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Abstract
Weconsider the problemof how to construct a physical process over a finite state spaceX that applies
some desired conditional distribution P to initial states to produce final states. This problem arises
often in the thermodynamics of computation and nonequilibrium statistical physicsmore generally
(e.g. when designing processes to implement some desired computation, feedback controller, or
Maxwell demon). It was previously known that some conditional distributions cannot be
implemented using anymaster equation that involves just the states inX. However, herewe show that
any conditional distribution P can in fact be implemented—if additional ‘hidden’ states not inX are
available.Moreover, we show that it is always possible to implement P in a thermodynamically
reversiblemanner.We then investigate a novel cost of the physical resources needed to implement a
given distribution P: theminimal number of hidden states needed to do so.We calculate this cost
exactly for the special case whereP represents a single-valued function, and provide an upper bound
for the general case, in terms of the non-negative rank ofP. These results show that having access to
one extra binary degree of freedom, thus doubling the total number of states, is sufficient to implement
anyPwith amaster equation in a thermodynamically reversible way, if there are no constraints on the
allowed formof themaster equation. (Such constraints can greatly increase theminimal needed
number of hidden states.)Our results also imply that for certain P that can be implementedwithout
hidden states, having hidden states permits an implementation that generates less heat.

1. Introduction

Master equationdynamics over a discrete state space play a fundamental role in nonequilibriumstatistical physics
and stochastic thermodynamics [1–3], and are used tomodel awide variety of physical systems. Suchdynamics can
arise after coarse-graining the continuous phase space of aHamiltonian systemcoupled to a heat bath [4–6], or as
semiclassical approximations of the evolutionof anopenquantum systemwith discrete states [1, 7].

The linearity of themaster equation implies a linear relationship between the distribution over the system’s
states at the initial time t=0 and some final time (here taken to be t=1without loss of generality). This is true
even if themaster equation is time-inhomogeneous (i.e. non-autonomous).We can express this relation as

p Pp1 0 ,=( ) ( )

where p(0) and p(1) are column vectors whose entries sum to one, representing probability distributions at times
t=0 and t=1 respectively. If our systemhasn states, thematrix P is an n×n stochasticmatrix, representing
the conditional distribution of the system state at the final time given its state at the initial time. The entryPij is
the probability that the system is in state i at the final time given that it was in state j at the initial time.
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The problemof characterizing the set of all stochasticmatricesP that can arise this way from a (time-
inhomogeneous) continuous-timemaster equation is known as the embedding problem forMarkov chains
[8–13], which can be viewed as the classical and time-inhomogeneous analog of theMarkovianity problem
studied in quantum information [14, 15].

Despite the ubiquity ofmaster equation dynamics inmodels of physical systems, it turns out thatmany P are
non-embeddable, i.e. they cannot be implementedwith anymaster equation. Aswe discuss below, examples of
non-embeddablematrices include common operations such as bit erasure and the bit flip (a logicalNOT)

P P1 1
0 0

, 0 1
1 0

. 1erase flip= =
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

While neither of these operations are embeddable, there is a crucial difference between them. Bit erasure is
infinitesimally close to being embeddable,meaning that it can be implemented by amaster equation if one is
willing to tolerate some finite, but arbitrarily small, probability of error.We call suchmatrices limit-
embeddable (LE).

On the other hand, as we showbelow,many stochasticmatricesP, such as the bit flip, are not even LE. In
light of this, supposewe encounter a physical systemwith n ‘visible states’ that we knowobeys a continuous-time
master equation, but is observed to evolve according to aP that is not even LE between t=0 and t=1. In such a
situationwe can conclude that themaster equation dynamicsmust actually take place over some larger state
space, including some unseen hidden states in addition to the n visible states.

Alternatively, we can imagine that instead of observing some stochastic dynamics, we attempt to build a
system that carries out a specifiedPusingmaster equation dynamics. This is the challengewemight face, for
example, ifP is the update function of the logical state of a computer wewish to build. In this scenario, the
minimal number of hidden states needed to implement Pwithmaster equation dynamics emerges as a
fundamental ‘state space cost’ of the computation P. (See also [16].)

In fact, by adding hidden states one can constructmaster equations thatmeetmore desiderata than just
implementing a given P. Specifically, belowwe show that for any given P and initial distribution p(0), one can
construct amaster equation that implements P on p(0)while being arbitrarily close to thermodynamically
reversible.6

In this paper, we establish upper bounds on the number of hidden states required to implement any
stochasticmatrix Pusing amaster equation, and also establish boundswhenwe require that P be implemented
in a thermodynamically reversible way.We do this using explicit constructions that show any stochasticmatrix P
can be implemented by composing some appropriate set of fundamental transformations that we call local
relaxations (LR), defined in detail below.

Ourmain result is that any n×n stochasticmatrix P can be implementedwith nomore than r 1- hidden
states, where r is the non-negative rank ofP. Because r n , this result implies a simple corollary that one
additional binary degree of freedom (which doubles the number of available states) is sufficient to carry out any
P in a thermodynamically reversible way.We also derive exact results for some particular kinds ofP, including
those representing single-valued functions, which show that the number of required hidden states can bemuch
smaller than r 1- .

Finally, we show that if P can be implementedwith some number of hidden states while incurring some
nonzero EP, then it can be implementedwithout any EP at the cost of atmost one additional hidden state. Such
results imply, for instance, that for a system coupled to a heat bath, adding hidden states can allowone to
implement the samePwhile generating less heat, as we illustrate in detail in an example below.

Note that our results assume complete freedom to use anymaster equation to implement a givenP.
However, in the real world therewill often bemajor constraints on the formof themaster equation that can be
considered, e.g. due to knownproperties of an observed systemwewish tomodel using amaster equation, or
due to limitations onwhat kind of systemwe can build. An example of the former is if we know that the system’s
Hamiltonian can only couple degrees of freedom in certain restrictedways. An example of the latter is ifPmust
be implemented using a digital circuitmade out of separate gates. In cases where there are such constraints on
the formof themaster equation, our results can be considered as upper bounds on lower bounds of the number
of hidden states that are really required. (See section 6.3 below.)

Previous research has shownhow to carry out arbitrary P thermodynamically reversibly [18–21].Moreover,
the constructions in those papers can all be formulated in terms ofmaster equation dynamics7. In addition, they
all exploit what in our terminology are called hidden states. However, none of those papers considered the issue

6
p(0)must be specified in addition toP since in general, the samemaster equation dynamics run on different initial distributions p(0)will

implement the sameP, but with different amounts of irreversible entropy production (EP). See [17].
7
Specifically, the processes considered in those papers are all (in our terminology) ‘LE’, and so could be expressed usingmaster equations.
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of theminimal number of hidden states needed to implement P, i.e. the state space cost of implementing P,
which is the focus of this paper.

In a companion paper [16]we focus on the special case where the stochasticmatrix P is ‘single-valued’, i.e. it
represents a deterministic function. It turns out that for that case at least, there is a second kind of cost arising in
master equations dynamics that implement P, in addition to the state space cost which is the focus of this paper.
Roughly speaking, that second cost is theminimal number of times that the set of allowed state-to-state
transitions changes (which in a physics contextmay correspond to raising or lowering infinite energy barriers
between states). This can be viewed as a ‘timestep cost’ of implementing P. Interestingly, there is a tradeoff
between the timestep cost of implementing any (single-valued)P and the state space cost of implementing thatP.

This paper focuses on the general problemof bounding the state space cost of arbitrary (not necessarily
single-valued) stochasticmatrices and the relationship of this cost to thermodynamic reversibility. In the next
sectionwe provide relevant background. Then in section 3, we definewhat itmeans for amaster equation to
implement a stochasticmatrix P to arbitrary precision. In section 4, we define ‘LRs’, which are the building
blocks of all our constructions.We present ourmain results in section 5.We also investigate how to extend our
framework beyondfinite state spaces to countably infinite state spaces, for the special case where P is a single-
valuedmap overX. Since this topic is a bit different from themain focus of the paper, it can be found in
appendix F. The other appendices contain proofs that are not in themain text.

2. Background

2.1.Master equations
Consider a physical systemwith afinite state spaceX of size n.Wewrite the probability distribution of the state at
time t as p(t), where pi(t) is the probability that the system is in state i at time t.We suppose that p(t) evolves as a
time-inhomogeneous continuous-timeMarkov chain (CTMC)

p t

t
M t p t

d

d
. 2=

( ) ( ) ( ) ( )

The elements in each column of the ratematrixM(t)must sum to zero and its off-diagonal entries are positive.
The entryMij(t) is the transition rate from state j to state i at time t. Equation (2) is commonly referred to as ‘the
master equation’.

For anyCTMC,we can relate the distributions at the initial time t and some later time t ¢ by a linearmap

p t T t t p t, , 3M¢ = ¢( ) ( ) ( ) ( )

whereT t t,M ¢( ) is known as a transitionmatrix, and equals the time-ordered exponential ofM(t).WhereM(t) is
clear from context, for notational convenience wewill sometimes writeT t t,M ¢( ) simply asT t t, ¢( ). Note that if
M(t)=M is constant, then T t t, e t t M¢ = ¢-( ) ( ) . Finally, note that we can rescale time arbitrarily bymultiplying
M(t) by an appropriate constant. Therefore, without loss of generality wewill take t=0 and t′=1 from
nowon.

