-p)^{2n+2l-s-r} \right\} \\ P_{dif}^{s$$

where  $\ensuremath{\mathbb{1}}$  denotes the indicator function.

This ends our derivation for  $P_{dp}^{(s)}(x,y,e^{(s)})$  and  $P_{dn}^{(s)}(x,y,e^{(s)})$ . These two probabilities can then be used in place of  $P_{dp}(x,y,e)$  and  $P_{dn}(x,y,e)$  from Section IV. We proceed with the rest of the calculation in Section IV using  $e^{(s)}$  instead of e and calculate the classification accuracy accordingly.

1) Average Case Study Result: We use the above equations to calculate the expected accuracy of the k-NN classifier where the Hamming distance is computed using the Soft Hamming scheme on the 3-of-5/2 concept. We set N=32 and the accuracy is selected to be the maximum accuracy for  $2 \le k \le 16$ . The attribute noise levels are characterized by the cross over probabilities of the write BSC,  $P_{bsc}$ .

We also plot the expected classification accuracy of the noise-free case and the expected classification accuracy under attribute noise without error-detection/correction. We observe that in the region where attribute noise is small, e.g.,  $p_{bsc} < 10^{-2}$ , the attribute noise has little effect on classification accuracy. In the region where attribute noise is large, e.g.,  $p_{bsc} > 10^{-2}$ , our Soft Hamming scheme can successfully improve the classification accuracy under attribute noise.

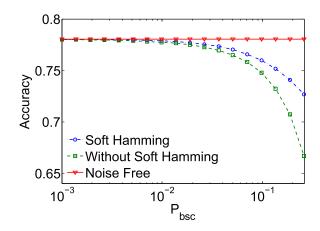


Fig. 4. Attribute noise v.s. max accuracy.

## VII. ERROR DETECTION AND CORRECTION UNDER RESISTANCE VARIATION AND WRITE BSC

In previous sections, we proposed HD-EIM to feasibly compute Hamming distance in resistive memory under the adverse effect of memristor variability due to resistance variation. We also provided the Soft Hamming scheme to deal with single bit errors introduced by memristor variability due to nondeterministic switching mechanism. In this section, we seek to combine the two approaches in order to deal with memristor variability due to both sources. Again, we suppose  $\boldsymbol{x}^{(c)}$  and  $\boldsymbol{y}^{(c)}$  are inversion coded vectors to be stored. And we define  $\tilde{\boldsymbol{x}}^{(c)}$  and  $\tilde{\boldsymbol{y}}^{(c)}$  to be the noisy vectors actually stored due to write BSC. In order to make the math tractable, we provide a solution to a simpler problem, where  $\sigma_H^2 = \sigma_L^2 = \sigma_0^2$ .

With resistance variation taken into account, the normalized conductance measurement is a random variable that is additionally affected by the write BSC. Combining Equations (14) and (21), we have the distribution of the normalized conductance measurement as follows:

$$\tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)}) \sim \mathcal{N} \left( \tilde{N}'_{11} + (\tilde{N}'_{01} + \tilde{N}'_{10}) 2\epsilon + \tilde{N}'_{00} \epsilon, \frac{\tilde{N}'_{11} \sigma_0^2}{2\mu_H^2} + \frac{(\tilde{N}'_{01} + \tilde{N}'_{10}) 8\sigma_0^2}{2\mu_H^2} + \frac{\tilde{N}'_{00} \sigma_0^2}{2\mu_H^2} \right).$$
(29)

Here  $\tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})$  is a random variable denoting the normalized conductance measurement between rows of memristors that store  $\tilde{\boldsymbol{x}}^{(c)}$  and  $\tilde{\boldsymbol{y}}^{(c)}$ .  $\tilde{N}'_{gh}$  is defined to be the number of coordinates having bit g in  $\boldsymbol{x}^{(c)}$  and bit h in  $\boldsymbol{y}^{(c)}$ , for  $g,h\in\{0,1\}$ . We use the following equation to calculate an intermediate random variable  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$ :

$$\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{1 - 3\epsilon} [n + n\epsilon - \tilde{G}(\tilde{\boldsymbol{x}}^{(c)}, \tilde{\boldsymbol{y}}^{(c)})]. \tag{30}$$

Once again, there are four different fundamental types of errors for a pair of elements  $x_i^{(c)}$  and  $y_i^{(c)}$ ,  $(0,0) \to (0,1)$ ,  $(0,1) \to (0,0)$ ,  $(0,1) \to (1,1)$  and  $(1,1) \to (0,1)$ , which we define them as error types A, B, C, and D, respectively.

