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ABSTRACT
Compiler bugs are extremely harmful, but are notoriously difficult

to debug because compiler bugs usually produce few debugging

information. Given a bug-triggering test program for a compiler,

hundreds of compiler files are usually involved during compila-

tion, and thus are suspect buggy files. Although there are lots of

automated bug isolation techniques, they are not applicable to com-

pilers due to the scalability or effectiveness problem. To solve this

problem, in this paper, we transform the compiler bug isolation

problem into a search problem, i.e., searching for a set of effective

witness test programs that are able to eliminate innocent compiler

files from suspects. Based on this intuition, we propose an auto-

mated compiler bug isolation technique, DiWi, which (1) proposes

a heuristic-based search strategy to generate such a set of effective

witness test programs via applying our designed witnessing muta-

tion rules to the given failing test program, and (2) compares their

coverage to isolate bugs following the practice of spectrum-based

bug isolation. The experimental results on 90 real bugs from popu-

lar GCC and LLVM compilers show that DiWi effectively isolates

66.67%/78.89% bugs within Top-10/Top-20 compiler files, signifi-

cantly outperforming state-of-the-art bug isolation techniques.
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• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Software bugs in modern software systems can incur huge cost. For

example, Tricentis.com studied software bugs in 363 companies

all over the world, and reported that these bugs incurred almost

$1.1 Trillion cost, and affected over 4.4 Billion customers in 2016.

Among software bugs, compiler bugs are especially critical, since

almost all software systems are compiled via compilers and a buggy

compiler can potentially affect all the software systems built on it.

Therefore, it is crucial to detect, isolate, and fix compiler bugs.

Although researchers have devoted dedicated efforts to com-

piler testing [15, 24, 29, 43, 53, 58, 82], compiler bug isolation and

fixing are still a tedious and time-consuming process, since com-

pilers are very complex and developers have to understand the

root cause of a compiler bug and then determine the fixing strat-

egy. In the literature, lots of automated bug isolation techniques

(also known as fault localization, e.g., spectrum-based techniques

or SBFL [22, 38, 52, 72, 77], slicing-based techniques [81], mutation-

based techniques [35, 51, 60, 66, 67, 87]) have been proposed. How-

ever, these techniques can hardly be applicable to compilers due

to their scalability or effectiveness problem. First, compilers like

GCC are complex and large, making it extremely expensive to per-

form advanced static/dynamic analysis on a compiler. Therefore,

program-analysis based techniques like slicing-based techniques

and mutation-based techniques can hardly be used in compiler bug

isolation. For example, we found that it can take over a month to

execute only a limited set of GCC compiler mutants. Second, due to

the complexity of compilers, the execution traces between passing

and failing test programs tend to differ significantly. Therefore, it is

hard for SBFL, which isolates compiler bugs by comparing coverage

between passing and failing test programs, to isolate compiler bugs

effectively, which is also demonstrated in Sections 2 and 5. In other

words, automated compiler bug isolation is still challenging due to

its inherent difficulty.

Given a bug-triggering test program (also called failing test pro-

gram) for a compiler, developers need to manually isolate buggy

compiler files (i.e., source files of compilers) among all the touched

compiler files when compiling the given failing test program. How-

ever, there are usually at least hundreds of compiler files involved in

https://doi.org/10.1145/3338906.3338957
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the compilation. All these files are suspects. SBFL has demonstrated

that passing tests can be regarded as witnesses to help reduce the

suspicion of innocent program elements [7]. In this paper, we call

passing test programs that are able to eliminate innocent compiler

files from suspects witness test programs. However, as demonstrated

in Sections 2 and 5, the widely-used developer-provided passing

test programs are not effective witnesses, since they can hardly

isolate compiler bugs effectively. Therefore, in this paper, we aim

to find a set of effective witness test programs. With the set of

effective witness test programs and the given failing test program,

developers can automatically isolate buggy compiler files precisely.

With this intention, we transform the problem of automated com-

piler bug isolation to a search problem, i.e., finding a set of effective

witness test programs to help isolate compiler bugs precisely.

However, it is challenging to find such a set of effective witness

test programs. On the one hand, each witness test program in the

set is required to have a large witness capability, i.e, it can elimi-

nate innocent compiler files as many as possible from suspects. On

the other hand, the witness capabilities of different witness test

programs in the set are required to be diverse, i.e., each of them

can eliminate different innocent compiler files from suspects, so

that grouping them can be helpful to isolate the buggy compiler

files precisely. To solve this problem, in this paper, we propose

the first compiler bug isolation technique via searching for diver-

sified witnesses, called DiWi (Diversified Witnesses). The main

contribution of DiWi lies in how to find the set of effective witness

test programs. To address the first challenge, we design a series

of mutation rules for DiWi to generate witness test programs via

slightly mutating the given failing test program. The key insight

is that such minor changes are more likely to make the generated

witness test program share a close compiler execution trace with

the failing test program, so that the generated witness test program

can eliminate more innocent compiler files from suspects. To ad-

dress the second challenge, DiWi utilizes some heuristics to guide

the construction of the set of effective witness test programs. More

specifically, during the generation of each witness test program,

DiWi considers the diversity of compiler execution traces between

it and the already generated witness test programs, so that these

generated witness test programs can eliminate different innocent

compiler files from suspects. Finally, DiWi ranks the files executed

by the failing test program based on coverage comparison between

the set of effective witness test programs and the given failing test

program like SBFL [74].

To evaluate the effectiveness of DiWi, we constructed an exten-

sive dataset including 90 real-world reproducible bugs from the

popular GCC [2] and LLVM [5] compilers. The experimental re-

sults on all the 90 studied bugs show that DiWi effectively isolates

10/37/60/71 bugs (out of 90) within Top-1/5/10/20 buggy files, sig-

nificantly outperforming traditional SBFL. As the core of DiWi, we

investigated the contribution of our search-based witness test pro-

grams compared with the developer-provided test suite shipping

with the buggy compiler (which includes test programs passing

on this compiler) and the randomly generated passing test pro-

grams via Csmith [82] (the most widely-used random C program

generation tool). The results show that our search-based witness

test programs significantly outperform the latter two, e.g., isolating

150.00% and 66.67% more bugs than the developer-provided passing

struct S1
{

int f0;
int f1;
int f2;

} a;

struct S1 b;
int c = 1;

int fn1 () {
if (!c)
return 0;

b = a;

return 0;

}

int main () {

struct S1 d = {0,1,0};

a = d;

a.f0 = d.f2;

fn1 ();

a = d;

if (b.f1 != 1)

__builtin_abort ();

return 0;

}
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}
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Figure 1: LLVM Bug 24482

test programs and randomly generated passing test programs at

the Top-1 position. We also investigated the contribution of our

heuristic-based search strategy compared with the random search

strategy during generation, and explored the synthesis of DiWi and

developer-provided test suites. In summary, this paper makes the

following contributions:

• Idea. An automated compiler bug isolation technique that

transforms the problem of bug isolation to the problem of

guided test program generation via search&mutation.

• Implementation. A practical open-source tool implement-

ing the proposed compiler bug isolation technique based on

the LLVM Clang infrastructure.