2.2. Embeddability
Only some stochasticmatricesP are embeddable, meaning that they can bewritten asP=TM(0, 1) for some rate
matrixM(t). As an illustration of a non-embeddablematrix, consider a bitflip in a two state system, represented

by P 0 1
1 0flip = ( ). Now themost generalmaster equation for a two state system is

p t r t p t s t p t1 , 41 1 1= - + -˙ ( ) ( ) ( ) ( )( ( )) ( )

where p1(t) indicates the probability that the bit is in state 1 at time t, and r(t) and s(t) indicate time-dependent
rates of the 1 0 and 0 1 transitions, respectively. It can be shown that there is no choice of non-negative
functions r(t), s(t) such that the solution of (4) simultaneously satisfies p1(1)=0when p1(0)=1 and p1(1)=1
when p1(0)=0, as required to implement Pflip. To seewhy, note that the space of distributions over two states is
one-dimensional. The bit flip over a pair of states requires two distinct solutions to a differential equation, with
different starting and ending conditions, to cross at some time, which is impossible (see figure 1). (Note that this
same argument does not apply to bit erasure.)

Some broadly applicable necessary conditions for a stochasticmatrix to be embeddable are known. For
example, by Liouville’s formula, we have

T M t tdet 0, 1 exp tr d . 5M
0

1

ò=
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

Since the exponential function is strictly positive, any embeddablematrixmust have strictly positive determinant
[12, 22]. An immediate corollary is that amap likePflip (which has determinant−1) is not embeddable. Indeed,

3
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by the continuity of the determinant, Pflip is not even infinitesimally close to an embeddablematrix. (In terms of
our formal framework introduced below,Pflip is not ‘LE’.)

It is also known that Pmust obey P Pdet i ii  in order to be embeddable [12, 22]. Note that any (non-
identity) permutationmatrix has determinant that is either 1 or−1, while the product of diagonal entries is 0.
Thus, no permutationmatrix is embeddable, or even infinitesimally close to an embeddablematrix.

These two necessary conditions on the determinant of amatrix for it to be embeddable are not sufficient.
Even if we restrict attention to the time-homogeneous case, where transition rates between states are constant,
the problemofwhether an arbitrarymatrix is embeddable is unsolved formatrices larger than 3×3. (On the
other hand, if one imposes the further constraint that the dynamicsmust obey detailed balance, the time-
homogeneous embedding problemhas been solved for allfinite-size state spaces [13].)

2.3. Entropy production
Thefield of stochastic thermodynamics [3] has developed a consistent thermodynamic interpretation ofmaster
equation dynamics, including away to quantify EP, the overall increase of entropy in the system and coupled
reservoirs. For a physical system evolving according to amaster equation like equation (2), we define the
instantaneous rate of EP at time t to be [23]

p t M t M t p t
M t p t

M t p t
, ln . 6

i j
ij j

ij j

ji i,
åS =˙ ( ( ) ( )) ( ) ( )

( ) ( )

( ) ( )
( )

The total EP over the time interval [0,1], given some initial distribution p(0), is

p M t p t M t t0 , , 0, 1 , d . 7
0

1

òS = S( ( ) ( ) [ ]) ˙ ( ( ) ( )) ( )

The rate of EP is non-negative, and therefore so is total EP. A process that achieves 0 total EP is said to be
thermodynamically reversible.

If the system is coupled to a single reservoir, a heat bath at temperatureT, then the total EP can bewritten as

p M t S p S p
kT

Q0 , , 0, 1 1 0
1

, 8S = - + á ñ( ( ) ( ) [ ]) [ ( ( )) ( ( ))] ( )

where S(·) is Shannon entropy, k is Boltzmann’s constant, Qá ñ indicates the average heat transferred to the
thermal reservoir over all trajectories of states from t=0 to t=1 [23].

To use awell-known example from the thermodynamics of computation [24, 25], supposewewish to
perform a bit erasure (Perase), inwhich both initial states of a bit, {0, 1}, getmapped to a singlefinal value, 0. Since
this is amany-to-onemap, it reduces the entropy of the device (e.g. a computer) inwhich it is performed. By the
second law of thermodynamics, at least asmuch entropymust be produced in the environment. Often this
occurs by the transfer of some amount of heat Qá ñ from the system into a heat bath at temperatureT. In this case,
assuming the initial probability over the states of the bit is uniform, the second law yields Q kT ln 2á ñ , which
is thewell-known bound on the amount of heat produced in bit erasure that Landauer derived using semi-
formal reasoning8.More generally, an immediate consequence of equation (8) and the non-negativity of EP is

Figure 1.The difference of two solutions to (4) always decreases over time but it can never change sign.

8
It is nowunderstood that a logically irreversible process like bit erasure can be done in a thermodynamically reversiblemanner [26], despite

howmany have interpreted Landauer’s reasoning.

4
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Q kT S p S p0 1 , 9á ñ -[ ( ( )) ( ( ))] ( )

where p(0) and p(1) are the distributions over system states at the beginning and end of the physical process
under consideration.

In the previous section, we discussed the embedding problem,which considers what P can be implemented
using a continuous-timemaster equation. A related, thermodynamicallymotivated, question concerns which
P can be implemented using amaster equation that achieves 0 total EP, in the case where there is a single,
isothermal heat bath. Generally, EP vanishes in such a situation if and only if p(t) is an equilibriumdistribution
ofM(t) for all tä[0, 1]. Formally, thismeans thatMij(t)pj(t)=Mji(t)pi(t) for all i, j and tä[0, 1]. In general, this
condition requires that the initial distribution p(0) is an equilibriumdistribution and that we go to the
‘quasistatic limit’where the parameters change infinitesimally slowly in relation to the relaxation time of the
system [27–29]. This limit can be achieved either by implementing P increasingly slowly (in ‘wall clock’ time),
and/or bymaking the transition rates (which control the relaxation time) increasingly large.

While a givenCTMCM(t)may achieve zero (more accurately, arbitrarily small) total EP for some initial
distribution p(0), in general it cannot generate zero EP formore than one such initial distribution. (See [17] for a
detailed investigation of the dependence of total EP on the initial distribution.) So our thermodynamically
motivated question is whether a givenP has the property that for all initial distributions p(0), there is some
associated set ofM(t) that implement Pwith zero total EP, for that particular initial distribution p(0).

3.Definitions

3.1. Limits of CTMCs
As discussed in the section 1,many commonoperations such as bit erasure are not embeddable (e.g. noCTMC
hasT(0,1)=Perase) but are nonetheless infinitesimally close to a stochasticmatrix that is embeddable. This
motivates the following definition:

Definition 1.AstochasticmatrixP is LE if for all 0 > , there is a ratematrixM t( ) such that T P0, 1M - <∣ ( ) ∣ .

Our definition of limit embeddablemakes no restrictions on the thermodynamic properties of the
implementation of a given P. Our next task is to formalize an additional restriction that reduces the set of all LE
matrices to a subset that can be implemented in a thermodynamically reversiblemanner. Rather than focus on
whether some P can be implemented that way for one specific initial distribution, we focus onwhether it can be
implemented thatway for any initial distribution. Thismotivates the following definition:

Definition 2.A stochasticmatrix P is quasistatically embeddable (QE) if for all initial distributions p, all 0 > ,
and all 0d > , there is a ratematrix M t( )with T P0, 1M - <∣ ( ) ∣ and p M t, , 0, 1 dS <( ( ) [ ]) .

We emphasize that the ratematrix M t( ) that implements a given Pmust generally be specialized to the
initial distribution p in order tomake p M t, , 0, 1S( ( ) [ ]) arbitrarily small.

There are a few properties ofQEmatrices that are central to our analysis. The first one is the following
lemma:

Lemma1.The set of QEmatrices is closed undermultiplication.

It is impossible to implement anymatrix without EP except in a limit, as illustrated by the next proposition9 :

Proposition 2. If M t( ) is the ratematrix of a CTMCwithT P I0, 1 = ¹( ) , then for any initial distribution p

p M t
Pp p

P
, , 0, 1

2 ln det
,1

2

S -
-( ( ) [ ]) ∣ ∣

( )

where 1∣·∣ is 1ℓ norm10.

The inequality in proposition 2 (whichmay not be tight) shows that only those Pwith determinants very
close to 0 can achieve small EP for arbitrary initial distributions. Recall that by equation (5),

P M t tdet exp tr d
0

1
ò= ( )( ) . Thismeans that a small determinant can be achieved if the transition rates

9
While preparing thismanuscript we became aware of independent result by Shiraishi et al [30], which implies proposition 2; see

appendix B for details.
10

For two probability distributions p, q over n states, the 1ℓ norm is defined p qi i-∣ ∣≔ p qi
n

i i1å -= ∣ ∣ .
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(the off-diagonal entries of M t( )) are very large (so that M ttr ( ) is very negative). Note that sincewe have scaled
time out tofix thefinal time t 1¢ = , we are effectivelymeasuring rates in units of t1 ¢. Therefore, the observation
that the entries of M t( )must be very large to achieve smallEP is consistent with thewell-known fact that
quasistatic processes take an infinite amount of time. (See also our discussion of the quasistatic limit in the
previous section.)

An important corollary of proposition 2 is that anyQEmatrixmust be singular.

Corollary 3.AnyQEmatrix, except the identity, has determinant zero.

These points are illustrated in the following example of a canonical QE process, bit erasure, implemented
with a quantumdot:

Example 1. In themodel of bit erasure described in [31], a classical bit is implemented as a quantumdot, which
can be either empty (state 0) orfilledwith an electron (state 1). The dot is brought into contact with ametallic
lead at temperatureTwhich (for an appropriate state of the dot)may transfer an electron into the dot or out of it,
thereby changing the state of the bit.

At time t, the propensity of the lead to give or receive an electron is set by its chemical potential, indicated by
tm ( ), and the energy of an electron in the dot, indicated by E t( ). Specifically, let p t( ) indicate the two-

dimensional vector of probabilities, with p t0( ) and p t1( ) being the probability of an empty and full dot,
respectively. These probabilities evolve according to the ratematrix [31]

M t C
w t w t
w t w t

1
1

, 10=
- -

- -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( ) ( ( )) ( )

whereC sets the timescale of the exchange of electrons between the dot and the lead and w t( ) is the Fermi
distribution of the lead

w t E t t k Texp 1 .B
1m= - + -( ) [ (( ( ) ( )) ) ]

Using equations (2), (10) and conservation of probability (i.e. p t p t 10 1+ =( ) ( ) ), we canwrite

p t C w t p t . 111 1= -˙ ( ) ( ( ) ( )) ( )

Suppose that tm ( ) and E t( ) are chosen in away that depends on p 01( ), so that w t t p t1 01 d= - +( ) ( ) ( )
for some constant δ. In this case, (11) can be explicitly solved for p1:

p t w t C p 0 1 e . 12Ct
1

1
1 d= + - -- -( ) ( ) ( ( ) )( ) ( )

In the limit where C  ¥, p w1 11 d =( ) ( ) , so the transitionmatrixT 0, 1( ) becomes

T 0, 1 1 1 .d d
d d

= - -⎡
⎣⎢

⎤
⎦⎥( )

Furthermore, by equation (12), in that limit p t w t1 ( ) ( ), and so p t w t10  -( ) ( ). Thatmeans that for all
i j, , M t p t M t p tij j ji i( ) ( ) ( ) ( ). In this limit, the total EP over the course of the process

t M t p t
M t p t

M t p t
d ln ,

i j
ij j

ij j

ji i0

1

, 0,1
ò åS =

Î

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ( )

( ) ( ){ }

approaches zero (we show this rigorously, in the context of proving amore general result, in appendixD).
Since δ is arbitrary, thismeans that we canmakeT 0, 1( ) arbitrarily close to bit erasure ( 0d = ), while having

arbitrarily small total EP. This establishes that bit erasure isQE.
Note that if we cannot controlC directly, we can still achieve the same effect as the limit C  ¥ by running

the process with some fixedC for longer and longer times (that is, by changing the endpoint from t=1 to some
t 1> ). This demonstrates the equivalence of going to the limit of infinitely-long time versus infinitely-fast rates
for achieving vanishing EP.

3.2. Embeddingwith hidden states
Many stochasticmatricesP are notQE.Ourmain result is that despite this, any P is a (principal) submatrix of a
largermatrix P̃ which isQE.We formalize this property as follows:

Definition 3.An n n´ stochasticmatrix P is QEwithmhidden states if there exists some n m n m+ ´ +( ) ( )
matrix P̃ that isQE, and for all i j n, 1 ...Î , P Pij ij=˜ (i.e.P is a principal submatrix of P̃).

To understand themotivation for this definition, imagine that there is amatrix P̃ over state spaceY that is
QE, and thatP is a principal submatrix of P̃ , corresponding to the subset of states X YÍ . If at t 0= the process

6
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that implements P̃ is in some state i XÎ , then the distribution over the states inX at the end of the process at
t 1= will be exactly as specified byP. Furthermore, because P 1j X jiå =Î , P 0ji =˜ for any i XÎ and j XÏ . This

means that if the process is started on some i XÎ , no probability can ‘leak’ out into the hidden states by the end
of the process, although itmay pass through them at intermediate times.

Mathematically, the hidden states in definition 3 are additional to the states whose evolution is controlled by
P. However, there aremultiple ways tomap thismathematical structure into a particular physical system. In
particular, hidden states can arise whenY is a set ofmicrostates of a system andX is an associated set of
macrostates; we elaborate this point in section 5.

Note that anyP that isQEwithmhidden states is alsoQEwith phidden states for all p m . Note as well
that by lemma 1, if an n n´ stochasticmatrix P can be factored into a product of n n´ matrices, each of which
isQEwithm hidden states, thenP itself is QEwithm hidden states.More generally, the number of hidden states
required to quasistatically embed a product of stochasticmatrices is nomore than themaximumnumber
required for each of thematrices in that product. In section 5, we exploit this fact to derive upper bounds on the
minimal number of hidden states needed to quasistatically embed a givenmatrix.

The definition ofQEmay seem very strict, but from the perspective of the number of hidden states needed
for embedding, it is only slightlymore costly than limit-embedding:

Proposition 4. If amatrix P is LE, it is QEwith atmost one hidden state.

Thismeans theminimal number of hidden states required for limit-embedding versusquasistatic
embedding are atmost one apart.

Note that itmight be fruitful to consider aweaker definition ofQE than definition 2, inwhich amatrix would
be considered ‘QE’ if it is LEwhile achieving vanishingly small EP for some specific initial distribution p, rather
than requiring that it is LE that way for any initial distribution.With this definition, the ‘state space cost’ given by
the number of hidden states would then be a function ofP and the initial distribution p, not just ofP. Our
definition can be seen as a worst-case version of this weaker definition; wemeasure the ‘state space cost’ of a
stochasticmatrix P as themaximal number of hidden states wemight need if wewere given some specific initial
distribution p andwanted to construct amaster equation that implements Pwith no EP for that p.

In addition, we note that anymatrix which is QE according to our stronger definitionwould also satisfy this
weaker definition ofQE. Thus, the upper bounds on theminimal number of hidden states required to
quasistatically embed a givenP (according to definition 2)whichwe derive below are also upper bounds for the
number of hidden states required under the alternative weaker definition ofQE.Note also that corollary 3 holds
under theweaker definition, as long as the desired initial distribution p is not thefixed point of P.

4. Local relaxations

In example 1we showed that bit erasure isQE. In fact, bit erasure is part of amuch larger family of stochastic
matrices which can be shown to beQE,whichwe call ‘local relaxations’. Thesewill serve as the ‘building blocks’
of the constructions we use below:

Definition 4.A stochasticmatrix P is a LR if there is some permutationmatrixQ (whichmay be the identity)
such that:

1.QPQ 1- has a block diagonal structure,

2. Each block ofQPQ 1- has rank one.

Note that the role of the permutationmatrixQ is to just rearrange rows and columns, i.e. to relabel states.

Loosely speaking, when a LRmatrix is used to evolve a system, states of the system are grouped into different
‘blocks’ betweenwhich no probability flows, while the states within each block relax to the samefinal, block-
specific distribution.

Example 2.The following 4 4´ stochasticmatrices are all LRs (for eachmatrix, we assume that a b c d, , , are
chosen to be non-negative and that the sumof each column equals 1):

7
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A

a a a a
b b b b
c c c c
d d d d

B

a a
b b

c c
d d

C

a a
c c

b b
d d

;

0 0
0 0

0 0
0 0

;

0 0
0 0

0 0
0 0

.= = =

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

The block structure inmatricesA andB is immediately apparent.MatrixC is a LR since B QCQ 1= - , whereQ is
the permutationmatrix

Q

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.=

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

(In other words,C can be arranged to have the block structure ofB by switching rows/columns 2 and 3.)

In appendixD,we prove the following result, which establishes thatwe can use LRmatrices as building
blocks to constructQEmatrices:

Proposition 5.Any LR isQE.

By performing one LR followed by another one involving a different partition ofX into blocks, we can
quasistatically implementmatrices that are not themselves LRs. Thismeans the converse of proposition 5 is
false—not everyQEmatrix is a LR.

However, it is the case that any 2 2´ QEmatrixP is a LR. IfP is the identity, it is a LR. If not, then by
corollary 3, its determinant is zero, which implies it has rank one and so is a LR (with a single block).

Since they are all QE, products of LRmatrices have determinant zero (again, except for the identity). On the
other hand, not all singularmatrices are products of LRs. To see this, note that a (non-identity) product of LRs
must always send at least two initial states to the samefinal distribution (since theremust at least one LR in the
product with a block of size larger than one). So such a productmust have at least two identical columns.
Therefore, amatrix like

1 0 1 2

0 1 1 2
0 0 0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

is not a product of LRs, even though it is singular.
To establish the results in the next section, wewill repeatedlymake use of proposition 5 and lemma 1 to

prove that a givenmatrix isQE bywriting it as afinite product of LRs.
Onemight conjecture that amatrix isQE only if it is a product of LRs.However, we do not establish this, and

our results below donot rely on it.

5.Upper bounds onminimal number of hidden states

5.1. Single-valuedmaps
We refer to a stochasticmatrix that represents a deterministic function (i.e. all its entries are either 0 or 1) as a
single-valuedmap.

To begin, note that if a single-valuedmap P corresponds to an invertible function, then P is a permutation
and is not LE, as discussed in section 1. If, on the other hand, a single-valuedmap P corresponds to a non-
invertible function, then it has determinant 0.Moreover, we can use LRmatrices to establish that any suchP is
LE, and in factQE:

Proposition 6.Any single-valuedmapwith determinant zero is QE.

Proof.Consider a single-valuedmap P over some finite setXwith determinant zero, which represents some
non-invertible function f X X:  . It is known that any non-invertible function f X X:  is a composition of
finitelymany idempotent X X functions11, f f f f...N 2 1= ◦ ◦ [32]. In our context, thismeans thatP can be

represented as a product ofN single-valuedmaps P Mk
k=  ( ), each M k( ) representing the idempotent

function fk. Note that the image of an idempotent function consists entirely offixed points, thus each M k( ) can be
written as

11
A function is idempotent if applying it twice is the same as applying it once, f f f=◦ .

8
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M
j f i i f i1 if and

0 otherwise
.ij

k k k
1

= Î =-⎧⎨⎩
( ) ( )( )

It can be verified that any such M k( ) is a LR, since it consists of blocks corresponding to the set of pre-images
f i i f X:1 Î-{ ( ) ( )}, and each block f i1- ( ) contains identical columns: all 0s, except for a 1 in the row
corresponding to i.

The result then follows by applyingfirst proposition 5 and then lemma 1. ,

While a single-valuedmapwith nonzero determinant is notQE (by corollary 3), it can always bemadeQEby
adding a single hidden state. Before establishing this for the general case, we illustrate the basic proof technique
with an example showing that the bit flip isQEwith one hidden state:

Example 3.The bit flip P 0 1
1 0flip = ( ) is amap over a binary spaceX. It is notQE because it has negative

determinant. However, it isQEwith one hidden state.
This follows by constructing a special set of three LRmatrices, each defined over a spaceY that has three

elements, such that the restriction to thefirst two elements of the product of thosematrices is the bit flip:

0 1 0
1 0 1
0 0 0

1 0 0
0 1 1
0 0 0

1 1 0
0 0 0
0 0 1

0 0 0
0 1 0
1 0 1

. 13=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

The restriction of thematrix on the lhs to its first two elements (i.e. the upper left block) is the bitflip operation,
by inspection. In addition, thefirst twomatrices on the rhs are LR, by inspection. The thirdmatrix on the rhs is
LR aswell, but to see that we need to relabel the elements ofY in such away that thatmatrix becomes block-
diagonal. Specifically, if we permute the second and the third elements ofY, we transform the thirdmatrix as:

0 0 0
0 1 0
1 0 1

0 0 0
1 1 0
0 0 1


⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

which confirms that the rightmost of the threematrices is LR.
So the rhs is a product of three LRmatrices, and therefore the lhsmust beQE. This confirms that the bitflip is

QEwith one hidden state.
As an aside, note that thematrix on the lhs is not itself LR, even though it is a product of three LRmatrices.

(This follows by verifying that there is no relabeling of the elements ofY that changes thematrix on the lhs of
equation (13) into block-diagonal form.)

Wecan easily generalize this technique to establish that any transposition isQEwith one hidden state. Since
any permutation can bewritten as a product of transpositions, and since the product ofQEmatrices isQE, the
next result follows immediately:

Proposition 7.Any permutation is QEwith one hidden state.

Together corollary 3 and proposition 7 imply that any permutationmatrix requires exactly one hidden state
to beQE.

Asmentioned in section 1, it is possible to extend our analysis of single-valuedmaps to countably infinite
spacesX, for suitable extensions of our definitions. Appendix F introduces one such extension of our definitions,
and then proves that with those extended definitions, any single-valued function over a countably infiniteX can
be implementedwith atmost one hidden state.

5.2. General case
Wenowpresent ourmain result for arbitrary stochasticmatrices. To begin, recall that the non-negative rank of
an n n´ stochasticmatrix P is the smallestm such thatP can bewritten as P RS= , whereR is an n m´
stochasticmatrix and S is anm n´ stochasticmatrix [33]. Roughly speaking, the non-negative rank of amatrix
is analogous to the number of independentmixing components in amixture distribution.

Theorem8.An n n´ stochastic matrix Pwith non-negative rank r is QEwith r 1- hidden states.

Tounderstand this bound intuitively, supposewe have decomposed a given n n´ stochasticmatrix P into a
product of two rectangular stochasticmatrices of dimensions n×r and r×n. These two rectangularmatrices
can be interpreted as representing transfers of probability between disjoint sets of states: the firstmatrix transfers
probability from the n original states tor hidden ones, and the secondmap transfers probability back to the n

9
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original states. These transfers of probability can be shown to beQE, establishing that nomore than r hidden
states are needed to implement P in aQEmanner.

Aswe show in appendix E, it is possible to reduce this number of hidden states needed by one, which yields
theorem8.

Since the non-negative rank of an n n´ matrix is n or less, theorem 8 implies that any n n´ stochastic
matrix isQEwith atmost n 1- hidden states. This is fewer than the number of hidden states provided by
adding a single independent, extra binary degree of freedom to the system, since adding such a bit doubles the
size of the state space. Thus, simply by adding a hidden bit to a system, we can implement any stochasticmatrix
in a thermodynamically reversiblemanner (presumingwe have freedom to use arbitrary sequences of LR
matrices to implement the stochasticmatrix).

Recall fromproposition 2 that some stochasticmatricesP cannot be directly implementedwith zero EP,
even if they are embeddable. Theorem 8 tells us that it is sometimes possible to reduce EP of implementing an
embeddable P by adding hidden states. This is illustratedwith the following example.

Example 4.The ‘partial’ bitflip

P
2 3 1 3

1 3 2 3
=

⎡
⎣⎢

⎤
⎦⎥

is embeddable [9] but has nonzero determinant ( Pdet 1 3= ), and so cannot beQEby corollary 3. Specifically,
for any initial probability distribution p(0) (except possibly the fixed point ofP, p 0 1 2, 1 2= t( ) ( ) ), there is
some unavoidable EP. For example, by proposition 2, for the initial distribution p 0 1, 0= t( ) ( ) ,

4 9

2 ln 1 3
0.2.S - »

However, by theorem8, P is QEwith one hidden state. Thus, by adding a hidden state, the partial bit flip can
be carried outwhile achieving zero EP.Note that since the change in the Shannon entropy S Pp S p0 0-( ( )) ( ( ))
is independent of howP is implemented, the reduction in EP realizedwhen implementing Pusing a hidden state
implies a decrease in the amount of entropy produced in the environment (e.g. as a reduction in generated heat).

As a final comment, while the non-negative rank provides a general bound on theminimal number of
hidden states needed to quasistatically embed a givenmatrix, other properties of thematrix can sometimes be
used to further reduce the bound. As a simple illustration, suppose thatwe know the non-negative rank of some
stochasticmatrix P—but also know that P is block diagonal (up to a rearrangement of rows/columns by some
permutationmatrix), and that the greatest non-negative rank of any of the blocks is k. Nowwe can implement P
by implementing each block inP independently, one after the other. Implementing P this waywould allowus to
repeatedly ‘reuse’whatever hidden states we have, for each successive implementation of a block. Thismeans
thatP is QEusing k 1- hidden states. This is true even if the non-negative rank ofP is (substantially) larger than
k, inwhich case the direct application of theorem8would give amuchweaker bound on theminimal required
number of hidden states.

5.3. Coarse-grained states
When introducing our notion of hidden states, we indicated that our upper boundswould also apply if the
stochasticmatrix P described the evolution of probability over some numberm of coarse-grained ‘macrostates’
which collectively have internal to them n ‘microstates’. To see this, it suffices to notice that a single LR could
send all themicrostates associated to amacrostate to one of itsmicrostates. This concentrates probability in as
manymicrostates as there aremacrostates, and the resulting ‘empty’m−nmicrostates can nowbe used as
hidden states in the sense of our definitions and constructions.

For example, consider a systemwith threemicrostates a b c, ,{ }which are grouped into twomacrostates

a0 = { }and b c1 ,= { }, representing the two states of a bit, that wewish toflip. This can be done byfirst
applying the LR a a b c b, , { } { } , leaving cwith no probability. Now, by carrying out the bitflip operation
onmicrostates a and b using c as a hidden state (as shown in example 3), we carry out a bit flip over the
macrostates 0 and 1.

10
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6.Discussion

In this paper, we consider implementing stochasticmatrices Pusing amaster equation. For someP, this is not
possible. However, we show that it is always possible to implement any P (to arbitrary accuracy), if we have
sufficientlymany hidden states, in addition to the visible states thatPworks on.We also show that it is always
possible not only to implement P (to arbitrary accuracy), but to do so in a thermodynamically reversiblemanner
by using hidden states. Theminimal number of required hidden states for such thermodynamically reversible
implementation of a given stochasticmatrix P is a novel and fundamental kind of ‘state space cost’ of carrying
outP.

We go on to derive some bounds on theminimal number of such hidden states required for any givenP,
either just to implement it, or to do so in a thermodynamically reversiblemanner. In particular, we derive
bounds on thisminimal number of states needed for these two kinds of implementation, stated in terms of basic
properties ofP.

Our results for different kinds ofP are summarized in table 1, which lists upper and lower bounds for both
limit-embedding (i.e. implementing to arbitrary accuracy) and quasistatic embedding (i.e. implementing to
arbitrary accuracy in a thermodynamically reversiblemanner) for different classes ofmatrices. AnyQEmatrix is
LE, so the upper bounds established for quasistatic embedding also apply to limit-embedding. All the lower
bounds in this table are tight, in the sense that in each class ofmatrices listed, there is amatrix that satisfies the
lower bound.

6.1. Interpretation of hidden states
Often in physics there are some states of a systemor even entire physical variables that are hard to observe and
control experimentally. Such ‘hidden states’ are often a problem to be circumvented, e.g. by coarse-graining.
Whatevermethodwe use for dealingwith hidden states invariably affects the predictions wemake (e.g. coarse-
graining can result in entropy increasingwith time). However, suchmethods can allowus to proceed in an
analysis despite our incomplete knowledge.

At other times, the presence of hidden states can be a crucial property of a system, necessary for us to use a
master equation tomodel the dynamics. Our results highlight the extent towhich this is the case in different
situations. In some cases, hidden states cannot be ignored—an engineer designing a physical system to
implement a given Pmust ensure that there is appropriate dynamic coupling between the hidden states and the
visible ones thatP operates on, either implicitly or explicitly. In a different context, the number of hidden states
are ameasure of howmany internal states are being overlooked by a scientist who notices that some naturally
occurring system evolves (over discrete time) according toP, andwants to presume that there is amaster
equation dynamics underlying that evolution.

It is important to emphasize that the role for hidden states uncovered in our analysis is different from the role
of the states of the history tape in Bennett’s reversible computation construction [25, 34, 35], or the states of the
extra bits in reversible Toffoli gates [36]. Like hidden states, the states used in reversible computation ‘facilitate’
the desired dynamics P, in a broad sense, without being in the space thatP runs over. However, the role of those
states in reversible computation is to allow logical reversibility of the conditional distributions giving the update
rules, and therefore to lower theminimal thermodynamicwork (rather than the EP) required to perform certain

Table 1.Minimumnumber of hidden states required to limit-embed
(LE) or quasistatically embed (QE) a given stochasticmatrix P. r is the
non-negative rank ofP.

Type ofmatrixP Min.# hidden states

Single-valued

Invertible ( I¹ ) 1

Non-invertible 0

Noisy

Lower

(LE)
bound

(QE)
Upper bound

(QE)

detP=0 0 0 r−1
detP>0 0 1 r−1
detP<0 1 1 r−1

P Pdet i ii>  1 1 r−1

Limit embeddable 0 0 1
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computations. In contrast, the conditional distributions we construct here aremade fromLRmatrices and are
not logically reversible in general.

Indeed, the state space cost of a conditional distribution P in someways behaves in amanner ‘opposite’ to the
costs ofP discussed in the early thermodynamics of computation literature. A logically reversible function needs
a hidden state to be implementable by aCTMC,while a function that is logically irreversible does not. Therefore,
as far as the number of hidden states is concerned, there are advantages to being logically irreversible rather than
being logically reversible.

6.2. Biochemical oscillations
One possible application of our results is to recent stochastic thermodynamics analyses of ‘Brownian
clocks’[37, 38]. These are biochemical oscillations inwhich a component (e.g. a protein)undergoesMarkovian
transitions (governed by some ratematrix M t( )) through a cycle of discrete states12.

Such clock-like oscillations are forbidden at equilibrium.However, they can be sustained out of equilibrium
twoways: Byfixed driving forces (M t M=( ) is constant but not detailed balanced), or by periodic driving
(time-dependent variation of M t( )).

In the former case, oscillations invariably dephase, though coherence can be preserved overmany periods if
the system is driven strongly and hasmany states [38]. Even in the latter,more general case, it is challenging to
preserve phase information. In particular, if we try to design a Brownian clock that remembers its phase exactly,
we run into precisely the embedding problemdiscussed in this paper. For example, a clockwith three states that
remembers its phase (perfectly)must transform its own states according to the cyclic permutation:

P
0 0 1
1 0 0
0 1 0

tick =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

each time it ticks. Aswe observe in section 1, this is impossible (since the product of the diagonal entries of Ptick is
less than its determinant [12, 22]). In fact, we cannot even approximate these clock dynamics by allowing an
arbitrarily small amount of error. For example, a ‘lazy’ clock P P I1lazy tick = - +( ) , which fails to tickwith
probability ò and slowly dephases, is not embeddable.

However, as we show above, all permutations, including Ptick, areQEwith one hidden state, whichmeans
that if there is a hidden state in the clock (whichmay be occupied between ticks) it can be arbitrarily precise and
remember its phase, while producing arbitrarily little entropy.Ourmore general results (e.g. theorem 8) say that
periodic driving can be used to implement any variant of the stochasticmatrix Ptick (e.g.modeling a three state
clock that loses coherence in a specificway or rate), as long as at least two hidden states are available.

6.3. Future technical directions
Many of our results establish upper bounds on the number of hidden states required to quasistatically embed a
given stochasticmatrix P.We generally do not knowhow tight these upper bounds are, even in theworst cases.
In fact, we have no example of amatrix which requiresmore than one hidden state for limit-embedding or
quasistatic embedding. One strategy to prove lower boundswould be to show that all QEmatrices can bewritten
as products of LRs, and then improve our arguments to establish that the number of hidden states used in our
constructions (ormodifications thereof) isminimal. This is a natural target for futurework.

We are also keen to explore the potentially fruitful connections between the classical questions we have
tackled in this paper and questions arising in the study of open quantum systems. The state of such systems can
be described by a densitymatrix, and the transformation of state between two times is given by a completely
positive trace-preservingmap, or ‘quantum channel’, which is the quantum analog of a stochasticmatrix. The
analog of the classicalmaster equation in this context is the Lindbladmaster equation [39], and the analog of the
embedding problem is known as theMarkovianity problem [14]. Priorwork related to our concerns in this
paper include [40], which studies the relationship between time-homogeneous and inhomogeneous embedding
in the quantum context, as well the results in [41] onmapping certain non-Lindbladmaster equations to systems
obeying a Lindbladmaster equation coupled to a single extra ‘ancillary’ qubit.

Another possible direction involves pursuing continuous space generalizations of our results. Although
master equations over a finite number of states are well-suited to representmany systems at some scales,
continuous state spaces unavoidably appear inmicroscopic, classical descriptions. Oneway to handle this would
be to introduce afine discretization of space (see e.g. [42]) to turn say, diffusion in a compact region into afinite-
statemaster equation. Although our results presented herewould apply to such an approximation, theywould
not be addressing the natural questions for such a context, because they ignore the continuous structure of state

12
Note that the rate equation of amonomolecular chemical reaction network is also of the formof equation (2), so the samemathematics

can arise with a different interpretation.
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space. For example, we have assumed throughout that the entries of M t( ) can be controlled freely and entirely
independently of each other. In a discretizedmodel of a continuous system, this would be like supposing that
forcefields or diffusivities could vary arbitrarily over the (very small) discretization scale. As an alternative, one
could consider the embedding problem for Fokker–Planck equations, characterizing the set of conditional
probability density functions that can be implementedwith Fokker–Planck equations, and seeingwhether
adding additional dimensions can enlarge this set.

Of course, there is also an ‘intermediate’ regime, inwhich the state space is infinite, but still countable.We
present a very preliminary investigation of that regime in appendix F. Some possibly fruitful future workwould
involve extending the investigations there, e.g. to apply to noisy P as well as single-valued P. Itmight also be
fruitful to consider alternatives to theways that the analysis in appendix F extends our basic concepts of
‘implementing P’ from thefinite state space case to the infinite state space case.

Even in naturally discrete systems, our ability to independently control transition rates between states could
be constrained, which could give rise to state space costs greater than the verymodest upper bound (one hidden
bit)we establish here for anymatrix P, and deserve further exploration.

Our proofs involve implementing a given conditional distribution P via a sequence of discrete steps—LRs.
The number of such discrete steps required to implement a given P presents an interestingway ofmeasuring the
difficulty of physically implementing a stochasticmatrix. Analyzing the number of steps required to implement
a given P, and how this number depends on the number of hidden states and the details ofP, is an important
direction for futurework. As a initial result in this direction, we note that our construction in the proof of
theorem8 requires rn4 10- LRs to be performed in sequence. Such investigations are closely linked to the state
space size versus timestep tradeoff for single-valued stochasticmatrices, whichwe analyze in a companion paper
[16]. (See alsowork on a related question for the special case n=3 in [43].)
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AppendixA. Proof of lemma1

Lemma1.The set of QEmatrices is closed undermultiplication.

Proof. IfT t t, ¢( ) is the transitionmatrix associatedwith ratematrix M t( ) and S t t, ¢( ) is the transitionmatrix
associatedwith N t( ), then S T U1 2, 1 0, 1 2 0, 1=( ) ( ) ( ), whereU t t, ¢( ) is associatedwith ratematrix:

L t
M t t

N t t

if 0,

if , 1
.

1

2
1

2

=
Î

Î

⎧
⎨⎪
⎩⎪

( )
( ) [ ]

( ) ( ]

To complete the proof note that the EP over thewhole process is the sumof EP over both subintervals. ,

Appendix B. Proof of proposition 2

Proposition 2. If M t( ) is the ratematrix of a CTMCwithT P I0, 1 = ¹( ) , then for any initial distribution p

p M t
Pp p

P
, , 0, 1

2 ln det
,1

2

S -
-( ( ) [ ]) ∣ ∣

( )

where 1∣·∣ is 1ℓ norm13 .

Proof. Let p(0) indicate the initial state distribution, and p Pp1 0=( ) ( ) indicate thefinal state distribution
underP.

Consider a CTMCwith ratematrix M t( ) that implements P over t 0, 1Î [ ]. The probability flux from state j
to i at time t is

J t p t M t p t M t .ij j ij i ji-( ) ≔ ( ) ( ) ( ) ( )

13
For two probability distributions p, q over n states, the 1ℓ norm is defined p q p qi

n
i i1 1- å -=∣ ∣ ≔ ∣ ∣.

13
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Write the instantaneous EP, from equation (6) and [23], as

p t J t
p t M t

p t M t
ln , B1

i j J t
ij

j ij

i ji, : 0ij

åS =
>

˙ ( ( )) ( )
( ) ( )

( ) ( )
( )

( )

wherewe have used the symmetry property

J t
p t M t

p t M t
J t

p t M t

p t M t
ln ln .ij

j ij

i ji
ji

i ji

j ij

=( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

Define t M ttra -( ) ≔ ( ( )) to be the negative of the trace of the ratematrix at time t.We then bound the rhs
of equation (B1) using xln 1

x

1 - ,
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p t M t p t M t
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where in the last inequality we used that p t 1j ( ) and 1
M t

t

ij 
a

( )
( )

.

Before proceeding, we note that

p p p p

J t t J t t

1 0 1 0

d d . B3

i
i i

i j
ij

i j
ij

1

0

1

, 0

1
ò ò

å

å å å

- = -

=

∣ ( ) ( )∣ ∣ ( ) ( )∣

( ) ∣ ( )∣ ( )

For convenience, we also define

K t t M t t Pd tr d ln det , B4
0

1

0

1

ò òa = - =≔ ( ) ( ) ( ) ( )

where the last equality is equation (5).
We nowuse equations (B3), (B2) to bound the integrated EP, td
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where the third line follows by Jensen’s inequality. The proposition follows immediately by rearranging. ,

Corollary 3, that any non-identity QEmatrixP is singular, follows directly fromproposition 2. Choose p to be
any non-fixed-point ofP. Then, in order for EP to bemade arbitrarily small, as required by the definition ofQE,
itmust be that Pdet 0= .

Note also that a related result has recently been derived in [30]. Equation (14) in that paper, withminor
rearranging, states
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where Aá ñt is the so-called ‘dynamical activity’
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Since for all i, p t 1i ( ) and M t 0ii ( ) , we can lower bound the dynamical activity as

A M t t P
1

d
1
ln det , B6

i
ii

0
 ò åt t

á ñ - =t
t

( ) ( ) ( )

wherewe have used P T 0,M t= ( ) and equation (5). It can be seen that proposition 2 is implied by combining
equations (B5), (B6) and taking p p 0= ( ), Pp p t= ( ).

AppendixC. Proof of proposition 4

Proposition 4. If amatrix P is LE, it is QEwith atmost one hidden state.

Proof. LetP be a LEmatrix. By definition, there is an embeddablematrix P¢within any desired distance 1 ofP.
Now consider a stochasticmatrix which keeps every statefixed except state i, which it sends to jwith

probabilityα, and leaves alonewith probability 1 a- . In control theory, suchmatrices are calledPoisson
matrices. It is known that any embeddablematrix P¢ can be approximated arbitrarily closely by a finite product
of suchmatrices [44]. Let P¢¢ indicate a product of Poissonmatrices which approximates P¢within a distance 2 .

A Poissonmatrix isQEwith one hidden state by lemma 9. Since P¢¢ is a product of Poissonmatrices, P¢¢ is
QEwith one hidden states. Thus, P is arbitrarily close (less than 1 + 2 ) to P¢¢, amatrix which isQEwith one
hidden state.

Now choose such a P¢¢within 2 ofP. If wewish to implement Pwithin òwhile producing total entropy less
than δ, with one hidden state, we can do sowith a ratematrix M t( ) that implements P¢¢ towithin 2 while
producing less than δ entropy, with one hidden state. There always is one since P¢¢ is QEwith one hidden state.
This establishes the result. ,

AppendixD. Proof of proposition 5, that any LRmatrix isQE

Proposition 5.Any LR isQE.

Proof.Wefirst show this for LRs that have a single block, that is, those of the form

P 1 ,Tp=

whereπ is an n-dimensional column-vector with positive entries that sum to 1, and 1 is an n-dimensional
column-vector of 1s.We construct a sequence of CTMCs that approximates P arbitrarily well while achieving
arbitrarily small total EP for some initial distribution q.

Consider the ratematrixwhose off-diagonal entries are givenbyM t w tij ia=( ) ( ),where w t t q1i i= - +( ) ( )
t ip . The associatedmaster equationdecouples

p t w t p t , D1i i ia= -˙ ( ) ( ( ) ( )) ( )

and can be solved explicitly (using the initial condition p q0 =( ) ),

p t w t q 1 e . D2i i i i
t1a p= + - - a- -( ) ( ) ( )( ) ( )

It is clear that bymakingα sufficiently large, this CTMCwill transform any initial distribution at t 0=
arbitrarily close tofinal distributionπ at t 1= . That is

p w tlim 1 lim 1 .i i ip= =
a a¥ ¥

( ) ( ) ( )

Thus, it will approximate P arbitrarily well.Wemust now show that bymakingα large we can alsomake the total
EP as small we like.

Since the rates M tij ( ) satisfy detailed balance at all times, M t w t M t w tij j ji i=( ) ( ) ( ) ( ), the total EP can be
written as
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We split each integral into two parts
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Thefirst integral can be evaluated as
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which, as a  ¥, converges to

q q qln ln . D3i i i i i ip p p- + - ( )

The second integral can bewritten as

p t w t t q w t tln d 1 e ln d ,i i i i
t

i
0

1

0

1

ò òp= - - a-˙ ( ) ( ) ( ) ( ) ( )

wherewe’ve plugged equation (D2) into equation (D1). As a  ¥, the integrand converges pointwise and
monotonically to w tln i ( ), which is bounded for all t 0, 1Î ( ). By the dominated convergence theorem, as
a  ¥, the second integral converges to

q w t tln d D4i i i
0

1

òp -( ) ( ) ( )

q t q t t

q q q

ln 1 d

ln ln . D5

i i i i

i i i i i i

0

1

òp p

p p p

= - - +

= - + -

( ) (( ) )

( )

Comparing equations (D3) and (D5), we see that in the limit of 0a  , the two integrals cancel, and
so 0S  .

The general case of a LRwithmultiple blocks follows immediately, because a block diagonalmatrix isQE if
the blocks are—a block diagonalmatrixAwith blocksBi can be factored as a product
A B I I B1 2= Å Å Å Å  ( )( ) . ,

Appendix E. Proof ofmain result in section 5

To establish ourmain result we first establish some preliminary results.

Lemma9.Any 2 2´ stochasticmatrix is QEwith one hidden state.

Proof. For any real number p 0, 1Î [ ], define p p1 -¯ ≔ .Without loss of generality14, writeP inmatrix
notation as

P
p q
p q

.=
⎡
⎣⎢

⎤
⎦⎥

¯
¯

Weconsider two cases. If p q ¯, then if x p q= ¯ and y q= , we have

p q p
p q p

y y

y y
x x

x x0 0 0

1 0 1
0 1 0
0 0 0

0

0

0 0 1

0
0 1 0

0
.=

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

¯ ¯
¯ ¯ ¯

¯ ¯

If instead p q> ¯, then if x p= ¯, y q p= ¯ , we have

p q q
p q q

x x
x x y y

y y0 0 0

1 0 1
0 1 0
0 0 0

0
0

0 0 1

1 0 0
0

0
.=

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

¯
¯ ¯ ¯ ¯

¯ ¯

In both cases, the factors on the right-hand side are LRs, so the result is established. ,

14
The other kind of transfer can be rewritten in this formby permuting its rows and columns.
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E.1. Transfers of probability using a relay state
Inwhat follows, it will be useful to consider stochasticmatrices of the form:

I P
D

D
P I0

or 0 ,
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

whereP is anm p´ matrix with positive entries with column sums less than or equal to one,D is a p p´
diagonalmatrix thatmakes thewhole blockmatrix stochastic, and I is them m´ identitymatrix.

We call suchmatrices transfers, because they can be viewed as representing transfers of probability between
two disjoint sets of states of sizes p andm. One can show that:

Proposition 10.Any transfer T is QEwith one hidden state.

Wewillmake repeated use of themap, i j a ( ), acting on a set with two elements, which keeps state j fixed,
but sends state i to jwith probabilityα and leaves it as iwith probability 1 a- . Such amatrix, which is called a
Poissonmatrix in control theory, is QEwith one hidden state by lemma 9. See figure 2 for an illustration.

Proof of proposition 10.Without loss of generality14 , let

T D
P I

0 .=
⎡
⎣⎢

⎤
⎦⎥

IfP has only one nonzero row,whose entries are pi, i n1 ,...,= , then

T p ,
i

n
i j

i
1

=
=

 ( )

where the indices i and j are now labeling rows (e.g. states) in the largermatrixT. Thefirst n rows that i ranges
over become the rows ofD, and j is the index of the single nonzero rowofP, now as a submatrix ofT. So by
construction j n i> , and themaps pi j

i ( ) for different i do not interfere with one another (they commute
andfix each others images).

Now suppose Phas two nonzero rows.WriteP as the sumof twomatrices P P P1 2= + , each zero except for
one of the rows ofP. LetD1 be the diagonalmatrix whichmakes

D
P I

01

1

⎡
⎣⎢

⎤
⎦⎥

stochastic, andwrite

D
P I

D D
P P I

D

P D I
D
P I

0 0 0 0
,2 1

2 1

2

2 1
1

1

1
=

+
= -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

whereD2 is chosen tomake thematrix is appears in stochastic (this is always possible since the column sums ofP
are all less than 1). Since the product of stochasticmatrices is stochastic, thematrix appearing on the left-hand
side isT, establishing the proposition forPwith twononzero rows. The result for general P follows by
induction. ,

Figure 2. (a)A composition of LRs can be used to effect a transfer of probabilityα from i to j, using a relay state r. (b)A sequence of
these operations can be composed to effect any transferT.
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E.2.Minimumnumber of hidden states is less thannon-negative rank

Lemma11.An n n´ stochastic matrix Pwith non-negative rank 2 is QEwith one hidden state.

Proof.Write the non-negative rank decomposition P RS= whereR and S are stochasticmatrices of dimensions

n 2´ and n2 ´ , respectively.We further decomposeR and S into sub-matrices: R
R
R
m

2
=

⎡
⎣⎢

⎤
⎦⎥ and S S Sm 2= [ ],

whereR2 and S2 are 2 2´ . Nownote that

P
R S R S
R S R S
m m m

m

2

2 2 2
=

⎡
⎣⎢

⎤
⎦⎥

and

R S R S
R S R S

I
R D

I R
D S I

I
S

0
0 0

0 0 0
0

,m m m

m

m

m

2

2 2 2 2
1

2
= -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

whereD is the diagonalmatrix thatmakes the second factor stochastic, and I is an identitymatrix of dimensions
suitable towhere it appears. To show that P can be implementedwith one hidden state, it suffices to show that
each of the factors on the right hand side can be.

Themiddle two factors represent transfers, in the sense described above, so they can implementedwith one
hidden state. Thefirst and last factors represent operations performed on just two states, so by lemma 9 can also
be implementedwith one hidden state. Note that R D2 1- is stochastic, because the column sums ofR2 are exactly
the diagonal entries ofD (recallDwas chosen tomake the second factor stochastic). ,

Weare now ready to prove theorem 8.

Theorem8.An n n´ stochastic matrix Pwith non-negative rank r is QEwith r 1- hidden states.

Proof. Suppose r 2> (if not, the result follows from lemma 11). As before, write RSp = whereR and S are
stochastic of dimensions n×r and r×n, respectively. But this time, decomposeR and S differently:

R R Pm= [ ]and S S
Q
m=

⎡
⎣⎢

⎤
⎦⎥, where P is n 2´ andQ is n2 ´ . Note that R S PQm mp = + .

PQ R S R I R PQD
I

D
S I0 0 0 0

0
0

0m m m m

m

1+ =
-⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

whereD is the diagonalmatrix thatmakes the second factor stochastic, and I is an identitymatrix of dimensions
suitable towhere it appears.

To prove the theorem, it suffices show that each of the n k n k2 2+ - ´ + -( ) ( )matrices on the right
hand side careQEwith one hidden state.

Thefirst and last factors represent transfers from r 2- hidden states to the original n states (and vice versa),
and can be implemented using one hidden state, as described earlier. Themiddle factor, which represents an
operation performed only on the original states, has non-negative rank 2 (note thatP andQD 1- are stochastic),
so by lemma 11 can also be implementedwith one hidden state. This establishes the result. ,

Appendix F. Countably infinite state spaces

Wenow consider the casewhere the state space of our system,X, is countably infinite, and restrict attention to
the implementation of single-valuedmaps f X X:  over such spaces.

In our results above, we establish quasistatic embeddability of variousmatrices bywriting them as products
of LRs. In the infinite case, we can similarly askwhat is possible by composing LRs, which in the context of
single-valuedmaps are exactly the idempotent functions.

One natural way to extend our analysis to the case of countably infiniteX is to consider a sequence of
idempotent functions over some Y XÉ that, when restricted toX, gives the desired f. To allow the sequence of
functions to implement f x( ) for all x XÎ , in general wemust consider sequences that are infinite.However,
the infinite product of LRs need not beQE (or even bewell-defined). To circumvent this issuewe impose a
‘practical’ interpretation of what itmeans to implement f, by requiring that any particular input x XÎ is
mapped to f x( ) after finitelymany idempotents.

Adopting this interpretation, in this appendixwe establish the following result:
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Proposition 12. Let X be a countable set, and take Y X zÈ≔ { }. For any function f X X:  there is a sequence
gi{ }of idempotent functions g Y Y:i  such that for all x X YÎ Ì , there is anm (which can depend on x) such
that for all r m , g g g x f xr r 1 1 =- ( ◦ ◦ ◦ )( ) ( ).

Proposition 12 is a kind of infinite analog of propositions 6 and 7, which showed that any function over a
finiteX can be implementedwith atmost one hidden state.

To prove proposition 12we beginwith the following lemma:

Lemma13. Let Y be with one point added. There is a sequence gi{ }of idempotent functions g Y Y:i  such that
for all n YÎ Ì , there is anm (which can depend on n) such that for all
r m , g g g n n 1r r 1 1 = +- ( ◦ ◦ ◦ )( ) .

Proof. First, let a[ ] indicate the cyclic permutation 1, 0, 1-( ) and, for any integer i Î , let i[ ] indicate the
cyclic permutation i i i, 1, 1- + - -( ).

For any particular j Î , consider the following composition of permutations,

M j 2 1 .j a¼≔ [ ] [ ][ ][ ]( )

We showby induction that M j( ) sends each state i j j1, ,Î - - ¼{ } to i 1+ (while also sending j 1+ to
j 1- - as a ‘side effect’). First, it can be verified by inspection that it holds true for j 0= (when M j a= [ ]( ) ).

Second, assume it holds true for M j( ) and then observe that

M j M j j j M1 1, 2, 2 .j j j1 = + = - - + - -+ [ ] ( )( ) ( ) ( )

So, applying j 1+[ ] after M j( ) results in:

(a) j 2- - being sent to j 1;- -

(b) the ‘side effect’ of M j( ) being fixed, in that, M j( ) mapped j j1 1+ - - , but j 1+[ ] maps
j j1 2- - + , so the combined result is j j1 2+ + .

Thus, M j 1+( ) sends each state i j j1 1, , 1Î - + - ¼ +{ ( ) ( )} to i 1+ (while now sending j 1 1+ +( ) to
j 1 1- + -( ) as a ‘side effect’).
Note that a cyclic permutation like [−j] and a[ ]affect only afinite number of points in , and thus can be

written as a product of a finite number of transpositions, which can in turn bewritten as a product of three
idempotents that use one hidden state (e.g. as in example 3). This hidden state is provided byY, which lets us
construct a sequence of idempotents gi{ }overYwith the property we desire. ,

Wecan nowuse a ‘dovetailing’ algorithm to construct a sequence of local idempotents that implements any
specified function, thereby establishing proposition 12:

Proof of proposition 12. Suppose first that f is a bijection. PartitionX according to the orbits of f—that is, two
points x and y are in the same part if there is some n such that y f xn= ( ) or x f yn= ( ).

Therewill be countablymany orbits Aj. Each of theAj is eitherfinite and f restricted to it is a permutation, or
elseAj is countably infinite and there is a numbering of its elements (using positive and negative integers) such
that f restricted to that orbit is n n 1 + . In either case, using proposition 6 or lemma 13, we can form for
each orbit a sequence gj i{( ) } that implements the restriction of f to that orbit. Extend themaps in each sequence

to all ofY by having them fix the elements in all other orbits.
Now form anew sequence by interleaving these (countablymany) sequences in away that preserves the

order of elements in each individual sequence. For example

g g g g g g, , , , , ,... .1 1 1 2 2 1 1 3 2 2 3 1{( ) ( ) ( ) ( ) ( ) ( ) }

This sequence satisfies the requirements of the theorem. Any x XÎ is in some orbitAj, and so there is some
element of the associated sequence gj m( ) after the application of which x ismapped to f x( ) and remains so.We
use here the fact that the interleaving to form the larger sequence preserves order, and that idempotents that are
members of sequences corresponding to the other orbitsfixAj.

If f is not a bijection, consider the idempotentmap a that, for all x XÎ , sends all elements in the inverse
image f x1- ( ) to a distinguished element w x f x1Î -( ) ( ).Write Z f aimg imgÈ= .We canwrite f h a= ◦ ,
where h Z Z:  is a bijection. So using the construction above, we canmake a sequence of idempotents for h
with the desired property. Adding a to the beginning of the sequence forms a sequence that implements f. For
each x there exists an w x( ), and under the implementation of h, w x f w x( ) ( ( )) once some numberm
idempotents are applied. But note that xwasfirstmapped to w x( ), under the initial application of a. Thus, once
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m idempotents of h have been applied, the combined effect on x is x w x f w x ( ) ( ( )), and f w x f x=( ( )) ( ),
by the definition of w x( ), so this completes the argument. ,

ORCID iDs

JeremyAOwen https://orcid.org/0000-0002-9180-3794
ArtemyKolchinsky https://orcid.org/0000-0002-3518-9208

References

[1] Vanden BroeckC et al 2013 Stochastic thermodynamics: a brief introduction Phys. Complex Colloids 184 155–93
[2] Vanden BroeckC and EspositoM2015 Ensemble and trajectory thermodynamics: a brief introduction PhysicaA 418 6–16
[3] Seifert U 2012 Stochastic thermodynamics, fluctuation theorems andmolecularmachinesRep. Prog. Phys. 75 126001
[4] VanKampenNG1981 Stochastic Processes in Chemistry and Physics vol 1 (Amsterdam:North-Holland) pp 120–7
[5] GivonD,KupfermanR and Stuart A 2004 Extractingmacroscopic dynamics:model problems and algorithmsNonlinearity 17R55
[6] Gaspard P 2006Hamiltonian dynamics, nanosystems, andnonequilibrium statisticalmechanics PhysicaA 369 201–46
[7] EspositoM,Kawai R, Lindenberg K andVan denBroeckC 2010 Finite-time thermodynamics for a single-level quantumdot Europhys.

Lett. 89 20003
[8] ElfvingG1937Zur theorie derMarkoffschen kettenActa Societas ScientiariumFennicae Nova SeriesA 2 1–7
[9] Kingman J FC 1962The imbedding problem forfiniteMarkov chainsZ.Wahrscheinlichkeitstheor. Verwandte Geb. 1 14–24
[10] FrydmanHand Singer B 1979Total positivity and the embedding problem forMarkov chainsMath. Proc. Camb. Phil. Soc. 86 339–44
[11] Fuglede B 1988On the imbedding problem for stochastic and doubly stochasticmatrices Probab. Theory Relat. Fields 80 241–60
[12] Lencastre P, Raischel F, Rogers T and Lind PG 2016 From empirical data to time-inhomogeneous continuousMarkov processes Phys.

Rev.E 93 032135
[13] Chen J 2016A solution to the reversible embedding problem for finiteMarkov chains Stat. Probab. Lett. 116 122–30
[14] Cubitt T S, Eisert J andWolfMM2012The complexity of relating quantum channels tomaster equationsCommun.Math. Phys. 310

383–418
[15] Bausch J andCubitt T 2016The complexity of divisibility Linear Algebr. Appl. 504 64–107
[16] WolpertDH,Kolchinsky A andOwen J A 2017Theminimal hidden computer needed to implement a visible computation arXiv:1708.

08494
[17] Kolchinsky A andWolpert DH2017Dependence of dissipation on the initial distribution over states J. Stat.Mech. 083202
[18] Turgut S 2009Relations between entropies produced in nondeterministic thermodynamic processes Phys. Rev.E 79 041102
[19] MaroneyO J E 2009Generalizing Landauerʼs principle Phys. Rev.E 79 031105
[20] WolpertDH2015 Extending Landauerʼs bound frombit erasure to arbitrary computation arXiv:1508.05319
[21] WolpertDH2016The free energy requirements of biological organisms; implications for evolution Entropy 18 138
[22] GoodmanG S 1970An intrinsic time for non-stationary finiteMarkov chainsProbab. Theory Relat. Fields 16 165–80
[23] EspositoMandVan denBroeckC 2010Three faces of the second law: I.Master equation formulation Phys. Rev.E 82 011143
[24] Landauer R 1961 Irreversibility and heat generation in the computing process IBM J. Res. Dev. 5 183–91
[25] Bennett CH1982The thermodynamics of computation—a review Int. J. Theor. Phys. 21 905–40
[26] SagawaT 2014Thermodynamic and logical reversibilities revisited J. Stat.Mech.P03025
[27] SalamonP andBerry R S 1983Thermodynamic length and dissipated availabilityPhys. Rev. Lett. 51 1127
[28] Andresen B, Berry R S, OndrechenM J and SalamonP 1984Thermodynamics for processes in finite timeAcc. Chem. Res. 17 266–71
[29] Zulkowski PR andDeWeeseMR2014Optimalfinite-time erasure of a classical bitPhys. Rev.E 89 052140
[30] ShiraishiN, FunoK and SaitoK 2018 Speed limit for classical stochastic processes Phys. Rev. Lett. 121 070601
[31] DianaG, Bagci GB and EspositoM2013 Finite-time erasing of information stored in fermionic bits Phys. Rev.E 87 012111
[32] Howie JM1966The subsemigroup generated by the idempotents of a full transformation semigroup J. LondonMath. Soc.y 1 707–16
[33] Cohen J E andRothblumUG1993Nonnegative ranks, decompositions, and factorizations of nonnegativematrices Linear Algebr.

Appl. 190 149–68
[34] Bennett CH1973 Logical reversibility of computation IBM J. Res. Dev. 17 525–32
[35] Levine RY and ShermanAT1990Anote on Bennettʼs time-space tradeoff for reversible computation SIAM J. Comput. 19 673–7
[36] Fredkin E andToffoli T 1982Conservative logic Int. J. Theor. Phys. 21 219–53
[37] Barato AC and Seifert U 2016Cost and precision of Brownian clocksPhys. Rev.X 6 041053
[38] Barato AC and Seifert U 2017Coherence of biochemical oscillations is bounded by driving force and network topology Phys. Rev.E 95

062409
[39] LindbladG1976On the generators of quantumdynamical semigroupsComm.Math. Phys. 48 119–30
[40] Schnell A, Eckardt A andDenisov S 2018 Is there a floquet lindbladian? arXiv:1809.11121
[41] HushMR, Lesanovsky I andGarrahan J P 2015Genericmap fromnon-lindblad to lindbladmaster equations Phys. Rev.A 91 032113
[42] Gingrich TR, Rotskoff GMandHorowitz JM2017 Inferring dissipation from currentfluctuations J. Phys. A:Math. Theor. 50 184004
[43] Johansen S andRamsey F L 1979A bang-bang representation for 3×3 embeddable stochasticmatrices Probab. Theory Relat. Fields 47

107–18
[44] Johansen S 1973A central limit theorem for finite semigroups and its application to the imbedding problem forfinite stateMarkov

chainsZ.Wahrscheinlichkeitstheor. Verwandte Geb. 26 171–90

20

New J. Phys. 21 (2019) 013022 J AOwen et al

https://orcid.org/0000-0002-9180-3794
https://orcid.org/0000-0002-9180-3794
https://orcid.org/0000-0002-9180-3794
https://orcid.org/0000-0002-9180-3794
https://orcid.org/0000-0002-3518-9208
https://orcid.org/0000-0002-3518-9208
https://orcid.org/0000-0002-3518-9208
https://orcid.org/0000-0002-3518-9208
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0951-7715/17/6/R01
https://doi.org/10.1016/j.physa.2006.04.010
https://doi.org/10.1016/j.physa.2006.04.010
https://doi.org/10.1016/j.physa.2006.04.010
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1007/BF00531768
https://doi.org/10.1007/BF00531768
https://doi.org/10.1007/BF00531768
https://doi.org/10.1017/S0305004100056152
https://doi.org/10.1017/S0305004100056152
https://doi.org/10.1017/S0305004100056152
https://doi.org/10.1007/BF00356104
https://doi.org/10.1007/BF00356104
https://doi.org/10.1007/BF00356104
https://doi.org/10.1103/PhysRevE.93.032135
https://doi.org/10.1016/j.spl.2016.04.020
https://doi.org/10.1016/j.spl.2016.04.020
https://doi.org/10.1016/j.spl.2016.04.020
https://doi.org/10.1007/s00220-011-1402-y
https://doi.org/10.1007/s00220-011-1402-y
https://doi.org/10.1007/s00220-011-1402-y
https://doi.org/10.1007/s00220-011-1402-y
https://doi.org/10.1016/j.laa.2016.03.041
https://doi.org/10.1016/j.laa.2016.03.041
https://doi.org/10.1016/j.laa.2016.03.041
http://arxiv.org/abs/1708.08494
http://arxiv.org/abs/1708.08494
https://doi.org/10.1088/1742-5468/aa7ee1
https://doi.org/10.1103/PhysRevE.79.041102
https://doi.org/10.1103/PhysRevE.79.031105
http://arxiv.org/abs/1508.05319
https://doi.org/10.3390/e18040138
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1088/1742-5468/2014/03/P03025
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1021/ar00104a001
https://doi.org/10.1021/ar00104a001
https://doi.org/10.1021/ar00104a001
https://doi.org/10.1103/PhysRevE.89.052140
https://doi.org/10.1103/PhysRevLett.121.070601
https://doi.org/10.1103/PhysRevE.87.012111
https://doi.org/10.1112/jlms/s1-41.1.707
https://doi.org/10.1112/jlms/s1-41.1.707
https://doi.org/10.1112/jlms/s1-41.1.707
https://doi.org/10.1016/0024-3795(93)90224-C
https://doi.org/10.1016/0024-3795(93)90224-C
https://doi.org/10.1016/0024-3795(93)90224-C
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1137/0219046
https://doi.org/10.1137/0219046
https://doi.org/10.1137/0219046
https://doi.org/10.1007/BF01857727
https://doi.org/10.1007/BF01857727
https://doi.org/10.1007/BF01857727
https://doi.org/10.1103/PhysRevX.6.041053
https://doi.org/10.1103/PhysRevE.95.062409
https://doi.org/10.1103/PhysRevE.95.062409
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
http://arxiv.org/abs/1809.11121
https://doi.org/10.1103/PhysRevA.91.032113
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1007/BF00532720
https://doi.org/10.1007/BF00532720
https://doi.org/10.1007/BF00532720

	1. Introduction
	2. Background
	2.1. Master equations
	2.2. Embeddability
	2.3. Entropy production

	3. Definitions
	3.1. Limits of CTMCs
	3.2. Embedding with hidden states

	4. Local relaxations
	5. Upper bounds on minimal number of hidden states
	5.1. Single-valued maps
	5.2. General case
	5.3. Coarse-grained states

	6. Discussion
	6.1. Interpretation of hidden states
	6.2. Biochemical oscillations
	6.3. Future technical directions

	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	E.1. Transfers of probability using a relay state
	E.2. Minimum number of hidden states is less than non-negative rank

	Appendix F.
	References