TABLE III
FUNDAMENTAL ERROR TYPES UNDER RESISTANCE VARIATION

| Error Type | Mean                                             | Variance                                           |
|------------|--------------------------------------------------|----------------------------------------------------|
| A          | $D(\boldsymbol{x}, \boldsymbol{y}) - \gamma$     | $\lambda(n+7D(\boldsymbol{x},\boldsymbol{y})+7/2)$ |
| В          | $D(\boldsymbol{x}, \boldsymbol{y}) + \gamma$     | $\lambda(n+7D(\boldsymbol{x},\boldsymbol{y})-7/2)$ |
| C          | $D(\boldsymbol{x}, \boldsymbol{y}) - \gamma - 1$ | $\lambda(n+7D(\boldsymbol{x},\boldsymbol{y})-7/2)$ |
| D          | $D(\boldsymbol{x}, \boldsymbol{y}) + \gamma + 1$ | $\lambda(n+7D(\boldsymbol{x},\boldsymbol{y})+7/2)$ |

Let us define a random variable E that represents the error type of a single bit error and whether the error occurs or not.

$$P(E) = \begin{cases} p_e, & \text{if } E = A, B, C, D\\ 1 - 4p_e & \text{if } E = 0, \end{cases}$$

where E=A,B,C,D stands for the case that a single type A, B, C or D error occurs, respectively; E=0 stands for the error-free case. We define  $p_e$  to be the probability that a single bit error occurs in a pair of coded vector  $\boldsymbol{x}^{(c)}$  and  $\boldsymbol{y}^{(c)}$ , which can be calculated from the BSC parameter.

We then study the conditional distribution of  $\tilde{D}(x, y)$ . Given D(x, y), for the error-free case, i.e., E = 0,  $\tilde{D}(x, y)$  assumes the following distribution:

$$\mathcal{N}\left(D(\boldsymbol{x},\boldsymbol{y}), \frac{(n+7D(\boldsymbol{x},\boldsymbol{y}))\sigma_0^2}{\mu_H^2(1-3\epsilon)^2}\right). \tag{31}$$

In the Table III, we summarize the distribution of  $\tilde{D}(x,y)$  for a single error of each type, in terms of its mean and variance. To simplify notation, we define  $\gamma = \frac{\epsilon}{1-3\epsilon}$  and  $\lambda = \frac{\sigma_0^2}{\mu_H^2(1-3\epsilon)^2}$ . Table III is derived by examining (29) and Equation (30) for each error type.

From Table III and Equation (31), we have the conditional pdf,  $f(\tilde{D}(\boldsymbol{x},\boldsymbol{y}) \mid D(\boldsymbol{x},\boldsymbol{y}), E)$  for each pair of  $D(\boldsymbol{x},\boldsymbol{y}) \in \{0,\ldots,n\}$  and  $E \in \{0,A,B,C,D\}$ . We can therefore estimate E and  $D(\boldsymbol{x},\boldsymbol{y})$  given the observation  $\tilde{D}(\boldsymbol{x},\boldsymbol{y})$ . Denoting our estimation of the pair  $\{E,D(\boldsymbol{x},\boldsymbol{y})\}$  to be the pair  $\{\hat{E},\hat{D}(\boldsymbol{x},\boldsymbol{y})\}$ , respectively, we have the following MAP (maximum *a posteriori* probability) estimator:

$$\begin{aligned}
&\{\hat{E}, \hat{D}(\boldsymbol{x}, \boldsymbol{y})\} \\
&= \underset{\{E, D(\boldsymbol{x}, \boldsymbol{y})\}}{\operatorname{arg max}} & f(D(\boldsymbol{x}, \boldsymbol{y}), E \mid \tilde{D}(\boldsymbol{x}, \boldsymbol{y})) \\
&= \underset{\{E, D(\boldsymbol{x}, \boldsymbol{y})\}}{\operatorname{arg max}} & \frac{f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}), E) f(D(\boldsymbol{x}, \boldsymbol{y}), E)}{f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}))} \\
&= \underset{\{E, D(\boldsymbol{x}, \boldsymbol{y})\}}{\operatorname{arg max}} & f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}), E) f(D(\boldsymbol{x}, \boldsymbol{y}), E) \\
&= \underset{\{E, D(\boldsymbol{x}, \boldsymbol{y})\}}{\operatorname{arg max}} & f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}), E) P(E) P(D(\boldsymbol{x}, \boldsymbol{y})) \\
&= \underset{\{E, D(\boldsymbol{x}, \boldsymbol{y})\}}{\operatorname{arg max}} & f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}), E) P(E). \end{aligned} (32)$$