• Benchmark. An open-source dataset containing 90 repro-

ducible real bugs from GCC and LLVM compilers for future

research on compiler bug detection, isolation, and fixing.

• Study. An extensive study on all 90 bugs from our dataset

demonstrating that the proposed technique is able to sig-

nificantly outperform existing techniques; our search-based

witness test programs (the core of DiWi) have higher quality

than the developer-provided test suite and the randomly

generated passing test programs for compiler bug isolation;

lastly, components from developer-provided test suites can

further boost DiWi effectiveness.

2 MOTIVATION
Here, we use an example to illustrate the motivation of this paper.

Figure 1 shows an example from LLVM bug ID 24482, where the left

is the reported bug-triggering test program. When the buggy com-

piler (revision 245195 in LLVM trunk) compiles the failing program,

it produces different outputs under the compilation options “-O1”
and “-Os”. The bug occurs at the file “DeadStoreElimination.cpp”
due to dead store elimination across basic blocks.

It is tedious for developers to manually find the buggy file since

this revision contains a large number of files (i.e., 3,581). Although

traditional SBFL is reported to be effective in other software sys-

tems [68], it may not be effective in compilers due to their character-

istics. We applied Ochiai [7] (one of the most effective formulae in

SBFL) based on the failing test program and the developer-provided
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test suite, and found the buggy file is ranked at the 659th position

out of 3,581 files. That is, with traditional SBFL developers need to

examine 658 innocent compiler files before finding the buggy one,

indicating the inferior effectiveness of traditional SBFL in compilers.

To isolate compiler bugs effectively following SBFL, instead of

the developer-provided passing test programs, a set of effective wit-

ness test programs are desirable. Intuitively, witness test programs

sharing similar execution traces (except the buggy file) with the

given failing test program are more helpful to eliminate innocent

files from suspects. With this intuition, we generated 20 witness

test programs by randomly introducing various minor changes into

the failing test program, making them share similar execution trace

with the failing one. Then we compared their coverage to isolate the

bug like SBFL [74]. In this way, the buggy file is ranked at the 5th
position, demonstrating that these generated witness test programs

by slightly changing the failing test program can help isolate the

bug effectively.

We further analyzed the isolation result using each witness test

program and the given failing test program (namely a pair of test

programs) to learn the performance of each individual witness

test program. Among the 20 pairs, 1 pair achieves the optimal

result (i.e., Top-1), 13 pairs rank the buggy file within the first 10

positions, and 7 pairs rank the buggy file after the 30th positions.

Overall, there are many effective pairs and a few low-quality pairs,

by changing the failing test programminorly. For example, Figure 1b

shows the optimal witness test program that ranks the buggy file

at the 1st position, which is generated by changing one variable

of the failing test program in Figure 1a; while Figure 1c shows a

low-quality witness test program that ranks the buggy file at the

33rd position, which is generated by replacing “b.f1” with “a.f1”.

Since we use coverage comparison between test programs to isolate

compiler bugs, a witness test program eliminating more innocent

files from suspects tends to mean that it shares a more similar

compiler execution trace with the failing test program, and also

means that it has higher quality.

Based on the above analysis, we have the following observations:

First, a set of high-quality witness test programs can help isolate

compiler bugs with the given failing test program; Second, even if

we change the failing test program minorly, the obtained witness

test programs are of various quality.

3 RELATEDWORK
We discuss the most closely related work to compiler bug isolation.

Automated Debugging. In the literature, there are a huge amount

of work on automated debugging, e.g., fault localization [27, 45–

47, 55, 56, 80, 85] and program repair [21, 28, 48, 59, 62, 65], where

our work targets the former. As presented in Section 1, the existing

fault localization techniques cannot work well on compilers.

In the literature there also exists mutation-based fault localiza-

tion [50, 51, 60, 66, 87], which aims to mutate source programs to
check the impact of each code element on the test outcomes. How-

ever, our work is to introduce the idea of mutation to slightly change

test programs so as to generate a set of effective witness test pro-

grams. Besides, some work focuses on improving fault localization

via test generation [8, 10, 11, 54, 71] or test selection [25, 26, 61, 70]

for ordinary programs. However, compiler inputs are programs and

compilers are extremely complex and huge, making none of these

existing test-generation and test-selection techniques for better

debugging directly applicable here.

In automated debugging, our work is mostly related to com-
piler debugging. Most compiler debugging work focused on pro-

viding debugging messages/visualization [13, 31, 41, 64, 73]. Some

work focused on reducing bug-triggering tests to facilitate debug-

ging [12, 32, 69, 76, 84]. In our work, the provided bug-triggering

tests are already the reduced ones, as required by compiler devel-

opers. Besides, Chen et al. [19] proposed a technique to rank test

programs triggering bugs such that test programs triggering distinct

bugs are early in the list. Holmes and Groce [34] further proposed a

new metric to determine similarity of failing test programs to facil-

itate debugging. In contrast, our work aims to automatically isolate
compiler bugs via effective witness test program generation. In par-

ticular, Zeller [83] proposed to produce an entire cause-effect chain

in GCC from input to result for facilitating compiler debugging.

Actually, cause-effect chain and our technique are complementary:

1) the former produces fault-diagnosis information at the program-

state level while the latter does this at the source-code level, 2) the

former manipulates in memory and may not handle external states,

3) the latter is more lightweight.

Mutation Testing. Mutation testing is one of the most effective

methods to measure test-suite quality [36, 39, 86]. It deliberately

seeds bugs into the original source program to simulate the bugs

that developers often make in practice. Different from it, our work

aims to conduct test program mutation to generate a set of effective

witness test programs for facilitating compiler bug isolation. Here,

we both apply existing mutation rules from mutation testing and

also design new mutation rules for compiler bug isolation.

Compiler Testing. Compiler testing usually happens before com-

piler bug isolation (the target of our work). Most research on

compiler testing focuses on test program generation [20, 82], test

oracle construction [43, 57], and test execution acceleration [14–

16, 18]. The general idea of mutation is also applied to compiler

testing [20, 33, 42, 44], which aims to generate different test pro-

grams as much as possible by faster diverging from the given seed
program for detecting deep compiler bugs. Different from them, our

work aims to utilize mutation for compiler bug isolation, and the

design goal of our mutation is to flip the compiler execution results

(i.e., from failing to passing) to generate a set of witness test

programs close to a given failing test program.

To sum up, the existing fault localization techniques cannot work

well for large-scale compiler systems, while the existing applica-

tions of mutation cannot be directly used to solve the problem of

compiler bug isolation. Therefore, this work makes the first attempt

to isolate compiler bugs via search-based mutation.

4 APPROACH
Following the observations in Section 2, we propose a novel tech-

nique, named DiWi (Diversified Witnesses), to isolate compiler

bugs. In DiWi, we first deliberately generate a set of effective wit-

ness test programs, and then compare them with the given failing

test program like SBFL to isolate compiler bugs [74]. From Section 2,

we know that it is hard to ensure each generated witness test pro-

gram to be effective, and thus we use an aggregation mechanism to

minimize the impact of low-quality witness test programs in DiWi.

