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ABSTRACT

Automated Program Repair (APR) is one of the most recent advances
in automated debugging, and can directly fix buggy programs with
minimal human intervention. Although various advanced APR tech-
niques (including search-based or semantic-based ones) have been
proposed, they mainly work at the source-code level and it is not
clear how bytecode-level APR performs in practice. Also, empirical
studies of the existing techniques on bugs beyond what has been
reported in the original papers are rather limited. In this paper,
we implement the first practical bytecode-level APR technique,
PraPR, and present the first extensive study on fixing real-world
bugs (e.g., Defects4] bugs) using JVM bytecode mutation. The ex-
perimental results show that surprisingly even PraPR with only the
basic traditional mutators can produce genuine fixes for 17 bugs;
with simple additional commonly used APR mutators, PraPR is able
to produce genuine fixes for 43 bugs, significantly outperforming
state-of-the-art APR, while being over 10X faster. Furthermore, we
performed an extensive study of PraPR and other recent APR tools
on a large number of additional real-world bugs, and demonstrated
the overfitting problem of recent advanced APR tools for the first
time. Lastly, PraPR has also successfully fixed bugs for other JVM
languages (e.g., for the popular Kotlin language), indicating PraPR
can greatly complement existing source-code-level APR.
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1 INTRODUCTION

Software systems are ubiquitous in today’s world; most of our
activities, and sometimes even our lives, depend on software. Un-
fortunately, software systems are not perfect and often come with
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bugs. Software debugging is a challenging activity that consumes
over 50% of the development time/effort [78], and costs the global
economy billions of dollars [17]. To date, a huge body of research
has been dedicated to automatically localize [10, 13, 14, 44, 46, 48,
67, 79, 87, 94, 97] or fix [18, 21, 22, 28, 30, 35, 43, 49-51, 56, 58, 61,
66, 68, 76, 80, 82, 84, 92] software bugs. Automated Program Repair
(APR) techniques aim to directly fix software bugs with minimal
human intervention, and has been under intense research in spite
of being a young research area [28].

Based on the actions taken for fixing a bug, state-of-the-art APR
techniques can be divided into two broad categories: (1) techniques
that monitor the dynamic execution of a program to find deviations
from certain specifications, and then heal the program by modifying
its runtime state in case of any abnormal behavior [51, 68]; (2)
generate-and-validate (G&V) techniques that modify program code
representations based on various rules/techniques, and then use
either tests or formal specifications as the oracle to validate each
generated candidate patch for finding plausible patches (i.e., the
patches that can pass all the tests/checks), which are further checked
to find genuine patches (i.e., the patches semantically equivalent to
developer patches) [18, 21, 22, 30, 35, 43, 48-50, 56, 61, 66, 80, 85, 92].
Among these, G&V techniques, especially those based on tests, have
gained popularity as testing is the prevalent way for detecting bugs,
while very few systems are based on rigorous, formal specifications.

It is worth noting that, lately, multiple APR research papers get
published in Software Engineering conferences and journals each
year, introducing various delicately designed and/or implemented
APR techniques. With such state-of-the-art APR techniques, more
and more real bugs can be fixed fully automatically, e.g., the recent
CapGen [85] technique, published in ICSE’18, has been reported
to produce genuine patches for 22 bugs of Defects4] (a suite of
real-world Java programs widely used for evaluating APR tech-
niques [38]). Despite the success of recent APR techniques, as also
highlighted in a recent survey [28], currently we have a scattered
collection of findings and innovations with no thorough evaluation
of them. In particular, it is not clear how a simplistic bytecode-
mutation approach works for APR in practice.

In this paper, we present the first extensive study on APR tech-
niques, with an emphasis on bytecode-level APR, on the widely
used Defects4] dataset [31, 38]. To this end, we build a practical
APR tool named PraPR (Practical Program Repair) based on a set of
simple JVM bytecode [47] mutation rules, including basic mutators
from traditional mutation testing [36] (e.g., changing a>=b into a>b)
and augmented mutators that occur frequently in real-world bug-fix
commits (e.g., replacing field accesses or method invocations). We
stress that although simplistic, PraPR offers various benefits and
can complement state-of-the-art techniques. First, all the patches
that PraPR generates can be directly validated without compilation,
while existing techniques [18, 21, 22, 30, 35, 37, 43, 49, 50, 56, 61,
66, 80, 85, 92] have to compile and load each candidate patch. Even
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though some techniques curtail compilation overhead by encod-
ing a group of patches inside a single meta-program, it can still
take up to 37 hours to fix a Defects4] program due to numerous
patch compilations and loading [18]. Second, bytecode-level repair
avoids messing up the source code in unexpected ways, and can
even be applicable for fixing code without source code information,
e.g., buggy 3rd-party libraries that do not have official patches yet.
Third, manipulating programs at the level of JVM bytecode makes
PraPR independent of the syntax of a specific target programming
language, and applicable to different Java versions and even other
popular JVM-based languages (notably Kotlin [34], Scala [62], and
Groovy [25]). Lastly, PraPR does not require complex patching
rules [43, 49, 92], complicated computations such as symbolic exe-
cution and constraint solving [18, 56, 61], or any training/mining
[37,71, 85, 91], making it directly applicable to real-world programs
and easily adoptable as the baseline for future APR techniques.
We have applied PraPR to fix all the 395 bugs available in De-
fects4] V1.2.0. Surprisingly, even the basic traditional mutators can
already produce genuine fixes for 17 bugs. With both the traditional
and the augmented mutators, PraPR successfully produces genuine
fixes for 43 bugs, thereby significantly outperforming state-of-the-
art APR techniques (e.g., the recent CapGen [85] fixes only 22 bugs).
Also, thanks to the bytecode-level manipulation, PraPR with only
single thread can already be over an order of magnitude faster
than state-of-the-art SimFix [37], CapGen, JAID [18] (that reduces
compilation overhead by bundling patches in meta-programs), and
SketchFix [33] (that reduces compilation overhead via sketching).
We further study PraPR (and other recent APR tools) on 192 addi-
tional bugs from Defects4] V1.4.0 and bugs from another popular
JVM language, Kotlin. The paper makes the following contributions:

o Study. We perform the first extensive study on the perfor-
mance and efficiency of both source-code-level and bytecode-
level APR techniques on 395 real-world Java bugs from De-
fects4] V1.2.0 [38]. We are also the first to evaluate recent
advanced APR techniques on the 192 additional bugs from
Defects4] V1.4.0 [31]. Furthermore, we report the first repair
study on Kotlin bugs from Defexts [16] (a dataset with 225
real-world Kotlin bugs).

¢ Implementation. We implement a full-fledged practical
program repair tool for JVM bytecode, PraPR (available on
Maven Central Repo and GitHub [29]). To our knowledge,
this is also the first general-purpose polyglot APR technique
for JVM-based languages. Furthermore, we were unable
to successfully apply the other studied APR tools on the
bugs other than the ones in the original papers. We actively
worked with the authors to address that: we reported several
bugs to the CapGen authors, and also directly contributed to
enable CapGen to run on more projects; we also managed
to write our own code to produce all information needed by
SimFix for fixing arbitrary Java programs.

e Results. Our results demonstrate that on Defects4] V1.2.0
PraPR can fix more bugs than the state-of-the-art APR tech-
niques, while being over 10X faster. Also, PraPR showed a
decent level of consistency both in the number of false posi-
tives and successfully fixed bugs when applied to additional
bugs from Defects4] V1.4.0, while other techniques suffer
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from overfitting. Furthermore, PraPR successfully fixed vari-
ous Kotlin bugs from Defexts.

e Guidelines. Our findings demonstrate for the first time that
simple bytecode mutations can greatly complement state-of-
the-art APR techniques in at least three aspects (effectiveness,
efficiency, and applicability), and can inspire more work to
advance APR in this direction.

2 RELATED WORK
2.1 Mutation Testing

Mutation testing [11] is a powerful method for assessing the quality
of a given test suite in detecting potential software bugs. Mutation
testing measures test suite quality via injecting “artificial bugs” into
the subject programs. The basic intuition is that the more artificial
bugs that a test suite can detect, the more likely is it to detect
potential real bugs, hence the test suite is of higher quality [12, 39].
Central to mutation testing is the notion of mutation operator, aka
mutator, which is used to generate artificial bugs to mimic real
bugs. Applying a mutator on a program results in a mutant (or
mutation) of the program—a variant of the program that differs
from the original program only in the injected artificial bug, e.g.,
replacing a+b with a-b. This suggests that the resulting mutants
should be syntactically valid and typeable, and the mutators are
highly dependent on the target programming language.

Given a program £, mutation testing will generate a set of mu-
tants M. Given a mutant m € M of the program, a test suite 7~
is said to kill mutant m if and only if there exists at least one test
t € 7 such that the observable final state of £ on ¢ differs from
that of m on t, ie., P[t] # m[t]. Similarly, a mutant is said to
survive if no test in 7 can kill it. Some of the survived mutants
might be (semantically) equivalent to the original program, hence
no test can ever kill such equivalent mutants. By having the num-
ber of killed and equivalent mutants for a given test suite 7, one
may easily compute a mutation score to evaluate the quality of
T, i.e., the ratio of killed mutants to all non-equivalent mutants

- [Miitied]
(MS - |M‘7|Mequivulent|

suite evaluation, recently mutation testing has also been widely
applied in various other areas, such as simulating real bugs for
software-testing experiments [12, 39], automated test generation
[65, 95], fault localization [45, 46, 59, 63, 96], and even automated
program repair [22, 55] and build repair [52]. When using mutation
testing for program repair, the inputs are a buggy program # and
its corresponding test suite 7~ with failed tests due to the bug(s).
The output will be a subset M C M of mutants that pass all the
tests within 7. Such resulting mutants are plausible fixes for .

). Besides its original application in test

2.2 Generate-and-Validate Program Repair

Modern G&V APR techniques usually first utilize existing fault local-
ization [10, 13, 87] techniques to identify suspicious code elements,
and then systematically change/insert/delete code at suspicious
locations to search for a new program variant that can produce
expected outputs. In practice, tests play a central role in both lo-
calizing the bugs and also checking if a program variant behaves
as expected—i.e., tests are also used as fix oracles. Fault localiza-
tion techniques use the information obtained from both failing and
passing tests to compute degrees of suspiciousness for each ele-
ment of the program. For example, spectrum-based fault localization
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techniques [87], which identify the program elements covered by
more failed tests and less passed tests as more suspicious, have been
widely adopted by various APR techniques [28, 55, 58]. Modifying
a buggy program results in various candidate patches that could be
verified using the available test suite. A candidate patch that can
pass all the failing and passing tests within the original test suite
is called a plausible patch, while a patch that not only passes all
the tests but is also semantically equivalent to the corresponding
developer patch denotes a genuine patch. Note that, due to the APR-
overfitting problem [28, 32, 58, 70, 93], not all plausible patches
might be considered genuine patches. Overfitting is a principal
problem with test-driven G&V APR because of its dependence on
the test suites to verify patches. In practice, test suites are usually
not perfect, and a patch passing the test suite may not generalize
to other potential tests of the program. Thus, various techniques
[56, 61, 88, 90] have been proposed to mitigate overfitting.

Based on different hypotheses, state-of-the-art G&V APR tools
use a variety of techniques to generate or synthesize patches. Search-
based APR techniques are based on the hypothesis that most bugs
could be solved by searching through all the potential candidate
patches based on certain patching rules [22, 43]. Alternatively,
semantic-based techniques use deeper semantical analyses (such as
symbolic execution) to synthesize conditions, or even more complex
code snippets, that can pass all the tests [56, 61, 83, 92]. There are
also various other studies on APR techniques: while some studies
show that generating patches just by deleting the original software
functionality can be effective [69, 70], other studies [43, 85] demon-
strate that fix ingredients could be adopted from somewhere in the
buggy program itself or even other programs based on the plastic
surgery hypothesis [15]. As discussed earlier, mutation testing has
also been applied for APR. The hypothesis for mutation-based APR
is that “if the mutators mimic programmer errors, mutating a defec-
tive program can, therefore, fix it” [22]. However, the existing studies
either concern mutation-based APR on a set of small programs (e.g.,
the Siemens Suite [1]) with artificial bugs [22] or apply only a lim-
ited set of mutators [55]. For example, the most recent study [55]
on mutation-based APR with 3 mutators shows that it can fix only
4 Defects4] bugs. Furthermore, all the existing studies [22, 55, 69]
apply mutation at the source code level, which can incur substantial
compilation/class-loading overhead and is language-dependent. Ma
et al. leveraged domain knowledge to fix cryptography misuses for
Android apps at the bytecode level [53]. Schulte et al. discussed the
possibility to fix bugs through evolution of assembly code [74]. We
present and study the first general-purpose mutation-based APR
technique at the bytecode level.

3 PRAPR

This section first presents the overall approach of PraPR (§3.1), and
then discusses mutator design (§3.2), which makes up the core of
PraPR. Both our overall approach and mutator design are simplistic
for easy result reproduction and future extension.

3.1 Overall Approach

The overall approach of PraPR is presented in Algorithm 1. The algo-
rithm inputs are the original buggy program % and its test suite 7~
that can detect the bug(s). For the ease of illustration, we represent
the passing and failing tests in the test suite as 7, and 7, respec-
tively. The algorithm output is P,, a set of plausible patches that

21

ISSTA *19, July 15-19, 2019, Beijing, China

Algorithm 1: PraPR

Input: Original buggy program %, failing tests 7f, passing tests 7p
Output: Plausible patch set P,

1 begin
2 L « FaultlLocalization(¥)// Fault localization
3 P « MutGen(P, L) // Candidate patch generation
/* Perform validation for each candidate patch */

4 for P’ € Pdo
5 falsified=False// Whether the patch is falsified
6 T « Cover(Diff(P’, P))
7 if 177 2 T then continue;

/* Check if originally failed tests still fail */
8 fort € 7} do
9 if $'[t] = failing then
10 falsified=True
11 L break // Abort current patch validation
12 if falsified=True then continue;

/* Check if any originally passed test fails */
13 fort € 7p N T do
14 if P’[[t] = failing then
15 falsified=True
16 L break // Abort current patch validation
17 if falsified=False then
18 | P, eP,U{P"}// Store current plausible patch
19 | return P, // Return the resulting patch set

can pass all the tests in 77, and the developers can further inspect
P, to check if there is any genuine patch. Shown in the algorithm,
Line 2 first computes and ranks the suspicious program locations £
using off-the-shelf fault localization techniques (e.g., Ochiai [10] for
this work). Line 3 then exhaustively generates candidate patches
P for all suspicious locations (i.e., the locations executed by any
failed test) using our mutators presented in §3.2. Following prior
APR work [18, 55, 85], patches modifying more suspicious loca-
tions obtain a higher rank. Then, Lines 4 to 18 iterate through each
candidate patch to find plausible patches.

To ensure efficient patch validation, following prior work [55, 85],
each candidate patch is firstly executed against the failed tests (Lines
8-11), and will only be executed against the remaining tests once
it passes all the originally failed tests. The reason is that the origi-
nally failed tests are more likely to fail again on candidate patches,
whereas the patches failing any test are already falsified, and do
not need to be executed against the remaining tests for sake of
efficiency. Furthermore, we also apply two additional optimizations
widely used in the mutation testing community (e.g., PIT [19] and
Javalanche [73]). First, all the candidate patches are directly gener-
ated at the JVM bytecode level to avoid expensive recompilation
of a huge number of candidate patches. Second, PraPR computes
the tests covering the patched location (i.e., statements) of each
candidate patch as 7 (Line 6) to safely reduce test executions (re-
cent APR techniques also adopted this optimization [33, 57]). For
failing tests, if 7’ does not subsume ‘7} the candidate patch can
be directly skipped since the patched location is not covered by all
failed tests and thus cannot make all failed tests pass (Line 7); for
passing tests, PraPR only needs to check the patch against the tests
covering the patched location (Line 13) since the other passing tests
do not touch the patched location and will still pass. If the patch
passes all tests, it will be recorded in the resulting plausible patch
set P,. Finally, PraPR returns P, (Line 19).

Note that the bytecode-level patches include enough information
for the developers to confirm/reject the patches and apply them to
the source code. Shown in Figure 1, the two example bytecode-level
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PraPR 2 (JDK 1.7) Fix Report - Mon Jan 14 21:01:01 CST 2019
Number of Plausible Fixes: 2
Total Number of Patches: 416

1. Mutator: METHOD CALL (the call to java.lang.Character::isWhitespace(C)Z
is replaced with the used of default value false)

File Name: org/apache/commons/lang3/time/FastDateParser.java

Line Number: 307

2. Mutator: CONDITIONAL (removed conditional - replaced equality check
with false)

File Name: org/apache/commons/lang3/time/FastDateParser.java

Line Number: 307

Contents of the file org/apache/commons/lang3/time/FastDateParser. java for Lang 10:

305 for(int i= @; i<value.length(); ++i) {
306 char c= value.charAt(i);

307 if(Character.isWhitespace(c)) {

308 ...

Figure 1: Two example patch reports automatically gener-
ated by PraPR (for bug Lang-10). Underlined parts convey
sufficient information for locating and fixing the buggy if-
statement shown in the bottom part of the figure.

appendQuoting(description);
+++description.appendText(wanted == null ? "null" : wanted.toString());
appendQuoting(description);

/%28x/ this.appendQuoting(description);
/%29%/ description.appendText(this.wanted
/#30%/ this.appendQuoting(description);

null?null:this.wanted.toString());

Figure 2: Developer fix for the bug Mockito-29, and decom-
piled patch generated by PraPR below it (with automatically
generated line number information)

PraPR patches (in the first half of the figure) include sufficient debug-
ging information, and it is trivial for the developers to understand
and apply the patches. In addition, as shown in Figure 2, PraPR
also supports automatically decompiling the mutated bytecode to
present patched lines in the source-code format.

3.2 PraPR Mutators

PraPR mutators are intended to mutate the input programs via sim-
ple transformation rules that affect only one program statement at
a time. All our mutators are implemented at the JVM level for sake
of efficiency, and our implementation, for which we put a consid-
erable engineering effort, supports the full set of JVM instructions
and data types. For simplicity in presentation though, we chose to
present all our mutators in a core Java language, named ClassicJava
[24]. Our goal is to describe the mutators using a minimal subset
of Java so that the functionality of the mutators could be described
simply, yet unambiguously. Figure 3 presents the abstract syntax of
an extended version of the ClassicJava. The full definition of the op-
erational semantics and type-rules for the core part of ClassicJava,
could be found in the original paper [24].

Table 1 presents the details of PraPR mutators in rewrite rules.
Each rule is represented in the form of p + e < e, which denotes
that when the premise p holds, a candidate patch can be gener-
ated via mutating a single instance of expression e to e’ (note that
all the other portions of the input program is intended to remain
unchanged). In the case of no premises, p is omitted, e.g. as in

+ e < ¢’. In addition, the overloaded operator 7(-) computes typ-
ing information if the input is an expression and returns a type de-
scriptor (i.e., the parameter types and return types according to JVM
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P = defn"e
defn = class c extends ¢ implements i*{field" meth*}
| interface i extends i*{meth*}
field = tfd
meth =t md(arg*){body} | void md(arg*)}{body}
arg = twoar
body e | abstract
e = ct | ae | be |newc | var | e.fd | e.fd=e
| e.md(e*) | super.md(e*) | letvar =eine
| be?e:e | switch(e) (case ct: e)* default: e
| fail | return e | var++| var--|e;e
| try { e} catch (c var) {e} | throw e
ae = nle+e|-e|e-e| ...
be = le| e&&e | e==e|e<e| ...
var = avariable name or this

¢ = aclass name or Object

i = aninterface name or Empty

fd = afield name
md = amethod name
t = c¢ | i]int|boolean
¢t = n|true|false | null
n = aninteger

Figure 3: Abstract syntax of extended ClassicJava

specification [47]) when
the input is the fully qual-
ified name of a method.
Function defVal(-), given
a type-name, returns the
default value correspond-
ing to a given type as de-
scribed in JVM specification [47]. 71 < 72 denotes that type 7 is a
subtype of ;. Table 2 presents some example mutators.

In the table, the white block presents all the mutators directly
supported by PIT. Note that although a slightly different catego-
rization is used here, the table includes all the official PIT mutators.
The light-gray block presents our Table 3: PraPR muta-
augmented mutators used for ex- tor frequency in HD-
pression replacement. Finally, the Repair dataset
dark-gray block presents all our

Table 2: Mutator illustration

D ‘ Mutator Illustration
AP

y=0.m(x) “—=y=x

return x<—return x+1

int x=o0.f1<>int x=o0.f2

int y=o.ml(x)=—int y=o0.m2(x)

int x=o0.f<—int x=(0=null?0:0.f)

int y=o.m(x)<—int y=(0=null?0:0.m(x))

‘ Mutator ‘ Freq. H Mutator ‘ Freq. ‘

augmented mutators responsible MR | 3.76% S Toi5%
for inserting conditionals in the €O | 226% || RV | 0.09%
o FR |217% || TR | 0.09%
vicinity of method calls and field VR | 1.80% FG | 0.00%
dereferences as guards, and at MC | 095% || CC | 0.06%
. IC | 076% || MV | 0.06%

the entry/exit of methods as pre- AP | 037% | PC | 0.06%
/post-condition checkers. It is MG 1 031% || SW | 0.00%
AO 0.15% IN 0.00%

worth noting that we omit the pre-
sentation of PraPR mutators involving datatypes absent in the
syntax of ClassicJava (e.g., float and double). We stress that our
mutators are either well-known mutators extensively studied in
mutation testing literature [11, 19, 64, 73] or developed to handle
common, simple bugs without any bias towards the bugs in De-
fects4] (both expression relacement and conditional insertion are
simple rules widely explored in prior repair work [33, 42, 71, 85, 91]).
To further confirm the generality of PraPR mutators, we built a
fix-pattern extraction program (with 4K LoC Java code) based on
the GumTree AST diffing framework [23], to automatically extract
fix patterns in another HD-Repair dataset [42] that comprises 3,000+
real patches from 700+ GitHub projects (overlapping projects with
Defects4] were removed). Table 3 summarizes the set of mutators,
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Table 1: Supported Mutators

ID  Mutator Name Rules

AP  ARGUMENT PROPAGATION i € {0,...,n},7(e;) < t(eg.m(e1, . .., en)),i > 0,Vj > i.t(ej) £ t(eg.m(er, . . ., en)) F eg.mley,. .., en) < ej

RV RETURN VALUE 7(e) = boolean  return e < return le
7(e) = int,e’ € {0,(e ==07? 1:0)} + return e < return ¢’

7(e) = Object, e’ € {null, (¢ == null ? fail : ¢)} + return e < return ¢’

CC CONSTRUCTOR CALL + new ¢() < null

1IN INCREMENTS *, %" € {++,- -}, x # x’, e € {var,varx’} + varx — e
*, %" € {++,- -}, x £ x", e € {var,*x'var} + xvar — e

IC  INLINE CONSTANTS ne{0,(n+N)}+rn—n’

MV  MEMBER VARIABLE 7(e.fd) = t,defVal(t) = v+ ej.fd = ey > ej.fd=v

SW  SWITCH + switch(e) case cty: e; ... case cty: e, default: e; — switch(e) case cti:e; ... case cty: ey default: e
1< i< nt switch(e) case cti:e; ... case cty: ep default: e; < switch(e) ...case ctj: ey ... default: ey

MC METHOD CALL t(e.md(ey, . ..,en)) = t,defVal(t) = v + e.md(ey, ..., ep) > v
7(md) = void md(t1,...,tp),7(e1) = t1,...,7(en) =ty + e.md(eq, ..., ep) — O

IN  INVERT NEGATIVES 7(e) =int+-e > e

AO  ARITHMETIC OPERATOR *, k! € {+, =, %, [, %,>>,>>>, <<, &, |," ),k £ %' Fep xey > e x ep

CO CONDITIONAL xox! € {2 < m == ) k£ K e ey ey & €
*,x" €{<,2,<,>,==!1=}, % # x" F e] x ez < true
*, k" € {<,2,<,>,==,1=}, % £ %" F e x e2 —> false

VR VARIABLE REPLACEMENT vary # vary, t(vary) = t(varg) + var; < vary
7(var) = (e.fd) + var — e.fd
t(var) = (e.md()) + var — e.md()

FR  FIELD REPLACEMENT fdy # fdy, (e.fdy) = t(e.fdy) F e.fdy > e.fdy
7(e.fd) = r(var) + e.fd — var
7(e.fd) = r(e.md()) + e.fd — e.md()
7(e2) = t,7(md) = t, md(t) v e1.fd=es — e1.md(ez)