Next, we present a solution to the above MAP estimator. Define  $s_m(D_H)$  for  $D_H \in \{0, ..., n-1\}$  to be a solution of equation:

$$f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H, E = B)$$

$$= f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H + 1, E = A), \quad (33)$$
such that  $D_H + \gamma < s_m(D_H) < D_H + 1.$ 

Note that for Equation (33), there always exists a solution that satisfies the constraint of  $s_m(D_H)$  therefore  $s_m(D_H)$  always exist.

We define  $s_0^{(1)}$  and  $s_0^{(2)}$  to be solutions of the following equation:

$$f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = 0, E = A)$$

$$= f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = 0, E = C), \quad (34)$$

such that:

$$-1 - \gamma < s_0^{(1)} < -\gamma$$
, and  $s_0^{(2)} < -1 - \gamma$ .

We also define  $s_n$  to be a solution of the equation:

$$f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = n, E = B)$$
  
=  $f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = n, E = D),$  (35)

such that:

$$n + \gamma < s_n < n + 1 + \gamma$$
.

We define  $s_+(D_H)$  for  $D_H \in \{0, ..., n\}$  to be a solution, if exist, of the equation:

$$(1 - 4p_e)f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H, E = 0)$$
  
=  $p_e f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H, E = B), \quad (36)$ 

such that:

$$D_H < s_+(D_H) < s_m(D_H)$$
 for  $D_H \in \{0, ..., n-1\}$ ,  
 $n < s_+(D_H) < s_n$  for  $D_H = n$ .

Similarly, we define  $s_{-}(D_H), D_H \in \{0, \dots, n\}$  to be a solution, if exist, of the equation:

$$(1 - 4p_e)f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H, E = 0)$$
  
=  $p_e f(\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_H, E = A),$  (37)

such that:

$$s_m(D_H) < s_-(D_H) < D_H \text{ for } D_H \in \{1, \dots, n\},$$
  
 $s_0^{(1)} < s_-(D_H) < 0 \text{ for } D_H = 0.$ 

Note that there exist cases where none of the solutions of Equation (36) or Equation (37) satisfies the constraint of  $s_+(D_H)$  or  $s_-(D_H)$ . Hence  $s_+(D_H)$  or  $s_-(D_H)$  may not exist for certain device parameters.

If  $s_+(D_H)$  and  $s_-(D_H)$  exist for all  $D_H$ , and the following conditions are true:

$$p_{e}f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H}, E = B)$$

$$= p_{e}f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H} + 1, E = A)$$

$$\geq (1 - 4p_{e})f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H}, E = 0),$$
for  $D_{H} \in \{0, \dots, n - 1\};$ 

and

$$p_{e}f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H}, E = B)$$

$$= p_{e}f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H} + 1, E = A)$$

$$\geq (1 - 4p_{e})f(s_{m}(D_{H}) \mid D(\boldsymbol{x}, \boldsymbol{y}) = D_{H} + 1, E = 0),$$
for  $D_{H} \in \{0, \dots, n - 1\};$ 

and

$$p_e f(s_0^{(1)} \mid D(\boldsymbol{x}, \boldsymbol{y}) = 0, E = A)$$

$$= p_e f(s_0^{(1)} \mid D(\boldsymbol{x}, \boldsymbol{y}) = 0, E = C)$$

$$\geq (1 - 4p_e) f(s_0^{(1)} \mid D(\boldsymbol{x}, \boldsymbol{y}) = 0, E = 0);$$

and

$$p_e f(s_n \mid D(\boldsymbol{x}, \boldsymbol{y}) = n, E = B)$$

$$= p_e f(s_n \mid D(\boldsymbol{x}, \boldsymbol{y}) = n, E = D)$$

$$\geq (1 - 4p_e) f(s_n \mid D(\boldsymbol{x}, \boldsymbol{y}) = n, E = 0);$$

then the MAP estimator has a solution as follows:

