History-Driven Build Failure Fixing: How Far Are We?

Yiling Lou®

Junjie Chen
HCST (Peking University), China
{louyiling,chenjunjie}@pku.edu.cn

ABSTRACT

Build systems are essential for modern software development and
maintenance since they are widely used to transform source code
artifacts into executable software. Previous work shows that build
systems break frequently during software evolution. Therefore,
automated build-fixing techniques are in huge demand. In this paper
we target a mainstream build system, Gradle, which has become the
most widely used build system for Java projects in the open-source
community (e.g., GitHub). HireBuild, state-of-the-art build-fixing
tool for Gradle, has been recently proposed to fix Gradle build
failures via mining the history of prior fixes. Although HireBuild has
been shown to be effective for fixing real-world Gradle build failures,
it was evaluated on only a limited set of build failures, and largely
depends on the quality/availability of historical fix information.
To investigate the efficacy and limitations of the history-driven
build fix, we first construct a new and large build failure dataset
from Top-1000 GitHub projects. Then, we evaluate HireBuild on the
extended dataset both quantitatively and qualitatively. Inspired by
the findings of the study, we propose a simplistic new technique that
generates potential patches via searching from the present project
under test and external resources rather than the historical fix
information. According to our experimental results, the simplistic
approach based on present information successfully fixes 2X more
reproducible build failures than the state-of-art HireBuild based
on historical fix information. Furthermore, our results also reveal
various findings/guidelines for future advanced build failure fixing.

CCS CONCEPTS
«» Software and its engineering — Software testing and de-

bugging.

KEYWORDS
Automated Program Repair, Build System, Build Failure Fixing

“This work was done when Yiling Lou was a visiting student in UT Dallas.
Dan Hao is the corresponding author. HCST is short for Key Lab of High Confidence
Software Technologies, MoE, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °19, July 15-19, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6224-5/19/07...$15.00
https://doi.org/10.1145/3293882.3330578

Lingming Zhang
UT Dallas, USA
lingming.zhang@utdallas.edu

43

Dan Hao™

Lu Zhang
HCST (Peking University), China
{haodan,zhanglucs}@pku.edu.cn

ACM Reference Format:

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019.
History-Driven Build Failure Fixing: How Far Are We?. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °19), July 15-19, 2019, Beijing, China. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3293882.3330578

1 INTRODUCTION

Build systems (e.g., Gradle [4], Ant [2] and Maven [9]) and their
corresponding build scripts have been widely used in modern soft-
ware development to automate the build process. Such build scripts
are also frequently updated during software evolution, to be consis-
tent with the changed source code or environment (e.g., third-party
libraries and plug-ins). If an inconsistency/bug occurs, a build script
may incur build failures. Build failures occur frequently for both
commercial and open-source software systems, and may seriously
postpone the other activities in software development. For example,
in Google, the build failures for Java and C projects occur at the
frequency of 28.5% and 38.4%, respectively [57]; on Travis [10], the
most popular continuous integration (CI) service, nearly 29% of all
the commits suffer from build failures during CI testing [14].

The widespread build-failure problem has gained increasing
attention from software engineering researchers, and various stud-
ies/techniques on different types of build failures have been con-
ducted/proposed [12, 23, 26, 45, 55, 68]. For example, Al-Kofahi et
al. [12] proposed a fault localization approach for Makefile, which
collects dynamic execution trace via the concrete build rules and
then computes suspiciousness of each statement in Makefile via
a ranking algorithm; Macho et al. [45] recently designed three
strategies based on the frequently occurring repair types to fix only
dependency-related build failures for Maven projects. Among them,
HireBuild [23], state-of-the-art general-purpose build-failure fixing
technique proposed in ICSE’18, learns fix patterns from successful
fixes in history across projects and generates patches by embodying
the learned patches. Taking 135 previous build-failure fixes as the
training set, HireBuild has been shown to be able to successfully
fix 11 (46%) of 24 studied real-world build failures, indicating a
promising future for history-driven build-failure fixing.

Despite its effectiveness, HireBuild was only evaluated on a
limited dataset. Furthermore, as a history-driven technique, its
effectiveness relies on the quality and availability of the training
data. Therefore, it is unclear whether HireBuild’s effectiveness can
be generalized to other evaluation datasets. In this paper, to fully
understand the efficacy and limitations of the history-driven build
fixing technique HireBuild and facilitate future build-fix studies, we
first build a new and large dataset of 375 real-world build failures
from Top-1000 GitHub projects. To our knowledge, this is the largest
evaluation in the literature for general-purpose build-failure fixing.

ISSTA °19, July 15-19, 2019, Beijing, China

Among the collected 375 build failures, 102 of them are currently
reproducible. We thus re-visit the performance of HireBuild on these
102 reproducible build failures. We also perform qualitative manual
inspection on the successful and unsuccessful cases of HireBuild
to investigate the strengths and limitations of history-driven build-
failure fixing. The quantitative results show that HireBuild is able
to fix 9 (9%) out of 102 build failures, confirming that HireBuild
can indeed commit successful fixes, but in a much lower rate than
reported. Meanwhile, based on our qualitative analysis, the fixed
build failures by HireBuild usually fall into some fixed patterns,
which actually could be also obtained from present information (i.e.,
present build code and external resources) rather than historical
build fix information; the unfixed build failures are mainly due
to the inflexible design of fix patterns and patch generation rules,
making some patching results hard to generalize to new datasets.
Inspired by the findings of our study, we propose a lightweight

build-failure fixing technique, HoBuFF (History-oblivious Build
Failure Fixing), which does not rely on history data but instead
simply utilizes the present information of the build code, build log
and external build-related resources. HoBuFF includes two phases:
(1) fault localization [15-17, 37, 38, 40, 50, 51, 74, 76, 77], and (2)
patch generation. In particular, in the first fault-localization phase,
HoBuFF analyzes error logs of the given build failures to extract er-
ror information, and then localizes the possible buggy locations via
inter-procedural data-flow analysis; in the second patch-generation
phase, HoBuFF generates patch candidates by defining three fixing
operators and searching for the fixing ingredients both inside and
outside the project (i.e., internal and external resources). We then
conduct an empirical comparison between HireBuild and HoBuFF
on the extended dataset and find that among the 102 reproducible
failures, HoBuFF successfully fixes 18 bugs within less time, includ-
ing the 8 bugs fixed by HireBuild (HireBuild fixes 9 in total). We
also observe that for the build failures that cannot be fixed, HoBuFF
can terminate its execution in minutes, whereas HireBuild may
take hours. The paper makes the following contributions:

o Dataset: A dataset including 375 real-world build failures within
102 reproducible build failures, which is much larger than the
state-of-art build-failure datasets and can serve as the benchmark
dataset for future build-fix studies.

e Study: An extensive study of state-of-the-art history-driven
build-failure fixing (HireBuild) on the extended dataset, with
detailed manual inspection for both its strengths and limitations.

e Technique: A novel build-failure fixing technique (HoBuFF)
with only present information (i.e., no requirement for historical
data), which utilizes lightweight data-flow analysis and queries
internal/external resources to perform build fixing.

e Implications: An empirical evaluation of HoBuFF and state-
of-the-art HireBuild, which demonstrates that present project
information can greatly complement historical build fix informa-
tion for automated build failure fixing, and also reveals various
findings/guidelines for future advanced build-failure fixing.

2 BACKGROUND
2.1 Build Failure Fixing: Challenges

In this section, we present a build failure in Mockito/db8a3f3 and
its manual fixing patch [8] to illustrate the challenges in fixing build

44

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

Table 1: Illustration Example

Error message
* What went wrong:

> Execution failed for task ":releaseNeeded’.

> Cannot get property ‘needed’ on extra properties as it does not exist
* Where:

Script */gradle/release.gradle’ line: 104

Manual Patch
80 task (’’releaseNeeded’’) {

97 if (skippedByCommitMessage or skipEnvVariable) {

98 ext.needed = false

99 } else if (forceBintrayUpload or dryRun) {

100 ext.needed = true

101 } else {

102 logger.lifecycle("Criteria not met")
+ ext.needed = false

103 3}

104 logger.lifecycle(’’${ext.needed}’’) }
bintrayUpload {

dependsOn releaseNeeded

onlyIf { releaseNeeded.needed }

110
111
112

failures for Gradle. Table 1 presents the build failure example with
an error information related segment (i.e., error message) from its
build log and its manual fixing patch. During the execution of task
releaseNeeded, the build process terminates at Line 104, because
Line 104 tries to access the property ext.needed, which is not
defined on the else branch. To fix this failure, developers add an
extra statement ext.needed = false (in green) after Line 102.
Given the build log containing failure related information, the
first challenge lies in fault localization in the Gradle script. As the
error message in Table 1 indicates, Line 104 is the code location
where the build failure is triggered and the build process stops.
However, according to the manual patch, the fix is added after
Line 102. Line 104 reveals the build failure, but it may not be the
root cause for the build failure. Therefore, without identifying all
potential root-cause statements, we may not fix a build failure.
Even if the set of root cause statements are identified, there is
another challenge: how to generate a correct patch. In particular, to
fix this example build failure, an automated fixing technique needs
to find out the correct value for the error property ext.needed,
which requires the understanding of the program. In other cases,
when a build failure is caused by using incorrect values of external
resources (e.g., a third-library dependency), an automated fixing
technique also requires open knowledge of external resources.

2.2 State-of-the-Art HireBuild

As the state-of-art build-failure fixing technique, HireBuild learns
fixing patterns from historical build-failure fixes (i.e., pattern ex-
traction) and generates specific patches by predefined rules and
filling in concrete values in the pattern (i.e., patch generation).

In the phase of pattern extraction, HireBuild first requires a train-
ing set, which is composed of build fixes collected from the history,
and then selects several build fixes from the training set whose
error messages are similar with the error message of the given
build failure. These selected build fixes are regarded as seed fixes.
From these seed fixes, HireBuild extracts patterns and then ranks
them with some heuristic strategies. For example, for a given fix
which changes statement version = 1.4.0 to version = 1.7.9,
HireBuild learns a pattern, which is to “replace the constant value
(i.e., 1.4.0) in expression version =
that this new value will be decided later (in the patch generation
phase). Moreover, since HireBuild defines patterns by using only

1.4.0 with a new value”. Note

History-Driven Build Failure Fixing: How Far Are We?

two-level AST expressions (i.e., current and its parent node expres-
sions), its generated fixes often cover only a small span of script
code, e.g., often a variable or a continuous segment of script code.

In the phase of patch generation, HireBuild defines several rules
for four types of build elements and fills in concrete values into
the abstract part of the patterns for these build elements. The four
types of elements are (1) identifiers (including task names, block
names, variable names), (2) names of Gradle plug-ins and third-
party tools/libraries, (3) file paths within the project, and (4) version
numbers. Then HireBuild ranks the generated patches based on the
similarity between patches and seed fixes, applies them to the code
locations matching the patterns, and at last validates them in order.

However, besides the four types of elements considered in Hire-
Build, there still exist other elements (e.g., project-specific vari-
ables), whose concrete values are required in patch generation but
are not considered by HireBuild at all. For the example in Table 1,
ext.needed (whose value is true or false) does not belong to any
of the four types. For these elements, HireBuild does not design spe-
cific rules for concrete value generation, and thus cannot generate
candidate patches for the corresponding build failures.

3 STUDY ON HIREBUILD

As a learning-based technique, HireBuild was evaluated on a very
small dataset, including the training and testing data, which may
incur overfitting. To alleviate this concern, it is important to re-
evaluate its performance on a different and larger dataset. Also, it
is essential to manually inspect the cases that HireBuild produces
correct fixes or not, to learn its efficacy and possible limitations.

3.1 An Extended Dataset

Why a new dataset is needed? The study of HireBuild [23] uses
135 previous build-failure fixes as training data and a set of 24 re-
producible build failures as its evaluation dataset. Such a small data
set, especially the evaluation dataset, may bring obvious external
threat to validity, and thus the conclusions may not be generalized.

To reduce this threat, we conduct a more extensive study on

HireBuild by extending the existing dataset [23]. In particular, we
collect extra 375 build failures, among which 102 build failures are
reproducible, significantly more than those of the prior dataset.
In this paper, we evaluate build-failure fixing techniques on the
dataset of these 102 build failures. This new dataset is abbreviated
as the extended dataset hereinafter.
How is the new dataset collected? First, we collect the top-1000
popular Java projects in GitHub [3], and keep only the 411 projects
which have been integrated tested in Travis system according to
whether the “travis.yml” file is in the project.

Second, we collect build bugs based on the history data of these
projects. For each of these 411 projects, we first identify a commit
(denoted as Vr) whose build status is failed and whose immediately
successive commit (denoted as Vp) is passed. As the failure of Vp
may come from either the build script or the source code, we keep
only the commit Vr whose changes from VF to Vp occur on Gradle
files alone. Among these 501 resulting commits (which are actually
commits containing build bugs), we manually remove those whose
modifications on Gradle files do not influence the build results (e.g.,
documentation modifications or semantic-equivalent modifications

45

ISSTA °19, July 15-19, 2019, Beijing, China

Table 2: Dataset Statistics

Extended Dataset
110

375

102

Statistics Previous Dataset
#Projects 54

#Bugs 175

#Reproducible Bugs | 24

on Gradle files) and then in total have 403 build failures, each of
which is suited with a failed commit and a successive passed commit.
To avoid overlap between this newly constructed dataset and the
prior dataset [23], we further remove build failures already in the
prior dataset, and finally have a new dataset of 375 build failures.

Among the 375 build bugs, we successfully reproduce 102 build
failures. A build bug is reproducible when its failed commit still
fails (due to the same reason) and its originally-passed commit
still passes. We find it more challenging to reproduce build failures
than general program bugs since build failures associate tightly
with external resources (which differ among different time stamps),
and are also susceptible to internal resources (which differ among
machines/environments): (1) The dependent libraries which were
originally missing in repository, now are added to repository, or the
dependent libraries which originally contained flaws, now are fixed.
In this case, the originally-failed commits no longer fail anymore.
(2) The external resource changes of the libraries which were not
relevant to the build failure in the past, now also cause the build
to fail (but due to a different reason). In this case, the originally-
passed commits no longer pass now. (3) The build failures are
caused by internal machine resources (e.g., build process crash due
to specific memory/process status), and are hard to reproduce in a
new machine. (4) The build failures are simply flaky (e.g., due to
flaky tests [44]), and are hard to reproduce.

Table 2 presents the basic information of the extended dataset,
which shows the scale of the extended data set compared with
that of the prior evaluation dataset. Noted that, there is no overlap
between the build failures in the extended dataset and the prior
one [23] (since we intentionally removed such overlapped failures).

3.2 Research Questions

We investigate following research questions for studying HireBuild:

e RQ1: How does HireBuild perform on the extended dataset in
terms of the number of fixed build failures?

e RQ2: Why does HireBuild succeed to fix some build failures?

e RQ3: Why does HireBuild fail to fix some build failures?

For an unbiased study of HireBuild, we ask for the original im-
plementation of HireBuild from the authors and directly use it
for our study. Moreover, we take the setting of HireBuild used in
the previous work [23], i.e., using the same training dataset (135
build failures from its dataset) and the setting parameters (e.g., the
number of seed build fixes is 5).

3.3 Results and Analysis

3.3.1 RQI: Number of Fixed Failures by HireBuild. Among 102 re-
producible build failures in the extended dataset, HireBuild fixes
only 9 of them (9%), which is much lower than the fixing rate re-
ported on the prior dataset (i.e., 46% [23]). In other words, HireBuild
does not perform as well as it appears in its original dataset, and
may suffer from the overfitting problem. Besides the quantitative
analysis, it is also interesting to investigate the performance of
HireBuild in details, including its successfully-fixed/unfixed cases.

ISSTA °19, July 15-19, 2019, Beijing, China

Table 3: An Example Successful Patch by HireBuild

Error Message

* What went wrong:
> A problem occurred evaluating root project ":AnimeTaste’
> Couldn’t resolve all dependencies for config :debugCompile’
> Could not find com.afollestad:material-dialogs:0.6.3.1

Patch Generated by HireBuild

30 compile ’com.android.support:support-v4:22.0.0°

31 compile ’com.android.support:appcompat-v7:22.0.0’
32 compile ’com.github.johnpersano:supertoasts:1.3.4’
33 compile ’fr.baloomba:viewpagerindicator:2.4.2’

34 compile ’com.koushikdutta.async:androidasync:2.1.3’

35 - compile ’com.afollestad:material-dialogs:0.6.3.1"
35 + compile ’com.afollestad:material-dialogs:0.8.6.2’

3.3.2 RQ2: Successfully-fixed Cases. For the 9 fixed build failures,
most of them are fixed by using a rigid pattern in a straightfor-
ward way, and history information is not very necessary. For ex-
ample, Table 3 shows a build failure caused by an unresolved third-
library. The error message suggests that the third-library named
com.afollestad.material-dialogs with version@.6.3.1 could
not be resolved. To fix this failure, HireBuild learns a pattern based
on similar build-failure fixes related to library resolving, which
is to update the constant value in the expression starting with
keyword compile. However, as also shown by this table, compile
is a very common keyword in Gradle scripts so that many ex-
pression starts with compile. To further localize the faulty code,
HireBuild designs extra ranking rules which assign high prior-
ity to the expression sharing similar tokens in error message(i.e.,
com.afollestad.material-dialogs). To generate patches then,
after recognizing the element as a third-library with predefined
rules, HireBuild searches in the Gradle central repository to find
proper version values for the library.

The fixing process of this example suggests that the patterns
learned by HireBuild from historical data (i.e., updating the constant
value in the expression starting with keyword compile) actually
play a marginal role to the final success of fixing. On the contrary,
the present information, including the error message, script code
itself, and the external resources (e.g., the Gradle central repository),
may be sufficient for fixing such failures.

3.3.3 RQ3: Unfixed Cases. HireBuild fails to fix 93 failures, because
its inflexible pattern generation and application mechanism ham-
pers (1) localizing the faulty code, (2) generating correct patches.

Unsuccessful Fault Localization. As introduced in Section 2.2,
HireBuild can not distinguish potential faulty code in the process of
fault localization. In particular, HireBuild regards all the expressions
matching the patterns as faulty code (i.e., the place where to apply
the patterns then). In detail, if the learned pattern is “to update the
constant value of an expression which starts with version =, only
the expressions starting with “version =" are considered faulty
code. This strategy works well only when the faulty code exactly
matches the learned patterns.

However, the faulty code does not always match the learned pat-
terns in such a rigid way. For the illustration example in Section 2,
to fix this build failure, HireBuild needs to learn a pattern “inserting
an expression: ext.needed = false”. However, the essential vari-
able ext.needed is named in a project-specific way, and HireBuild
can hardly learn such a pattern from the training dataset.

To sum up, HireBuild generates inflexible patch patterns, which
can hardly deal with project-specific failures.

46

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

Unsuccessful Patch Generation. To generate patches, Hire-
Build embodies rules for only four type of elements in specific patch
generation. However, besides these four types of elements, Gra-
dle scripts may contain other elements, e.g., user-defined variables
whose values are Boolean or Strings, which do not belong to any of
the four types. For example in Table 1, ext.needed (whose value
is true or false) does not belong to any of the four types. For
these elements, HireBuild does not design specific rules for con-
crete value generation, and thus cannot generate candidate patches
for the corresponding build failures.

To sum up, HireBuild only embodies patch generation rules for
specific elements, and thus cannot generate patches for all build
failures, even if HireBuild precisely localizes the buggy code.

3.4 Enlightenment

According to the findings of above research questions, we could
infer some guidelines for automatically fixing build failures:

e Necessity of using historical data. Historical fixing data are
not the indispensable factor for build-failure fixing techniques.
On the contrary, it is actually more essential to make good use
of the present information (i.e., present script code, present build
log and internal/external resources).

o Feasibility of using present data. Present script code, build
log are often available for a given build failure. Besides, lots of
program analysis techniques could be adapted to analyze the
script code. Furthermore, build logs are very well-structured and
thus allow plain error information extraction. As for resources,
there are official documents and repositories stored in a well-
structured for automated reference.

e Analyzing more patterns for build code. The patterns ex-
tracted by HireBuild are inflexible because it keeps little program
information. It implies that, analyzing more fix patterns from
build code could help draw pivotal clues for build-failure fixing.

o Considering more elements in build code. The limited types
of elements in build code considered for patch generation also
cause the limitation of HireBuild’s efficacy, which implies that,
a more general/systematic build-failure fixing approach also
requires considering more script elements.

4 A NEW TECHNIQUE: HOBUFF

Inspired by the findings of study on HireBuild, we propose a light-
weight build-failure fixing technique, named HoBuFF (History-
oblivious Build Failure Fixing), which does not take historical fixes
as input, but utilizes present information in a more exhaustive way.

Build-failure Fixing Problem Definition. At a high level, a
Gradle build script can be regarded as a collection of configurations,
each of which consists of a configuration element and its value.
Most build failures can be attributed to incorrect configurations,
e.g., assigning a wrong value to a configuration element or missing
a configuration.

More formally, any build script can be denoted as a set C =
{c1,¢2,...,cn}, where C denotes a build script and ¢; =< e;,¥/; >
(1 <i < n) is a configuration implicitly or explicitly claimed in
C. Here, e; is a configuration element and ¢/; is the value of the
element. Supposed that a build failure occurs when using C, the
problem of build failure fixing is to generate a new build script

History-Driven Build Failure Fixing: How Far Are We?

@ —_ _5-;_;(‘;)\—> §1 —>':O:~

Error Bug Revealing Root Cause

Error information Location Location
Message
Datatlow-based Fauit Localization ||
—
< > ridiev ingredient Operator
atc / \
Faulty Script /ﬂ\ .i'
| - =
Search-based -

internal
Search

Gradle Repo Android

Patch Generation
External Search

Figure 1: Overview of HoBuFF

C* by conducting modifications on C so that the build failure will
disappear when using C*. More specifically, build failure fixing
consists of two steps: fault localization and patch generation. The
former aims to find which configuration is buggy, denoted as ¢;, =<
ep,¥p > (1 < b < n), and localize e, in C, while the latter aims
to generate a correct value for e}, denoted as 17, and update the
configuration ¢y, in C with cz =< eyp, l//z >.

Overview of HoBuFF. HoBuFF consists of two phases: dataflow-
based fault localization and search-based patch generation. Figure 1
shows the overview of HoBuFF. In the first phase of fault localiza-
tion, HoBuFF extracts error information by analyzing build logs,
and then localizes the potential buggy code by applying lightweight
data-flow analysis (Section 4.1). In the second phase of patch gener-
ation, HoBuFF designs fixing operators and searches for the fixing
ingredients, so as to generate patch candidates (Section 4.2). For
ease of understanding, we use the example presented in Section 2
to illustrate our approach throughout this section.

4.1 Dataflow-Based Fault Localization

When a build failure occurs, a build log records the corresponding
error information, which is helpful to manually localize the root
cause of the build failure. Therefore, the first step of HoBuFF for
fault localization is to extract the error information from the build
log. Based on the extracted error information, HoBuFF then localizes
the bug-revealing statement(s), which is the statement(s) in the build
script that exposes the build failure during the build process. Finally,
HoBuFF traces the root cause from the bug-revealing statement(s)
via lightweight inter-procedural data-flow analysis. Figure 2 shows
the workflow of the fault-localization process on our example.

4.1.1 Error Information Extraction. A build log tends to record
much information involving various stages of a build process, such
as initialization and task execution. Therefore, HoBuFF first parses
the build log to extract the message related to the build failure,
called error message. Due to the standard form of Gradle build logs,
there exist error-indicating headers in the log to mark the error
message. As shown in the error message of the illustration example,
there are two error-indicating headers: (1) “* What went wrong:”
explaining the symptom of the build failure; (2) “* Where:” indicat-
ing the location of the bug-revealing statement(s). Following the
existing work [23], HoBuFF utilizes the error-indicating headers to
extract the error message from a build log. In the error message,
Gradle always tries to report in which project and in which task,
the build failure occurs, which are reported in standard form and

47

ISSTA °19, July 15-19, 2019, Beijing, China

98: ext.needed = false\‘ 104: Logger. Lifecycle
. g 109: ext.needed = true (${ext.needed})
nnot get property 'needed’ on extra properties [102: ext.needed = nuu] & Task releaseNeeded

t does not exist
[112: OnyIf .
{releaseNeeded. need} Task bintrayUpload

Inter-procedural Data-flow

Where:
> Script

)

Error Information

Faulty Script Faulty Script

80 task (’’releaseNeeded’'}{ 80 task ('’releaseNeeded’ ‘}{

97 if {skippedByCommitMessag){ 97 if (skippedByCommitMessag){
98 ext.needed = false 98 ext.needed = false
99 } else if (forceBintrayUpload){ 99 } else if (forceBintrayUpload){
100 ext.needed = true 100 ext.needed = frue
101} else { 101} else {
102 logger. lifecyle{“Criteria notmet”) 102 Logger.lifecylef“Criteria notmet!)
103 } 103 ¥
logger. Lifecycle(“${ext.needed}”) logger. Lifecycle(“${ext.needed}”)

bintraytpload {
dependsOn releaseNeeded
112 onlyIf {releaseNeeded.needed

{} Root Cause Localization
Figure 2: Workflow of Dataflow-based Fault Localization

119 bintrayUpload {
111 dependsOn releaseNeeded
112 onlyIf {releaseNeeded.needed

Bug-revealing Statement

easy to extract with regular expression matching. However, the
causes behind build failures can be totally different, and it is im-
practical to design fixed extraction templates to extract the buggy
element names for all of them. Considering element names are
always nominal, we first conduct POS Tagging [54] (using Stan-
fordCoreNLP [46]) of the statement(s) related to error elements,
and take the unusual nouns (e.g., NNP, NN, NNS, NNPS) as the
possible names of error elements. Here, we refer the trivial nouns
appearing frequently in build log as the usual nouns (e.g., “failure”,
“test”, “complication”, “dependency”, “configuration”, etc.) to reduce
the noise. If more than one nouns are adjacent, we combine them
together to reduce the number of potential error element names.
To handle more cases, we also consider other special tokens which
cannot be POS-tagged correctly (i.e., path names, or tokens in quo-
tation mark). After this, we get potential error-element names and
potential values for further analysis.

In sum, the following specific error information will be collected
to facilitate the fault-localization process, including: (1) project, (2)
task, (3) configuration element, (4) value of the element, and (5)
location of the bug-revealing statement(s). For the illustration exam-
ple in Table 1, HoBuFF extracts the following information from the
error message: (1) project: root project, (2) task: releaseNeeded,
(3) configuration element: needed, (4) value of the element: null,
and (5) location of the bug-revealing statement: Line 104. Note that
project names occur before task names like “projectName: taskName”.
If the project name is missing, “root project” will be used.

4.1.2 Bug-Revealing Statement Identification. The bug-revealing
statement(s) is responsible to expose the build failure, and may
not be the root cause of the failure, but it is actually very impor-
tant to help identify the root cause. The bug-revealing statement(s)
can be identified based on the aforementioned extracted error in-
formation. If the last type of information, i.e., location(s) of the
bug-revealing statement(s), exists, HoBuFF is able to directly find
the bug-revealing statement in the build script according to the line
number. As shown in the illustration example, the bug-revealing
statement is identified at Line 104. Otherwise, HoBuFF uses the
other types of information to infer the bug-revealing statement in
the build script. More specifically, HoBuFF first calculates the Leven-
shtein distance [36] between each element name in the build script

ISSTA °19, July 15-19, 2019, Beijing, China

and the name of the extracted configuration element, and then
identifies the statement(s) containing the variable with the smallest
distance as the bug-revealing statement(s). If there are more than
one statement satisfying the preceding condition, HoBuFF identifies
the ones within the extracted project or task.

4.1.3 Root Cause Localization. To identify the root cause in the
build script, HoBuFF performs inter-procedural data-flow analysis
to trace backward from a bug-revealing statement(s). Note that we
only consider data-flow dependencies (ignoring control-flow de-
pendencies) to avoid over-approximations [59, 70] for lightweight
analysis. First, HoBuFF constructs an inter-procedural control-flow
graph, and annotates it with the data dependency information
computed via reaching definition analysis [49]. Since Gradle is a
Groovy-based domain-specific language and it defines a set of its
own rules to serve as a build tool, its analysis is slightly differ-
ent from widely-used programming languages such as C++ and
Java. Therefore, we perform inter-procedural, context-insensitive,
and field-sensitive dataflow analysis considering the following spe-
cific features of Gradle files: (1) variable definitions in one Gradle
script file (or tasks) often use variables defined in other Gradle files
(or tasks), thus we perform inter-procedural analysis; (2) there
are not intensive function invocations in Gradle files (e.g., Gradle
scripts largely reply on task dependencies/sequences rather than
method invocations to implement the build logic), thus we perform
context-insensitive analysis; (3) fields in aggregate structure vari-
ables are widely used in Gradle files (e.g., ext.needed in Table 1),
thus we perform field-sensitive analysis. Note that if a variable
V is used without definition for some program path, an implicit
statement V = null would be inserted into the location which is
not reached by any definition of V and is also the closest to the
statement using V. Then there should be an edge between the in-
serted statement and the statement using V. For example, there
is missing definition in else branch for Line 104 in Table 1, thus
we insert statement ext.needed = null in Line 102, and add an
edge from Line 102 to Line 104. The constructed data dependen-
cies for the example in Table 1 is shown in Figure 2. Then, based
on the graph, HoBuFF identifies all the statements affecting the
bug-revealing statement (including the bug-revealing statement)
as potential root-cause statements, which is the output of the fault-
localization process. For example, Lines 98, 100, 102, and 104 are
identified as the potential root-cause statements of the build failure.

4.2 Search-Based Patch Generation

To fix a build failure, HoBuFF uses a search-based approach to
generate patch candidates for each root-cause statement, and then
applies these patches one by one to the buggy Gradle script. If the
build failure disappears when applying some patch, HoBuFF regards
this patch as valid. The fixing process is conducted continuously
until all patch candidates have been applied or a valid patch is found.
In the following, we first introduce the components required by
search-based patch generation, i.e., fixing operators (Section 4.2.1)
and fixing ingredients (Section 4.2.2). Then, we present the overall
process of patch candidates generation (Section 4.2.3).

48

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

4.2.1 Fixing Operators. Given a buggy or missing configuration
cp =< ep, ¥ >, we define three fixing operators in HoBuFF fol-
lowing existing work for source-code repair [29, 42, 67]:

e Update: Update cj, by replacing /;, with the correct value 1//;r
where I/IZ is the ingredient. Note that how to define ingredients
will be introduced in the following subsection.

o Insertion: Insert a configuration cj,, where ey, is decided through
fault localization, whereas 1//;; is the ingredient to be introduced.

o Deletion: Delete the configuration cj, where no ingredient is
required. In this case, c¢;, = null (cp is removed from C). To avoid
syntax problem, we further analyze the data dependencies from
cp to delete all the affected statements as well.

For each root-cause statement, HoBuFF applies these operators
in the order of Update-Insertion-Deletion. As the previous study
on source-code repair [67] shows, “Update” is the most widely-
used operator in manual bug repairs while “Deletion” is the least
used fixing operator. In particular, if the root-cause statement is an
inserted null expression (e.g., 102: ext.need = null in Figure 2),
only “Insertion” can be applied to it since it is an implicit statement.

4.2.2 Fixing Ingredients. Both “Update” and “Insertion” require
fixing ingredients. We propose a search-based approach to find the
correct ingredients for these operators.

We classify the configuration elements into two types and decide
their values (i.e., ingredients) in different ways. The first type of
configuration elements is defined within the project, e.g., proper-
ties or files, called internal elements; whereas the second type of
configuration elements is related to external libraries, e.g., third-
library tools and dependencies, called external elements. For internal
elements, HoBuFF searches ingredients inside the project, i.e., in-
ternal searching in short. For external elements, HoBuFF searches
ingredients outside the project, i.e., external searching in short.

HoBuFF with internal searching, is to search all the values that
are assigned to the same configuration element within the whole
project. For example, there are two ingredients found in this way for
the illustration example: (i) ext.needed = false; (ii) ext.needed
= true; HoBuFF with external searching, is to search the values
from external resources. Here we consider three kinds of external
resources: (i) Gradle central repository [5] recording most of third-
party dependencies; (ii) Gradle DSL document [6] recording Gradle
types and their corresponding properties and potential values; (iii)
Android DSL document [1] recording most of Android-related plug-
ins and their corresponding properties. We also consider Android
DSL because Gradle is the official build tool for Android and Gradle
build scripts usually have dependencies with Android.

Since the external resources are recorded in a well-structured
form, HoBuFF is able to collect the information for these external
resources in advance. Due to the closure characteristic of Gradle,
for each item in the external resources, it can be represented in a
sequence like < prefix;.prefixs...prefixy : valueType >. For ex-
ample, from the Android DSL document, we could collect item like
<android.lintOptions.abortOnError:Boolean>, which means
in android block and its sub-block 1intOptions, there is an el-
ement abortOnError, whose value type is Boolean and has two
optional values: true or false.

Given a searching keyword, HoBuFF tries to match it within
collected sequences, and retrieves the value type and prefixes for

History-Driven Build Failure Fixing: How Far Are We?

Table 4: Build Failures Fixed by HoBuFF/HireBuild

Build Failure Category | HoBuFF | HireBuild | Overlap
Internal Element Related 8 0 0
External Element Related | 10 9 8
Total 18 9 8

the keyword. For example, if HoBuFF finds the buggy element
named lint, HoBuFF searches for 1int within collected sequences
and finds the related one 1intOptions and its value type. Based
on the information, HoBuFF could generate several fixing ingredi-
ents, such as, android.lintOptions.abortOnError = false and
android.lintOptions.abortOnError = true. The transformed
Gradle code from these ingredients can refer to Table 6. In this way,
a set of ingredients can be collected from external resources.

4.2.3 Patch candidate generation. The input of the patch-candidate-
generation process is a set of localized root-cause statements and
the output is a list of patch candidates for the build failure. More
specifically, the patch-candidate-generation process can be un-
scrambled as the following three layers: (1) for each root-cause
statement, HoBuFF first decides which fixing operators should be
applied according to whether the statement is null definition or not.
If the statement is null definition, only “Insertion” is considered;
otherwise, all three fixing operators are applied in the order of
Update-Insertion-Deletion, respectively; (2) for each fixing opera-
tor, HoBuFF directly generates a patch candidate if it is “Deletion”,
while HoBuFF generates fixing ingredients via internal or exter-
nal searching if it is “Insertion” or “Update”; (3) for each fixing
ingredient, HoBuFF generates a patch and validates it.

5 COMPARISON EVALUATION

5.1 Research Questions

e RQ4: How does HoBuFF perform in terms of the number of fixed
build failures?

e RQ5: How does HoBuFF perform in terms of the build-failure
fixing time and the number of candidate patches?

While RQ4 focuses on the effectiveness, RQ5 studies the time
HoBuFF costs and the number of candidate patches validated before
a correct patch is found. These measurements are widely used in
the existing work in program repair [53, 65, 67].

5.2 Implementation, Environment, and Process

To implement HoBuFF, we use Groovy AST APIs [7] to systemati-
cally analyze/modify Gradle build scripts. We conduct all experi-
ments on a computer with 64 Intel(R) Xeon e5 CPU Cores, 128GB
Memory, and Ubuntu 14.04.1. The tool/dataset can be found in our
website: https://sites.google.com/site/hobuff2019.

To investigate the performance of HoBuFF, for each build failure,
we first apply HoBuFF to its corresponding buggy build script and
collect a list of patches generated by HoBuFF. For each patch, we
follow previous work [23] to validate whether it is correct based on
the following two criteria: (1) the build task finishes successfully;
and (2) the size of compiled files is the same as the size of compiled
files generated by the manual patch. Finally, we count the number of
build failures that HoBuFF can successfully fix. For each fixed build
failure, we also record the time spent by HoBuFF and the number
of validated candidate patches. To compared with the state-of-art,
we also record the same measurements for HireBuild.

49

ISSTA °19, July 15-19, 2019, Beijing, China

Table 5: Build Failure with Non-existing File
Error Message
* What went wrong:
> A problem occurred evaluating project ":app’
> /home/travis/build/yydcdut/PhotoNoter/app/release.properties (No such file or
directory)”

Patch Generated by HoBuFF

55 Properties p = new Properties()

56 - p.load(new FileInputStream(project.file))
(’release.properties’)))

57 - storeFile file(p.storeFile)

58 - storePassword p.storePassword

59 - keyAlias p.keyAlias

60 keyPassword p.keyPassword

5.3 RQ4: Build-Failure Fixing Effectiveness

Among the 102 reproducible build failures, HoBuFF successfully
fixes 18 of them (18%), whereas the state-of-art HireBuild fixes only
9 of them (9%), indicating the superiority of simply using the present
project information rather than using the historical fix information
for build-failure fixing. In addition, among the 9 build failures fixed
by HireBuild, 8 are also fixed by HoBuFF, which implies that the
new simplistic approach is able to fix most of the build failures
HireBuild fixes. To investigate the contribution of each component
of HoBuFF, we further combine fault localization of HoBuFF with
patch generation of HireBuild, fault localization of HireBuild with
patch generation of HoBuFF on the 18 failures fixed by HoBuFF.
The results show that the former only fixes 12 failures while the
latter only fixes 8 failures, demonstrating the contribution for each
component of HoBuFF. More qualitative analysis on the capability
of HoBuFF over HireBuild can be found as follows.

5.3.1 Case Analysis for Successfully-Fixed Failures. To facilitate
analysis, we categorize build failures successfully fixed by HoBuFF
according to the configuration locations that the corresponding
fixes deal with. Table 4 presents the results of each category, where
Columns 2 and 3 show the number of build failures fixed by HoBuFF
and HireBuild within each failure category, Column 4 presents the
number of build failures fixed by both of these two techniques.
Internal-element-related failures refer to the build failures re-
sulting from wrong values of internal configuration elements. The
values of internal configuration elements are often specific to the
project so that their values usually vary among projects. Properties
and files are common internal elements. Table 5 presents such a real
build failure in our study and its fix generated by HoBuFF. From
the error message, such a failure is caused by non-existing local
files. HoBuFF identifies the buggy configuration in Line 56 as the
bug-inducing statement based on the file path. As HoBuFF cannot
find fixing ingredients for insertion and update operators on this
bug-inducing statement, it generates a patch by applying deletion
operators to Line 56 and its affected code (Lines 57-60). Note that
this patch is the same as the corresponding manual patch.
According to Table 4, HireBuild does not fix any internal ele-
ment related failures. HireBuild learns patches across projects and
different projects define different internal configurations (different
element names and different element values), HireBuild cannot
learn how to fix such category of failures from the history data.
In contrast, HoBuFF is good at fixing these failures, since HoBuFF
performs data-flow analysis for precise localization and internal
searching for valid patch generation.
External-element-related failures refer to the failures resulting
from improper values of elements in external configurations, such

ISSTA °19, July 15-19, 2019, Beijing, China

Table 6: Build Failure with Lint Error
Error Message
* What went wrong:
> Execution failed for task :PG_Edit_SDK:lint
> Lint found errors in the project; aborting build

Patch Generated by HoBuFF
85 android { ...

94 lintOptions {
+ abortOnError false
95 disable ’ExtraTranslation’ }..}

Table 7: Build Failure with Wrong Revision Number
Error Message
* What went wrong:
> A problem occurred configuring project *:lib’
> failed to find Build Tools revision 26.0.2

Patch Generated by HoBuFF

2 ext {

3 - _buildToolsVersion = 26.0.2}

3 + _buildToolsVersion = 26.0.3}

24 android {

25 buildToolsVersion = _buildToolsVersion }
Patch Generated by HireBuild

2 ext {

3 _buildToolsVersion = 26.0.2 } ...

24 android {

25 - buildToolsVersion = _buildToolsVersion}
25 o+ buildToolsVersion = 26.0.3}

as the options of third-party plug-ins. Among these 10 build failures
successfully fixed by HoBuFF, we further found that Gradle reposi-
tory, Gradle DSL document, and Android DSL document contribute
to 20%, 20% and 60% of the cases, respectively.

Table 6 presents such a real-world build failure in our study and
its fix generated by HoBuFF. This failure is caused by error option of
lint component. HoBuFF identifies the buggy configuration in Line
94 as the bug-revealing statement and the root cause. Then, HoBuFF
applies external searching and find 1intOptions owns a set of op-
tions (e.g., abortOnError, absolutePaths). Lastly, HoBuFF enu-
merates all values of these options since they are Boolean type, and
combines them with the insertion operator to generate candidate
patches. Note that although disabling lint option seems tricky, we
observed that the developer(s) also did exactly the same “lazy” fix.

Table 7 presents another real-world build failure in our study
and its fixes generated by both HoBuFF and HireBuild. In par-
ticular, the error message shows that the value of “Build Tools
revision” is wrong. With this message, HoBuFF finds the buggy
configuration in the build file, which is Line 25 in the table, i.e.,
buildToolsVersion=_buildToolsVersion.buildToolsVersion
is an option of Android plug-in, and it declares the version num-
ber of build tools. However, this line is not the root cause and
only triggers the failure. Based on the fault localization component,
HoBuFF identifies the real root cause of this build failure, which is
Line 3 (i.e., _buildToolVersion = 26.0.2). For comparison, we
also list the patch generated by HireBuild in the last row, which is
different from the manual patch. Although this patch can also fix
this build failure (and has been counted as a successful fix), Hire-
Build brings dead code (i.e., Line 3: _buildToolsVersion=26.0.2
becomes dead code) to the build file and thus brings bad code smell.
Moreover, on the other hand, this case also demonstrates the im-
portance of precise fault localization in build-failure fixing.

5.3.2 Case Analysis for the Remaining Failures. Although HoBuFF
outperforms the state-of-art HireBuild to a large extent, it does not
fix all the build failures. Therefore, in this subsection we investigate
the remaining build failures that cannot be fixed by our approach
to learn its limitation in fault localization and patch generation.

50

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

Table 8: Breakdown for Unsuccessful Fault Localization

Unsuccessful Reason Failure Type Number(%)
Test Failure 18 (31%)
Complication Error 12 (21%)
Abstract Error Message (43) Abnormal Process 9%
Startup Failure 8 (14%)
o Publish Failure 2(3%)
Indirect Error Message (6) Runtime Exception 4(7%)
File Missing 3 (5%)
Unrelated Error Message (7) Dependency Missing 4(7%)
Inaccessible Build File (2) Remote File 2 (3%)

Among the 84 build failures that cannot be fixed by HoBuFF, 58
cannot be fixed due to the early fault localization phase of HoBuFF,
whereas 26 cannot be fixed due to the latter patch generation phase.
Fault localization limitation. For most unsuccessful cases caused
by the limitation of fault localization, we further categorize them
according to the unsuccessful reasons and corresponding build
failure types, shown in Table 8.

We observe that most of the unsuccessful cases (56 out of 58) get
stuck in error information extraction. For 43 cases, error messages
are too abstract to contain detailed information for localization, so
that HoBuFF can not extract buggy configuration information at
all. This kind of error messages often comes from the build fail-
ures with test failures, compilation errors, abnormal processes, or
startup failures. We list an example with error message and re-
lated manual fix in Table 9. From this example, even experienced
developers may not be able to find the relation between the error
message and the buggy code. Since HoBuFF can not extract buggy
configuration from the error message, one potential solution is to
utilize extra information, such as stack-trace or report files, which
can be extended to HoBuFF in the future. Furthermore, HireBuild
also fails to fix these failures, since such fixes can hardly be learned
from the history either. For 6 cases of indirect error messages due
to runtime exceptions and publish failures, their error messages
contain scrap and indirect information composing in a complex
way which is hard to extract error information. For 7 cases of
unrelated error messages due to file/dependency missing, the con-
figuration element reported by its error message is not the real
cause of the build failure. Table 10 shows an example. With the
error message, HoBuFF identifies Line 7 as the buggy statement
and tries to assign a correct value for this dependency. However,
the real cause is that the build script does not include a proper
central repository (i.e., jcenter()) and mavenCentral doesn’t con-
tain the needed com.android.tools.build.gradle above 2.3.1.
HoBuFF considers jcenter as the default repository for search-
ing third-party dependency without considering the buggy build
script missing including jcenter. To deal with such a build failure,
HoBuFF needs to include some extra common sense rules during
the process of root cause localization. Note that this is the only build
failure in our study that is fixed by HireBuild but not by HoBuFF.
HireBuild can fix this failure because its training set has a very
similar failure which is fixed in this way, which implies that history
and present information are complementary and we will further
improve HoBuFF by considering history information in the future.

For the left 2 cases, HoBuFF cannot map the buggy configuration
in the build script because the bug-revealing statement lies in a
remote source file which is not accessible (i.e., not in local path).
Patch generation limitation. The remaining 26 cases are those
whose root causes are correctly located but no correct patch is
generated in the patch generation phase. HoBuFF does not fix such

History-Driven Build Failure Fixing: How Far Are We?

Table 9: Example on Failing Test

Error Message
* What went wrong:
> Execution failed for task: library:
connectedDebugAndroidTest
>There were failing tests. See the report at file:
/home/travis/build/grandcentrix/tray/library/
build/reports/androidTests/connected/index.html

Manual Fix
38 - timeOutInMs 30000
38 + timeOutInMs 300000

Table 10: Example on Wrong Mapping
Error Message
* What went wrong:
> A problem occurred configuring root project ' MVPArms’.
> Could not resolve all files for configuration *:classpath’.
> Could not find com.android.tools.build:gradle:2.3.1

Manual Fix
2 repositories {
3 mavenCentral()

+ jcenter()

6 dependencies {
7 classpath com.android.tools.build:gradle:2.3.1

Table 11: Example on Unsuccessful Patch Generation

Error Message
* What went wrong:
> A problem occurred evaluating script.
> No such property: pom_name for class:
> org.gradle.api.publication.maven.internal.pom

Manual Fix
29 repositories {

30 + if (project.hasProperty(’pom_name’)) {
31 + repositories.mavenInstaller {

38 +

40 - organization

48 -)

failures because their fixes require to modify plenty of lines in
the build file and the modification involves complex logic, rather
than reset the value of configuration elements. Table 11 shows one
example case. In particular, HoBuFF extracts suspicious configura-
tion < pom_name, null > and tries to fix the value of the property
pom_name by update, insertion and deletion operators but the cor-
rect patch is not generated at all. The last row shows the manual
patch for this build failure, which actually includes a large amount
of complex modification (i.e, adding 59 lines and deleting 58 lines).
Moreover, such modification requires comprehensive understand-
ing of the project, which is beyond the current capability of HoBuFF.
Such a failure whose fixing requires many complex modifications
is still an open problem in both source-code repair [13, 22, 30—
33, 39, 41, 48, 58, 64, 71-73] and build-failure repair [23, 45], which
may be further explored in the future.

5.4 RQ5: Build-Failure Fixing Efficiency

Besides the number of fixed bugs, it is also interesting to study
the time spent by a bug-fixing technique. Even if the existing bug-
fixing techniques (including HireBuild and HoBuFF) can fix the
same build failures, a technique with quick response (i.e., fixing a
build failure quickly and notifying incapability quickly) is prefer-
able. Therefore, in this subsection we analyze bug-fixing time by
considering both successfully-fixed failures and unfixed failures.
For the failures successfully fixed, HoBuFF spends 156 seconds on
average, indicating the efficiency of HoBuFF in fixing real-world
build failures. We further draw a violin plot to compare the fixing
time between HoBuFF and HireBuild in Figure 3. From this figure,
neither technique spends long time in successfully-fixed cases (i.e.,

51

ISSTA °19, July 15-19, 2019, Beijing, China

NN S
HireBuild HoBuFF

Figure 4: NCP Score (#)

less than 800 seconds). Moreover, although their fixing time is dis-
tributed in a close range, the fixing time of HoBuFF concentrates in
a smaller range (i.e., less than 200 seconds) than HireBuild, demon-
strating the superiority of HoBuFF in terms of the fixing time for
successful fixes. For the 8 failures fixed both by HoBuFF and Hire-
Build, HoBuFF takes 118 seconds on average and HireBuild takes
longer, 196 seconds. For the remaining unfixed failures, HoBuFF
consumes 606 seconds on average and 1110 seconds at most, before
notifying its incapability. However, HireBuild requires much longer
time (i.e., 5 hours on average and 14 hours at most) to report its
incapability. The reason is that HireBuild’s learning process creates
many unnecessary patches (shown in the next paragraph).

We also analyzed the Number of Candidate Patches (abbreviated
as NCP) generated and evaluated before a valid patch is found in
the successful repair cases. Similar to the existing work on program
repair [53], a smaller NCP score indicates less patches are validated
during the repair process, which implies high performance. Figure 4
presents a violin plot on the distribution of NCP scores for HoBuFF
and HireBuild. From this figure, both techniques distribute in a
small range. The NCP scores of HoBuFF are distributed in a smaller
range (i.e., 1-5). Such conclusions are consistent with the obser-
vations in time consumption. That is, as the number of candidate
patches validated before finding the correct patch is small, HoBuFF
can fix the build failure quickly. Besides, we also investigate the
generated patches when the corresponding repair technique does
not fix a build failure. Since none of these patches are correct, it is
also preferable to generate a small number of candidate patches.
On average, HoBuFF and HireBuild generate 77 and 270 patches,
respectively, further demonstrating the efficiency of HoBuFF.

o

HireBuild HoBuFF
Figure 3: Fixing Time (s)

5.5 Threats to Validity

The threat to internal validity lies in the implementation of the
build failure fixing techniques studied in the experimental study.
To reduce this threat, we reused the code of HireBuild and used the
mature Groovy Parsing APIs to implement HoBuFF. Moreover, the
first two authors manually reviewed HoBuFF code carefully.

The threat to external validity mainly lies in the datasets used.
Before this study, Hassan et al. [23] have released a dataset of 175
Gradle build bugs when proposing the state-of-art HireBuild. In
their work, 135 bugs have been already used as the training set for
HireBuild, and among the left 40 bugs, they used the 24 successfully-
reproduced bugs for evaluation. We tried to reproduce the 24 bugs
as the process described in Section 3.1 and only successfully repro-
duced 5 bugs due to various reasons mentioned in Section 3.1. We
have applied HoBuFF and HireBuild on the 5 reproducible bugs
and they both can successfully fix 3 of them. We also build a new
dataset, which is the largest dataset of reproducible real build fail-
ures from GitHub, to ensure that our experimental results can more

ISSTA °19, July 15-19, 2019, Beijing, China

likely generalize to more build failures in the wild compared to
prior work. Furthermore, our large dataset can be viewed as two
different sub-datasets each with half of the bugs based on the build
timestamp. We observe that the earlier half already includes all
the necessary information to design HoBuFF. We then can view
the later half as the test set. In this way, HireBuild fixes 7/2 bugs,
while HoBuFF fixes 10/8 bugs for the ealier/later subset, further
demonstrating the generality of HoBuFF over prior work.

The threat to construct validity mainly lies in the metrics used.
To reduce the threat, we adopt the widely used metrics in program-
repair literature, e.g., the number/ratio of fixed bugs and time
cost [67, 69]. Note that following prior work [23], we did not com-
pare generated and manual patches for checking patch correctness
since there can be over one solution to fix a build failure (Section 5.2).
To further reduce this threat, we manually checked all 18 HoBuFF
patches: 10/3 patches are syntactically/semantically equivalent to
manual patches, and the rest 5 are all valid alternative patches.

6 RELATED WORK

Program Repair. Automatic program repair is now attracting in-
creasing research interests. There exist various techniques for fix-
ing general bugs [13, 21, 24, 30-33, 48, 58, 64, 71, 72], concurrent
bugs [39, 41, 73], and even tests [20, 60]. This section mainly dis-
cusses the closely related Generate&Validate (G&V) techniques:

Search-based techniques explore the search space of fix templates
and validate them heuristically. GenProg [35], one of the earliest and
representative search-based APR techniques, searches for correct
patches via genetic programming. To reduce the repair time cost of
GenProg, RSRepair [52] searches among all candidates randomly,
while AE [66] uses a deterministic repair algorithm. To generate
high-quality fix patterns, PAR [29] learns various types of fixing
templates via manually reviewing human written patches, and lever-
ages them during candidate patch generation. Recently, more and
more search-based techniques have been proposed: HDRepair [34]
automatically mines historical data to help search correct patches;
Elixir [56] uses machine learning to prioritize patches for faster
repair; CapGen [67] utilizes context information to rank mutation
operators [27, 75] and patches for fast patch generation; Sketch-
Fix [25] and JAID [18] reduce patch generation costs via sketching
and meta-program encoding, respectively; SimFix [28] searches
for similar code snippets from the current project under test for
potential fixes; PraPR [21] recently demonstrates that even simple
template-based APR mutators can outperform state-of-the-art APR
techniques, and shows that bytecode-level repair can achieve over
10X speedup over existing techniques.

Semantics-based APR techniques use constraints to generate
correct-by-construction patches via formal verification or specifica-
tions. SPR [42] leverages mutation operators to generate candidate
patches and also applies condition synthesis via symbolic execu-
tion. Prophet [43] automatically learns from correct patches to rank
candidate patches generated by SPR for faster repair. SemFix [48] de-
rives repair constraints from tests and solves the repair constraints
to generate valid patches. Angelix [47] is a more recent lightweight
semantics-based repair technique that scales up to large programs.

HoBuFF can also be categorized as search-based techniques, but
is different from existing techniques: (1) HoBuFF targets at build

52

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

code fixing, while the existing techniques target at source code; (2)
HoBuFF employs both internal and external searching during patch
generation, and also constructs external knowledge graph from
official documents/sources for candidate generation; (3) HoBuFF
utilizes lightweight NLP techniques and dataflow analysis to reduce
the search space for the specific build-failure fixing problem.
Build System Maintenance. Recently, the research work on build
system maintenance mainly (but not limited to) focuses on empiri-
cal study of build-failures and build-failure detection/debugging. In
particular, Sulir et al. [61] and Tufano et al. [63] investigated build
errors from open source projects in Java. Hyunmin et al. [57] inves-
tigated build errors at Google. Both studies demonstrated that build
failures occur frequently in practice. To facilitate build failure de-
tection, Wolf et al. [19] proposed to predict build failures via social
network analysis on developer communication. Tamrawi et al. [62]
proposed a build code smell detection approach, which statically an-
alyzes build code via symbolic evaluation. Besides, Adams et al. [11]
utilized a flexible directed acyclic graph to model dependency graph
for a build system, which may ease the understanding of a build
system so as to reduce the possibility of build failure occurrence.
Few work in the literature studies how to automatically fix a build
failure. Al-Kofahi et al [12] proposed a fault localization approach
for Makefile, which collects and analyzes dynamic execution trace of
build code for precise fault localization. Macho et al. [45] designed
three strategies based on frequently occurring repair types to fix
only dependency-related build failures for Maven projects. Recently,
Hassan and Wang [23] proposed a general-purpose history-based
automatic build-failure fixing approach, HireBuild, which learns
fixing patterns from historical fixes and feeds them into the buggy
script. Our HoBuFF also targets at general-purpose build-failure
fixing. However, HireBuild focuses on learning from the history,
while HoBuFF searches from the present projects/resources.

7 CONCLUSION

In this paper, we attempt to investigate the potential strengths and
limitations of state-of-the-art history-driven build-failure fixing
technique, HireBuild. To this end, we construct a new and large
real-world build-failure dataset from Top-1000 GitHub projects.
Then, we evaluate HireBuild on the extended dataset with both
quantitative and qualitative analysis. Inspired by the findings of the
study, we propose a history-oblivious technique, HoBuFF, which
locates buggy configurations through lightweight dataflow analysis
and then generates potential patches via searching from the present
project under test and external resources (rather than the historical
fix information). The experimental results demonstrate that the
simplistic approach based on present information successfully fixes
2X more reproducible build failures than the state-of-art HireBuild
and is much faster. Furthermore, our results also reveal various
findings/guidelines for future advanced build failure fixing.

ACKNOWLEDGEMENTS

This work was partially supported by the National Key Research and
Development Program of China under Grant No. 2017YFB1001803,
the National Natural Science Foundation of China under Grant Nos.
61872008 and 61861130363, and the National Science Foundation
under Grant Nos. CCF-1566589 and CCF-1763906.

History-Driven Build Failure Fixing: How Far Are We?

REFERENCES

(9]
[10]
(1]

[12]

[13]

[14]

[15]

[16

[17]

(18]

[19

[20]

[21]

[22

[23]

[24]

[25]

[26

[27]
[28]

[29]

[30]

[31]

2019. Android Gradle DSL URL. https://google.github.io/android-gradle-dsl/
2019. Ant. http://ant.apache.org

2019. Github SNAPSHOT. https://www.Github.com,accessonJan$31{st}$2018.
2019. Gradle. https://gradle.org

2019. Gradle Central Repository URL. https://jcenter.bintray.com

2019. Gradle DSL Document URL. https://docs.gradle.org/current/dsl/index.html
2019. GROOVY AST APL. http://docs.groovy-lang.org/2.4.7/html/api/org/
codehaus/groovy/ast/package-summary.html

2019. Manual Patch of Mockito/db8a3f3. https://github.com/mockito/mockito/
compare/db8a3f3ff2e4...4752e4fb0772

2019. Maven. http://maven.apache.org

2019. Travis. https://travis-ci.org

Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.
Design recovery and maintenance of build systems. In Proceedings of the IEEE
International Conference on Software Maintenance. IEEE, 114-123.

Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N Nguyen. 2014. Fault localiza-
tion for build code errors in makefiles. In Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 600-601.

Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 306-317.
Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Synthe-
sizing travis ci and github for full-stack research on continuous integration. In
Proceedings of the 14th International Conference on Mining Software Repositories.
IEEE press, 447-450.

José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. 2013. Entropy-
based test generation for improved fault localization. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 257-267.

Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. An-
gelic debugging. In Proceedings of the 33rd International Conference on Software
Engineering. 121-130.

Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler Bug Isolation via Effective Witness Test Program Generation. In
Proceedings of the 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM. to appear.
Liushan Chen, Yu Pei, and Carlo A Furia. 2017. Contract-based program re-
pair without the contracts. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 637-647.

Timo Wolf Adrian Schroter Daniela Damian and Thanh Nguyen. [n.d.]. Predicting
Build Failures using Social Network Analysis on Developer Communication.
([n.d.]).

Brett Daniel, Tihomir Gvero, and Darko Marinov. 2010. On test repair using
symbolic execution. In Proceedings of the 19th international symposium on Software
testing and analysis. ACM, 207-218.

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis. to appear.

Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chandra. 2014.
Data-guided repair of selection statements. In Proceedings of the 36th International
Conference on Software Engineering. ACM, 243-253.

Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: an automatic approach to
history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering. ACM, 1078-1089.

Mei Hong and Lu Zhang. 2018. Can big data bring a breakthrough for software
automation? Science China Information Sciences 61 (2018), 056101.

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards
practical program repair with on-demand candidate generation. In Proceedings of
the 40th International Conference on Software Engineering. ACM, 12-23.

Md Rakibul Islam and Minhaz F Zibran. 2017. Insights into continuous integration
build failures. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 467-470.

Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. IEEE TSE 37, 5 (2011), 649-678.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018.
Shaping Program Repair Space with Existing Patches and Similar Code. (2018).
Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 802-811.

Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2018. Fixminer: Mining relevant fix
patterns for automated program repair. arXiv preprint arXiv:1810.01791 (2018).
Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: semantics-based repair of Java programs via symbolic PathFinder.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 376-379.

53

(32

[33

[34

[35

[36

(37]

[38

[39

=
=

[41

[42

[43

[44

'S
&

[46

[47

[48

=
)

[50

[51

(52

[53

o
=

[55

[56

ISSTA *19, July 15-19, 2019, Beijing, China

Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 593-604.

Xuan-Bach D Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhancing
automated program repair with deductive verification. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME),. IEEE, 428-432.
Xuan-Bach D Le, David Lo, and Claire Le Goues. 2016. History driven automated
program repair. In SANER.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering,. IEEE, 3-13.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707-710.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: Integrating
Multiple Fault Diagnosis Dimensions for Deep Fault Localization. In ISSTA. to
appear.

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for
fault localization. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 92

Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning
Wei. 2018. PFix: fixing concurrency bugs based on memory access patterns. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 589-600.

Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-based
debugging. In Proceedings of the 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 393-403.

Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: context-aware fixing
of concurrency bugs. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. ACM, 318-329.

Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 166-178.

Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. ACM SIGPLAN Notices 51, 1 (2016), 298-312.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 643-653.

Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
repairing dependency-related build breakage. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
106-117.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 55-60.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. ACM, 691-701.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In Proceedings of the
35th International Conference on Software Engineering (ICSE). IEEE, 772-781.
Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 609-620.

Alexandre Perez, Rui Abreu, and Marcelo d’Amorim. 2017. Prevalence of single-
fault fixes and its impact on fault localization. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE, 12-22.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. ACM, 254-265.

Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. 2013. Using automated
program repair for evaluating the effectiveness of fault localization techniques. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
ACM, 191-201.

Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging.
In Conference on Empirical Methods in Natural Language Processing.

Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An empirical analysis of build failures in the continuous integration workflows
of Java-based open-source software. In Proceedings of the 14th International Con-
ference on Mining Software Repositories. IEEE Press, 345-355.

Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:
Effective object-oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 648-659.

ISSTA °19, July 15-19, 2019, Beijing, China

[57] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ build errors: a case study (at google). In
Proceedings of the 36th International Conference on Software Engineering. ACM,
724-734.

[58] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
532-543.

[59] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. ACM

SIGPLAN Notices 42, 6 (2007), 112-122.

[60] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test

repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

ACM, 503-514.

Matus Sulir and Jaroslav Porubén. 2016. A quantitative study of java software

buildability. In Proceedings of the 7th International Workshop on Evaluation and

Usability of Programming Languages and Tools. ACM, 17-25.

[62] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. SYMake: a build code analysis and refactoring tool for makefiles. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 366-369.

[63] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017), e1838.

[64] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Learning How to Mutate Source Code from
Bug-Fixes. arXiv preprint arXiv:1812.10772 (2018).

[61

[65] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated fixing of programs with contracts. In
Proceedings of the 19th international symposium on Software testing and analysis.
ACM, 61-72.

[66] Westley Weimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program

equivalence for adaptive program repair: Models and first results. In Proceedings

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang

of the 28th International Conference on the Automated Software Engineering (ASE).
IEEE, 356-366.

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. ICSE.
Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-
ing build failures using social network analysis on developer communication.
In Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 1-11.

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings of
the 39th International Conference on Software Engineering. IEEE Press, 416-426.
Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage.. In OSDI. 619-634.

[71] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-

choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 740-751.

[72] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Bohme, and Abhik Roy-

choudhury. 2018. [Journal First] A Correlation Study Between Automated
Program Repair and Test-Suite Metrics. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 24-24.

Tingting Yu and Michael Pradel. 2018. Pinpointing and repairing performance
bottlenecks in concurrent programs. Empirical Software Engineering 23, 5 (2018),
3034-3071.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In ICSM. IEEE, 23-32.
Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and
Hong Mei. 2010. Test generation via dynamic symbolic execution for mutation
testing. In 2010 IEEE International Conference on Software Maintenance. 1-10.
Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In OOPSLA. 765-784.
Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using PageRank. In ISSTA. 261-272.

