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Abstract

We consider the problem of how to construct a physical process over a finite state space X that applies
some desired conditional distribution P to initial states to produce final states. This problem arises
often in the thermodynamics of computation and nonequilibrium statistical physics more generally
(e.g- when designing processes to implement some desired computation, feedback controller, or
Maxwell demon). It was previously known that some conditional distributions cannot be
implemented using any master equation that involves just the states in X. However, here we show that
any conditional distribution P can in fact be implemented—if additional ‘hidden’ states not in X are
available. Moreover, we show that it is always possible to implement P in a thermodynamically
reversible manner. We then investigate a novel cost of the physical resources needed to implement a
given distribution P: the minimal number of hidden states needed to do so. We calculate this cost
exactly for the special case where P represents a single-valued function, and provide an upper bound
for the general case, in terms of the non-negative rank of P. These results show that having access to
one extra binary degree of freedom, thus doubling the total number of states, is sufficient to implement
any Pwith a master equation in a thermodynamically reversible way, if there are no constraints on the
allowed form of the master equation. (Such constraints can greatly increase the minimal needed
number of hidden states.) Our results also imply that for certain P that can be implemented without
hidden states, having hidden states permits an implementation that generates less heat.

1. Introduction

Master equation dynamics over a discrete state space play a fundamental role in nonequilibrium statistical physics
and stochastic thermodynamics [ 1-3], and are used to model a wide variety of physical systems. Such dynamics can
arise after coarse-graining the continuous phase space of a Hamiltonian system coupled to a heat bath [4—6], or as
semiclassical approximations of the evolution of an open quantum system with discrete states [1, 7].

The linearity of the master equation implies a linear relationship between the distribution over the system’s
states at the initial time t = 0 and some final time (here taken to be t = 1 withoutloss of generality). This is true
even if the master equation is time-inhomogeneous (i.e. non-autonomous). We can express this relation as

p(1) = Pp(0),

where p(0) and p(1) are column vectors whose entries sum to one, representing probability distributions at times
t = 0andt = 1respectively. If our system has n states, the matrix Pisan n X n stochastic matrix, representing
the conditional distribution of the system state at the final time given its state at the initial time. The entry P;;is
the probability that the system is in state i at the final time given that it was in state j at the initial time.
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The problem of characterizing the set of all stochastic matrices P that can arise this way from a (time-
inhomogeneous) continuous-time master equation is known as the embedding problem for Markov chains
[8—13], which can be viewed as the classical and time-inhomogeneous analog of the Markovianity problem
studied in quantum information [14, 15].

Despite the ubiquity of master equation dynamics in models of physical systems, it turns out that many Pare
non-embeddable, i.e. they cannot be implemented with any master equation. As we discuss below, examples of
non-embeddable matrices include common operations such as bit erasure and the bit flip (a logical NOT)

1
Prrase = [(1) (1)]) Pﬂip = [(1) 0] (1)

While neither of these operations are embeddable, there is a crucial difference between them. Bit erasure is
infinitesimally close to being embeddable, meaning that it can be implemented by a master equation if one is
willing to tolerate some finite, but arbitrarily small, probability of error. We call such matrices limit-
embeddable (LE).

On the other hand, as we show below, many stochastic matrices P, such as the bit flip, are not even LE. In
light of this, suppose we encounter a physical system with 7 ‘visible states’ that we know obeys a continuous-time
master equation, but is observed to evolve according to a P thatis not even LE betweent = Oand ¢t = 1.Insucha
situation we can conclude that the master equation dynamics must actually take place over some larger state
space, including some unseen hidden states in addition to the n visible states.

Alternatively, we can imagine that instead of observing some stochastic dynamics, we attempt to build a
system that carries out a specified P using master equation dynamics. This is the challenge we might face, for
example, if Pis the update function of the logical state of a computer we wish to build. In this scenario, the
minimal number of hidden states needed to implement P with master equation dynamics emerges as a
fundamental ‘state space cost’ of the computation P. (See also [16].)

In fact, by adding hidden states one can construct master equations that meet more desiderata than just
implementing a given P. Specifically, below we show that for any given P and initial distribution p(0), one can
construct a master equation that implements P on p(0) while being arbitrarily close to thermodynamically
reversible.’

In this paper, we establish upper bounds on the number of hidden states required to implement any
stochastic matrix P using a master equation, and also establish bounds when we require that P be implemented
in a thermodynamically reversible way. We do this using explicit constructions that show any stochastic matrix P
can be implemented by composing some appropriate set of fundamental transformations that we call local
relaxations (LR), defined in detail below.

Our main resultis thatanyn X #stochastic matrix P can be implemented with no more than r — 1hidden
states, where 7 is the non-negative rank of P. Because r < #, this result implies a simple corollary that one
additional binary degree of freedom (which doubles the number of available states) is sufficient to carry out any
Pin athermodynamically reversible way. We also derive exact results for some particular kinds of P, including
those representing single-valued functions, which show that the number of required hidden states can be much
smaller than r — 1.

Finally, we show that if P can be implemented with some number of hidden states while incurring some
nonzero EP, then it can be implemented without any EP at the cost of at most one additional hidden state. Such
results imply, for instance, that for a system coupled to a heat bath, adding hidden states can allow one to
implement the same P while generating less heat, as we illustrate in detail in an example below.

Note that our results assume complete freedom to use any master equation to implement a given P.
However, in the real world there will often be major constraints on the form of the master equation that can be
considered, e.g. due to known properties of an observed system we wish to model using a master equation, or
due to limitations on what kind of system we can build. An example of the former is if we know that the system’s
Hamiltonian can only couple degrees of freedom in certain restricted ways. An example of the latter is if P must
be implemented using a digital circuit made out of separate gates. In cases where there are such constraints on
the form of the master equation, our results can be considered as upper bounds on lower bounds of the number
of hidden states that are really required. (See section 6.3 below.)

Previous research has shown how to carry out arbitrary P thermodynamically reversibly [ 18—21]. Moreover,
the constructions in those papers can all be formulated in terms of master equation dynamics’. In addition, they
all exploit what in our terminology are called hidden states. However, none of those papers considered the issue

6 p(0) must be specified in addition to P since in general, the same master equation dynamics run on different initial distributions p(0) will
implement the same P, but with different amounts of irreversible entropy production (EP). See [17].

7 . . . . . P . .
Specifically, the processes considered in those papers are all (in our terminology) ‘LE’, and so could be expressed using master equations.
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of the minimal number of hidden states needed to implement P, i.e. the state space cost of implementing P,
which is the focus of this paper.

In a companion paper [16] we focus on the special case where the stochastic matrix Pis ‘single-valued’, i.e. it
represents a deterministic function. It turns out that for that case at least, there is a second kind of cost arising in
master equations dynamics that implement P, in addition to the state space cost which is the focus of this paper.
Roughly speaking, that second cost is the minimal number of times that the set of allowed state-to-state
transitions changes (which in a physics context may correspond to raising or lowering infinite energy barriers
between states). This can be viewed as a ‘timestep cost’ of implementing P. Interestingly, there is a tradeoff
between the timestep cost of implementing any (single-valued) P and the state space cost of implementing that P.

This paper focuses on the general problem of bounding the state space cost of arbitrary (not necessarily
single-valued) stochastic matrices and the relationship of this cost to thermodynamic reversibility. In the next
section we provide relevant background. Then in section 3, we define what it means for a master equation to
implement a stochastic matrix P to arbitrary precision. In section 4, we define ‘LRs’, which are the building
blocks of all our constructions. We present our main results in section 5. We also investigate how to extend our
framework beyond finite state spaces to countably infinite state spaces, for the special case where Pis a single-
valued map over X. Since this topic is a bit different from the main focus of the paper, it can be found in
appendix F. The other appendices contain proofs that are not in the main text.

2.Background

2.1. Master equations

Consider a physical system with a finite state space X of size n. We write the probability distribution of the state at
time tas p(t), where p,() is the probability that the system is in state i at time t. We suppose that p(¢) evolves as a
time-inhomogeneous continuous-time Markov chain (CTMC)

dp(t)

5~ MOp®. @

The elements in each column of the rate matrix M(f) must sum to zero and its off-diagonal entries are positive.
The entry M;(?) is the transition rate from state j to state i at time ¢. Equation (2) is commonly referred to as ‘the
master equation’.

For any CTMC, we can relate the distributions at the initial time # and some later time ¢’ by a linear map

p(t) = Tu(t, t")p(2), (3)

where Ty (¢, t) is known as a transition matrix, and equals the time-ordered exponential of M(¥). Where M(¢) is
clear from context, for notational convenience we will sometimes write Ty, (¢, ¢') simplyas T (¢, t'). Note that if
M(t) = Mis constant, then T (¢, t') = e*'~"M_Finally, note that we can rescale time arbitrarily by multiplying
M(#) by an appropriate constant. Therefore, without loss of generality we will take t = 0 and # = 1 from

now on.

2.2. Embeddability
Only some stochastic matrices P are embeddable, meaning that they can be written as P = T)0, 1) for some rate
matrix M(#). As an illustration of a non-embeddable matrix, consider a bit flip in a two state system, represented

by Py, = ((1) (1)) Now the most general master equation for a two state system is
p() = —r@®p, (D) + s(OA — py (1), %)

where p;(f) indicates the probability that the bit is in state 1 at time t, and r(f) and s(¢) indicate time-dependent
ratesofthel — 0and 0 — 1 transitions, respectively. It can be shown that there is no choice of non-negative
functions (#), s(¢) such that the solution of (4) simultaneously satisfies p;(1) = 0 when p;(0) = 1andp;(1) =1
when p,(0) = 0, as required to implement Pg;;,. To see why, note that the space of distributions over two states is
one-dimensional. The bit flip over a pair of states requires two distinct solutions to a differential equation, with
different starting and ending conditions, to cross at some time, which is impossible (see figure 1). (Note that this
same argument does not apply to bit erasure.)

Some broadly applicable necessary conditions for a stochastic matrix to be embeddable are known. For
example, by Liouville’s formula, we have

det Ty (0, 1) = exp ( f M) dt). (5)
0

Since the exponential function is strictly positive, any embeddable matrix must have strictly positive determinant
[12,22]. Animmediate corollary is that a map like Pg;, (which has determinant —1) is not embeddable. Indeed,
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Time

Probability that bit is 1

Figure 1. The difference of two solutions to (4) always decreases over time but it can never change sign.

by the continuity of the determinant, Pg;, is not even infinitesimally close to an embeddable matrix. (In terms of
our formal framework introduced below, Py, is not ‘LE’.)

Itis also known that Pmust obey det P < [[; P;in order to be embeddable [12, 22]. Note that any (non-
identity) permutation matrix has determinant that is either 1 or —1, while the product of diagonal entries is 0.
Thus, no permutation matrix is embeddable, or even infinitesimally close to an embeddable matrix.

These two necessary conditions on the determinant of a matrix for it to be embeddable are not sufficient.
Even if we restrict attention to the time-homogeneous case, where transition rates between states are constant,
the problem of whether an arbitrary matrix is embeddable is unsolved for matrices larger than 3 x 3.(On the
other hand, if one imposes the further constraint that the dynamics must obey detailed balance, the time-
homogeneous embedding problem has been solved for all finite-size state spaces [13].)

2.3. Entropy production

The field of stochastic thermodynamics [3] has developed a consistent thermodynamic interpretation of master
equation dynamics, including a way to quantify EP, the overall increase of entropy in the system and coupled
reservoirs. For a physical system evolving according to a master equation like equation (2), we define the
instantaneous rate of EP at time ¢ to be [23]

. M;;(t)p; (1)
Sp), M) =S M;;(t)p.(H)ln ——— . 6)
P ) ; i & )nMji(t)P,'(t) (
The total EP over the time interval [0,1], given some initial distribution p(0), is
1,
2i(p(0), M (1), [0, 1]) :j; X(p(t), M(t)) dt. (7)

The rate of EP is non-negative, and therefore so is total EP. A process that achieves 0 total EP is said to be
thermodynamically reversible.
If the system is coupled to a single reservoir, a heat bath at temperature T, then the total EP can be written as

2(p(0), M (1), [0, 1]) = [S(p(1)) — S(p(O)] + é (Q) ®)
where S( - ) is Shannon entropy, k is Boltzmann’s constant, (Q) indicates the average heat transferred to the
thermal reservoir over all trajectories of states fromt = Otot = 1[23].

To use a well-known example from the thermodynamics of computation [24, 25], suppose we wish to
perform a bit erasure (Pe.,s.), in which both initial states of a bit, {0, 1}, get mapped to a single final value, 0. Since
this is a many-to-one map, it reduces the entropy of the device (e.g. a computer) in which it is performed. By the
second law of thermodynamics, at least as much entropy must be produced in the environment. Often this
occurs by the transfer of some amount of heat (Q) from the system into a heat bath at temperature T. In this case,
assuming the initial probability over the states of the bit is uniform, the second law yields (Q) > kT In 2, which
is the well-known bound on the amount of heat produced in bit erasure that Landauer derived using semi-
formal reasoning®. More generally, an immediate consequence of equation (8) and the non-negativity of EP is

Itis now understood that alogically irreversible process like bit erasure can be done in a thermodynamically reversible manner [26], despite
how many have interpreted Landauer’s reasoning.
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(Q) = kT[S(p(0)) — S(p(1)], &)

where p(0) and p(1) are the distributions over system states at the beginning and end of the physical process
under consideration.

In the previous section, we discussed the embedding problem, which considers what P can be implemented
using a continuous-time master equation. A related, thermodynamically motivated, question concerns which
P can be implemented using a master equation that achieves 0 total EP, in the case where there is a single,
isothermal heat bath. Generally, EP vanishes in such a situation if and only if p(¢) is an equilibrium distribution
of M(t)forall t € [0, 1]. Formally, this means that M;()p;(t) = M;i(t)p,(t) foralli,jand t € [0, 1]. In general, this
condition requires that the initial distribution p(0) is an equilibrium distribution and that we go to the
‘quasistatic limit’ where the parameters change infinitesimally slowly in relation to the relaxation time of the
system [27—29]. This limit can be achieved either by implementing P increasingly slowly (in ‘wall clock’ time),
and/or by making the transition rates (which control the relaxation time) increasingly large.

While a given CTMC M(#) may achieve zero (more accurately, arbitrarily small) total EP for some initial
distribution p(0), in general it cannot generate zero EP for more than one such initial distribution. (See [17] for a
detailed investigation of the dependence of total EP on the initial distribution.) So our thermodynamically
motivated question is whether a given P has the property that for all initial distributions p(0), there is some
associated set of M(¢) that implement P with zero total EP, for that particular initial distribution p(0).

3. Definitions

3.1. Limits of CTMCs

As discussed in the section 1, many common operations such as bit erasure are not embeddable (e.g. no CTMC
has T(0,1) = P.,s.) but are nonetheless infinitesimally close to a stochastic matrix that is embeddable. This
motivates the following definition:

Definition 1. A stochastic matrix Pis LE if forall ¢ > 0, there is a rate matrix M (¢) such that|Tj;(0, 1) — P| < €.

Our definition of limit embeddable makes no restrictions on the thermodynamic properties of the
implementation of a given P. Our next task is to formalize an additional restriction that reduces the set of all LE
matrices to a subset that can be implemented in a thermodynamically reversible manner. Rather than focus on
whether some P can be implemented that way for one specific initial distribution, we focus on whether it can be
implemented that way for any initial distribution. This motivates the following definition:

Definition 2. A stochastic matrix Pis quasistatically embeddable (QE) if for all initial distributions p, all ¢ > 0,
andall 6 > 0, thereisarate matrix M (t) with |Tj;(0, 1) — P| < ¢ and X(p, M (¢), [0, 1]) < 6.

We emphasize that the rate matrix M (¢) thatimplements a given P must generally be specialized to the
initial distribution p in order to make 3 (p, M (¢), [0, 1]) arbitrarily small.

There are a few properties of QE matrices that are central to our analysis. The first one is the following
lemma:

Lemma 1. The set of QE matrices is closed under multiplication.
Itis impossible to implement any matrix without EP except in a limit, as illustrated by the next proposition” :

Proposition 2. If M () is the rate matrix of a CTMC with T' (0, 1) = P = I, then for any initial distribution p

_|1Pp —plt

E )M > 0) 2 >
(p> M (1), [0, 1]) 2 In(detP)

where ||y is £ norm"".

The inequality in proposition 2 (which may not be tight) shows that only those P with determinants very
close to 0 can achieve small EP for arbitrary initial distributions. Recall that by equation (5),

det P = exp ( J; "M () dt). This means that a small determinant can be achieved if the transition rates

® While preparing this manuscript we became aware of independent result by Shiraishi et al [30], which implies proposition 2; see
appendix B for details.

10 For two probability distributions p, g over n states, the £ norm is defined |p,—q;|=>"7"_,|p; — q;!-
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(the off-diagonal entries of M (¢)) are verylarge (so that trM (¢) is very negative). Note that since we have scaled
time out to fix the final time ¢/ = 1, we are effectively measuring rates in units of 1 /¢'. Therefore, the observation
that the entries of M () must be very large to achieve small EPis consistent with the well-known fact that
quasistatic processes take an infinite amount of time. (See also our discussion of the quasistatic limit in the
previous section.)

An important corollary of proposition 2 is that any QE matrix must be singular.

Corollary 3. Any QE matrix, except the identity, has determinant zero.

These points are illustrated in the following example of a canonical QE process, bit erasure, implemented
with a quantum dot:

Example 1. In the model of bit erasure described in [31], a classical bit is implemented as a quantum dot, which
can be either empty (state 0) or filled with an electron (state 1). The dot is brought into contact with a metallic
lead at temperature T'which (for an appropriate state of the dot) may transfer an electron into the dot or out of it,
thereby changing the state of the bit.

At time t, the propensity of the lead to give or receive an electron is set by its chemical potential, indicated by
(1), and the energy of an electron in the dot, indicated by E (¢). Specifically, let p(¢) indicate the two-
dimensional vector of probabilities, with p,(¢) and p, (¢) being the probability of an empty and full dot,
respectively. These probabilities evolve according to the rate matrix [31]

—w@#) 1—w(@®) ]
w(t) —(1—w)|

where Csets the timescale of the exchange of electrons between the dot and the lead and w (¢) is the Fermi
distribution of the lead

M() = C[ (10)

w(t) = [exp (E(t) — (1) /ksT) + 1171
Using equations (2), (10) and conservation of probability (i.e. p,(¢) + p,(t) = 1), we can write
p(t) = C(w () — p(1)). (11)

Suppose that £.(t) and E(t) are chosen in a way that depends on p, (0),so that w(t) = (1 — ¢)p,(0) + t6
for some constant ¢. In this case, (11) can be explicitly solved for p;:

P =w@) + C(p,(0) — 6)(1 — e ). (12)
In the limit where C — oo, p,(1) — w(1) = 6, so the transition matrix T (0, 1) becomes
l1=861-6
T(,1) = [ 5 s ]

Furthermore, by equation (12), in that limit p,(t) — w(t),andso p,(t) — 1 — w(t). That means that for all
i, j» My(t) p; (t) — M;i(t)p;(t). Inthis limit, the total EP over the course of the process

M;i (£)p; (1)
M;()p, () |

approaches zero (we show this rigorously, in the context of proving a more general result, in appendix D).

Since ¢ is arbitrary, this means that we can make T'(0, 1) arbitrarily close to bit erasure (§ = 0), while having
arbitrarily small total EP. This establishes that bit erasure is QE.

Note that if we cannot control C directly, we can still achieve the same effect as the limit C — oo by running
the process with some fixed C for longer and longer times (that is, by changing the endpoint from t = 1 to some
t > 1). This demonstrates the equivalence of going to the limit of infinitely-long time versus infinitely-fast rates
for achieving vanishing EP.

zzfl d Y Mop

0 i,je{o,1}

3.2. Embedding with hidden states
Many stochastic matrices P are not QE. Our main result is that despite this, any Pis a (principal) submatrix of a
larger matrix P which is QE. We formalize this property as follows:

Definition 3. An n X n stochastic matrix P is QE with m hidden states if there exists some (n + m) X (n + m)
matrix P thatis QE,and foralli, j € 1...n, 15i]- = Pj (i.e. Pis a principal submatrix of b).

To understand the motivation for this definition, imagine that there is a matrix P over state space Y that is
QE, and that Pis a principal submatrix of P, corresponding to the subset of states X C Y.Ifat t+ = 0 the process

6
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thatimplements P is in somestate i € X, then the distribution over the states in X at the end of the process at

t = 1willbe exactly as specified by P. Furthermore, because 3~ v P; = 1, P; = 0foranyi € Xand j ¢ X.This
means that if the process is started on some i € X, no probability can ‘leak’ out into the hidden states by the end
of the process, although it may pass through them at intermediate times.

Mathematically, the hidden states in definition 3 are additional to the states whose evolution is controlled by
P.However, there are multiple ways to map this mathematical structure into a particular physical system. In
particular, hidden states can arise when Yis a set of microstates of a system and X is an associated set of
macrostates; we elaborate this point in section 5.

Note that any P that is QE with m hidden states is also QE with p hidden states for all p > m. Note as well
thatbylemma 1,ifan #n X 7 stochastic matrix P can be factored into a product of # X n matrices, each of which
is QE with m hidden states, then Pitself is QF with m hidden states. More generally, the number of hidden states
required to quasistatically embed a product of stochastic matrices is no more than the maximum number
required for each of the matrices in that product. In section 5, we exploit this fact to derive upper bounds on the
minimal number of hidden states needed to quasistatically embed a given matrix.

The definition of QE may seem very strict, but from the perspective of the number of hidden states needed
for embedding, it is only slightly more costly than limit-embedding:

Proposition 4. If a matrix Pis LE, it is QE with at most one hidden state.

This means the minimal number of hidden states required for limit-embedding versus quasistatic
embedding are at most one apart.

Note that it might be fruitful to consider a weaker definition of QE than definition 2, in which a matrix would
be considered ‘QE’if it is LE while achieving vanishingly small EP for some specific initial distribution p, rather
than requiring that it is LE that way for any initial distribution. With this definition, the ‘state space cost’ given by
the number of hidden states would then be a function of P and the initial distribution p, not just of P. Our
definition can be seen as a worst-case version of this weaker definition; we measure the ‘state space cost’ of a
stochastic matrix P as the maximal number of hidden states we might need if we were given some specific initial
distribution p and wanted to construct a master equation that implements P with no EP for that p.

In addition, we note that any matrix which is QE according to our stronger definition would also satisfy this
weaker definition of QE. Thus, the upper bounds on the minimal number of hidden states required to
quasistatically embed a given P (according to definition 2) which we derive below are also upper bounds for the
number of hidden states required under the alternative weaker definition of QE. Note also that corollary 3 holds
under the weaker definition, as long as the desired initial distribution p is not the fixed point of P.

4. Local relaxations

In example 1 we showed that bit erasure is QE. In fact, bit erasure is part of a much larger family of stochastic
matrices which can be shown to be QE, which we call ‘local relaxations’. These will serve as the ‘building blocks’
of the constructions we use below:

Definition 4. A stochastic matrix Pis a LR if there is some permutation matrix Q (which may be the identity)
such that:

1. QPQ~ ! has ablock diagonal structure,
2. Each block of QPQ~! has rank one.
Note that the role of the permutation matrix Q is to just rearrange rows and columns, i.e. to relabel states.
Loosely speaking, when a LR matrix is used to evolve a system, states of the system are grouped into different
‘blocks’ between which no probability flows, while the states within each block relax to the same final, block-

specific distribution.

Example 2. The following 4 X 4 stochastic matrices are all LRs (for each matrix, we assume that a, b, ¢, d are
chosen to be non-negative and that the sum of each column equals 1):
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a a a a aa 00 a 0 a0
bbb b|l, |bboO]~_|0cO0c
A_cccC’B_Oocc’C_bObO'

dddd 00dd 0dod

The block structure in matrices A and B is immediately apparent. Matrix Cisa LR since B = QCQ~!, where Qis
the permutation matrix

(=l e i )
— o O O

0
1
0
0

el eBallS

(In other words, C can be arranged to have the block structure of B by switching rows/columns 2 and 3.)

In appendix D, we prove the following result, which establishes that we can use LR matrices as building
blocks to construct QE matrices:

Proposition 5. Any LR is QE.

By performing one LR followed by another one involving a different partition of X into blocks, we can
quasistatically implement matrices that are not themselves LRs. This means the converse of proposition 5 is
false—not every QE matrixisa LR.

However, it isthe case thatany 2 x 2 QE matrix Pisa LR. If Pis the identity, itis a LR. If not, then by
corollary 3, its determinant is zero, which implies it has rank one and so is a LR (with a single block).

Since they are all QE, products of LR matrices have determinant zero (again, except for the identity). On the
other hand, not all singular matrices are products of LRs. To see this, note that a (non-identity) product of LRs
must always send at least two initial states to the same final distribution (since there must at least one LR in the
product with a block of size larger than one). So such a product must have at least two identical columns.
Therefore, a matrix like

101/2
01 1/2
00 0

isnota product of LRs, even though it is singular.

To establish the results in the next section, we will repeatedly make use of proposition 5 and lemma 1 to
prove that a given matrix is QE by writing it as a finite product of LRs.

One might conjecture that a matrix is QE only if it is a product of LRs. However, we do not establish this, and
our results below do not rely on it.

5. Upper bounds on minimal number of hidden states

5.1. Single-valued maps
We refer to a stochastic matrix that represents a deterministic function (i.e. all its entries are either O or 1) as a
single-valued map.

To begin, note that if a single-valued map P corresponds to an invertible function, then Pis a permutation
andis not LE, as discussed in section 1. If, on the other hand, a single-valued map P corresponds to a non-
invertible function, then it has determinant 0. Moreover, we can use LR matrices to establish that any such Pis
LE, and in fact QE:

Proposition 6. Any single-valued map with determinant zero is QE.

Proof. Consider a single-valued map P over some finite set X with determinant zero, which represents some
non-invertible function f: X — X.Itisknown that any non-invertible function f: X — X isa composition of
finitely many idempotent X — X functions'', f = fy; o ...f, o f, [32]. In our context, this means that P can be
represented as a product of N'single-valued maps P = [], M®, each M® representing the idempotent
function f;. Note that the image of an idempotent function consists entirely of fixed points, thus each M® can be
written as

' A function s idempotent if applying it twice is the same as applyingitonce, f o f = f.

8
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)

Mﬂ.k>:{1 ifj €f,'()andi=f,(i)

0 otherwise

It can be verified that any such M® isa LR, since it consists of blocks corresponding to the set of pre-images
{f~1(3): i € f(X)},and each block f~!(i) contains identical columns: all 0s, except for a 1 in the row
corresponding to i.

The result then follows by applying first proposition 5 and then lemma 1. O

While a single-valued map with nonzero determinant is not QE (by corollary 3), it can always be made QE by
adding a single hidden state. Before establishing this for the general case, we illustrate the basic proof technique
with an example showing that the bit flip is QE with one hidden state:

Example 3. The bit flip Pg;, = ) is a map over a binary space X. It is not QE because it has negative

(0 1
10
determinant. However, it is QE with one hidden state.

This follows by constructing a special set of three LR matrices, each defined over a space Y that has three

elements, such that the restriction to the first two elements of the product of those matrices is the bit flip:

010 1 00][110]f0oo00
1 01[=|0o11]l0o 00|01 O} (13)
000 0 00J]lo o 1fl1 01

The restriction of the matrix on the lhs to its first two elements (i.e. the upper left block) is the bit flip operation,
by inspection. In addition, the first two matrices on the rhs are LR, by inspection. The third matrix on the rhs is
LR as well, but to see that we need to relabel the elements of Y in such a way that that matrix becomes block-
diagonal. Specifically, if we permute the second and the third elements of Y, we transform the third matrix as:

000 00O
01 0f—]J1 10
101 001

which confirms that the rightmost of the three matrices is LR.

So the rhs is a product of three LR matrices, and therefore the lhs must be QE. This confirms that the bit flip is
QE with one hidden state.

As an aside, note that the matrix on the lhs is not itself LR, even though it is a product of three LR matrices.
(This follows by verifying that there is no relabeling of the elements of Y that changes the matrix on the lhs of
equation (13) into block-diagonal form.)

We can easily generalize this technique to establish that any transposition is QE with one hidden state. Since
any permutation can be written as a product of transpositions, and since the product of QE matrices is QE, the
next result follows immediately:

Proposition 7. Any permutation is QE with one hidden state.

Together corollary 3 and proposition 7 imply that any permutation matrix requires exactly one hidden state
to be QE.

As mentioned in section 1, it is possible to extend our analysis of single-valued maps to countably infinite
spaces X, for suitable extensions of our definitions. Appendix F introduces one such extension of our definitions,
and then proves that with those extended definitions, any single-valued function over a countably infinite X can
be implemented with at most one hidden state.

5.2. General case

We now present our main result for arbitrary stochastic matrices. To begin, recall that the non-negative rank of
ann X n stochastic matrix Pis the smallest 71 such that P can be written as P = RS, where Risann X m
stochastic matrix and Sisan m X n stochastic matrix [33]. Roughly speaking, the non-negative rank of a matrix
is analogous to the number of independent mixing components in a mixture distribution.

Theorem 8. An n X n stochastic matrix P with non-negative rank r is QE with r — 1 hidden states.

To understand this bound intuitively, suppose we have decomposed a given # X 7 stochastic matrix Pinto a
product of two rectangular stochastic matrices of dimensions # x randr x n. These two rectangular matrices
can be interpreted as representing transfers of probability between disjoint sets of states: the first matrix transfers
probability from the n original states to r hidden ones, and the second map transfers probability back to the n

9
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original states. These transfers of probability can be shown to be QE, establishing that no more than rhidden
states are needed to implement Pin a QE manner.

As we show in appendix E, it is possible to reduce this number of hidden states needed by one, which yields
theorem 8.

Since the non-negative rank of an n X n matrix is # or less, theorem 8 implies thatany n x # stochastic
matrix is QE with at most # — 1 hidden states. This is fewer than the number of hidden states provided by
adding a single independent, extra binary degree of freedom to the system, since adding such a bit doubles the
size of the state space. Thus, simply by adding a hidden bit to a system, we can implement any stochastic matrix
in a thermodynamically reversible manner (presuming we have freedom to use arbitrary sequences of LR
matrices to implement the stochastic matrix).

Recall from proposition 2 that some stochastic matrices P cannot be directly implemented with zero EP,
even if they are embeddable. Theorem 8 tells us that it is sometimes possible to reduce EP of implementing an
embeddable P by adding hidden states. This is illustrated with the following example.

Example 4. The ‘partial’ bit flip
p_ |23 13
l1/3 2/3

is embeddable [9] but has nonzero determinant (det P = 1/3), and so cannot be QE by corollary 3. Specifically,
for any initial probability distribution p(0) (except possibly the fixed point of P, p(0) = (1/2, 1/2)7), thereis
some unavoidable EP. For example, by proposition 2, for the initial distribution p(0) = (1, 0),

49
~ 2In1/3

However, by theorem 8, Pis QE with one hidden state. Thus, by adding a hidden state, the partial bit flip can
be carried out while achieving zero EP. Note that since the change in the Shannon entropy S(Pp(0)) — S(p(0))
is independent of how Pis implemented, the reduction in EP realized when implementing P using a hidden state
implies a decrease in the amount of entropy produced in the environment (e.g. as a reduction in generated heat).

As a final comment, while the non-negative rank provides a general bound on the minimal number of
hidden states needed to quasistatically embed a given matrix, other properties of the matrix can sometimes be
used to further reduce the bound. As a simple illustration, suppose that we know the non-negative rank of some
stochastic matrix P—but also know that Pis block diagonal (up to a rearrangement of rows/columns by some
permutation matrix), and that the greatest non-negative rank of any of the blocks is k. Now we can implement P
by implementing each block in P independently, one after the other. Implementing P this way would allow us to
repeatedly ‘reuse’ whatever hidden states we have, for each successive implementation of a block. This means
that Pis QE using k — 1hidden states. This is true even if the non-negative rank of Pis (substantially) larger than
k, in which case the direct application of theorem 8 would give a much weaker bound on the minimal required
number of hidden states.

5.3. Coarse-grained states
When introducing our notion of hidden states, we indicated that our upper bounds would also apply if the
stochastic matrix P described the evolution of probability over some number 1 of coarse-grained ‘macrostates’
which collectively have internal to them n ‘microstates’. To see this, it suffices to notice that a single LR could
send all the microstates associated to a macrostate to one of its microstates. This concentrates probability in as
many microstates as there are macrostates, and the resulting ‘empty’ m — n microstates can now be used as
hidden states in the sense of our definitions and constructions.

For example, consider a system with three microstates {a, b, ¢} which are grouped into two macrostates
0 = {a}and 1 = {b, c}, representing the two states of a bit, that we wish to flip. This can be done by first
applyingthe LR {a} — a, {b, ¢} — b,leaving c with no probability. Now, by carrying out the bit flip operation
on microstates a and b using c as a hidden state (as shown in example 3), we carry out a bit flip over the
macrostates 0 and 1.

10
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Table 1. Minimum number of hidden states required to limit-embed
(LE) or quasistatically embed (QE) a given stochastic matrix P. r is the
non-negative rank of P.

Type of matrix P Min. # hidden states

Single-valued

Invertible (=I) 1
Non-invertible 0
Lower bound Upper bound

Noisy (LE) (QE) (QE)
detP =0 0 0 r—1
detP >0 0 1 r—1
detP < 0 1 1 r—1
detP>HiP,‘i 1 1 r—1
Limit embeddable 0 0 1

6. Discussion

In this paper, we consider implementing stochastic matrices P using a master equation. For some P, this is not
possible. However, we show that it is always possible to implement any P (to arbitrary accuracy), if we have
sufficiently many hidden states, in addition to the visible states that P works on. We also show that it is always
possible not only to implement P (to arbitrary accuracy), but to do so in a thermodynamically reversible manner
by using hidden states. The minimal number of required hidden states for such thermodynamically reversible
implementation of a given stochastic matrix Pis a novel and fundamental kind of ‘state space cost’ of carrying
out P.

We go on to derive some bounds on the minimal number of such hidden states required for any given P,
either just to implement it, or to do so in a thermodynamically reversible manner. In particular, we derive
bounds on this minimal number of states needed for these two kinds of implementation, stated in terms of basic
properties of P.

Our results for different kinds of P are summarized in table 1, which lists upper and lower bounds for both
limit-embedding (i.e. implementing to arbitrary accuracy) and quasistatic embedding (i.e. implementing to
arbitrary accuracy in a thermodynamically reversible manner) for different classes of matrices. Any QE matrix is
LE, so the upper bounds established for quasistatic embedding also apply to limit-embedding. All the lower
bounds in this table are tight, in the sense that in each class of matrices listed, there is a matrix that satisfies the
lower bound.

6.1. Interpretation of hidden states

Often in physics there are some states of a system or even entire physical variables that are hard to observe and
control experimentally. Such ‘hidden states’ are often a problem to be circumvented, e.g. by coarse-graining.
Whatever method we use for dealing with hidden states invariably affects the predictions we make (e.g. coarse-
graining can result in entropy increasing with time). However, such methods can allow us to proceed in an
analysis despite our incomplete knowledge.

At other times, the presence of hidden states can be a crucial property of a system, necessary for us to use a
master equation to model the dynamics. Our results highlight the extent to which this is the case in different
situations. In some cases, hidden states cannot be ignored—an engineer designing a physical system to
implement a given P must ensure that there is appropriate dynamic coupling between the hidden states and the
visible ones that P operates on, either implicitly or explicitly. In a different context, the number of hidden states
are ameasure of how many internal states are being overlooked by a scientist who notices that some naturally
occurring system evolves (over discrete time) according to P, and wants to presume that there is a master
equation dynamics underlying that evolution.

Itis important to emphasize that the role for hidden states uncovered in our analysis is different from the role
of the states of the history tape in Bennett’s reversible computation construction [25, 34, 35], or the states of the
extra bits in reversible Toffoli gates [36]. Like hidden states, the states used in reversible computation ‘facilitate’
the desired dynamics P, in a broad sense, without being in the space that P runs over. However, the role of those
states in reversible computation is to allow logical reversibility of the conditional distributions giving the update
rules, and therefore to lower the minimal thermodynamic work (rather than the EP) required to perform certain
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computations. In contrast, the conditional distributions we construct here are made from LR matrices and are
notlogically reversible in general.

Indeed, the state space cost of a conditional distribution P in some ways behaves in a manner ‘opposite’ to the
costs of Pdiscussed in the early thermodynamics of computation literature. A logically reversible function needs
ahidden state to be implementable by a CTMC, while a function that is logically irreversible does not. Therefore,
as far as the number of hidden states is concerned, there are advantages to being logically irreversible rather than
beinglogically reversible.

6.2. Biochemical oscillations

One possible application of our results is to recent stochastic thermodynamics analyses of ‘Brownian
clocks’[37, 38]. These are biochemical oscillations in which a component (e.g. a protein) undergoes Markovian
transitions (governed by some rate matrix M (t)) through a cycle of discrete states'”.

Such clock-like oscillations are forbidden at equilibrium. However, they can be sustained out of equilibrium
two ways: By fixed driving forces (M (t) = M is constant but not detailed balanced), or by periodic driving
(time-dependent variation of M (¢)).

In the former case, oscillations invariably dephase, though coherence can be preserved over many periods if
the system is driven strongly and has many states [38]. Even in the latter, more general case, it is challenging to
preserve phase information. In particular, if we try to design a Brownian clock that remembers its phase exactly,
we run into precisely the embedding problem discussed in this paper. For example, a clock with three states that
remembers its phase (perfectly) must transform its own states according to the cyclic permutation:

001
Pige ={1 0 0
010

each time it ticks. As we observe in section 1, this is impossible (since the product of the diagonal entries of By is
less than its determinant [12, 22]). In fact, we cannot even approximate these clock dynamics by allowing an
arbitrarily small amount of error. For example, a ‘lazy’ clock P,y = (1 — €)Pick + €I, which fails to tick with
probability e and slowly dephases, is not embeddable.

However, as we show above, all permutations, including B, are QE with one hidden state, which means
that if there is a hidden state in the clock (which may be occupied between ticks) it can be arbitrarily precise and
remember its phase, while producing arbitrarily little entropy. Our more general results (e.g. theorem 8) say that
periodic driving can be used to implement any variant of the stochastic matrix B (e.g. modeling a three state
clock that loses coherence in a specific way or rate), as long as at least two hidden states are available.

6.3. Future technical directions

Many of our results establish upper bounds on the number of hidden states required to quasistatically embed a
given stochastic matrix P. We generally do not know how tight these upper bounds are, even in the worst cases.
In fact, we have no example of a matrix which requires more than one hidden state for limit-embedding or
quasistatic embedding. One strategy to prove lower bounds would be to show that all QE matrices can be written
as products of LRs, and then improve our arguments to establish that the number of hidden states used in our
constructions (or modifications thereof) is minimal. This is a natural target for future work.

We are also keen to explore the potentially fruitful connections between the classical questions we have
tackled in this paper and questions arising in the study of open quantum systems. The state of such systems can
be described by a density matrix, and the transformation of state between two times is given by a completely
positive trace-preserving map, or ‘quantum channel’, which is the quantum analog of a stochastic matrix. The
analog of the classical master equation in this context is the Lindblad master equation [39], and the analog of the
embedding problem is known as the Markovianity problem [14]. Prior work related to our concerns in this
paper include [40], which studies the relationship between time-homogeneous and inhomogeneous embedding
in the quantum context, as well the results in [41] on mapping certain non-Lindblad master equations to systems
obeying a Lindblad master equation coupled to a single extra ‘ancillary’ qubit.

Another possible direction involves pursuing continuous space generalizations of our results. Although
master equations over a finite number of states are well-suited to represent many systems at some scales,
continuous state spaces unavoidably appear in microscopic, classical descriptions. One way to handle this would
be to introduce a fine discretization of space (see e.g. [42]) to turn say, diffusion in a compact region into a finite-
state master equation. Although our results presented here would apply to such an approximation, they would
not be addressing the natural questions for such a context, because they ignore the continuous structure of state

12 . . . . . .
Note that the rate equation of a monomolecular chemical reaction network is also of the form of equation (2), so the same mathematics
can arise with a different interpretation.
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space. For example, we have assumed throughout that the entries of M (¢) can be controlled freely and entirely
independently of each other. In a discretized model of a continuous system, this would be like supposing that
force fields or diffusivities could vary arbitrarily over the (very small) discretization scale. As an alternative, one
could consider the embedding problem for Fokker—Planck equations, characterizing the set of conditional
probability density functions that can be implemented with Fokker—Planck equations, and seeing whether
adding additional dimensions can enlarge this set.

Of course, there is also an ‘intermediate’ regime, in which the state space is infinite, but still countable. We
present a very preliminary investigation of that regime in appendix F. Some possibly fruitful future work would
involve extending the investigations there, e.g. to apply to noisy P as well as single-valued P. It might also be
fruitful to consider alternatives to the ways that the analysis in appendix F extends our basic concepts of
‘implementing P’ from the finite state space case to the infinite state space case.

Even in naturally discrete systems, our ability to independently control transition rates between states could
be constrained, which could give rise to state space costs greater than the very modest upper bound (one hidden
bit) we establish here for any matrix P, and deserve further exploration.

Our proofs involve implementing a given conditional distribution P via a sequence of discrete steps—LRs.
The number of such discrete steps required to implement a given P presents an interesting way of measuring the
difficulty of physically implementing a stochastic matrix. Analyzing the number of steps required to implement
agiven P, and how this number depends on the number of hidden states and the details of P, is an important
direction for future work. As a initial result in this direction, we note that our construction in the proof of
theorem 8 requires 4rn — 10 LRs to be performed in sequence. Such investigations are closely linked to the state
space size versus timestep tradeoft for single-valued stochastic matrices, which we analyze in a companion paper
[16]. (See also work on a related question for the special case n = 3 in [43].)
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Appendix A. Proof of lemma 1
Lemma 1. The set of QE matrices is closed under multiplication.
Proof. If T (¢, t') is the transition matrix associated with rate matrix M (¢t) and S(t, t’) is the transition matrix
associated with N (¢), then S(1/2, 1)T'(0, 1/2) = U (0, 1), where U (¢, t') is associated with rate matrix:
M(t) ift € [0, g]
L(t) = O
N@) ifte (5, 1]

To complete the proof note that the EP over the whole process is the sum of EP over both subintervals. O

Appendix B. Proof of proposition 2
Proposition 2. If M () is the rate matrix of a CTMC with T' (0, 1) = P = I, then for any initial distribution p

_|1Pp —plt

E )M > > = >
(p, M), 10, 1D > 2In(det P)

where || is £ norm"” .

Proof. Let p(0) indicate the initial state distribution, and p(1) = Pp(0) indicate the final state distribution
under P.

Consider a CTMC with rate matrix M (¢) thatimplements Pover t € [0, 1]. The probability flux from state j
toiattimetis

Jij(t) = p; () My (£) — p; (£) Mi(¢).

13 For two probability distributions p, g over n states, the 4 normis defined [p — gl, == Y7 ||p, — qj-
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Write the instantaneous EP, from equation (6) and [23], as

. p; (1) M (t)
Sp@) = Y Jihhn——e (BD)
i,j:J;j(t)>0 ! pl( )MJ’(t)
where we have used the symmetry property
(1) M;j (1) t t
Lj(t)lnpj o p; () M;i (1)
p; (1) M;i(t) P](t)MU(t)
Define a(t) :== —tr(M (t)) to be the negative of the trace of the rate matrix at time t. We then bound the rhs
of equation (Bl) usinglnx > 1 — ;
. (O M;i(t) — p,(£) M (1)
SRR S A i A Ak
i,j:J(0)>0 p; () M (1)
B (p,(OM;(t) — p, () M;i (1))
i,ji ;i (£)>0 Pj(t)Mij(t)
_ lz Jij(1)?
2 ij p](t)M,](t)
f—Z a(h)? (Lj(t))z
= MO\ a()
Jii ()
Z = Hl—-|1 > B2
zga()(a(t)) (B2)
where in the last inequality we used that p,(r) < 1and é;) <L
Before proceeding, we note that
lp(1) = p(O)h =D Ip;(1) — p,(0)]
1 1
= q)de | < ()] dt. B3
;|f0;u> %;fouj(n (B3)
For convenience, we also define
1 1
K:= t)ydt = — | tr M(¢)dt = In(det P), B4
fo a(t) fo r M(t)dt = In(det P) (B4)
where the last equality is equation (5).
We now use equations (B3), (B2) to bound the integrated EP, 3 := fo ' Y dr.
Jii (t)
s> L M S ae )( )
2 Zeoloe
it
—_f Za(t)(f]()) d&
a(r)
2
K| ' a@) | Jij®
— — | == | dt
2 [fo ; K | a®)
2
Kl1 !
=—]— | dt
> ( = U ]
1 2
>— |p() — p(O)2,
K [p(1) — p(O)[;
where the third line follows by Jensen’s inequality. The proposition follows immediately by rearranging. O

Corollary 3, that any non-identity QE matrix Pis singular, follows directly from proposition 2. Choose p to be
any non-fixed-point of P. Then, in order for EP to be made arbitrarily small, as required by the definition of QE,
itmust be that det P = 0.

Note also that a related result has recently been derived in [30]. Equation (14) in that paper, with minor
rearranging, states
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Ip(m) — p(O)If

E(p0), M), [0, T]) > 27 (A),

, (B3)

where (A), is the so-called ‘dynamical activity’
1 T
<A>‘r = —L E M,J(t)p](t)dt

T i=j
1 T
-/ 3 Map, (1)
Sinceforalli, p.(t) < 1and M;;(¢) < 0, we canlower bound the dynamical activity as

A), < -+ f TS Mi(hdt = Ln(detP), (B6)
TJo T

where we have used P = T,,(0, 7) and equation (5). It can be seen that proposition 2 is implied by combining
equations (B5), (B6) and taking p = p(0), Pp = p(7).

Appendix C. Proof of proposition 4

Proposition 4. If a matrix Pis LE, it is QE with at most one hidden state.

Proof. Let Pbe a LE matrix. By definition, there is an embeddable matrix P’ within any desired distance ¢; of P.

Now consider a stochastic matrix which keeps every state fixed except state i, which it sends to j with
probability i, and leaves alone with probability 1 — «. In control theory, such matrices are called Poisson
matrices. It is known that any embeddable matrix P’ can be approximated arbitrarily closely by a finite product
of such matrices [44]. Let P indicate a product of Poisson matrices which approximates P’ within a distance e,.

A Poisson matrix is QE with one hidden state by lemma 9. Since P’ is a product of Poisson matrices, P’ is
QE with one hidden states. Thus, Pis arbitrarily close (less than €] + ¢,) to P”/, a matrix which is QE with one
hidden state.

Now choose such a P" within ¢ /2 of P. If we wish to implement P within € while producing total entropy less
than 6, with one hidden state, we can do so with a rate matrix M (t) that implements P’’ to within ¢ /2 while
producing less than § entropy, with one hidden state. There always is one since P’ is QE with one hidden state.
This establishes the result. O

Appendix D. Proof of proposition 5, that any LR matrix is QE
Proposition 5. Any LR is QE.

Proof. We first show this for LRs that have a single block, that is, those of the form
P=rl,

where 7 is an n-dimensional column-vector with positive entries that sum to 1, and 1 is an #n-dimensional
column-vector of 1s. We construct a sequence of CTMCs that approximates P arbitrarily well while achieving
arbitrarily small total EP for some initial distribution q.

Consider the rate matrix whose off-diagonal entries are given by M;; (t) = aw;(t), where w;(t) = (1 — t)gq; +
t;. The associated master equation decouples

p; (1) = a(wi(t) — p; (1)), (D1)
and can be solved explicitly (using the initial condition p(0) = q),
pi() = wi(t) + o l(g; — m)(A — e ). (D2)

It is clear that by making « sufficiently large, this CTMC will transform any initial distribution at t = 0
arbitrarily close to final distribution wat t = 1. Thatis
lim p,(1) = lim w;(1) = m(1).

a—00

Thus, it will approximate P arbitrarily well. We must now show that by making « large we can also make the total
EP as small we like.

Since the rates M;;(t) satisfy detailed balance at all times, M;; (t)w;(t) = M;;(t)w;(t), the total EP can be
written as
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L. pi(1)
Y¥=- (f)In —— dr.
Zz:ﬁ Bl wi(1)
We split each integral into two parts
1 1
f p(OInp.(t) dt — f 5O wi(p) dr.
0 0
The first integral can be evaluated as
fl 5 (1)In p, (1) dt = fl Ao O)Inp.(t) — p.(0)] dt
o P p; =J, ‘b b; b;
=p;(DInp,(1) — q;Ing; + q; — p,(1),
which, as @ — 00, converges to
mlnm — gq;lng, + q; — . (D3)
The second integral can be written as
1 1
f pOIw() dt = (m — q)) f (1 — e~ Inw(t) dt,
0 0

where we’ve plugged equation (D2) into equation (D1). As & — o0, the integrand converges pointwise and
monotonically to In w;(¢), which is bounded for all r € (0, 1). By the dominated convergence theorem, as
a — 090, the second integral converges to

(m — q) fo nwi() dr (D4)

1
= —q) [ In(@ = g, + tm) de
0
=mlnm — q;Inq, + q, — m. (D5)

Comparing equations (D3) and (D5), we see that in the limit of « — 0, the two integrals cancel, and
soX — 0.

The general case of a LR with multiple blocks follows immediately, because a block diagonal matrix is QE if
the blocks are—a block diagonal matrix A with blocks B; can be factored as a product
A=Bi®I® )T DB @ ) O

Appendix E. Proof of main result in section 5
To establish our main result we first establish some preliminary results.
Lemma9. Any 2 x 2 stochastic matrix is QE with one hidden state.

Proof. For any real number p € [0, 1], define p := 1 — p. Without loss of generality'*, write Pin matrix

notation as
P= [p ?].
P q

We consider two cases. If p < G,thenif x = p/Jand y = g, wehave

pap] [1to1][r» Oolfx o x
pqgpl=lo1ol|ly 7 ofo1 o
[0 0 0] 00O0fo o 1ILx 0 x
Ifinstead p > §,thenifx = p, y = §/p, wehave
(5 g q] [10 1]x x o]t 00
p qggl=|o1o0f|lxxoff0y y|
[0 0 0] 0 0 O0ff0 0 1}{0 7 ¥
In both cases, the factors on the right-hand side are LRs, so the result is established. O

14 . . . . P
The other kind of transfer can be rewritten in this form by permuting its rows and columns.
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Figure 2. (a) A composition of LRs can be used to effect a transfer of probability o from i to j, using a relay state r. (b) A sequence of
these operations can be composed to effect any transfer T.

E.1. Transfers of probability using a relay state
In what follows, it will be useful to consider stochastic matrices of the form:

o] o 12 0)

where Pisan m X p matrix with positive entries with column sums less than or equal to one, Disa p X p
diagonal matrix that makes the whole block matrix stochastic, and I is the m x m identity matrix.

We call such matrices transfers, because they can be viewed as representing transfers of probability between
two disjoint sets of states of sizes p and m. One can show that:

Proposition 10. Any transfer T'is QE with one hidden state.

We will make repeated use of the map, R/ ~/(«v), acting on a set with two elements, which keeps state j fixed,
but sends state i to j with probability o and leaves it as i with probability 1 — «. Such a matrix, whichis called a
Poisson matrix in control theory, is QE with one hidden state by lemma 9. See figure 2 for an illustration.

Proof of proposition 10. Without loss of generality'*, let
D o
T= .
2 7]
If Phas only one nonzero row, whose entries are p;, i = 1,..., 11, then

n
T =11 R,
i=1

where the indices iand jare now labeling rows (e.g. states) in the larger matrix T. The first n rows that i ranges
over become the rows of D, and j is the index of the single nonzero row of P, now as a submatrix of T. So by
construction j > n > i,and the maps R'~7(p,) for different i do not interfere with one another (they commute
and fix each others images).

Now suppose P has two nonzero rows. Write P as the sum of two matrices P = P; 4+ P,, each zero except for
one of the rows of P. Let D; be the diagonal matrix which makes

Dy 0]
P oI

[DO]_ D, Dy 0__D2 Ol[D; 0

P I] |[P,+P I] |PD7' TP If

where D, is chosen to make the matrix is appears in stochastic (this is always possible since the column sums of P
are all less than 1). Since the product of stochastic matrices is stochastic, the matrix appearing on the left-hand

side is T, establishing the proposition for P with two nonzero rows. The result for general P follows by
induction. O

stochastic, and write
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E.2. Minimum number of hidden states is less than non-negative rank

Lemma 11. An n X n stochastic matrix P with non-negative rank 2 is QE with one hidden state.

Proof. Write the non-negative rank decomposition P = RS where R and S are stochastic matrices of dimensions
. . . R
n x 2and 2 X n,respectively. We further decompose R and S into sub-matrices: R = [ Rm] and S = [S,, S,],
2
where R, and S, are 2 X 2. Now note that

P = Rmsm RmSZ
| RSw RS,

and
Rmsm Rm 52 _ I 0 1 Rm 0 OffI o
RS, RS, 1o RzD_l 0 D Sy I110 S, i

where D is the diagonal matrix that makes the second factor stochastic, and I is an identity matrix of dimensions
suitable to where it appears. To show that P can be implemented with one hidden state, it suffices to show that
each of the factors on the right hand side can be.

The middle two factors represent transfers, in the sense described above, so they can implemented with one
hidden state. The first and last factors represent operations performed on just two states, so by lemma 9 can also
be implemented with one hidden state. Note that R, D~! is stochastic, because the column sums of R, are exactly
the diagonal entries of D (recall D was chosen to make the second factor stochastic). O

We are now ready to prove theorem 8.
Theorem 8. Ann x n stochastic matrix P with non-negative rank r is QE with r — 1 hidden states.

Proof. Suppose r > 2 (if not, the result follows from lemma 11). As before, write 7 = RS where Rand Sare
stochastic of dimensions n x randr X n, respectively. But this time, decompose R and S differently:

R =[R,, Pland S = [Sé”],wherePis n x 2and Qis 2 x n.Notethat ™ = R,,S,, + PQ.
[PQ+RmSm Rm] _ [1 Rm] PQD! 0 [D o]
0 0 0 0 0 I)lSm I

where D is the diagonal matrix that makes the second factor stochastic, and I is an identity matrix of dimensions
suitable to where it appears.

To prove the theorem, it suffices show that each of the (n + k — 2) x (n + k — 2) matrices on the right
hand side care QE with one hidden state.

The first and last factors represent transfers from r — 2 hidden states to the original n states (and vice versa),
and can be implemented using one hidden state, as described earlier. The middle factor, which represents an
operation performed only on the original states, has non-negative rank 2 (note that Pand QD~! are stochastic),
so bylemma 11 can also be implemented with one hidden state. This establishes the result. O

Appendix F. Countably infinite state spaces

We now consider the case where the state space of our system, X, is countably infinite, and restrict attention to
the implementation of single-valued maps f: X — X over such spaces.

In our results above, we establish quasistatic embeddability of various matrices by writing them as products
of LRs. In the infinite case, we can similarly ask what is possible by composing LRs, which in the context of
single-valued maps are exactly the idempotent functions.

One natural way to extend our analysis to the case of countably infinite X is to consider a sequence of
idempotent functions over some Y O X that, when restricted to X, gives the desired f. To allow the sequence of
functions to implement f (x) for all x € X, in general we must consider sequences that are infinite. However,
the infinite product of LRs need not be QE (or even be well-defined). To circumvent this issue we impose a
‘practical’ interpretation of what it means to implement f, by requiring that any particular input x € X is
mapped to f (x) after finitely many idempotents.

Adopting this interpretation, in this appendix we establish the following result:
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Proposition 12. Let X be a countable set, and take Y := X \J {z}. For any function f: X — X thereis a sequence
{g,} of idempotent functions g;: Y — Y suchthat forall x € X C Y, thereisanm (which can depend on x) such
thatforallr > m, (g, 0og_, 0 - og)(x) = f(x).

Proposition 12 is a kind of infinite analog of propositions 6 and 7, which showed that any function over a
finite X can be implemented with at most one hidden state.
To prove proposition 12 we begin with the following lemma:

Lemma 13. Let Y be Z with one point added. There is a sequence {g;} of idempotent functions g;: Y — Y such that
foralln € Z C Y, thereis an m (which can depend on n) such that for all

r>zm, (g o0g_,0 - og)m)=n + L

Proof. First, let [a] indicate the cyclic permutation (—1, 0, 1) and, for any integer i € Z, let [i] indicate the
cyclic permutation (—i, i + 1, —i — 1).
For any particular j € Z, consider the following composition of permutations,

MY = [5] ... [2]1[1][al.

We show by induction that M/ sends eachstatei € {—j — 1, ...,j}toi + 1(whilealsosending j + 1to
—j — lasa‘sideeffect’). First, it can be verified by inspection that it holds true for j = 0 (when M D = [a]).
Second, assume it holds true for M(? and then observe that

MUY = [j+ UMD = (=j = 1,j + 2, —=j — 2)MY.
So,applying [ j + 1]after M7 results in:

(@) —j — 2beingsentto —j — 1;

(b) the ‘side effect’ of M) being fixed, in that, M) mapped j + 1+ —j— 1, but [j + 1] maps
—j—1+—j 4+ 2,sothecombinedresultisj + 1—j + 2.

Thus, MU+Dsendseachstatei € {—(j + 1) — 1,...,(j + D}toi + 1(whilenowsending(j+ 1) + 1to
—(j 4+ 1) — lasa‘side effect’).

Note that a cyclic permutation like [—j] and [«] affect only a finite number of points in Z, and thus can be
written as a product of a finite number of transpositions, which can in turn be written as a product of three
idempotents that use one hidden state (e.g. as in example 3). This hidden state is provided by Y, which lets us
construct a sequence of idempotents {g;} over Y with the property we desire. O

We can now use a ‘dovetailing’ algorithm to construct a sequence of local idempotents that implements any
specified function, thereby establishing proposition 12:

Proof of proposition 12. Suppose first that fis a bijection. Partition X according to the orbits of f—that is, two
points x and y are in the same part if there is some n such that y = " (x) or x = f"(y).

There will be countably many orbits A;. Each of the A;is either finite and frestricted to it is a permutation, or
else A;is countably infinite and there is a numbering of its elements (using positive and negative integers) such
that frestricted to thatorbitisn — n  + 1. Ineither case, using proposition 6 or lemma 13, we can form for
each orbit a sequence {(gj );} that implements the restriction of fto that orbit. Extend the maps in each sequence
to all of Yby having them fix the elements in all other orbits.

Now form a new sequence by interleaving these (countably many) sequences in a way that preserves the
order of elements in each individual sequence. For example

{(gl)la (g1)21 (gz)l’ (gl)3> (g2)2> (g3)1)---}-

This sequence satisfies the requirements of the theorem. Any x € X isin some orbit A, and so there is some
element of the associated sequence (& )m after the application of which xis mapped to f (x) and remains so. We
use here the fact that the interleaving to form the larger sequence preserves order, and that idempotents that are
members of sequences corresponding to the other orbits fix A;.

If fisnot a bijection, consider the idempotent map a that, for all x € X, sends all elements in the inverse
image f~!(x) toadistinguished element w(x) € f~!(x). Write Z = img f U img a. We canwrite f = h o a,
where h: Z — Z isabijection. So using the construction above, we can make a sequence of idempotents for
with the desired property. Adding a to the beginning of the sequence forms a sequence that implements f. For
each x there exists an w (x), and under the implementation of i, w (x) — f(w(x)) once some number m
idempotents are applied. But note that x was first mapped to w (x), under the initial application of a. Thus, once
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midempotents of h have been applied, the combined effect on xis x — w(x) — f (w(x)),and f (w(x)) = f (x),
by the definition of w (x), so this completes the argument. O
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