If 
$$s_{-}(D_{H}) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{+}(D_{H})$$
 for some  $D_{H}$ , then  $\hat{E} = 0, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H}$ ;

If  $s_{+}(D_{H}) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{m}(D_{H})$  for some  $D_{H}$ , then  $\hat{E} = B, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H}$ , or  $\hat{E} = D, \hat{D}(\boldsymbol{x}, \boldsymbol{y})$  =  $D_{H} - 1$ ;

If  $s_{m}(D_{H} - 1) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{-}(D_{H})$  for some  $D_{H}$ , then  $\hat{E} = A, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H}$ , or  $\hat{E} = C, \hat{D}(\boldsymbol{x}, \boldsymbol{y})$  =  $D_{H} + 1$ ;

If  $s_{0}^{(1)} < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{-}(0)$  then  $\hat{E} = A, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{n}$  then  $\hat{E} = B, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n$ , or  $\hat{E} = C, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n - 1$ ;

If  $s_{0}^{(2)} < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{0}^{(1)}$ , then  $\hat{E} = C, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = 0$ ;

If  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) > s_{n}$ , then  $\hat{E} = D, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n$ ;

If  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{0}^{(2)}$ , then  $\hat{E} = A, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = 0$ , or  $\hat{E} = C, \hat{D}(\boldsymbol{x}, \boldsymbol{y}) = 1$ . (38)

Note that the MAP estimator has multiple solutions when an error is detected, i.e.,  $E \neq 0$ . This is similar to what we observed in Section V and it is due to the underlying problem, e.g.,  $f(\tilde{D}(\boldsymbol{x},\boldsymbol{y})|D(\boldsymbol{x},\boldsymbol{y})=D_H,E=B)=f(\tilde{D}(\boldsymbol{x},\boldsymbol{y})|D(\boldsymbol{x},\boldsymbol{y})=D_H-1,E=D)$ . As a solution, we adapt the same idea of the Soft Hamming scheme and propose the following estimator:

If 
$$s_{-}(D_{H}) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{+}(D_{H})$$
 for some  $D_{H}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H}$ ; if  $s_{+}(D_{H}) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{m}(D_{H})$  for some  $D_{H}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H} - 1/2$ ; if  $s_{m}(D_{H} - 1) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{-}(D_{H})$  for some  $D_{H}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = D_{H} + 1/2$ ; if  $s_{0}^{(1)} < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{-}(0)$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = 1/2$ ; if  $s_{+}(n) < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{n}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n - 1/2$ ; if  $s_{0}^{(2)} < \tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{0}^{(1)}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = 0$ ; if  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) > s_{n}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n$ ; if  $\tilde{D}(\boldsymbol{x}, \boldsymbol{y}) \leq s_{0}^{(2)}$ , then  $\hat{D}(\boldsymbol{x}, \boldsymbol{y}) = n - \frac{1}{2}$ . (39)