Therefore, there are two key issues to the success of DiWi. First,
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a ::= x | n | opu a | a1 opa a2
b ::= true | false | not b |

b1 opl b2 | a1 opr a2
S ::= x := a | S1; S2 |

while (b) do S |

if (b) then S1 else S2
Figure 2: Syntax rules for the WHILE language

we need to carefully construct each witness test program to avoid

introducing many low-quality witness test programs; otherwise,

we have too much noise. Second, the witness test programs should

evenly eliminate buggy suspects; otherwise, the aggregation pro-

cess is prone to biases. To help construct such a set of effective

witness test programs, we define the following two criteria.

C1: Each test program in the set of effective witness test pro-

grams should share a similar compiler execution trace with

the failing test program.

C2: Test programs in the set of effective witness test programs

should have great diversity in their compiler execution traces.

However, since the space of witness test programs is extremely

huge (in fact infinite to be precise), efficiently generating such a

set of effective witness test programs satisfying the two criteria

is challenging. To satisfy the first criterion, we design a series

of mutation rules for DiWi to generate witness test programs by

slightly mutating the failing test program. Intuitively, such minor

changes are likely to make the generated witness test program

share a close compiler execution trace with the failing test program.

Here, we call our mutation witnessing mutation, aiming to generate

witness test programs with a large witness capability. To satisfy

the second criterion, DiWi utilizes some heuristics to guide the

construction of the set of effective witness test programs. That

is, during the generation of a new witness test program, DiWi

considers the diversity of compiler execution traces between the

new one and the already generated witness test programs, aiming

to make their witness capabilities diversified.
In the following, we introduce the designed witnessing mutation

in Section 4.1, heuristic-based witness test program construction

in Section 4.2, and the aggregation mechanism for compiler bug

isolation in Section 4.3.

4.1 Witnessing Mutation
As presented in Section 3, the existing applications of mutation

cannot be directly used for compiler bug isolation. In our context,

the goal of test program mutation is to introduce slightly different

control- and data-flow information to flip the compiler execution

results (i.e., from failing to passing) to generate witness test

programs. Therefore, we design a series of mutation rules specific

to our mutation goal.

Mutation Rules. To achieve the mutation goal of flipping the fail-

ing test program, we manually analyzed historical compiler bugs

to investigate why these test programs are able to trigger bugs

and which characteristics of test programs can sensitively impact

compiler execution results. Also, to make the changes minor, we

design our mutation, based on the learned knowledge, at the level of

fine-grained program elements, including variables, operators, and
constants. Therefore, we propose three mutation categories: variable
mutation, operator mutation, and constant mutation. For variable

mutation, each program variable can potentially be changed into

another compatible variable or type, since program variables are

the core of data dependencies and variable types can impact many

compiler optimizations. For operator mutation, each program opera-

tor (i.e., arithmetic, logical, relational, and unary) can potentially be

changed into another compatible operator, since program operators

can significantly impact data- and control-dependencies. For con-
stant mutation, each program constant can potentially be changed

into another value, since many compiler bugs are triggered under

some specific values. Here, we both apply existing mutation rules

from traditional mutation testing [39] and design new mutation

rules for compiler bug isolation (e.g., variable type mutation).

More formally, following the presentation of prior work [89] we

view a test program as a syntactic skeletal structure P with “holes”

that can be configured with various variables (denoted as hole ~v ),

operators (denoted as hole ~o ), and constant values (denoted as

hole ~c ). In this way, we can fill each hole with mutated content

to derive a new mutated program. For the ease of presentation, let

us consider a WHILE-style language that has been widely used in

the program analysis research [63, 89]. The program syntax rules

for the WHILE-style language are shown in Figure 2. In the rules,

non-terminals a, b, and S denote arithmetic expressions, boolean ex-

pressions, and program statements, respectively; terminals opa , opl ,
opr , and opu denote arithmetic, logical, relational, and unary opera-

tors, respectively; terminals x and n denote program variables and

constants. Note that we use the WHILE-style language for the ease

of presentation, and our technique applies to a full-fledged language

such as C. To obtain program mutations, we recursively apply a mu-

tation transformation to the WHILE syntax rules. Figure 3 presents

the syntax rules for all our three mutation categories. We denote

all the three categories of transformations and program holes as JK
and ~, respectively, i.e., JK=JKv∪JKo∪ JKc and ~=~v∪~o∪~c . In

this way, we formally define our mutation process.

Definition 1 (Mutation Skeleton). Given any test program
P , we say P is a mutation skeleton of P iff the abstract syntax tree
(denoted as TP) of P is the same as the transformed abstract syntax
tree (denoted as JTP K) of P , i.e., TP =JTP K.

Definition 2 (First-order Mutation). Given a test program P
and its mutation skeleton P, for all the n holes (e.g., { ~1,~2,...,~n })
within P, first-order mutation fills each hole with the same content as
P except filling one hole with a mutated content.

Definition 3 (High-order Mutation). Given a test program P
and its mutation skeleton P, for all the n holes (e.g., { ~1,~2,...,~n })
within P, high-order mutation fills i (2 ≤ i ≤ n) holes with mutated
contents, while filling the rest holes with the same content as P .

Since we need diverse execution traces representing different

ways to flip the failing test program for effective compiler bug isola-

tion, for each mutation category we design a plurality of mutation

rules. The detailed mutation rules for each mutation category are

shown in Table 1. Based on the three types of holes, we design 132

specific mutation rules in total and the full list can be found in the

project webpage. Here we regard each specific mutation operation

on one type of program holes as an individual mutation rule, e.g,

replacing “x=0” with “y=0” and replacing “x=0” with “x=1” are two

different rules, while replacing “x=0 with “y=0” and replacing “x=0”

with “z=0” belong to the same rule.
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JaKv ::= ~v | n | opu JaKv | Ja1Kv opa Ja2Kv

JbKv ::= true | false | not b |

Jb1Kv opl Jb2Kv | Ja1Kv opr Ja2Kv

JSKv ::= ~v := JaKv | JS1Kv ; JS2Kv |

while (JbKv ) do JSKv |

if (JbKv ) then JS1Kv else JS2Kv

(a) Syntax rules for variable mutations

JaKo ::= x | n | ~o JaKo | Ja1Kv ~o Ja2Ko

JbKo ::= true | false | not b |

Jb1Ko ~o Jb2Ko | Ja1Ko ~o Ja2Ko

JSKo ::= x := JaKo | JS1Ko ; JS2Ko |

while (JbKo ) do JSKo |

if (JbKo ) then JS1Ko else JS2Ko

(b) Syntax rules for operator mutations

JaKc ::= x | ~c | opu JaKc | Ja1Kc opa Ja2Kc

JbKc ::= true | false | not b |

Jb1Kc opl Jb2Kc | Ja1Kc opr Ja2Kc

JSKc ::= x := JaKc | JS1Kc ; JS2Kc |

while (JbKc ) do JSKc |

if (JbKc ) then JS1Kc else JS2Kc

(c) Syntax rules for constant mutations
Figure 3: Skeletal program structures for the WHILE-style language

Table 1: Summary of mutation rules

“Holes” Mutation Rules

~v

Inserting/removing a qualifier, i.e., volatile, const, and
restrict;
Inserting/removing/replacing a modifier, i.e., long, short,
signed, unsigned;
Replacing a variable by another variable within the feasible

scope;

~o

Replacing a binary operator by another binary operator

within the same category, e.g., arithmetic, relational, and

logical operators;

Replacing/removing a unary operator, i.e., prefix increment,

postfix increment, prefix decrement, postfix decrement, and

logical negation;

~c
Changing the value of an integer constant via a typical

operation, i.e., value+1, value-1, value*0, and value*(-1);

Example.We use an example to illustrate our witnessing mutation

shown in Figure 4. Figure 4a shows an original program P . Figure 4b
shows the mutation skeleton P of P . Figures 4c and 4d show two

example mutated programs by filling holes in P, where the former

is a first-order mutationM1 and the latter is a high-order mutation

M2. The mutated holes have been highlighted within boxes.

Mutation Outcomes. After generating a test program via muta-

tion, it is essential to judge whether it is passing or not. There are

two types of compiler bugs: crash and wrong-code bugs [75, 82]. The
former denotes that the compiler crashes when compiling a test

program under some compilation options; while the latter mainly

denotes that the compiler miscompiles a program, causing it to pro-

duce inconsistent execution results without any failure messages

under different compilation options. Different types of bugs require

different test oracles, which determine whether a test program is

passing or not. If the given program triggers a crash bug, the used

oracle is whether the compiler crashes again under the same compi-

lation options. If the given program triggers a wrong-code bug, the

used oracle is whether a generated program still produces incon-

sistent results across prior inconsistent compilation options. DiWi

does not apply mutations on the code used as oracles (e.g., printf
statements in C), since it may cause the fake passing program prob-

lem, i.e., the constructed passing program via such mutations may

not be really passing but the used oracle simply cannot reveal the

bug. More discussion about it is presented in Section 6.

4.2 Heuristic-Based Test Program Generation
Due to huge search space and limited computational resources, we

cannot generate all witness test programs via mutation and then

select a subset of effective witness test programs from them. One

of the most cost-effective ways is that, during each generation, we

generate a witness test program that differs from existing ones as

much as possible. In DiWi, given a failing test program, different

int main() {

int a = 1;

const int b = 2;

if (a > 0) {

int c = 3;

a = b + c;

}

return 0;

}

(a) original P

int main() {

~v = ~c ;
~v = ~c ;
if (~v ~o ~c ) {

~v = ~c ;
~v = ~v ~o ~v ;

}

return ~c ;
}

(b) skeleton P

int main() {

int a = 1;

int b = 2;

if (a > 0) {

int c = 3;

a = b + c;

}

return 0;

}

(c) mutationM1

int main() {

int a = 1;

int b = 2;

if (b > 0) {

int c = -3 ;

a = b + c;

}

return 0;

}

(d) mutationM2

Figure 4: Example of witnessing mutation
mutation rules are not equally effective. The mutation rules that

more frequently generate diverse witness test programs should be

selected with higher probability for further mutations. Based on this

insight, we propose our heuristic-based test program generation in

the following subsections. In particular, we use coverage distance to
measure the diversity between test programs:

Definition 4 (Coverage Distance). The distance Dist between
two test programs P1 and P2 is the Jaccard distance between their
statement coverage (where StmtP1 and StmtP2 represent the set of
covered statements by P1 and P2 respectively):

Dist (P1, P2) = 1 −
StmtP1 ∩ StmtP2
StmtP1 ∪ StmtP2

(1)

During the process of constructing a set of effective witness

test programs, DiWi first selects a seed test program to mutate

(described in Section 4.2.1), and then selects a mutation rule to

apply (described in Section 4.2.2) in each iteration.

4.2.1 Seed Program Selection. The initial seed test program is the

given failing test program. All witness test programs are derived

from this initial seed test program, by conducting first-order or

high-order mutations on it. Actually, nth -order mutations can be

regarded as conducting first-order mutations on the programs gen-

erated by (n-1)th -order mutations on the initial seed test program.

That is, DiWi also treats the generated test programs via mutation

as seed test programs for following iterations. Here we can call the

initial seed test program the 0th -order mutation.

To reduce the risk of introducing failing test programs that are

due to other bugs, DiWi first selects (n − 1)th -order (n ≥ 1) failing

test programs as seed test programs. If it cannot construct any

witness test program under the given terminating condition, DiWi

then selects nth -order (n ≥ 1) failing test programs. The reason is

that higher order failing test programs are more likely to incur other

bugs. Moreover, lower order failing test programs help control the

trace similarity between the newly generated witness test program

and the given failing test program. Please note that DiWi rejects any

newly generated witness test programwithout increasing diversity.

4.2.2 Mutation Rule Selection. Based on a selected seed program,

DiWi selects a mutation rule to mutate it. However, these mutation

rules are not equally effective to generate diverse witness test pro-

grams for a given failing test program. Also, the same mutation rule
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performs differently for different initial failing test programs. There-

fore, we carefully design an adaptive procedure to select mutation

rules for constructing a set of effective witness test programs. Intu-

itively, if a mutation rule can more frequently generate witness test

programs that have greater diversity with the existing ones, the mu-

tation rule should be selected with higher probability for further mu-

tations. Based on the intuition, we compute a priority score for each

mutation rule MR as Score(MR) =
(
1

m
∑m
i=1 Dist(P , Pi )

)
∗ Rates ,

where: 1○ m is the number of existing witness test programs in

the set; 2○ P is the new witness test program generated by using

MR; 3○ Dist(,) is the coverage distance, computed by Formula 1;

4○ Rates is the success rate of generating accepted witness test

programs, i.e., the ratio of the number of times the witness test

program generated by MR is accepted into the witness set to the

number of times MR is selected for mutations.

Mutation rules can be ranked according to the descending order

of the computed priority scores. However, we cannot directly select

the mutation rule ranked at the 1st position for next mutation,

since the ranking is based on historical results of these mutation

rules and can hardly perfectly predict future results. Therefore, each

mutation rule should have some probability to be selected for next

mutation, and a mutation rule ranked higher in the ranking list

should have a larger probability to be selected. That is, the problem

of mutation rule selection in DiWi can be regarded as the sampling
problem from a probability distribution.

Here, since which mutation rule to be selected depends on the

most recent behavior of each mutation rule, it is actually a typical

Markov Chain (MC). Therefore, to solve the sampling problem from

a probability distribution, DiWi adopts the Metropolis-Hastings

(MH) algorithm [40], the most popular Markov Chain Monte Carlo

method, as heuristic by assuming the desired distribution to be

equilibrium distribution [23]. Here, MH obtains random samples

from a probability distribution. In our context, it samples the next

mutation rule (denoted asMRb ) based on the current mutation rule

(denoted as MRa ) according to a probability distribution. If MRb
is better than MRa , i.e., the priority score of MRb is larger than

that of MRa , MRb is definitely accepted; If not, MRb still has some

probability to be accepted. Following the existing work [20], we set

the probability distribution to be the geometric distribution, which

is the probability distribution of the number X of Bernoulli trials

needed to obtain one success. If the success probability on each

trial is p, the probability the kth trial being the first success can be

computed as Ps(X = k) = (1 − p)k−1p.
During the process, mutation rules are selected randomly, and

thus the proposal distribution is symmetric. Therefore, the probabil-

ity of accepting MRb given MRa is computed as Pa(MRb |MRa ) =
Ps(MRb )
Ps(MRa )

= (1−p)kb−ka , where ka and kb are the positions ofMRa
and MRb in the ranking list of mutation rules according to the de-

scending order of their priority scores. Please note that, when MRb
is better than MRa (i.e., Ps(MRb ) > Ps(MRa )), Pa(MRb |MRa ) = 1.

After acquiring the result of MRb (i.e., accept or reject), DiWi up-

dates its score and re-ranks these mutation rules for next iteration.

4.2.3 Overall Algorithm. We formally present the generation pro-

cess of DiWi in Algorithm 1. The initial set of seed programs con-

tains only the given failing test program Pf , and the priority score

of each mutation rule is 0. In this algorithm, Line 1 randomly selects

Algorithm 1: Heuristic-based Test Program Generation

Input :S: Seed test-program set {Pf }
MR: A list of mutation rules [MRi | i ∈ 1. . . 132]

Output :P: A set of witness test programs

1 MRa ← MRi←random(1. . .132)
2 S′ ← [ ]

3 while not termination do
4 P ← select(S) /* select a program from S */

5 ka ← position(MRa )/* get MRa’s position in MR */

6 do
7 MRb ← MRi←random(1. . .132)
8 kb ← position(MRb )
9 f ← random(0, 1)

10 while f ≥ (1 − p)kb−ka ;

11 P ′ ← mutate(P , MRb )
12 if P ′ is passing ∧ ∀Pi ∈ P, D(P ′, Pi ) , 0 then
13 P ← P ∪ {P ′ }
14 end
15 if P ′ is failing then
16 S′ ← S′ ∪ {P ′ }
17 end
18 updateScore(MRb , P

′
, P)

19 MR ← sort(MR)
20 MRa ← MRb
21 end
22 if Size(P) > 0 then
23 return P
24 end
25 else
26 S ← S′

27 Repeat from Line 2
28 end

a mutation rule as the current oneMRa . Lines 3-21 construct a set of
witness test programs until achieving a terminating condition. Line

4 selects a seed program P to mutate. Line 5 gets the position ofMRa
in the ranking list of mutation rules. Lines 6-10 acquire the next

mutation rule MRb . Line 11 applies MRb to mutate P to generate

a new program P ′. Lines 12-17 determine whether P ′ is accepted
by P and S′ based on its execution results and coverage distances

with the existing witness programs in P. Lines 18-20 update the

score of MRb and re-rank these mutation rules for next iteration.

If P ′ is accepted into P, the score is updated by changing the two

items in the formula Score; Otherwise, the score is updated by just

changing the latter item in the formula Score, since the witness set
and the coverage distances are not changed. Lines 22-28 determine

whether terminating the construction process. If there is no witness

program constructed via lower order mutation, the construction

process (Lines 2-21) is repeated by using higher order mutation (i.e.,

using higher order failing programs as seed programs).

4.3 Aggregation-Based Compiler Bug Isolation
After constructing a set of witness test programs, DiWi isolates

compiler bugs by analyzing the set of witness test programs and

the given failing test program. Following SBFL [7], DiWi computes

the suspicious value for each statement within the touched code

when compiling the given failing test program. Here DiWi adopts

Ochiai [7], one of the most effective formulae in SBFL, to com-

pute the suspicious value for each touched statement. The formula

is sus(s) =
efs√

(efs+nfs )(efs+eps )
, where ef s and nf s represent the

number of failing test programs that execute and do not execute

statement s, and eps represent the number of passing test programs

executing s. Here, we have only one given failing test program and

just consider the statements touched by the failing test program,

and thus ef s is 1 and nf s is 0. Therefore, sus(s) = 1√
1+eps

in DiWi.
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Then, similar to method-level aggregation [74], DiWi computes

the suspicious value of each file by aggregating the suspicious

values of all the touched statements in the file. When a failing test

program is mutated to a set of witness test programs, the coverage

for the buggy file would be changed more than that for the bug-free

files on the whole. Therefore, to compute the suspicious value of

each file, we use the formula SUS(f) =
∑nf
i=1 sus(si )

nf
, where nf is

the number of touched statements when compiling the failing test

program in the file f .

5 EVALUATION
In this study, we address the following research questions:

• RQ1: How does DiWi perform on compiler bug isolation?

• RQ2: Do our search-based witness test programs outper-

form the developer-provided test suite and the randomly

generated passing test programs?

• RQ3: Does our heuristic-based search strategy outperform

the random search strategy during mutation?

• RQ4: Can DiWi take advantage of the developer-provided

test suite (which is an exploration to further boost DiWi)?

5.1 Benchmark
We used GCC and LLVM as subjects, which cover almost all popular

C compilers used in the existing work [15, 17, 43, 44, 82]. To inves-

tigate the effectiveness of DiWi, from the bug repositories [3, 6]

of GCC and LLVM, we manually collected 90 bugs in total, each

of which is required to satisfy the following conditions: 1) the bug

has the equipped failing test program and the compilation options

triggering it in the bug report; 2) the bug has been fixed; 3) the bug

can be reproduced in our experimental environment. We manu-

ally collected bugs reported after 2013 following these conditions

until we had 45 bugs for each compiler since the manual process

is costly. Also, we manually identified the buggy locations (i.e.,

buggy files) for each bug, which serve as the ground truth to eval-

uate the effectiveness of bug isolation in our study. On average, a

GCC buggy version has 1,588 files with 1,414K source lines of code

(SLOC), while a LLVM buggy version has 3,507 files with 1,431K

SLOC
1
. We release the benchmark to facilitate the future research

on compiler bug detection, isolation, and fixing, and welcome more

researchers to contribute to this benchmark. In our benchmark,

each bug has: 1○ buggy compiler version; 2○ failing test program; 3○
compilation options for reproducing the bug; 4○ buggy location; 5○
fixed version. Our benchmark and code are available at the project

webpage: https://github.com/JunjieChen/DiWi.

5.2 Implementation and Configuration
DiWi utilizes Clang Libtooling library [1] to parse a test program to

an abstract syntax tree (AST) and then mutates it at the AST. DiWi

utilizes Gcov [4] to collect compiler test coverage. Here we set the

success probability of each Bernoulli trial p in Algorithm 1 to be

0.023 by satisfying the following conditions: 1○ 0.95 ≤
∑
132

k=1(P(X =

k)) ≤ 1; 2○ p ≥ 1

132
; 3○ (1 − p)132−1p < ε , where ε is a quite small

deviation (e.g., 0.001). We set the terminating condition of DiWi

to be one hour limit in our study. For any technique involving

1
Since GCC and LLVM are implemented using C and C++ respectively, we consider

all the C files for the former and C++ files for the latter.

randomness, we repeated it 5 times and use the median results.

Our study is conducted on a workstation with four-core CPU, 120G

memory, and Ubuntu 14.04 operating system.

5.3 Measurements
To evaluate the effectiveness of bug isolation, we measure the posi-

tion of each buggy file in the ranking list produced by a bug isolation

technique. If more than two files have the same suspiciousness, we

use the worst ranking following the existing work [37, 51, 68]. We

compute the following widely used metrics [9, 51, 60, 74]:

Top-n refers to the number of successfully isolated bugs within the

Top-n position (i.e., n ∈ {1, 5, 10, 20} in our study) in the ranking

list. Larger is better.

Mean First Rank (MFR) refers to the mean of the first buggy file

rank for each bug. This metric emphasizes fast isolation of the first

buggy element to ease debugging. Smaller is better.

Mean Average Rank (MAR) refers to the mean of the average

rank of all buggy files for each bug. Different from MFR, MAR

emphasizes precise isolation for all buggy elements.

5.4 Compared Techniques
Spectrum-based bug isolation (SBFL) [80] is themost widely-studied

bug isolation technique among traditional bug isolation techniques.

It is interesting to evaluate the effectiveness of traditional SBFL on

compilers. It first records the coverage status of each program ele-

ment (i.e., each compiler file in the study) during each test execution

and the test outcomes (i.e., passing or failing). Then SBFL computes

a suspicious value for each program element using some formula,

and finally ranks the program elements based on their suspicious

values. Researchers have made dedicated efforts to design various

formulae on suspiciousness computation. We evaluated eight pop-

ular formulae following the existing work [68, 81, 88], including

SBI, Ochiai, Tarantula, Jaccard, Ochiai2, Kulczynski2, OP
, and D2

,

and found they achieved extremely similar results for compiler bug

isolation in our study. Due to space limitation, we use the most

effective Ochiai as the representative. For each compiler bug, we

use the given failing test program as the failing test program, and

use the developer-provided test suite as the passing test programs.

As the core of DiWi is to generate effective witness test pro-

grams, it is interesting to investigate the impact of generated witness
test programs on bug isolation. To achieve this goal, we replace the

set of our search-based witness test programs with the developer-

provided test suite, and then use the aggregation-based SBFL to

isolate bugs. We call this technique SBFLdeva . Besides, randomly

generated test programs via test-program generation tools like

Csmith [82] have been demonstrated to be quite effective for de-

tecting compiler bugs [15, 82]. Therefore, we also replace the set

of our search-based witness test programs with a set of randomly

generated passing test programs via Csmith [82], and then use

the aggregation-based SBFL to isolate bugs. Similarly, we call this

technique SBFLranda .

Besides, to investigate the impact of our heuristic-based search
strategy on bug isolation, we replace this strategy with the random

search strategy. That is, we do not have any guidance for construct-

ing witness test programs via mutation. We call this variant of DiWi

DiWirand (random search). Note that we used the same terminat-

ing condition for all compared techniques for fair comparison.

https://github.com/JunjieChen/DiWi
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5.5 Threats to Validity
First, the findings in this work may not generalize to other compiler

bugs. To reduce this threat, we tried our best to construct a new

dataset including 90 real-world compiler bugs. Note that the process

was extremely time consuming and tedious; to our knowledge this is

the largest dataset for reproducible compiler bugs. Second, besides

the used two kinds of passing test programs, there are other kinds

of test programs, e.g., programs generated via swarm testing [29].

In the future, we will use more kinds of passing programs for

comparison. Third, the settings (e.g., parameters in our search-

based strategy and terminating condition of DiWi) may impact our

study. In the future, we will explore their impacts.

5.6 Results and Analysis
5.6.1 Overall effectiveness of DiWi. Rows “DiWi” in Table 2 present

the effectiveness of DiWi. Overall, DiWi successfully isolates 10/37/60/71

bugs (out of 90 bugs) within Top-1/5/10/20 buggy files, demonstrat-

ing its effectiveness on compiler bug isolation. That is, about 66.67%

and 78.89% bugs are effectively isolated within 10 and 20 compiler

files, respectively. We further analyzed the effectiveness of DiWi

for different compiler systems. Intuitively, LLVM has a much larger

number of files (shown in Section 5.1), and should be harder to per-

form bug isolation. However, interestingly, shown in Table 2, DiWi

achieves quite similar effectiveness on GCC and LLVM, and DiWi

even isolates 3 more bugs within Top-5 on LLVM than GCC. More-

over, we find that other studied techniques indeed perform worse

on LLVM than GCC. Therefore, that demonstrates the scalability of

DiWi — DiWi’s effectiveness does not decrease dramatically when

facing larger compiler systems.

We also analyzed the comparison effectiveness between DiWi

and traditional SBFL shown in Rows “SBFL” in Table 2. We find

that traditional SBFL performs poorly on the studied compilers. For

example, SBFL ranks the GCC buggy files as the 276.22th position,

while ranking the LLVM buggy files as the 619.09th position on

average. To our knowledge, this is the first study demonstrating that

the intensively studied SBFL cannot scale to real-world compiler

systems. On the contrary, although equally simple and lightweight,

our DiWi is able to significantly outperform SBFL. On average, DiWi

localizes compiler buggy files within 14.27(MFR) and 14.76(MAR),

outperforming SBFL by 96.81%(MFR) and 96.70%(MAR).

Qualitative Analysis. We further conducted qualitative analysis

using two examples. Figure 5 shows an example LLVM bug, where

the left is the failing test program and the right is one of witness

test programs generated by DiWi. The test program (in Figure 5a)

is miscompiled by the LLVM trunk (revision 229830) at -O1 and

above. The bug occurs at the file “ScalarEvolution.cpp”, which
incorrectly promotes the 16-bit add into a 32-bit add. After just one
mutation shown in Figure 5b, the mutated program does not trigger

the bug, demonstrating the power of our designed mutation rules.

We computed the coverage distance between the two programs, and

its value is only 0.013, which confirms our assumption that minor

changes are likely to make them share close compiler execution

traces. In particular, DiWi ranks the buggy file at the 6th of all files.

Figure 6 shows an example for a GCC bug. The failing test pro-

gram in Figure 6a ismiscompiled by theGCC trunk (revision 206472)

at -Os and above. The bug occurs at the file “tree-ssa-sink.c”,
because it does not well handle the case where a second eliminated

unsigned short a = 1;

int b = 65536;

int c;
int main () {

for (c = 0; c < 1; c = 1) {

for (;;) {
b &= −−a;
break;

}

}

if (b)
__builtin_abort ();

return 0;

}

(a) Failing test program

unsigned short a = 1;

int b = 65536;

int c;
int main () {

for (c = 0; c < 1; c = 1) {

for (;;) {
b &= a++ ;

break;
}

}

if (b)
__builtin_abort ();

return 0;

}

(b) Passing mutation

Figure 5: LLVM Bug 22641
int printf (const char ∗, ...);
int a[6], b, c = 1, d;

short e;
void fn1 (int p) {
b = a[p];

}

int main () {

a[0] = 1;

if (c)
e−−;

d = e;

long long f = e;

fn1 ((f >> 56) & 1);

printf ("%d\n", b);

return 0;

}

(a) Failing test program

int printf (const char ∗, ...);
int a[6], b, c = 1, d;

volatile short e;
void fn1 (int p) {
b = a[p];

}

int main () {

a[0] = 1;

if (c)
e−−;

d = e;

long long f = e;

fn1 ((f >> 56) & 1);

printf ("%d\n", b);

return 0;

}

(b) Passing mutation

Figure 6: GCC Bug 59747

extension requires widening a copy created for elimination of a

prior extension. After adding “volatile” as shown in Figure 6b, the

mutated program does not trigger the bug anymore. We computed

their coverage distance, and its value is 0.019, which is also very

small. In particular, DiWi ranks the buggy file at the 1st of all files.
Furthermore, DiWi also brings extra benefits. That is, these gen-

erated witness test programs via mutation provide some useful

hints for the developers to facilitate bug diagnosis/fixing. For ex-

ample, from Figure 5, the bug is not triggered again by replacing

“- -” with “++”, which means that “-1” or “+1” has an impact on the

bug. That is true, because incorrect promotion from 16-bit add to

32-bit add leads to incorrect widening from “-1” to “65535”.

5.6.2 DiWi v.s. SBFLdeva v.s. SBFLranda . We compared DiWi with

SBFL
dev
a and SBFL

rand
a to investigate the impact of our search-

based witness test programs. From Rows “DiWi”, “SBFL
dev
a ”, and

“SBFL
rand
a ” in Table 2, DiWi outperforms them in terms of all the

used metrics. For example, DiWi isolates 150.00%/68.18%/33.33%/

12.70% more bugs than SBFL
dev
a and 66.67%/54.17%/36.36%/18.33%

more bugs than SBFL
rand
a , within Top-1/5/10/20 for all the studied

bugs. That demonstrates that DiWi achieves much more precise

isolation results than SBFL
dev
a and SBFL

rand
a . In particular, we

conducted the Wilcoxon Signed-Rank Test [79] for their isolation

ranks at the significance level of 0.05 to determine whether there

are significant differences between them on all the studied bugs.

The p-value is 0.0016 and 0.0021 respectively, demonstrating that

DiWi does significantly outperform them. These results indicate

that our search-based witness test programs are more powerful

than both the developer-provided and randomly generated (via

Csmith) witness test programs on isolating compiler bugs.
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Table 2: Compiler bug isolation effectiveness comparison

Subject Technique Top-1 ⇑Top−1 Top-5 ⇑Top−5 Top-10 ⇑Top−10 Top-20 ⇑Top−20 MFR ⇑MFR MAR ⇑MAR

GCC

DiWi 5 – 17 – 30 – 36 – 13.93 – 14.76 –

SBFL 0 ∞ 0 ∞ 0 ∞ 0 ∞ 276.22 94.96 276.22 94.66

SBFL
dev
a 3 66.67 12 41.67 25 20.00 30 20.00 17.29 19.43 18.07 18.32

SBFL
rand
a 1 400.00 12 41.67 22 36.36 29 24.14 17.66 21.12 19.62 24.77

DiWi
rand

3 66.67 14 21.43 24 25.00 33 9.09 16.91 17.62 17.57 16.51

LLVM

DiWi 5 – 20 – 30 – 35 – 14.60 – 14.76 –

SBFL 1 400.00 3 566.67 3 900.00 3 1,066.67 619.09 97.64 619.09 97.62

SBFL
dev
a 1 400.00 10 100.00 20 50.00 33 6.06 26.44 44.78 26.61 44.53

SBFL
rand
a 5 – 12 66.67 22 36.36 31 12.90 24.02 39.22 24.21 39.03

DiWi
rand

3 66.67 15 33.33 24 25.00 33 6.06 20.82 29.88 21.04 29.85

ALL

DiWi 10 – 37 – 60 – 71 – 14.27 – 14.76 –

SBFL 1 900.00 3 1,133.33 3 1,900.00 3 2,266.67 447.66 96.81 447.66 96.70

SBFL
dev
a 4 150.00 22 68.18 45 33.33 63 12.70 21.87 34.75 22.34 33.93

SBFL
rand
a 6 66.67 24 54.17 44 36.36 60 18.33 20.84 31.53 21.92 32.66

DiWi
rand

6 66.67 29 27.59 48 25.00 66 7.58 18.87 24.38 19.31 23.56

*
Columns “⇑∗” present the improvement rates of DiWi over a compared technique in terms of various measurements.
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Figure 7: Coverage distance between generated witness test
programs and the given failing test program

To further investigate why our search-based witness test pro-

grams can significantly outperform the others, we further quantita-

tively evaluated one basic assumption of DiWi, i.e., minor mutation

changes are likely to make them share close compiler traces. We

computed themean coverage distance between the given failing test

program and all witness test programs for each bug. Figure 7 shows

the coverage distance comparison among DiWi (our search-based

witness program generation), SBFL
dev
a (the developer-provided

test suite, denoted as Dev in this figure), and SBFL
rand
a (the Csmith

random program generation, denoted as Rand). In this figure, the

violin plots show the density of coverage distances at different val-

ues, and the box plots show the median and interquartile ranges.

From this figure, we find that our search-based witness programs

have much smaller coverage distances with the given failing test

program than the developer-provided witness programs and the

randomly generated witness programs via Csmith. That validates

our assumption. Interestingly, in GCC there are some cases where

the coverage distances are obviously larger than other cases. We

looked into the code and found that all these bugs are crash bugs,

and various code regions not executed by the failing test program

(due to crashes) can be executed by the witness test programs.

5.6.3 DiWi vs. DiWirand . We also compared DiWi and DiWi
rand

to investigate the impact of our heuristic-based search strategy shown

in Rows “DiWi
rand

” in Table 2. From this table, DiWi outperforms

DiWi
rand

for both GCC and LLVM in terms of all the used metrics.

DiWi isolates 66.67%/27.59%/25.00%/7.58% more bugs within Top-

1/5/10/20 than DiWi
rand

for all the studied bugs. DiWi performs

24.38% and 23.56% better than DiWi
rand

in terms of MFR and MAR.

That demonstrates that DiWi performsmore precise than DiWi
rand

for isolating both GCC and LLVM bugs. We also conducted the

Wilcoxon Signed-Rank Test for the isolation ranks of DiWi and

DiWi
rand

. The p-value is 1.345e-06, demonstrating the superiority

of DiWi over DiWi
rand

. The results indicate that our heuristic-

based search strategy outperforms random search.

To investigate why the heuristic-based search strategy outper-

forms the random search strategy, we quantitatively evaluated

another basic assumption of DiWi, i.e., witness test programs gen-

erated via our heuristic-based search strategy should have great

diversity. We computed the coverage diversity among witness test

programs. Here we first computed the minimum distance for each

witness test program with others, and then computed the mean

of all minimum distances for all witness test programs. We find

that the mean coverage diversity of our heuristic-based strategy is

about 214.72X and 14.10X greater than that of the random search

strategy for GCC and LLVM, respectively. That is, DiWi indeed has

greater diversity than DiWi
rand

, validating our assumption.

