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Abstract

We assess precision thermometry for an arbitrary single quantum system. For a d-dimensional
harmonic system we show that the gap sets a single temperature that can be optimally estimated.
Furthermore, we establish a simple linear relationship between the gap and this temperature, and
show that the precision exhibits a quadratic relationship. We extend our analysis to explore systems
with arbitrary spectra, showing that exploiting anharmonicity and degeneracy can greatly enhance the
precision of thermometry. Finally, we critically assess the dynamical features of two thermometry
protocols for a two level system. By calculating the quantum speed limit we find that, despite the gap
fixing a preferred temperature to probe, there is no evidence of this emerging in the dynamical
features.

1. Introduction
The zeroth law of thermodynamics asserts [1]

Iftwo systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
with each other.

Different thermal equilibria are labeled by a single parameter—temperature—, which quantifies the subjective
notion of hot and cold. Whereas the temperature of a classical system is one of the best understood and most
commonly used physical quantities, assigning a meaningful and unique temperature to quantum systems is

a priori asignificantly harder task [2]. Indeed, generally the temperature of quantum systems is neither a classical
nor a quantum observable. Thus, one has to resort to quantum estimation techniques [3, 4] to derive the ultimate
limits on its determination. To this end, recent years have witnessed intense efforts in the design of ‘optimal
quantum thermometers’ and in accurately determining the temperature of a variety of quantum systems [5-21].

However, several important issues have remained unsatisfactorily addressed: (i) what is the effect of the
energy spectrum of a quantum system on the precision with which its temperature can be estimated? and (ii)
how do fundamental quantum principles such as the indeterminacy relations affect the timescales over which
the temperature of quantum systems can be estimated? In the following we analyze both questions with the help
of analytically solvable case studies.

To begin, we consider the estimation of temperature via minimal thermometers comprised of individual
quantum probes that are already at thermal equilibrium. Following from and generalizing the approach taken by
Correa et al [7], we start by discussing thermometry via quantum systems characterized by harmonic (equally
gapped) spectra and discuss the role of the level spacing A. We show that qualitatively identical results are
obtained regardless of the dimensionality of the probe: for a given spacing A, there is a single optimal
temperature T,,,, corresponding to a maximum in the estimation precision attainable, and precise functional
relationships between these quantities can be readily obtained. We then consider quantum probes endowed with
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anharmonic (non-equally gapped) spectra and allow for degeneracy. We find, in line with [7], that degeneracy
can in fact increase the estimation precision obtainable with a finite-dimensional quantum system. Furthermore
we show how these two properties, anharmonicity and degeneracy, can be harnessed to allow for high precision
estimation of more than a single temperature, as witnessed by the emergence of multiple peaks in the quantum
Fisher information (QFI).

The close connection between the energy spectrum and the optimal estimation of a quantum system’s
temperature also hints at a relation with the quantum speed limit (QSL), see recent reviews [22, 23] and
references therein. The QSL determines the shortest timescale over which quantum systems can evolve,
and it can be interpreted as a consequence of Heisenberg’s indeterminacy principle for energy and time. It
governs the maximal precision of estimating the energy [24, 25], and therefore one naturally would expect a
close relationship between the QSL and temperature. For instance, in quantum statistical physics it has
proven mathematically useful to interpret temperature as a characteristic time-scale, albeit in imaginary
time [26].

We critically assess such a possible relation between the QSL and the optimal estimation of temperature by
allowing a harmonic probe system to interact with finite and infinite dimensional environments whose
temperature we are interested in determining. Interestingly, we find that the dynamics does not carry
information about the optimal precision of thermometry, i.e. although there is a single optimal temperature
dictated by the gap, no clear footprint of this is reflected in the dynamical features. In particular, despite the fact
the QSL correctly characterizes the relaxation and thermalization dynamics, we find that the optimal estimation
of temperature is independent of the maximal speed, and the corresponding QSL time, with which the quantum
system evolves.

This work is organized as follows: in section 2 we introduce some basic notions of quantum estimation
theory and present the results for thermometry with probes characterized by harmonic spectra. In section 3 we
discuss the possible enhancement that can be obtained for thermometry via probes with anharmonic and
highly-degenerated spectra. In section 4 we introduce the basic concept of the QSL and discuss its relationship
with thermometry by considering two alternative dynamical schemes: firstly, we let the probe thermalize, in the
usual quantum open system scenario, viaa Markovian master equation. Secondly, we consider a simple toy-
model where the probe interacts unitarily with a finite dimensional thermal environment. We conclude with
some final remarks in section 5.

2. Thermometry for harmonic spectra

Here we assess the effect that the energy level spacing and dimensionality have on precision thermometry for
systems with harmonic spectra. In particular we first recap and elucidate some known results for the limiting
cases of two- and infinite-dimensional systems [7, 15], highlighting the clear role that the single characteristic
energy spacing plays, before extending our results to arbitrary dimensions. To this end, we will assume
the system is already at thermal equilibrium, and therefore in a canonical Gibbs state, o7 = e #/7/Z =
>, PIEy) (E,l, where {|E,) } are the eigenstates of the Hamiltonian H, {p,} the corresponding populations for
the thermal states, and Z = Tr [e "/T] the associated partition function.

The precision with which temperature, T, can be estimated is bounded by the quantum Cramér—Rao bound

_ )
MH(T)
where M is the number of measurements performed and  is the QFI [3, 4]. The QFI depends only on the family
of quantum thermal states o and, evidently, larger values of QFI correspond to a more accurate estimation of
the temperature. In fact the QFI can be interpreted as the distance between two thermal states whose temperature
differs by an infinitesimal variation, in formula

Var(T) >

. 1 —Flor, or+er]
H(T) = 81 R 2
D 6THEO 6T? @

where F[o, o] = Tr[\/~/0 90+ ]denotes the fidelity between two quantum states.

Remarkably for a family of Gibbs states o1, the QFI can be easily evaluated and is equal to the classical Fisher
information corresponding to a measurement described by the eigenstates of the Hamiltonian H. In formula
one obtains [7, 15, 16, 27]

d o 2 H 2
HT) =3 |07p,| _ [Var;4 )] ‘
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Figure 1. (a) The QFI for three values of energy spacing, A, against temperature, T. (b) One over the maximum value of QFI, 1/H ax»
against A showing the quadratic relationship. (c) The linear relationship between the value of temperature, Ty,ax, When H pay is
achieved plotted against A. In all panels solid curves are for the qubit and dashed curves are for the oscillator.

For a thermal two level system with free Hamiltonian H = %Uz (0, being the Pauli matrix), the corresponding
Gibbs state is

1-— tanh(%) 0
od(T) = = N @
2 0 1+ tanh(E)
We can determine the QFI using equation (3) and find
i A? sech? (%) -
2T

In figure 1(a) the solid curves show the QFI for several values of the energy level splitting, A. Clearly, smaller energy gaps
can lead to significantly better precision, however an important point to note is that the QFI peaks at a single value of T.
This means there is a single temperature that a given two-level system with a specified energy gap is optimized to probe.
This temperature corresponds to the value of T'maximizing the QFI, H ,,,, and as we change A the position of this
peak shifts. We find there exists a simple quadratic relation between the ultimate precision, i.e. H nax, and the spacing
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Figure 2. QFI for several different dimensional systems with harmonic spectra. We have fixed A = 1.0.

asshown in figure 1(b). Furthermore, the value of temperature corresponding to this maximum, T),,y, is linearly
related to A

Thax = QA where 200 = tanh(l) 7)
Q

as shown in figure 1(c). From these relations we see 1 /H ~ A? ~ T2 inline with the Landau bound [15].
Moving to the other well studied scenario, we consider the infinite-dimensional quantum harmonic
oscillator, H = A(aTa + %) (a representing the bosonic annihilation operator satisfying [a, a'] = 1), with

spectral gap A. The QFI for a thermal state is given by

Azcschz(%)
4T*

The dashed lines in figure 1 show that all the features exhibited by the simple two-level system carry over almost
identically to this case. In particular, smaller A leads to increased sensitivities at lower temperatures, thereisa
quadratic relationship between the maximum QFland A

1 ﬁAz

H(T) = (8)

—_—

Hmax B 5\/5

and we find the value of T maximizing the QFI scales linearly with A. Note that for both scenarios this linear
relation is not surprising since both, the density operator and the resulting QFI, only depend on the ratio A /T,
but noton A and T'separately.

Clearly the two disparate dimensional systems exhibit qualitatively identical behaviors, thus implying that
the achievable precision for thermometry with harmonic systems is solely dependent on the single characteristic
spectral gap, A, while dimensionality plays only a minor role. In fact, we can show this more explicitly by
considering arbitrary d-dimensional harmonic systems, described by the Hamiltonian H = >>¢_, nA|E,) (E,|,
and calculating the corresponding QFI. For a thermal state, the probe is in Gibbs form and the energy level
occupations (eigenvalues) are simply given by a Boltzmann distribution. Thus, for a d-dimensional system with
energy spacing A, the nth eigenvalue of the thermal state is

©

et (e — e "

Z et — 1
From equation (3) we know that the QFI is based solely on the rate of change of these occupations with respect to
temperature, and we obtain

(10)

pn:

Az(dz(fe%) — d2emdr+z> +2(d*— l)eA“fFH) + eA+1%Ad + e%)
Ha(T) = . (11)

A Ad
T4(eT — 1)*(eT — 1)?

Itis easy to check that we recover equation (5) (equation (8)) by settingd = 2 (d — o).

We depict the QFI for various values of d in figure 2 where we have (arbitrarily) fixed A = 1.1tis
immediately evident that for low temperatures, T < 0.2, all systems perform identically, while differences arise
only at comparatively large temperatures. Indeed, such a behavior is intuitive: atlow temperatures all systems are
constrained to the low energy portion of the spectrum, thus in this region only the ground and first excited state
will play a significant role. Of course, the general behavior shown previously, namely quadratic relation between
the inverse of H ., and A and the linear relationship between Ty, and A, persist here. However, it is
interesting to notice that qualitatively nothing changes for d > 3 with regards to the maximal precision.
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Figure 3. QFI for temperature taking several values of energy level splittings in an arbitrarily gapped three level system, equation (12).
For comparison, the black dashed curve is the QFI for the harmonic oscillator, corresponding to the largest QFI achievable for
harmonic spectra (see figure 2).

At this point we can conclude (i) the constant energy level spacing in harmonically gapped systems plays the
most crucial role in thermometry. Therefore, to probe low temperatures one should seek to use a system with a
small energy spacing, while for larger temperatures larger gapped systems are significantly more useful. (ii) We
can gain some enhancement by going from two- to a three-level system, however higher dimensional systems
offer no advantage regarding the optimal achievable precision. (iii) Regardless, such systems are only designed to
estimate a single temperature with the optimal precision.

Thus, itis then interesting to ask under what conditions more than a one temperature can be accurately
probed using a single system. Clearly, when the probe exhibits a unique characteristic energy gap such a situation
is impossible. Therefore, we continue with a different setting and consider thermometry using systems with
arbitrary energy level spacings.

3. Thermometry in arbitrarily gapped spectra

The harmonic oscillator is certainly the best studied quantum system, since the dynamics are analytically
solvable [28] and many potentials can be well-approximated by a harmonic potential for small excitations.
Nevertheless, real systems are rarely exactly described by harmonic oscillators and therefore, due to the
additional characteristic energy spacings present in nonlinear systems, one might expect the best precision in
thermometry to be intimately related to these features. While in principle we could individually analyze a given
nonlinear system explicitly, it is in fact sufficient to simply consider a system with arbitrary spaced energy levels,
where without loss of generality we fix the ground state energy to be zero, since thermometry is only concerned
with an eigenstates rate of change rather than the actual eigenenergy value. Evidently, analyzing such systems is
only meaningful for d > 3 and therefore to begin we will restrict ourselves tod = 3.

For the considered three level system the Hamiltonian is

A, 000
H=]0 A o} (12)
0 0 0

where the energy gap between the ground (first) and the first (second) excited state is A (A,), and we assume
A, > A;. We can readily evaluate the Gibbs state and therefore the corresponding QFL. In figure 3 we show the
QFIwhenwe fix A; = 1and take several values of A,. The topmost blue curve for A, = 1 corresponds to a
doubly degenerate excited state, showing that a significantly better precision is achievable and the temperature
which it most accurately estimates is exactly the same as for the qubit case found by solving equation (7). This is
precisely the result rigorously proven by Correa et al [ 7], wherein it was shown that the optimal probe
corresponds to a system with a highly degenerate excited state, and the precision is enhanced as one includes
more degenerate energy levels. It should be noted however, that again this system can only optimally estimate a
single temperature due to the single characteristic energy spacing. By increasing A, we see that its main effect is
to reduce the optimal precision and to introduce a slight shift in the position of Hmax. For A, = 1.5, hence the
gap is less than that of a three level harmonic spectrum, we see the precision is still larger than the oscillator case
for T < 0.5 and clearly this situation interpolates between the optimal degenerate probe (A, = 1) and the
harmonic case (A, = 2). Taking A, = 3, we find that for low temperatures the behavior is indistinguishable
from the two-level case; this due to the fact that, at such values of T, thermal energy is not sufficient to excite the
system up to the second excited state, and one has essentially a two-level system. The effect of the second excited
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Figure 4. QFI for the Gibbs state of systems with highly degenerate anharmonic spectra given in equation (13). (a) With large gaps,

Ay =1,A, = 5,and A; = 25.(b) With smaller gaps A; = 1, A, = 4,and A; = 15.Inboth panels the black dashed curve
corresponds to the QFI for the harmonic oscillator for comparison. Insets: the population of the first exited state (topmost, solid), and
one of the second (middle, dashed) and third (bottommost, dot-dashed) excited states.

state only becomes apparent for large T, where one eventually obtains values of the QFI larger than the other
three-level systems, however never outperforming the harmonic oscillator case.

Clearly the gap between ground state and first excited state still plays the most dominant role, and
furthermore, even for arbitrary spacings, all these systems still exhibit a single maxima which is primarily
dictated by A;. Therefore, even including more energy levels with arbitrary gaps between them, we achieve the
same behavior as shown in figure 3, leading to the conclusion that any single quantum system with non-
degenerate energy spectrum can only accurately determine a single temperature.

3.1. Introducing degeneracy
The increased sensitivity achieved by employing degenerate energy levels in [ 7] relies on the fact that for a system
with such a single energy gap, all the degenerate levels begin to become populated simultaneously and thus the
witnessed enhancement. Naturally then, we ask if a similar approach can be used to allow a single system to
probe more than one temperature, and if so how much degeneracy is required.

Consider a system with the following energy spectrum:

Ey=0,

E=A,

Ei=A, for N+2>i>2,

Ei=A; for M+ N+22j>n+3.
: (13)

Here a unique ground and first excited state are separated by an energy splitting A ;. A gap of A, separates the
first excited state from an N-fold degenerate second excited state, which is in turn separated from an M-fold
degenerate third excited state by As. In figure 4 we fix A; = 1 and study the magnitude of the gap and amount of
degeneracy needed to resolve more temperatures. By taking a suitably large spacing between the A’s, the QFI
now exhibits more peaks (see panel (a)), however this comes at the requirement for high degeneracy. While the
first peak is almost indistinguishable from the two-level system case, we require two-orders of magnitude more
degenerate second excited states to resolve a second temperature with a comparable accuracy, and of the order of
10° states if we wish to resolve a third. From panel (b) we see that this behavior is delicately dependent on the size
of the respective gaps. Taking splittings closer together we find that the system tends to be more sensitive at
higher temperatures and the range of temperatures it can reasonably accurately determine, when compared to

6
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the magnitude of the first peak, is significantly enlarged. We see the reason for this by examining the insets of
figure 4. Larger splittings means the highly degenerate excited states exhibit significant rates of change only when
the ground and first excited state are by comparison stable in population. Contrarily, for smaller splittings we
find all energy levels exhibit more marked rates of change at overlapping temperatures. Thus the high degree of
degeneracy enhances these effects at such temperatures.

4. Thermometry and the quantum speed limit

The preceding sections crucially assumed that the probe system measured had already thermalized to a canonical
Gibbs state. Here we relax this assumption and explore a complementary question: are there any signatures of the
optimal temperature a given probe is able to estimate present in the dynamics of a thermometry protocol? Ina
similar context, it has been shown that the quantum speed limit determines the best possible precision in quantum
metrology [24, 25]. For thermal states, all occupation probabilities are simply functions of the temperature. Thus, it
is not far-fetched to assume that some kind of resonance between the eigen-dynamics of the probe and the
temperature of the environment (i.e. the probed system) determines a ‘preferred’ time-scale of the joint dynamics.

To address this, we use the QSL to quantitatively explore the dynamical features of a simple thermometry
scheme where the probe system, g, is placed in contact with the thermal environment, gg. Note that it is a well
established fact that the QSL can be expressed in terms of the QFI corresponding to time ¢ estimation [29].
Therefore while a clear, albeit somewhat trivial, connection could be made, this does not necessarily imply a
proper relation of the QSL with quantum thermometry. To get clearer insight into the matter we now compute
the QSL for thermalization processes, and analyze whether extrema in the quantum speed correspond to
maxima of QFI for temperature.

We will focus primarily on the formulation of the QSL provided in [30], where the speed for an arbitrary
process is bounded by

D29 lop

— (14)
cos (B) sin (B)

VX VQsL =
where D(-) is the generator of the dynamics, ||-||op is the operator norm, and B = arccos(F (p,, p,)) is the Bures
angle between the initial and time-evolved states [30]. From this maximal quantum speed we obtain the
corresponding QSL time [30],

sin?(B)

I = > 15
QSL ZET ( )

where E. is the time-averaged norm of the generator, E; = 1/7 j(; T dt | D(0:(1))|lop and 7 is the total evolution
time-window.

As established in [7] the optimal initial configuration for the probe system is in its ground state. In the
following, we consider this initial condition and study two types of environment: (i) an infinite reservoir within
the Markovian limit such that the probe system thermalizes to the Gibbs state, and (ii) a finite dimensional
environment such that the probe system periodically reaches the Gibbs state. We restrict our probe to be a two-
level system, however qualitatively the results are unaffected for d > 2.

4.1. Infinite dimensional environment
A two-level probe coupled to a infinite thermal bath can be effectively modeled using a master equation in
Lindblad form

0s(t) = D(os(1)) = —i[H,, os(t)] + L(05(1)), (16)
with
L(p) = V(7 + Do poy, — {p, 0.0} + yiiloypo — {p, o0, }] (17)

andwherem = 1 / (e% — 1). Setting ;(0) = |0) (0] we can readily solve equation (16) and therefore evaluate
equations (14) and (15). In fact, in this case we find the speed matches exactly with the one derived by extending
the Mandelstam—Tamm bound based on an approach involving the QFI corresponding to the estimation of the
evolution time  of the probe state [29]. Therefore in this setting the bound is tight since the two approaches
coincide, and we find

(1 + 27)e”1+2D

. 18
2\/5(1 77— e—2(1+2ﬁ)1vt)(e—2(1+2ﬁ)”,ft) + 1) (18)

vQsL =

In figure 5(a) we show vy, for various values of bath temperature, T. Clearly, when the system is thermalized
vasL. — 0. However, this is to be expected since the thermal state is a fixed point of the dynamical map. We see
the speed tends to reduce at a faster rate for larger values of T, however this effect plays no role in the ability to
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Figure 5. (a) QSL for an infinite dimensional thermal environment, fixing A = v = 1 with T=0.25 (solid), 0.75 (dashed), 1.5 (dot-
dashed), 5 (dotted). (b) QSL against time for a finite dimensional environment fixing ] = A = 1and taking 7= 0.25,0.75, 1.5, 5
(bottom to top curves). In both panels the insets show the respective QSL times, Tqs1, equation (15), where all curves are identical
regardless of T.

precisely estimate the temperature of the environment. In fact, this is further evidenced in calculating the QSL
time shown in the inset. Here we find regardless of the parameters chosen the QSL time is unaffected. This would
appear at variance with the intuition posited previously, i.e. that the dynamics would reflect the optimal
temperature a system was ‘designed’ to probe. While in the figure we have shown A = v = 1, we remark that
qualitatively the same behavior is exhibited for all parameter choices.

4.2. Finite dimensional environment

Changing the environment to be finite dimensional will introduce a degree of non-Markovianity to the
dynamics. In what follows we consider the case when the dimensionality of both probe and environment are
equal, i.e. d; = dp = 2.In this situation we must carefully define the interaction to ensure that the probe reaches
the thermal state at some point during the dynamics. This can be realized by using an excitation preserving
interaction and the free evolution terms

A
H=H =200 Hu=l@ieol+oodh, (19)

such thatatt = 7/J the thermal state of the environment is swapped with the state of the probe. Equation (19)
can be understood as a simple version of a thermometer, that is similar in size to the quantum system of interest.

In order to evaluate equations (14) and (15), we require the generator of the dynamics. While in principle
one could derive the associated equations of motion, given the comparative simplicity of the setting we can
readily determine () directly, and therefore /(). In figure 5(b) we show vy, for the same values of the
environmental temperature as in panel (a). Immediately, several similarities arise. In particular, we observe that
when the probe is in the Gibbs state the speed vqs;, = 0. Furthermore, while different values of the
environmental temperature exhibit different dynamical speeds, again there is no indication of a ‘preferred’
temperature. The inset shows, inline with the infinite dimensional environment case, that the associated 7gy. is
identical for all values of T. Again, qualitatively identical results hold for any choice of parameters.

5. Concluding remarks

We have discussed precision thermometry via individual quantum systems. First we have focused on quantum
probes that have already thermalized, evaluating the ultimate precision achievable in temperature estimation for

8
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quantum systems characterized by diverse energy spectra. Starting with equally gapped spectra described by a
single energy spacing A, we have demonstrated that for any dimension of the quantum system there is a single
optimal temperature scaling linearly with A, confirming and extending to arbitrary dimension, the results
obtained previously in [7, 15]. We have then shown that only by introducing anharmonicity to a system with
high dimensionality and high degeneracy, is it possible to go beyond these results and estimate more than one
temperature with high accuracy, i.e. one obtains a QFI with more than single peak. Additionally in this case we
have discussed in detail the relationship between the energy splittings A;and the temperatures that can be
estimated efficiently. In particular we observed that taking splittings close together greatly enhances the
estimation of higher temperatures.

Given that at equilibrium the temperature determines the average energy of a system, we have analyzed the
relationship between thermometry and the QSL. Whereas for single systems in equilibrium the temperature and
the QSL are trivially related (since both are essentially estimated by the average energy), we falsified the
hypothesis that the QSL sets a preferred precision in dynamical measurements. To this end, we studied
paradigmatic examples: systems relaxing with an infinite heat reservoir and a finite thermometer. While the QSL
fully characterizes the thermalization dynamics, no clear relation to an extremum of the QFI for temperature
was unveiled.
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