|                | $\mu_L$ | $\sigma_L$ | $\mu_H$ | $\sigma_H$ | $\epsilon$ | β      | $D_B^1$ | $D_B^2$ | $D_B^3$ | $D_B^4$ |
|----------------|---------|------------|---------|------------|------------|--------|---------|---------|---------|---------|
| TiOx           | 1.0e-3  | 2.5e-4     | 2.5e-2  | 2.5e-3     | 4.0e-2     | 2.5e-2 | 6.5e-4  | 5.0e-3  | 8.3e-5  | 8.3e-5  |
| $HfOx^{(1)}$   | 1.0e-3  | 2.1e-4     | 5.0e-3  | 8.3e-4     | 2.0e-1     | 3.4e-1 | 2.0e-3  | 3.5e-3  | 9.2e-4  | 9.2e-4  |
| $AuZrOx^{(1)}$ | 3.3e-7  | 1.0e-7     | 1.4e-2  | 2.1e-3     | 2.3e-5     | 4.5e-2 | 1.5e-3  | 8.4e-3  | 3.2e-7  | 2.4e-7  |
| SrZrO3         | 5.0e-7  | 8.3e-8     | 1.7e-3  | 3.3e-4     | 3.0e-4     | 8.0e-2 | 3.0e-3  | 2.0e-3  | 2.5e-7  | 2.5e-7  |
| CuGeSe         | 1.7e-6  | 3.3e-7     | 3.3e-4  | 6.7e-5     | 5.0e-3     | 8.2e-2 | 3.0e-3  | 3.0e-3  | 1.5e-6  | 1.6e-6  |
| CoOx           | 1.3e-5  | 3.8e-6     | 2.0e-4  | 3.8e-5     | 6.3e-2     | 1.1e-1 | 2.5e-3  | 7.7e-3  | 2.9e-4  | 3.0e-4  |
| $HfOx^{(2)}$   | 1.3e-5  | 3.8e-9     | 1.0e-4  | 2.5e-5     | 1.3e-4     | 1.3e-1 | 5.0e-3  | 7.7e-3  | 2.0e-7  | 2.6e-7  |
| TiON           | 1.7e-7  | 3.3e-8     | 5.0e-5  | 1.6e-5     | 3.3e-3     | 2.3e-1 | 9.7e-3  | 3.0e-3  | 9.0e-6  | 9.0e-6  |
| $AuZrOx^{(2)}$ | 2.5e-8  | 6.3e-9     | 1.0e-5  | 2.5e-6     | 2.5e-3     | 1.3e-1 | 5.0e-3  | 5.0e-3  | 8.0e-7  | 9.5e-7  |

 $\label{total constraints} TABLE\ IV$  RERAM Models and Bhattacharyya Distances

Note that we do not specify the error type in the above estimator.  $\hat{D}(x,y)$  is estimated by taking the average between two candidate estimation in Estimator (38). This estimator therefore can successfully estimate the Hamming distance between vectors in resistive memory under the adverse effect of resistance variation while also have the capability to correct a single bit error caused by the write BSC. Also note that the threshold values, e.g.,  $s_{\pm}(D_H)$ , can be precomputed and stored in a table to improve efficiency.

#### VIII. CONCLUSION

In this paper, under the assumption of limited accessible information, we studied the feasibility of Hamming Distance Computation-in-Memory (HD-CIM) under two main (and complementary) sources of memristor variability. We use the optimal constant weight code that preserves Hamming distance, i.e., inversion coding, to provide a priori knowledge of vector weights. Analysis of the Hamming-distance estimation is provided when the resistances of memristors are modeled as Gaussian random variables. Our Soft Hamming scheme is proposed to detect and correct a single bit error introduced by the write BSC. The two schemes are evaluated for the k-NN classifier using the average-case study framework. These two schemes are combined at the end to tackle both resistance variation and non-deterministic write mechanism simultaneously. Future research will focus on reliable HD-CIM suitable for vectors whose weights are within a known range. Codes that map a vector with arbitrary weight to a vector whose weight is within a known range while preserving Hamming distance will be studied to further reduce redundancy.

# APPENDIX A APPROXIMATION JUSTIFICATION

In Section III, the following approximations are made:

$$\frac{H_{i,x}H_{i,y}}{H_{i,x} + H_{i,y}} \approx F_i \sim \mathcal{N}(\mu_H/2, \sigma_H^2/8),$$
 (40)

$$H_{i,x} + H_{i,y}$$

$$\frac{L_{i,x}L_{i,y}}{L_{i,x} + L_{i,y}} \approx T_i \sim \mathcal{N}(\mu_L/2, \sigma_L^2/8), \tag{41}$$

$$\frac{H_{i,x}L_{i,y}}{H_{i,x}+L_{i,y}} \approx S_i \sim \mathcal{N}\left(\frac{\mu_L}{1+\epsilon}, \frac{\sigma_L^2}{(1+\epsilon)^4}\right), \tag{42}$$

$$\frac{L_{i,x}H_{i,y}}{L_{i,x}+H_{i,y}} \approx S_i \sim \mathcal{N}\left(\frac{\mu_L}{1+\epsilon}, \frac{\sigma_L^2}{(1+\epsilon)^4}\right). \tag{43}$$

Here we show that the approximated distributions are close to the original distributions by studying these approximations using data from a variety of memristor technology reported in the literature [10]. We model the reported resistance variations for 9 types of ReRAM devices. For each ReRAM device, let L and H denote the random variables for low state conductance and high state conductance, respectively. We assume L and H follow the following two Gaussian distributions respectively:

$$H \sim \mathcal{N}(\mu_H, \sigma_H^2), L \sim \mathcal{N}(\mu_L, \sigma_L^2).$$
 (44)