MR METHOD REPLACEMENT md # md’, t(md) = t(md’) + e.md(ey, . . .,en) — e.md’(e1, . . .,en)

e; € {es,.. ., en} U {var | Je;j.t(var) = 7(e;)} U {this.fd | Je;.z(this.fd) = 7(e;)} U {0, false, null}
+emd(er, . .., en) — emd(ef, ..., en,)
7(e.md(eq, . ..,en)) = t(var) + eemd(e, . . ., ep) < var
7(e.md(ey, ..., en)) = t(e.fd) F eemd(ey,. .., en) — e.fd
TR  TYPE REPLACEMENT ththhrthie—>te
FG FIELD GUARD t md(...){...e.fd...}, defVal(t) = v +- e.fd < (e == null ? return v : e. fd)
t md(...){...e.fd...}, r(var) = t + e.fd — (e == null ? return var : e. fd)
...e.fdy..}, (this.fdz) = t v e.fd; — (e == null ? return this.fd; : e. fd;)
7(e.fd) = t,defVal(t) = v + e.fd — (e == null ? v : e. fd)
7(e.fd) = t(var) + e.fd < (e == null ? var : e. fd)
7(e.fdy) = r(this.fdy) + e.fd; — (e == null ? this.fd, : e. fd;)

MG METHOD GUARD t(e.md(ey, . . .,en)) = t,defVal(t) = v + e.md(eq, . . ., en) < (e == null ? return v : e.md(ey, . . ., e5))
7(e.md(eq, . ..,en)) = t(var) + emd(e1, . . ., en) <> (e == null ? return var : e.md(e, . . ., en))
7(e.md(ey, . .., en)) = r(this.fd) + e.md(ey, . . ., en) — (e == null ? return this.fd : e.md(ey, . . ., en))
7(e.md(ey, . . ., en)) = t,defVal(t) = v + e.md(ey, . . ., en) — (e==null ?v:emd(ey,..., en))
7(e.md(eq, . ..,en)) = t(var) + e.md(eq, . . ., en) < (e == null ? var : e.md(ey, . . ., en))
7(e.md(ey, ..., en)) = t(this.fd) - e.md(ey, . .., en) — (e == null ? this.fd : e.md(e, . . ., en))

PC  PRE/POST- CONDITION ef,....em € {e; | t; < Object A0 < i < n},defVal(t) = v

-t md(ty e1, ..., tn en){e} — t md(ty e1, ..., tn en){(e] == null || ... || ¢/, == null) ? return v : ¢}
t md(...){...e.md(ey, ..., en)...}, r(e.md(er, . .
+e.md(er, ..., en) = (e.md(ey,. .., en) == null ? return ¢’ : e.md(ey, . .

)
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.,en)) < Object, defVal(t) = v, r(var) = t, 7(this.fd) = t,e’ = {v, var, this.fd}

together with their frequency (i.e., the ratio of patches that each
mutator occur), that we afforded to implement at the level of byte-
code. Interestingly, the data in the table is consistent with what we
observed when we actually fixed Defects4] bugs. In particular, the
two least frequent mutators (as per Table 3) were unable to produce
any plausible patch. We next discuss design challenges for each
augmented mutator in PraPR:

3.2.1 Expression Replacement. This set of mutators mutate the
commonly used variables, fields, methods, and types into other
type-compatible ones. Mutator VR replaces the definition or use
of a variable with the definition or use of another visible variable,
field, or method with the same (return) type. Obtaining the set
of visible variables at the mutation point is the most challenging
part of implementing this mutator. We compute the set of visi-
ble variables at each point of the method under mutation using
a simple dataflow analysis [60], before doing the actual mutation.
Mutator FR mutates all field access instructions, namely GETFIELD,
PUTFIELD, GETSTATIC, and PUTSTATIC. Upon visiting a field access
instruction, the mutator loads the owner class of the field to extract
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all the information about its fields. The mutator then selects a dif-
ferent visible field (e.g., public fields), local variable, or method
invocation, whose (return) type is compatible with that of the cur-
rent field. It is worth noting that the newly selected field/method
should be static if and only if the current field is static. Finally,
the field access instruction is mutated to access the new element.
Mutator MR aims to mutate all kinds of method invocation in-
structions (static and virtual). The operational details of this
mutator is similar to that of FR, i.e., replacing a method invocation
with another method invocation or variable/field access. Note that
when mutating it to another method invocation, the mutator selects
another method with a different name but with the same method
descriptor (i.e., the same parameter and return types), or another
method with the same name and compatible return type but with
different parameter types (i.e., another overload of the callee). Note
that replacing a method invocation with another overload can be
non-trivial — we take advantage of the utility library shipped with
ASM bytecode manipulation framework [2] to create temporary
local variables so as to store the old argument values, and then
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use a variant of Levenshtein’s edit distance algorithm [86] to find
the minimal set of operations needed for reordering these local
variables or using some other values (such as the default value
corresponding to the type of a given parameter, or a visible local
variable/field of the appropriate type) in order to prepare the stack
before calling newly selected method overload. Finally, mutator
TR aims to replace one type with another compatible one. Note
that, for performance reasons, we only consider type widening in
our implementation (via replacing a type with its immediate super-
type) and apply the mutation only to catch(T e) blocks, because it
usually does not make much sense in other contexts.
3.2.2 Conditional Insertion. The mutator FG mutates field deref-
erence sites so as to inject code checking if the base expression is
null at a given site. If it is non-null the injected code does nothing,
otherwise it does either of the following: (1) returns the default
value corresponding to the return type of the mutated method; (2)
returns a local variable visible at the mutation point whose type is
compatible with the return type of the mutated method; (3) returns
a field whose type is compatible with the return type of the mutated
method; (4) uses the default value corresponding to the type of the
field being dereferenced instead of the field dereference expression;
(5) uses a local variable visible at the mutation point whose type is
compatible with that of the field being dereferenced; (6) uses a field
whose type is compatible with that of the field being dereferenced.
xSTORE temp,,, The mutator MG targets virtual method in-
vocation instructions. As the name suggests,

xSTORE temp; the mutator PC is intended to add nullness

DUP checks for (1) the object-typed parameters
IFNONNULL restore and (2) what the method returns, provided
POP that it is a subtype of Object, to avoid Null-
XLOAD n PointerExceptions. Note that although the
EZZiOiZ?ape mutators look trivial, they can be challenging

to implement to support the full set of JVM in-
sturctions/data types. For example, the set of
JVM instructions shown in the side-figure il-
lustrate the general form of the checking code
injected by MG before an INVOKEVIRTUAL in-
struction, where m is the number of arguments of the callee, n is the
index of a visible local variable to be used instead of the method call,
while x, depending on the type of the parameters of the callee, could
be I (int), L (long), and so on. The mutation is done as follows.
First, we create m temporary local variables for each parameter of
the callee, and store the argument values in the temporaries (using
the leading group of xSTOREs). Then, we check if the receiver object
is null (please note that we duplicate the reference to the receiver
object since instruction IFNONNULL consumes an object reference
from the top of stack): if it is null, we pop the remaining copy of
the receiver object off top of the stack, load the intended local n, and
continue normal execution by jumping to label escape; otherwise,
we push the arguments back to stack and invoke the target method.

4 EXPERIMENTAL SETUP

Our study investigates the following five research questions:

RQ1 How does PraPR perform in terms of effectiveness on auto-
matically fixing real bugs?

RQ2 How does PraPR perform in terms of efficiency?

RQ3 How does PraPR compare with the state-of-art?

xLOAD temp;

xLOAD temp,,
INVOKEVIRTUAL ...
escape:
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Table 4: Defects4] V1.4.0 programs

[ Sub. [ [ Name [ #Bugs #Tests LoC
Chart JFreeChart 26 2,205 96K
Time Joda-Time 27 4,130 28K
Mockito Mockito framework 38 1,366 23K
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Closure Google Closure compiler 133 7,927 90K
Cli Apache commons-cli 24 409 4K
Codec Apache commons-codec 22 883 10K
Csv Apache commons-csv 12 319 2K
JXPath Apache commons-jxpath 14 411 21K
Gson Google GSON 16 N/A 12K
Guava Google Guava 9 1,701,947 420K
Core Jackson JSON processor 13 867 31K
Databind Jackson data bindings 39 1,742 71K
Xml Jackson XML extensions 5 177 6K
Jsoup Jsoup HTML parser 63 681 14K
Total 587 26,964 503K

RQ4 How do PraPR and recent APR techniques perform on addi-
tional bugs?
RQ5 How does PraPR perform on fixing real bugs from other JVM
languages besides Java?

Subjects We conduct our experiments on Defects4] V1.4.0 [27,
31, 72], a collection of 16 real-world Java programs from GitHub
with known, reproducible real bugs that subsumes all the bugs
in Defects4] V1.2.0 [38]. These programs are real-world projects
developed over an extended period of time, so they contain a variety
of programming idioms and are a good representative of those
programs found randomly in the wild. Thus, Defects4] programs
are suitable for evaluating the effectiveness of candidate program
repair techniques. Shown in Table 4, Column “4Bugs” presents the
number of bugs for each program, while Columns “#Tests” and
“LoC” present the number of tests (i.e., JUnit test methods) and the
lines of code for the HEAD buggy version of each program. The first
half of the table lists the projects (on or before Defects4] V1.2.0)
that are already widely studied in prior APR research [18, 37, 42, 55,
71, 83, 85, 91] and also used in our RQ1-RQ3, while the second half
of the table lists the projects that have not been used before and
are used to answer RQ4. The two highlighted rows belong to the
projects excluded due to build/testing framework incompatibility
issues with PraPR.

Due to its minimalist syntax, and having a more sophisticated
type system, Kotlin has gained popularity in recent years [34].
Kotlin has become the official “first-class” language for Android at
Google I/0 2018 (in addition to Java) [20]; since then, 95% of devel-
opers show interest in using Kotlin for Android development and
the number of Play Store apps using Kotlin grew 6X [77], including
Uber, Square, Coursera, and Twitter apps. In addition, according
to a recent Stack Overflow survey, Kotlin is the 2nd loved/wanted
language (above Python) [5]. Therefore, in RQ5, we investigate
bug fixing for Kotlin-based systems. More specifically, we applied
PraPR on all the Kotlin bugs from a recent bug dataset Defexts [16].
Note that we were only able to run PraPR on 118 out of 225 Defexts
Kotlin bugs, e.g., due to testing framework incompatibility.
Implementation PraPR has been implemented as a full-fledged
program repair tool for JVM bytecode (publicly available on Maven
Central Repo and our project website [29]). Currently it supports
Java and Kotlin projects under different popular build systems (i.e.,
Maven [26] and Gradle [7]), and testing frameworks (i.e., JUnit [8],
TestNG [3], and Spek [9] with JUnit runner). Given any such pro-
gram with at least one failed test, PraPR can be applied using a
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single command, “mvn org.mudebug:prapr-plugin:prapr”. Dur-
ing the repair process, PraPR uses the ASM bytecode manipulation
framework [2] and Java Agent [4] to collect coverage information
(used for Ochiai-based fault localization [10]) and perform patch
generation. We have built PraPR via extending the mutators em-
ployed by the state-of-the-art bytecode-level mutation engine PIT
[19], since PIT is the most robust and widely used mutation testing
tool both in academia and industry [19, 41]. All our experimenta-
tion is done on a Dell workstation with Intel Xeon CPU E5-2697
v4@2.30GHz and 98GB RAM, running Ubuntu 16.04.4 LTS and Ora-
cle Java 64-Bit Server version 1.7.0_80. PraPR supports multi-thread
patch validation, and we run PraPR using both 1 and 4 threads
exhaustively on all candidate patches to precisely measure its cost.

5 RESULT ANALYSIS
5.1 RQ1: PraPR Effectiveness

Table 5 presents the main repair results for all the bugs from De-
fects4] V1.2.0 for which PraPR can generate plausible fixes. In the
table, Column “Original Mutators” presents the repair results using
only the original PIT mutators for each bug, including the total
repair time (using single thread) for validating all patches (Column
“1-T(s)”) and the number of all validated patches (Column “4P”). The
cells highlighted with light gray denote plausible fixes, while those
highlighted with dark gray correspond to genuine fixes. Note that
we only present the number of validated patches (i.e., the patches
passing the check at Line-7 in Algorithm 1), since the other patches
cannot pass all the failed tests and do not need to be validated.
Similarly, Column “All Mutators” presents the corresponding repair
results using all the mutators (i.e., further including our augmented
mutators). Finally, the last two rows show the number of plausi-
ble/genuine fixes produced by the two classes of mutators.
According to the table, surprisingly, even the original PIT mu-
tators can generate plausible fixes for 106 bugs and genuine fixes
for 17 bugs from Defects4] V1.2.0, comparable to the most recent
work CapGen [85] that produces genuine fixes for 22 bugs. On the
contrary, prior jMutRepair work [55] showed that mutation testing
can find only 17 plausible and 4 genuine fixes for the same version
of Defects4]. One potential reason is that the prior work was based
on source-code mutation which incurs expensive recompilation and
loading for each mutant, and thus does not scale to large programs
like Closure. Another reason is that the prior work used only 3
mutators (we found that had jMutRepair been able to scale to all the
Defects4] programs, it would generate up to 7 genuine fixes). To our
knowledge, this is the first study demonstrating that plain mutation
testing can be comparable to state-of-the-art APR for fixing real bugs.
Furthermore, all PraPR mutators (including the original PIT
mutators and our augmented mutators) can produce plausible and
genuine fixes for 148 and 43 bugs, respectively. To our knowledge,
this is the largest number of bugs reported as fixed for Defects4] to
date. The key reason for this result is PraPR’s capability in exploring
such a large number of potential patches within a short time due to
the bytecode-level patch generation/validation and our execution
optimizations. For example, even for the largest Closure, PraPR
with 1 thread is still able to validate approximately 10 patches per
second. This demonstrates the effectiveness of PraPR and shows the
importance of fast (and exhaustive) patch generation and validation
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Table 5: Overall PraPR repair results

Original Mutators | All Mutators Original Mutators | All Mutators
BugID 1-T(s) #P | 1-T(s) #P || BugID 1-T(s) #P | 1-T(s) #P
Chart-1 74 703 199 2624 || Closure-130 987 9772 3782 34380
Chart-3 44 307 65 801 || Closure-133 409 3240 1338 12732
Chart-4 76 835 158 2772 || Lang-6 51 92 84 207
Chart-5 35 103 38 244 || Lang-7 40 368 65 725
Chart-7 38 267 55 1039 || Lang-10 60 416 127 919
Chart-8 38 122 52 403 || Lang-22 83 78 170 177
Chart-11 34 52 36 106 || Lang-25 20 3 21 18
Chart-12 50 440 76 1517 || Lang-26 27 403 52 1066
Chart-13 43 571 66 2308 || Lang-27 27 338 47 657
Chart-15 122 1774 237 6481 || Lang-31 21 43 25 91
Chart-20 33 48 35 205 || Lang-33 20 17 20 20
Chart-24 31 23 33 96 || Lang-39 51 164 198 687
Chart-25 247 5497 745 19275 || Lang-43 3046 66 | 11952 173
Chart-26 191 2658 449 9481 || Lang-44 29 106 35 201
Closure-1 1147 6662 4117 22352 || Lang-51 30 123 31 205
Closure-2 857 8893 3037 31634 || Lang-57 24 4 24 10
Closure-3 1221 11358 4610 39365 || Lang-58 28 177 40 372)
Closure-5 884 8731 3300 31264 || Lang-59 25 35 27 113
Closure-7 409 3036 1271 12538 || Lang-60 31 125 45 436
Closure-8 731 6832 2845 24838 || Lang-61 34 89 43 342
Closure-10 692 7481 2624 25929 || Lang-63 67 322 126 1039
Closure-11 1421 11825 4774 42402 || Math-2 562 332 581 1325
Closure-12 1090 11027 4203 38084 || Math-5 1473 48 1493 201
Closure-13 1787 19832 6644 66760 || Math-6 1443 116 1449 317
Closure-14 306 1962 799 6844 || Math-7 1750 2454 2767 11117
Closure-15 981 9662 3759 33480 || Math-8 1504 266 1545 1086
Closure-17 1187 12358 4529 44261 || Math-18 894 3288 1410 12466
Closure-18 1071 10926 =~ 3820 36773 || Math-20 1095 3189 1671 11645
Closure-21 754 7757 2956 27366 || Math-28 784 1101 976 3364
Closure-22 748 7715 2949 27247 || Math-29 849 419 1166 1601
Closure-29 969 8184 3805 28404 || Math-32 943 3510 1508 17591
Closure-30 971 8684 3528 30053 || Math-33 788 1179 861 3712
Closure-31 824 7487 2545 23931 || Math-34 700 63 705 145
Closure-33 1303 13849 5065 49455 || Math-39 177 1038 365 4171
Closure-35 1221 13349 4789 47397 || Math-40 258 432 290 1661
Closure-36 2073 24838 7864 82595 || Math-42 298 1069 403 3283
Closure-38 315 2636 768 8139 || Math-49 252 351 270 1222
Closure-40 838 7954 3069 27621 || Math-50 252 238 260 970
Closure-42 330 2923 1135 11251 || Math-57 216 135 238 373
Closure-45 806 8615 3383 30263 || Math-58 551 1486 1693 6276
Closure-46 284 2191 1048 8916 || Math-59 175 642 231 1739
Closure-48 1095 11832 4310 42152 || Math-60 74 540 99 1919
Closure-50 662 6026 2545 21198 || Math-62 61 427 84 2310
Closure-59 1876 21648 6531 68137 || Math-63 45 44 46 76
Closure-62 138 123 140 346 || Math-64 134 929 322 4690
Closure-63 137 123 145 346 || Math-65 89 979 150 4346
Closure-64 1208 14017 4014 44167 || Math-70 33 61 35 189
Closure-66 586 6194 1881 21424 || Math-71 287 649 766 2852
Closure-68 372 2606 1078 10527 || Math-73 30 239 44 1187
Closure-70 921 8060 3217 27873 || Math-74 489 1925 1535 8135
Closure-72 707 8408 2608 28075 || Math-75 31 145 44 381
Closure-73 274 2392 676 7181 || Math-78 55 421 129 2279
Closure-76 674 6992 2691 23868 || Math-80 248 1922 919 10001
Closure-81 258 2462 962 9425 || Math-81 157 1498 679 7647
Closure-84 258 2514 959 9637 || Math-82 44 665 69 2051
Closure-86 345 1615 899 5255 || Math-84 50 190 82 574
Closure-92 496 5704 1922 19029 || Math-85 95 372 250 1195
Closure-93 493 5704 1965 19028 || Math-88 47 775 82 2356
Closure-101 1020 12569 4059 39882 || Math-95 3571 287 | 13320 928
Closure-107 1166 11714 4665 39195 || Math-101 20 120 30 360
Closure-108 1036 8775 5299 33521 || Math-104 56 212 141 823
Closure-109 568 3158 1458 12451 || Mockito-5 38 97 57 184
Closure-111 651 4670 1792 17601 || Mockito-8 35 119 41 246
Closure-115 1453 9496 5081 32442 || Mockito-15 65 808 88 1885
Closure-119 787 7424 2901 27729 || Mockito-28 91 1069 134 2525
Closure-120 963 9589 3624 33008 || Mockito-29 78 1210 112 2716
Closure-121 985 9589 3669 33008 || Mockito-38 29 115 34 258
Closure-122 439 2907 1437 11076 || Time-4 59 768 84 1812
Closure-123 434 4097 1350 13491 || Time-11 81 1327 102 2908
Closure-124 742 6586 2713 23706 || Time-14 60 504 70 1019
Closure-125 1463 14754 5652 52866 || Time-17 114 2100 184 6324
Closure-126 780 6567 2814 23569 || Time-19 121 1422 152 3302
Closure-127 1067 7363 3725 25626 || Time-20 144 2582 225 6996
Closure-129 1551 16465 5413 54648 || Time-24 109 1560 166 3395

¥ #Plau. Original Mutators 106 T #Gen. Original Mutators 17
¥ #Plau. All Mutators 148 ¥ #Gen. All Mutators 43

for automatic program repair: faster mutation allows us to apply more
mutators and hence exploring a larger portion of the search space.
Next we show some example genuine fixes produced by PraPR
to qualitatively illustrate the effectiveness of PraPR. As shown in
Figure 4, PraPR using the mutator CO is able to produce a genuine
fix identical to the developer patches. Note that those patches are
as expected for they directly fall into the capability of the employed
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// Developer and PraPR patches
Felse—if (offsettocal>0)>{
+++} else if (offsetLocal >= @) {
Figure 4: Time-19 patches

// Developer patch

@Override

publie JSType—getleastSupertypeISType—thatr—{

// PraPR patch

@Override

public JSType getlLeastSupertype(JSType that) {

+++if (!false) {

return super.getlLeastSupertype(that); }...3}
Figure 5: Closure-46 patches

Table 6: Average PraPR time cost with single thread

‘ Original Mutators ‘ ‘ All Mutators
Sub. ‘ #P ‘ Avg(s) Min(s) Max(s) H #P ‘ Avg(s) Min(s) Max(s) ‘
Chart 619.9 59.4 31 247 2158.3 112.1 33 745
Closure 6876 739 128 128 || 23877.7 | 2659.2 140 11080
Lang 147.5 80.3 16 3046 356 236.8 16 11952
Math 550.4 554.4 15 6997 2258.9 | 1143.1 18 13320
Mockito || 728.7 74.1 14 204 1702.9 104.8 14 331
Time 781 74 32 155 1835.1 99.1 33 225

mutators. Interestingly, we also observe that in a couple of cases
PraPR is able to suggest more complex genuine fixes that require
simple semantic reasoning. Figure 5 presents both the developer
and PraPR patches for Closure-46. According to the figure, the de-
veloper patch removes an overriding method from a subclass, which
is not directly handled using PraPR mutators, but the PraPR patch,
generated via the mutator CO, forces the overriding method to al-
ways directly invoke the corresponding overridden method, which
is semantically equivalent to removing the overriding method.

5.2 RQ2: PraPR Efficiency

We present the efficiency information of PraPR on all the Defects4]
bugs using the default, single thread, settings in Table 6. In the table,
Column “Original Mutators” presents the average number of all
validated patches (Column “4P”), as well as the average/minimum/-
maximum time cost with 1 thread (Column “Avg”/“Min”/“Max”) for
all the bugs of each subject system using the original PIT mutators.
Similarly, Column “All Mutators” presents the information when
using all PraPR mutators. We observe that PraPR is remarkably
efficient even using only a single thread, e.g., it costs at most 3.7
hours among all studied bugs (i.e., Math-95 because the majority of
the mutations modify the program control-flow in such a way that
resulting in a huge number of infinite/costly loops). Furthermore,
we have also run PraPR on all the studied bugs with 4 threads and
observed up to 2.1X performance gain.

Note that besides the machine time, the repair efficiency also
involves the manual efforts in inspecting plausible patches. Thus,
we further present the ranking of genuine patches within all vali-
dated/plausible patches to truly understand PraPR efficiency. Table
7 presents the ranking of the genuine fixes among all validated
patches and all plausible fixes. Columns “Rank Orig.” and “Rank All’
present the rank of the first genuine fix among the validated patches
when using the original PIT mutators and all PraPR mutators, re-
spectively. The rank of the first genuine fix among all plausible
fixes is shown in parentheses. Note that for the patches with tied
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Table 7: Rank of PraPR genuine fixes

‘ BugID ‘ Rank Orig. ‘ Rank All H BugID ‘ Rank Orig. ‘ Rank All ‘
Chart-1 54 M 205 (1) || Lang-10 247 7 300 (@
Chart-8 N/A  (N/A) 95 (2) || Lang-26 N/A  (N/A) | 967 (1)
Chart-11 N/A (N/A) | 106 (1) || Lang-33 NA  (NA) | 20 (1)
Chart-12 N/A (N/A) 118 (2) || Lang-57 N/A  (N/A) 10  (3)
Chart-20 N/A  (N/A) 45 (1) || Lang-59 N/A  (N/A) 93 (2)
Chart-24 N/A  (N/A) 77 (1) || Math-5 NA  (NA) | 53 (1)
Chart-26 N/A (N/A) | 1111 (17) || Math-33 N/A  (N/A) | 602 (1)
Closure-10 | N/A (N/A) | 1677 (1) || Math-3¢ | N/A  (N/A) | 22 (1)
Closure-11 | 2006 1) | 723 (1) || Math-50 21 )| 113 (40)
Closure-14 N/A  (N/A) 1 (1) || Math-58 N/A  (N/A) | 401 (2)
Closure-18 | 6773 (1) | 22034 (1) || Math-59 | NJA  (N/A) | 29 (1)
Closure-31 | 3851 (2) | 17383 (6) || Math-70 N/A  (N/A) 17 (1)
Closure-46 21 (1) 61 (1) || Math-75 N/A  (N/A) 24 (1)
Closure-62 21 (1) 55 (1) || Math-82 270 5)y| 754  (9)
Closure-63 21 (1) 55 (1) || Math-85 204 @ | 582 (4
Closure-70 229 (1) 827 (1) || Mockito-5 | N/A  (N/A) 74 (31)
Closure-73 34 (1) 71 (1) || Mockito-29 | N/A  (N/A) 72 (2)
Closure-86 1 (1) 1 (1) || Mockito-38 | N/A  (N/A) 1 (2
Closure-92 | N/A (N/A) 174 (1) || Time-4 N/A  (N/A) | 315 (5
Closure-93 N/A  (N/A) 174 (1) || Time-11 24 (1) 70 (1)
Closure-126 12 (2) 55  (5) || Time-19 870 (1) | 1939  (2)
Lang-6 N/A (N/A) 160 (1)

Avg. Total Rank Original 862.3 Avg. Plau. Rank Original (1.8)
Avg. Total Rank All 1353.1 Avg. Plau. Rank All (3.8)

suspiciousness, PraPR favors the patches generated by mutators
with smaller ratios of plausible to validated patches since the muta-
tors with larger ratios tend to be resilient to the corresponding test
suite. If the tie remains, PraPR uses the worst ranking for all the
tied patches. From the table, we can observe that the genuine fixes
are ranked high among validated and plausible patches when using
both original and all mutators. For example, surprisingly, among
the plausible fixes, the genuine fixes are ranked only 1.8th using
original mutators and ranked only 3.8th using all mutators, demon-
strating that few manual efforts will be involved when inspecting
the repair results of PraPR. We found that one reason is the small
number of plausible fixes even when using all the mutators since
the test suites of the Defects4] subjects are strong enough to falsify
the vast majority of non-genuine patches. To illustrate, the number
of plausible patches is usually smaller for Closure (which has the
most candidate patches) due to the stronger test suite of Closure,
e.g., Closure has 300+ contributors and the largest test suite among
the subjects studied in this section.

5.3 RQ3: Comparison with the State-of-Art

Effectiveness To investigate this question, we compare PraPR
with the state-of-the-art APR techniques that have been evaluated
on Defects4] (V1.2.0) before, including SimFix [37], CapGen [85],
JAID [18], SketchFix [33], ELIXIR [71], ssFix [89], ACS [91], HD-
Repair [42], xPAR [42] (a reimplementation of PAR [40]), NOPOL
[92], jGenProg [54] (a reimplementation of GenProg [43] for Java),
jMutRepair [55] (a reimplementation of source-level mutation-
based repair [22] for Java), and jKali [55] (a reimplementation of
Kali [70] for Java). Following [18, 85, 91], except for SimFix, CapGen,
SketchFix, and JAID, we obtained the repair results for prior APR
techniques from their original papers. In Table 8, Column “Tech.”
lists all the compared techniques. Column “All Positions” presents
the number of genuine and non-genuine plausible fixes found when
inspecting all the generated plausible fixes for each bug. Similarly,
the columns “Top-10 Positions” and “Top-1 Position” present the
number of genuine and non-genuine plausible fixes found when
inspecting Top-10 and Top-1 plausible fixes, resp. Except for the
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case of Top-1, we can observe that PraPR can fix the most number
of bugs compared to all the studied techniques. Figure 6 further
presents the distribution of the bugs that can be successfully fixed
by PraPR and other recent APR techniques. We can observe that
PraPR can fix 10 bugs that have not been fixed by any of the afore-
mentioned techniques. Also, the studied tools are complementary,
i.e., putting all the tools together, we can fix 90+ bugs from Defects4].

Another interesting observa-
tion worth discussion is that
PraPR produces only non-genuine
plausible fixes for more bugs
than the other techniques. We
found a couple of reasons. First,
our main goal in this work is
to propose a baseline repair
technique that does not require
any mining/learning informa-
tion [85, 91] for both practi-
cal application and experimen-
tal evaluation; also, recently various patch correctness checking
techniques [32, 81, 90] have been proposed, and can be directly
applied to further improve the PraPR patch validation process. We
have already explored one of these possibilities. Specifically, we
used the mined mutator frequency presented in Table 3 to break the
ties after sorting the plausible fixes according to their suspicious-
ness (more frequent mutators get higher priorities). The results
in Row “PraPR*” shows that such simple mining information can
already rank 30 genuine fixes in Top-1, comparable to the state-of-
art. Second, PraPR is able to explore a large search space during a
short time due to the lightweight bytecode-level patch generation,
while existing techniques usually have to terminate early due to
time constraints. Third, prior work using intensive mining/learning
information can suffer from the overfitting problem: the original
CapGen was not evaluated on Closure and Mockito, while SimFix
was not evaluated on Mockito; working together with their authors,
we were able to run such experiments, but observed a much lower
precision than their original subjects (shown in the last two rows of
Table 8) — CapGen produces 1092 plausible fixes in total for 10/14
bugs from Mockito/Closure, and SimFix fails to locate any suitable
code snippets for Mockito.

Lastly, in this work, we also manually inspected all the 105 bugs
for which PraPR is only able to produce non-genuine plausible
fixes. Surprisingly, we observe that even the non-genuine plausible
fixes for such bugs can still provide useful debugging hints. For
example, the plausible fixes ranked at the 1%t position for 50 bugs
share the same methods with the actual developer patches, i.e., for
48% cases the non-genuine plausible fixes can directly point out the
patch locations for manual debugging while even state-of-the-art
spectrum-based (e.g., Ochiai) and mutation-based (e.g., MUSE [59]
and Metallaxis [64]) fault localization can localize at most 21% of
the same bugs within Top-1, indicating a promising future for using
APR patches to boost fault localization (in contrast to the current
paradigm of using fault localization to boost APR).

Efficiency We further executed the publicly available recent APR
tools (i.e., SimFix, CapGen, JAID, and SketchFix) on the same plat-
form with single-thread PraPR for a fair efficiency comparison.
Table 9 shows the average time data on the bugs that the compared
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Table 8: Comparison with state-of-the-art techniques

‘ All Positions ‘Topflo Positions‘ Top-1 Position ‘
|

Tech. Gen. Non-gen. ‘ Gen. Non-gen. ‘ Gen. Non-gen. ‘
PraPR 43 105 40 108 26 122
PraPR* 43 105 39 109 30 118
SimFix N/A  N/A N/A  N/A 34 22
CapGen 22 3 22 3 21 4
JAID 25 6 15 16 9 22
SketchFix 19 7 N/A  N/A 9 17
ELIXIR N/A  N/A N/A  N/A 26 15
ssFix N/A  N/A N/A  N/A 15 45
ACS N/A  N/A N/A  N/A 18 5
HD-Repair 16 N/A N/A  N/A 10 N/A
xPAR 4 N/A 4 N/A N/A N/A
NOPOL 5 30 5 30 5 30
jGenProg 5 22 5 22 5 22
jMutRepair 4 13 4 13 4 13
jKali 1 21 1 21 1 21
SimFiX pmockito 0 0 0 0 0 0
CapGen mockito,Closure || 0 24 0 2 0o

Table 9: Time costs of recent APR tools

‘ I SimFix I CapGen I JAID I SketchFix |
Sub. | #P P/s Gain| #P P/s Gain| #P P/s Gan | #P P/s _ Gain |
Chart |[ 11415 03 (27.5X) | 2548 04 (169X) | 35618 13  (4X) | 3186 07 (95X)
Closure || 3112 01 (515X) | NJA N/A  (N/A) | 71101 0.3 (23.8X) | 9033 007 (93.5X)
Lang 4123 03 (3X) [ 8074 03 (27.2X) | 36024 1 (104X) | N/A N/A  (N/A)
Math 360.2 03 (164X) | 604.6 03 (195X) | 8348 05  (19X) | 1561.8 0.4 (20.8X)
Time 431 03 (N/A)| NJ/A N/A  (NJA)| NJA NA  (N/A)| NA NA  (N/A)

tools can correctly fix. Columns 2 to 4 present the following infor-
mation for SimFix: the number of patches validated, the average
number of patches validated per time unit (s), and the speedup
gained by PraPR in terms of the average number of patches per
second. The other columns show the corresponding information
for CapGen, JAID, and SketchFix. Note that the gray row marks
that we were unable to reproduce any patch for Lang when using
SketchFix. According to Table 9, JAID and SketchFix are usually
faster than CapGen and SimFix on the same subject, due to their
compilation optimization strategies, e.g., meta-program encoding
and sketching; PraPR is almost at least an order of magnitude faster
compared with all tools on all subjects except some minor cases,
e.g., when compared with JAID on the smallest subject Lang. The
reason is that there is only one bug that both PraPR and JAID can
fix (i.e., Lang-33), and PraPR fixes it using 20 patches within 20
seconds (a similar speed with JAID) since the startup cost for such a
small number of patches makes PraPR’s per-patch time non-trivial.
Actually, if we average over all fixable bugs across all subjects,
PraPR is over 10X faster than all the compared techniques (including
JAID). We attribute this substantial speedup to the fact that PraPR
operates completely at the bytecode level; it does not need any re-
compilation and loading from disk for any patch. For manual-effort
efficiency, we also found prior tools require various configurations
to get started, and are usually not designed to be used for arbitrary
Java projects. On the contrary, PraPR offers a 1-click APR tool pub-
licly available on Maven Central Repo and applicable to arbitrary
Java project under Maven/Gradle build systems (not just Defects4])
and even projects in other JVM languages.

5.4 RQ4: APR Tools on Additional Bugs

To further reduce the threats to external validity, we have applied
PraPR and the publicly available recent APR tools (i.e., JAID, Sketch-
Fix, SimFix and CapGen) on an additional 192 bugs from Defects4]
V1.4.0 (§4). Unfortunately, we were unable to successfully apply the
other studied APR tools in our first try. Thus, we actively worked
with all the authors to address those issues. For the time being, we
choose to report the results of experimenting with only SimFix and
CapGen because (1) they are the most recent and effective tools,
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Table 10: Recent APR tools on additional bugs

PraPR SimFix CapGen
Sub. #Gen.(Top-1) #Plau(s) F/TO | #Gen(Top-1) #Plau(s) F/TO | #Gen(Top-1) #Plau(y) F/TO
Cli 3(1) 7(46)  0/0 0(0) 0(0) 0/1 0(0) 7(49)  0/0
Codec 1(1) 6(83)  0/0 0(0) 0(0) 0/0 1(1) 8(911)  0/0
Csv 1(1) 2(8)  0/0 0(0) 0(0) 0/0 0(0) 2(8)  0/0
JXPath 1(0) 410.5)  0/0 0(0) 0(0) 0/0 0(0) 5(304.8)  0/0
Core 0(0) 10(28.5)  0/0 0(0) 0©0) 013 0(0) 6(80.3)  0/0
Databind 4(2) 16(6.4)  0/0 0(0) 00) 032 0(0) 15(55.1)  1/1
Xml 0(0) 0(0)  0/0 0(0) 0(0) 0/2 0(0) 0(0) 0/0
Jsoup 2(2) 12(43)  0/0 0(0) 0(0) 0/4 1(0) 14(19.9)  0/0

Table 11: PraPR results on Kotlin projects

‘ Bugld ‘ LoC H #P ‘ Fixes ‘ 1-T(s) ‘ Mutator ‘
kog-1 3804 || 307 2(1) | 18 MR
Simple-MsgPack-1 1565 1445 1(1) 104 AO
rapier-2 414 501 2(1) 82 1C.CO
jenjin-1 22261 1057 1(1) 44 MR
seven-wonders-1 10318 11 1(1) 5 Cco
thrifty-3 7256 || 4148 | 14(14) | 231 TR
thrifty-4 7956 || 2588 | 4(4) | 226 AP
rimu-kt-1 2291 3076 1(1) 296 co
patchtools-2 1171 2692 1(1) | 616 MG
icfpc2016-2 6173 315 2(2) 18 MC
Kartvelang-1 1252 1130 5(1) 36 MC
lambda-1 1066 || 220 6(6) | 74 co
parallel-feature-selection-1 | 7371 560 | 10(10) 16 co
UltimateTTT-1 2296 603 4(1) 153 MR

and (2) we received eager cooperation from the authors. Together
with the authors, we were able to run SimFix and CapGen. It is
worth noting that, we reported several bugs to the CapGen authors
and also directly contributed to enable CapGen to work on more
projects; we also managed to write our own code to produce all the
information that SimFix needs for fixing arbitrary Java programs,
which was confirmed by the authors of SimFix. Table 10 summarizes
the results of our experiments. For each technique, Column “#Gen.
(Top-1)” presents the number of bugs with genuine patches (with
the number of bugs with genuine patches ranked at Top-1 inside
parentheses), Column “#Plau.(u)” represents the total number of
bugs with plausible patches (with the average number of plausible
patches for each bug inside parentheses), Column “F/TO” reports
the number of times each tool crashed, and the number of times
each tool has timed out within the allotted 5-hour limit.

According to the table, PraPR is able to generate genuine patches
for 12 bugs that 7 appear in Top-1 positions. Meanwhile, CapGen
produces genuine patches for only 2 bugs (1 within Top-1), while
SimFix was unable to generate any plausible patch, despite the fact
that it exhausted its search space for most cases and timed out in 52
bugs. We attribute the slight performance drop of PraPR (c.f. §5.1) to
the fact that these bugs mostly need multiple edits to fix. The huge
performance drop of CapGen on the new dataset is because, for per-
formance reasons, the tool applies only a subset of its mutators that
happen to be ineffective on the new bugs. Lastly, as also confirmed
by SimFix authors, SimFix was unable to locate reusable code snip-
pets in the new dataset. We also observed that the studied tools are
rather robust except for one case, where CapGen crashed due to
a failure of the Understand tool [75] that CapGen uses for slicing.
Another interesting finding is CapGen generates much more false
positives than PraPR on this new dataset. To our knowledge, this is
the first study demonstrating recent advanced APR techniques may
suffer from the overfitting problem in case of unexpected bugs, while
a simplistic approach shows a decent level of consistency.

5.5 RQ5: PraPR Repair for Real Kotlin Bugs

We applied PraPR to fix all the 225 Defexts Kotlin bugs, out of
which 118 bugs are PraPR-compatible, i.e., exclusively using JU-
nit/TestNG tests or using Spek [9] tests with JUnit runners. These
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buggy projects range from 248 LoC to 170,789 LoC. Of the 118 bugs,
14 were correctly repaired by PraPR. Table 11 summarizes the data
for the bugs with genuine patches. In this table, Column zBugId”
presents the identifiers of the bugs as recorded inside Defexts data-
base, Column “LoC” presents the project size, Column “#P” presents
the total number of patches PraPR performed on the project, Col-
umn “Fixes” presents the number of plausible fixes PraPR generated
alongside the rank of genuine patches among plausible fixes (in
parentheses), Column “1-T (s)” presents PraPR’s execution time
with 1 thread, and Column “Mutator” presents the mutators which
produced the genuine fix. To our knowledge, this is the first repair
study for Kotlin systems; the similar ratio of fixed bugs for Kotlin
systems also reduces our threats to external validity.

6 DISCUSSION

Limitation. Bytecode mutation clearly cannot fix all types of bugs.
At the level of bytecode, we do not have access to lots of information
(such as detailed typing and contextual information) useful for
fixing bugs beyond simple mutations. Also, fixing complex bugs at
the bytecode level can be challenging and tedious. Despite this fact,
our experimental results demonstrate that the sheer speed of patch
generation/validation and language agnosticism of bytecode-level
APR can complement existing source-code level APR techniques.
Threats to internal validity. Understanding patch reports for
some JVM-based languages might be challenging. We emphasize
that based on our experience with PraPR, the PraPR patch reports
for Java and all the Kotlin programs that we have experimented
with, can easily be reconstructed with simple manual inspection.
Note that PraPR also supports automatically decompiling bytecode
patches via Eclipse Class Decompiler [6]. Furthermore, during the
manual inspection for patch correctness, there might be mistakes
in judging whether a particular patch is indeed a genuine fix. To
minimize such mistakes, we have confined ourselves to syntactic
equality and simple semantic equivalence. Furthermore, we also
released all our patches in PraPR website.

Threats to external validity. Our claims about any of the studied
APR techniques might be biased because of the limited number of
benchmark programs that we have considered. To this end, we have
tried our best to apply the studied techniques to a newer version of
Defects4] that has not been studied for APR before, and have also
applied PraPR on Defexts, a new Kotlin bug dataset.

7 CONCLUSION

We have implemented PraPR, the first practical APR tool at the
JVM bytecode level. The experimental results on the widely used
Defects4] V1.2.0 benchmark show that PraPR can generate genuine
patches for 43 Defects4] bugs, significantly outperforming state-of-
the-art Java repair techniques, while being over 10X faster; with
no learning/search information, PraPR also avoids the overfitting
problem of existing techniques on additional bugs from a newer
version of Defects4]; finally, PraPR successfully fixed 14 of the 118
studied bugs for Kotlin systems.
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