5.6.4 Exploring DiWi with Developer Tests. Our search-based wit-

ness test programs have been demonstrated to outperform the other

two. We further analyzed the cases where each type of witness

programs performs well. Here we chose the bugs isolated within

Top-5 to analyze. We found although DiWi isolates 37 bugs within

Top-5, SBFL
dev
a and SBFL

rand
a can also isolate 11 additional bugs

in total within Top-5. That is, the developer-provided programs

and randomly generated programs via Csmith can complement our
search-based witness programs to some degree. If we can effectively

synthesize them, the compiler bug isolation effectiveness may be

improved. We analyzed why randomly generated programs can

isolate additional bugs, and found the reason to be that the tool

Csmith cannot cover all C language features, causing some files al-

ways uncovered. When the bug occurs at these files, due to such an

occasional factor, the files are easy to isolate using Csmith generated

passing programs. Getting rid of this occasional factor, we made

the first attempt in the direction by synthesizing our search-based

witness programs and the developer-provided witness programs.
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a = add(a,10);

int add(int a,int b) {…}

randomly 
select

candidate pool
dependent 
materials

blend
int add(int a,int b) {…}
…
int num = 1;
a=add(a,10);
…

…
int num = 1; 
…

DiWi generated 
program:

int add(int a,int b) {…}
…
int num = 1;
num=add(num,10);
…

rename

a blended program

Figure 8: Test program synthesis

For each search-based witness test program by DiWi, the synthe-

sis technique produces a blended witness program automatically

as follows: (1) it treats all basic blocks/statements in all developer-

provided programs as a candidate pool; (2) it randomly selects a can-

didate block/statement from the pool and collects its all dependent

materials (e.g., method declaration and header file); (3) it randomly

inserts the candidate block/statement and its dependent materials

to the search-based witness program, and conducts refactoring for

new variables in the block/statement to make the blended program

valid, i.e., renaming them to the variables occurred in the original

program with compatible types. Figure 8 shows the process of gen-

erating a blended program. We used Clang Libtooling library [1]

to conduct such synthesis at the AST, and the whole process is

fully automated. We repeated the above steps for each search-based

witness program until a blended witness program is produced. In

this way, we get a set of blended witness programs. We then used

the aggregation mechanism to isolate compiler bugs based on the

given failing program and the blended witness programs.

We evaluated whether the synthesis can further improve DiWi.

From the results, among 90 compiler bugs, the synthesis improves

the isolation effectiveness for 50% bugs (45 out of 90), and reduce

the effectiveness for only 10 bugs. Also, such synthesis effectively

isolates 30.00% and 24.32% more bugs within Top-1 and Top-5 files

than DiWi, respectively. Its improvement rates of MFR and MAR

are 11.75% and 9.15%, respectively, compared with DiWi. This is

because the synthesis provides more possibilities for DiWi to find

effective witness test programs by augmenting the mutation space,

demonstrating a promising future to further explore effective ways

for blending test programs from different sources.

6 DISCUSSION
What developers want. To investigate the practicability of DiWi,

we conducted a survey by communicating with 7 compiler develop-

ers (sending out 10 requests in total) from 4 international companies

building their own compilers (including the LLVM team). 6 devel-

opers confirmed that their compiler bug debugging process starts

from buggy files identification and this step is time-consuming,

indicating the necessity of compiler bug isolation at the file level.

Moreover, 6 developers think the effectiveness of DiWi (shown in

our study) is practical and show strong desire for DiWi by using

the words “can’t wait to see” during the communications. Even the

developer who does not first identify buggy files when debugging,

also expresses his/her willing to improve the debugging process by

using DiWi. In the future, we will improve DiWi at finer granularity

such as the method level.

int printf (const char ∗,
...);

int a[1] = { 1 };

int b = 1;

int c;
int main () {

for (; c < 1; c++) {

if (a[0]) {
a[0] &= 1;

b = 0;

}

}

printf ("%d\n", b);

return 0;

}

(a) Failing

int printf (const char ∗,
...);

int a[1] = { 1 };

int b = 1;

int c;
int main () {

for (; c < 1; c++) {

if (a[0]) {
a[0] &= 1;

b = 0;

}

}

printf ("%d\n", c );

return 0;

}

(b) Fake pass-1

int printf (const char ∗,
...);

int a[1] = { 1 };

int b = 1;

int c;
int main () {

for (; c < 1; c++) {

if (a[0]) {
a[0] &= 1;

b = 1 ;

}

}

printf ("%d\n", b);

return 0;

}

(c) Fake pass-2

Figure 9: Example of test oracle challenge (GCC Bug 61140)

Test oracle challenge.We present the used test oracles to deter-

mine whether a mutated program is passing in Section 4.1. However,

such oracles are not absolutely precise, especially for wrong-code

bugs. DiWi treats the mutated program producing consistent results

as a passing program, but it may still trigger the bug. For example,

Figure 9a shows a failing program, where the outputs (of b) under
-O0 and -O1 are different. The other two figures are two mutated

passing programs under the used oracle. However, both of them

are fake passing programs. In Figure 9b, the variable b in printf
statement is mutated to be c. It still triggers the bug, but it is re-
garded as a passing program since c prints the same results under

-O0 and -O1. In Figure 9c, the value of b (i.e., 0) is mutated to be 1,
which is equal to the initial value of b. Such mutations make the

output always the same (i.e., 1), causing the used oracle to miss the

bug. Fake passing programs may impact the isolation effectiveness.

However, it is challenging to solve this oracle problem. To reduce its

impact, DiWi avoids the mutations that directly change the oracle

(i.e., print statements), but cannot deal well with other cases such

as Figure 9c. In the future, we will introduce advanced data- and

control-flow analysis [63] to address this challenge.

Undefined behavior challenge. Another challenge lies in unde-

fined behaviors for compilers, which mean the semantics of cer-

tain operations are undefined in the programming-languages stan-

dards [30]. If a program contains undefined behaviors, compilers

may produce varied results. Identifying undefined behaviors is a

difficult challenge in compiler research [49, 78]. It is also a threat

in our work, since our mutation may introduce undefined behav-

iors. However, undefined behaviors tend to impact bug detection,

since different results of a “failing” program may be caused by real

bugs or undefined behaviors. In DiWi, we only kept the passing pro-

grams with the same results to isolate bugs, and thus the threat may

be not serious. We will relieve this problem by adopting existing

light-weight methods [49] for identifying undefined behaviors.

7 CONCLUSION
In this paper, we propose a novel compiler bug isolation technique,

DiWi, which proposes a heuristic-based search strategy to carefully

generate a set of effective witness programs by performing our

designed witnessing mutation rules on the given failing program.

The results on 90 real bugs for GCC and LLVM show, DiWi isolates

78.89% of the studied bugs within 20 compiler files, significantly out-

performing state-of-the-art SBFL. DiWi is general and not limited to

compilers, we plan to apply it to other systems taking structurally

complex test inputs, e.g., operating systems and browsers.
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