For each ReRAM device,  $\mu_H$  and  $\mu_L$  are set to be the reciprocal value of its mean low-state resistance and high-state resistance, i.e.  $R_{avg}^L$  and  $R_{avg}^H$ , respectively.  $\sigma_H$  and  $\sigma_L$  are calculated using the following rule:

$$\begin{split} \sigma_{H} &= \frac{1}{2} \min \left( \frac{1}{R_{min}^{H}} - \frac{1}{R_{avg}^{H}}, \frac{1}{R_{avg}^{H}} - \frac{1}{R_{max}^{H}} \right), \\ \sigma_{L} &= \frac{1}{2} \min \left( \frac{1}{R_{min}^{L}} - \frac{1}{R_{avg}^{L}}, \frac{1}{R_{avg}^{L}} - \frac{1}{R_{max}^{L}} \right), \end{split}$$

where  $R^L_{min}$  and  $R^L_{max}$  are the smallest and largest low-state resistance value reported, respectively. Similarly,  $R^H_{min}$  and  $R^H_{max}$  are the smallest and largest low-state resistance values reported. The resulting models for the 9 ReRAM devices are summarized in Table IV.

For each ReRAM device, we calculate four discretized distributions on the left hand side of the approximation. We first generate  $10^7$  samples for  $H_{i,x}$ ,  $H_{i,y}$ ,  $L_{i,x}$  and  $L_{i,y}$  according to the (44). Then we calculate the discretized distributions for expressions on the left-hand-side of Approximation (40), (41), (42) and (43) by dividing all samples into 100 bins with equal bin width. We also calculate the discretized approximated distributions (the right-hand-side of Approximation (40), (41), (42) and (43) using the same bins. For each approximation

in (40), (41), (42) and (43) we calculate the Bhattacharyya distance for each pair of distributions using the following equations:

$$D_B(p,q) = -\ln(BC(p,q)),\tag{45}$$

where

$$BC(p,q) = \sum_{x \in X=1,...,100} \sqrt{p(x)q(x)},$$
 (46)

where p is the discretized original distribution and q is the discretized approximated distribution.

The four distance metrics for each ReRAM device,  $D_B^1$ ,  $D_B^2$ ,  $D_B^3$  and  $D_B^4$ —the Bhattacharyya distance between the left distribution and the right distribution of approximations (40), (41), (42) and (43), respectively—are listed in Table III. Bhattacharyya distance close to zero means the two distribution are close. Thus we have showed our approximations are suitable for a variety of ReRAM devices which have a large range of resistance variation.

## REFERENCES

- Z. Chen, C. Schoeny, Y. Cassuto, and L. Dolecek, "A coding scheme for reliable in-memory Hamming distance computation," in *Proc. Asilomar Conf. Signals, Syst., Comput.*, Pacific Grove, CA, USA, Oct./Nov. 2017, pp. 1713–1717.
- [2] C. L. P. Chen and C.-Y. Zhang, "Data-intensive applications, challenges, techniques and technologies: A survey on big data," *Inf. Sci.*, vol. 275, pp. 314–347, Aug. 2014.
- [3] S. Hamdioui et al., "Memristor based computation-in-memory architecture for data-intensive applications," in Proc. IEEE Design Automat. Test Eur. Conf. Exhib. (DATE), Grenoble, France, Mar. 2015, pp. 1718–1725.
- [4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," *Nature*, vol. 453, pp. 80–83, May 2008.
- [5] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-based material implication (IMPLY) logic: Design principles and methodologies," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 22, no. 10, pp. 2054–2066, Oct. 2014.
- [6] B. Kulis and T. Darrell, "Learning to hash with binary reconstructive embeddings," in *Proc. Neural Inf. Process. Syst. (NIPS)*, Vancouver, BC, Canada, Dec. 2009, pp. 1042–1050.
- [7] M. Norouzi, A. Punjani, and D. J. Fleet, "Fast search in Hamming space with multi-index hashing," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, Providence, RI, USA, Jun. 2012, pp. 3108–3115.
- [8] Y. Cassuto and K. Crammer, "In-memory Hamming similarity computation in resistive arrays," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Hong Kong, Jun. 2015, pp. 819–823.
- [9] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S. Williams, "Writing to and reading from a nano-scale crossbar memory based on memristors," *Nanotechnology*, vol. 20, no. 42, p. 425204, 2009.
- [10] A. Chen and M.-R. Lin, "Variability of resistive switching memories and its impact on crossbar array performance," in *Proc. Int. IEEE Rel. Phys. Symp. (IRPS)*, Monterey, CA, USA, Apr. 2011, pp. MY.7.1–MY.7.4.
- [11] I. G. Baek et al., "Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application," in IEEE Int. Electron Devices Meeting, (IEDM) Tech. Dig., Dec. 2005, pp. 750–753.
- [12] X. Cao et al., "All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature," J. Phys. D, Appl. Phys., vol. 44, no. 25, p. 255104, 2011.
- [13] M. Wang et al., "A novel CU<sub>x</sub>Si<sub>y</sub>O resistive memory in logic technology with excellent data retention and resistance distribution for embedded applications," in *Proc. IEEE Symp. Technol. (VLSIT)*, Honolulu, HI, USA, Jun. 2010, pp. 89–90.
- [14] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, and R. S. Williams, "Lognormal switching times for titanium dioxide bipolar memristors: Origin and resolution," *Nanotechnology*, vol. 22, no. 9, p. 095702, 2011.

- [15] D. Niu, Y. Xiao, and Y. Xie, "Low power memristor-based ReRAM design with error correcting code," in *Proc. IEEE Design Automat. Conf. Asia South Pacific (ASP-DAC)*, Sydney, NSW, Australia, Jan./Feb. 2012, pp. 79–84.
- [16] W. Yi et al., "Feedback write scheme for memristive switching devices," Appl. Phys. A, Mater. Sci. Process., vol. 102, no. 4, pp. 973–982, 2011.
- [17] M. J. Pazzani and W. Sarrett, "A framework for average case analysis of conjunctive learning algorithms," *Mach. Learn.*, vol. 9, no. 4, pp. 349–372, 1992.
- [18] S. Okamoto and N. Yugami, "An average-case analysis of the k-nearest neighbor classifier for noisy domains," in *Proc. Int. Joint Conf. Artif. Intel. (IJCAI)*, Nagoya, Japan, Aug. 1997, pp. 238–245.



Zehui Chen (S'17) received the B.S. degree in electrical engineering from Purdue University, West Lafayette, IN, USA, in 2016, and the M.S. degree in electrical engineering from the University of California at Los Angeles (UCLA) in 2018. He is currently pursuing the Ph.D. degree with the Electrical and Computer Engineering Department, UCLA. He is also a Graduate Student Researcher with the Laboratory for Robust Information Systems, UCLA. His research interests include coding theory, information theory and their applications in new memory medium



Clayton Schoeny (S'09) received the B.S. and M.S. degrees in electrical engineering from the University of California at Los Angeles (UCLA) in 2012 and 2014, respectively. He is currently pursuing the Ph.D. degree with the Electrical and Computer Engineering Department, UCLA. He was a recipient of the Henry Samueli Excellence in Teaching Award, the 2016 Qualcomm Innovation Fellowship, and the 2017 UCLA Dissertation Year Fellowship.



Lara Dolecek (S'05–M'10–SM'12) received the B.S. (Hons.), M.S., and Ph.D. degrees in electrical engineering and computer sciences, and the M.A. degree in statistics from the University of California at Berkeley. She was a Post-Doctoral Researcher with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology. She is currently an Associate Professor with the Electrical Engineering Department, University of California at Los Angeles (UCLA). Her research interests span coding and information theory, graph-

ical models, statistical algorithms, and computational methods, with applications to emerging systems for data storage, processing, and communication. She received the 2007 David J. Sakrison Memorial Prize for the most outstanding doctoral research in the Department of Electrical Engineering and Computer Sciences at UC Berkeley. She received the Hellman Fellowship Award in 2011, the NSF CAREER Award in 2012, the Northrop Grumman Excellence in Teaching Award in 2013, the Intel Early Career Faculty Award in 2013, the University of California Faculty Development Award in 2013, the Okawa Research Grant in 2013, and the IBM Faculty Award in 2014. With her research group, she received the Best Paper Award from the IEEE GLOBECOM 2015 Conference. She currently serves as an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS.