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Abstract
Weassess precision thermometry for an arbitrary single quantum system. For a d-dimensional
harmonic systemwe show that the gap sets a single temperature that can be optimally estimated.
Furthermore, we establish a simple linear relationship between the gap and this temperature, and
show that the precision exhibits a quadratic relationship.We extend our analysis to explore systems
with arbitrary spectra, showing that exploiting anharmonicity and degeneracy can greatly enhance the
precision of thermometry. Finally, we critically assess the dynamical features of two thermometry
protocols for a two level system. By calculating the quantum speed limit wefind that, despite the gap
fixing a preferred temperature to probe, there is no evidence of this emerging in the dynamical
features.

1. Introduction

The zeroth law of thermodynamics asserts [1]

If two systems are in thermal equilibriumwith a third system, then they are in thermal equilibrium
with each other.

Different thermal equilibria are labeled by a single parameter—temperature—, which quantifies the subjective
notion of hot and cold.Whereas the temperature of a classical system is one of the best understood andmost
commonly used physical quantities, assigning ameaningful and unique temperature to quantum systems is
a priori a significantly harder task [2]. Indeed, generally the temperature of quantum systems is neither a classical
nor a quantumobservable. Thus, one has to resort to quantum estimation techniques [3, 4] to derive the ultimate
limits on its determination. To this end, recent years havewitnessed intense efforts in the design of‘optimal
quantum thermometers’ and in accurately determining the temperature of a variety of quantum systems [5–21].

However, several important issues have remained unsatisfactorily addressed: (i)what is the effect of the
energy spectrumof a quantum systemon the precisionwithwhich its temperature can be estimated? and (ii)
howdo fundamental quantumprinciples such as the indeterminacy relations affect the timescales over which
the temperature of quantum systems can be estimated? In the followingwe analyze both questions with the help
of analytically solvable case studies.

To begin, we consider the estimation of temperature viaminimal thermometers comprised of individual
quantumprobes that are already at thermal equilibrium. Following fromand generalizing the approach taken by
Correa et al [7], we start by discussing thermometry via quantum systems characterized by harmonic (equally
gapped) spectra and discuss the role of the level spacingΔ.We show that qualitatively identical results are
obtained regardless of the dimensionality of the probe: for a given spacingΔ, there is a single optimal
temperatureTmax corresponding to amaximum in the estimation precision attainable, and precise functional
relationships between these quantities can be readily obtained.We then consider quantumprobes endowedwith
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anharmonic (non-equally gapped) spectra and allow for degeneracy.Wefind, in linewith [7], that degeneracy
can in fact increase the estimation precision obtainable with a finite-dimensional quantum system. Furthermore
we showhow these two properties, anharmonicity and degeneracy, can be harnessed to allow for high precision
estimation ofmore than a single temperature, as witnessed by the emergence ofmultiple peaks in the quantum
Fisher information (QFI).

The close connection between the energy spectrum and the optimal estimation of a quantum system’s
temperature also hints at a relationwith the quantum speed limit (QSL), see recent reviews [22, 23] and
references therein. TheQSL determines the shortest timescale over which quantum systems can evolve,
and it can be interpreted as a consequence ofHeisenberg’s indeterminacy principle for energy and time. It
governs themaximal precision of estimating the energy [24, 25], and therefore one naturally would expect a
close relationship between theQSL and temperature. For instance, in quantum statistical physics it has
provenmathematically useful to interpret temperature as a characteristic time-scale, albeit in imaginary
time [26].

We critically assess such a possible relation between theQSL and the optimal estimation of temperature by
allowing a harmonic probe system to interact withfinite and infinite dimensional environments whose
temperaturewe are interested in determining. Interestingly, wefind that the dynamics does not carry
information about the optimal precision of thermometry, i.e. although there is a single optimal temperature
dictated by the gap, no clear footprint of this is reflected in the dynamical features. In particular, despite the fact
theQSL correctly characterizes the relaxation and thermalization dynamics, we find that the optimal estimation
of temperature is independent of themaximal speed, and the correspondingQSL time, withwhich the quantum
system evolves.

This work is organized as follows: in section 2we introduce some basic notions of quantum estimation
theory and present the results for thermometry with probes characterized by harmonic spectra. In section 3we
discuss the possible enhancement that can be obtained for thermometry via probeswith anharmonic and
highly-degenerated spectra. In section 4we introduce the basic concept of theQSL and discuss its relationship
with thermometry by considering two alternative dynamical schemes: firstly, we let the probe thermalize, in the
usual quantumopen system scenario, via aMarkovianmaster equation. Secondly, we consider a simple toy-
model where the probe interacts unitarily with a finite dimensional thermal environment.We concludewith
some final remarks in section 5.

2. Thermometry for harmonic spectra

Herewe assess the effect that the energy level spacing and dimensionality have on precision thermometry for
systemswith harmonic spectra. In particular we first recap and elucidate some known results for the limiting
cases of two- and infinite-dimensional systems [7, 15], highlighting the clear role that the single characteristic
energy spacing plays, before extending our results to arbitrary dimensions. To this end, wewill assume
the system is already at thermal equilibrium, and therefore in a canonical Gibbs state, eT

H T = =-

p E En n n nå ñá∣ ∣, where Enñ{∣ }are the eigenstates of theHamiltonian H p, n{ } the corresponding populations for
the thermal states, and Tr e H T = -[ ] the associated partition function.

The precisionwithwhich temperature,T, can be estimated is bounded by the quantumCramér–Rao bound
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whereM is the number ofmeasurements performed and is theQFI [3, 4]. TheQFI depends only on the family
of quantum thermal states ñT and, evidently, larger values ofQFI correspond to amore accurate estimation of
the temperature. In fact theQFI can be interpreted as the distance between two thermal stateswhose temperature
differs by an infinitesimal variation, in formula
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where F , Tr s s s=[ ] [ ]denotes thefidelity between two quantum states.
Remarkably for a family of Gibbs states ñT, theQFI can be easily evaluated and is equal to the classical Fisher

information corresponding to ameasurement described by the eigenstates of theHamiltonianH. In formula
one obtains [7, 15, 16, 27]
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For a thermal two level systemwith freeHamiltonian H z2
s= D (σz being the Paulimatrix), the corresponding

Gibbs state is
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Wecan determine theQFI using equation (3) andfind
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Infigure 1(a) the solid curves showtheQFI for several values of the energy level splitting,Δ.Clearly, smaller energy gaps
can lead to significantlybetter precision,however an important point tonote is that theQFIpeaks at a single valueofT.
Thismeans there is a single temperature that a given two-level systemwith a specified energy gap is optimized toprobe.
This temperature corresponds to the valueofTmaximizing theQFI, max , andaswe changeΔ thepositionof this
peak shifts.Wefind there exists a simplequadratic relationbetween theultimateprecision, i.e. max , and the spacing

1

8
, 6

max

2



p
= D ( )

Figure 1. (a)TheQFI for three values of energy spacing,Δ, against temperature,T. (b)One over themaximumvalue ofQFI, 1 max ,
againstΔ showing the quadratic relationship. (c)The linear relationship between the value of temperature,Tmax, when max is
achieved plotted againstΔ. In all panels solid curves are for the qubit and dashed curves are for the oscillator.
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as shown infigure 1(b). Furthermore, the value of temperature corresponding to thismaximum,Tmax, is linearly
related toΔ

T where 2 tanh
1

7max a a
a

= D = ⎜ ⎟⎛
⎝

⎞
⎠ ( )

as shown infigure 1(c). From these relationswe see T1 2
max
2 ~ D ~ in linewith the Landau bound [15].

Moving to the otherwell studied scenario, we consider the infinite-dimensional quantumharmonic

oscillator, H a a 1

2
= D +( )† (a representing the bosonic annihilation operator satisfying a a, =[ ]† ), with

spectral gapΔ. TheQFI for a thermal state is given by
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The dashed lines infigure 1 show that all the features exhibited by the simple two-level system carry over almost
identically to this case. In particular, smallerΔ leads to increased sensitivities at lower temperatures, there is a
quadratic relationship between themaximumQFI andΔ
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andwefind the value ofTmaximizing theQFI scales linearly withΔ. Note that for both scenarios this linear
relation is not surprising since both, the density operator and the resultingQFI, only depend on the ratioΔ/T,
but not onΔ andT separately.

Clearly the two disparate dimensional systems exhibit qualitatively identical behaviors, thus implying that
the achievable precision for thermometry with harmonic systems is solely dependent on the single characteristic
spectral gap,Δ, while dimensionality plays only aminor role. In fact, we can show thismore explicitly by
considering arbitrary d-dimensional harmonic systems, described by theHamiltonian H n E En

d
n n1= å D ñá= ∣ ∣,

and calculating the correspondingQFI. For a thermal state, the probe is inGibbs form and the energy level
occupations (eigenvalues) are simply given by a Boltzmann distribution. Thus, for a d-dimensional systemwith
energy spacingΔ, the nth eigenvalue of the thermal state is

p
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From equation (3)we know that theQFI is based solely on the rate of change of these occupationswith respect to
temperature, andwe obtain
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It is easy to check that we recover equation (5) (equation (8)) by setting d=2 (d  ¥).
We depict theQFI for various values of d infigure 2wherewe have (arbitrarily)fixedΔ=1. It is

immediately evident that for low temperatures,T 0.2 , all systems perform identically, while differences arise
only at comparatively large temperatures. Indeed, such a behavior is intuitive: at low temperatures all systems are
constrained to the low energy portion of the spectrum, thus in this region only the ground and first excited state
will play a significant role. Of course, the general behavior shown previously, namely quadratic relation between
the inverse of max andΔ and the linear relationship betweenTmax andΔ, persist here.However, it is
interesting to notice that qualitatively nothing changes for d�3with regards to themaximal precision.

Figure 2.QFI for several different dimensional systemswith harmonic spectra.We have fixedΔ=1.0.
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At this point we can conclude (i) the constant energy level spacing in harmonically gapped systems plays the
most crucial role in thermometry. Therefore, to probe low temperatures one should seek to use a systemwith a
small energy spacing, while for larger temperatures larger gapped systems are significantlymore useful. (ii)We
can gain some enhancement by going from two- to a three-level system, however higher dimensional systems
offer no advantage regarding the optimal achievable precision. (iii)Regardless, such systems are only designed to
estimate a single temperature with the optimal precision.

Thus, it is then interesting to ask underwhat conditionsmore than a one temperature can be accurately
probed using a single system. Clearly, when the probe exhibits a unique characteristic energy gap such a situation
is impossible. Therefore, we continuewith a different setting and consider thermometry using systemswith
arbitrary energy level spacings.

3. Thermometry in arbitrarily gapped spectra

The harmonic oscillator is certainly the best studied quantum system, since the dynamics are analytically
solvable [28] andmany potentials can bewell-approximated by a harmonic potential for small excitations.
Nevertheless, real systems are rarely exactly described by harmonic oscillators and therefore, due to the
additional characteristic energy spacings present in nonlinear systems, onemight expect the best precision in
thermometry to be intimately related to these features.While in principle we could individually analyze a given
nonlinear system explicitly, it is in fact sufficient to simply consider a systemwith arbitrary spaced energy levels,
wherewithout loss of generality wefix the ground state energy to be zero, since thermometry is only concerned
with an eigenstates rate of change rather than the actual eigenenergy value. Evidently, analyzing such systems is
onlymeaningful for d�3 and therefore to beginwewill restrict ourselves to d=3.

For the considered three level system theHamiltonian is

H
0 0

0 0
0 0 0

, 12
2

1=
D

D
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⎞

⎠
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where the energy gap between the ground (first) and the first (second) excited state isΔ1 (Δ2), andwe assume
Δ2�Δ1.We can readily evaluate theGibbs state and therefore the correspondingQFI. Infigure 3we show the
QFIwhenwefixΔ1=1 and take several values ofΔ2. The topmost blue curve forΔ2=1 corresponds to a
doubly degenerate excited state, showing that a significantly better precision is achievable and the temperature
which itmost accurately estimates is exactly the same as for the qubit case found by solving equation (7). This is
precisely the result rigorously proven byCorrea et al [7], wherein it was shown that the optimal probe
corresponds to a systemwith a highly degenerate excited state, and the precision is enhanced as one includes
more degenerate energy levels. It should be noted however, that again this system can only optimally estimate a
single temperature due to the single characteristic energy spacing. By increasingΔ2 we see that itsmain effect is
to reduce the optimal precision and to introduce a slight shift in the position of max . ForΔ2=1.5, hence the
gap is less than that of a three level harmonic spectrum, we see the precision is still larger than the oscillator case
forT<0.5 and clearly this situation interpolates between the optimal degenerate probe (Δ2=1) and the
harmonic case (Δ2=2). TakingΔ2=3, we find that for low temperatures the behavior is indistinguishable
from the two-level case; this due to the fact that, at such values ofT, thermal energy is not sufficient to excite the
systemup to the second excited state, and one has essentially a two-level system. The effect of the second excited

Figure 3.QFI for temperature taking several values of energy level splittings in an arbitrarily gapped three level system, equation (12).
For comparison, the black dashed curve is theQFI for the harmonic oscillator, corresponding to the largest QFI achievable for
harmonic spectra (seefigure 2).
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state only becomes apparent for largeT, where one eventually obtains values of theQFI larger than the other
three-level systems, however never outperforming the harmonic oscillator case.

Clearly the gap between ground state and first excited state still plays themost dominant role, and
furthermore, even for arbitrary spacings, all these systems still exhibit a singlemaximawhich is primarily
dictated byΔ1. Therefore, even includingmore energy levels with arbitrary gaps between them,we achieve the
same behavior as shown infigure 3, leading to the conclusion that any single quantum systemwith non-
degenerate energy spectrum can only accurately determine a single temperature.

3.1. Introducing degeneracy
The increased sensitivity achieved by employing degenerate energy levels in [7] relies on the fact that for a system
with such a single energy gap, all the degenerate levels begin to become populated simultaneously and thus the
witnessed enhancement. Naturally then, we ask if a similar approach can be used to allow a single system to
probemore than one temperature, and if so howmuch degeneracy is required.

Consider a systemwith the following energy spectrum:

E
E
E N i
E M N j n

0,
,
for 2 2,
for 2 3.

13

i

j

0

1 1

2

3

 
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=
= D
= D +
= D + + +

 ( )

Here a unique ground and first excited state are separated by an energy splittingΔ1. A gap ofΔ2 separates the
first excited state from anN-fold degenerate second excited state, which is in turn separated from anM-fold
degenerate third excited state byΔ3. Infigure 4wefixΔ1=1 and study themagnitude of the gap and amount of
degeneracy needed to resolvemore temperatures. By taking a suitably large spacing between theΔʼs, theQFI
now exhibitsmore peaks (see panel (a)), however this comes at the requirement for high degeneracy.While the
first peak is almost indistinguishable from the two-level system case, we require two-orders ofmagnitudemore
degenerate second excited states to resolve a second temperaturewith a comparable accuracy, and of the order of
106 states if wewish to resolve a third. Frompanel (b)we see that this behavior is delicately dependent on the size
of the respective gaps. Taking splittings closer togetherwe find that the system tends to bemore sensitive at
higher temperatures and the range of temperatures it can reasonably accurately determine, when compared to

Figure 4.QFI for theGibbs state of systemswith highly degenerate anharmonic spectra given in equation (13). (a)With large gaps,
Δ1=1,Δ2=5, andΔ3=25. (b)With smaller gapsΔ1=1,Δ2=4, andΔ3=15. In both panels the black dashed curve
corresponds to theQFI for the harmonic oscillator for comparison. Insets: the population of thefirst exited state (topmost, solid), and
one of the second (middle, dashed) and third (bottommost, dot-dashed) excited states.
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themagnitude of thefirst peak, is significantly enlarged.We see the reason for this by examining the insets of
figure 4. Larger splittingsmeans the highly degenerate excited states exhibit significant rates of change onlywhen
the ground andfirst excited state are by comparison stable in population. Contrarily, for smaller splittings we
find all energy levels exhibitmoremarked rates of change at overlapping temperatures. Thus the high degree of
degeneracy enhances these effects at such temperatures.

4. Thermometry and the quantum speed limit

Thepreceding sections crucially assumed that the probe systemmeasuredhad already thermalized to a canonical
Gibbs state.Herewe relax this assumption and explore a complementary question: are there any signatures of the
optimal temperature a given probe is able to estimate present in thedynamics of a thermometry protocol? In a
similar context, it has been shown that thequantumspeed limit determines thebest possible precision inquantum
metrology [24, 25]. For thermal states, all occupationprobabilities are simply functions of the temperature. Thus, it
is not far-fetched to assume that some kind of resonance between the eigen-dynamics of theprobe and the
temperature of the environment (i.e. the probed system)determines a ‘preferred’ time-scale of the joint dynamics.

To address this, we use theQSL to quantitatively explore the dynamical features of a simple thermometry
schemewhere the probe system, ñs, is placed in contact with the thermal environment, ñE. Note that it is a well
established fact that theQSL can be expressed in terms of theQFI corresponding to time t estimation [29].
Thereforewhile a clear, albeit somewhat trivial, connection could bemade, this does not necessarily imply a
proper relation of theQSLwith quantum thermometry. To get clearer insight into thematter we now compute
theQSL for thermalization processes, and analyze whether extrema in the quantum speed correspond to
maxima ofQFI for temperature.

Wewill focus primarily on the formulation of theQSL provided in [30], where the speed for an arbitrary
process is bounded by

v v
cos sin

, 14
s

QSL
op

 
 =

 ( )
( ) ( )

( )

where (·) is the generator of the dynamics, op · is the operator norm, and Farccos , t0 r r= ( ( )) is the Bures
angle between the initial and time-evolved states [30]. From thismaximal quantum speedwe obtain the
correspondingQSL time [30],

E

sin

2
, 15QSL

2 
t =

t

( ) ( )

whereEτ is the time-averaged normof the generator, E t t1 d s0 opòt=t
t

 ( ( )) and τ is the total evolution

time-window.
As established in [7] the optimal initial configuration for the probe system is in its ground state. In the

following, we consider this initial condition and study two types of environment: (i) an infinite reservoir within
theMarkovian limit such that the probe system thermalizes to theGibbs state, and (ii) afinite dimensional
environment such that the probe systemperiodically reaches theGibbs state.We restrict our probe to be a two-
level system, however qualitatively the results are unaffected for d>2.

4.1. Infinite dimensional environment
A two-level probe coupled to a infinite thermal bath can be effectivelymodeled using amaster equation in
Lindblad form

t t H t ti , , 16s s s s s    = = - +˙ ( ) ( ( )) [ ( )] ( ( )) ( )

with
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andwhere n 1 e 1T= -
D( ). Setting 0 0 0s = ñá( ) ∣ ∣we can readily solve equation (16) and therefore evaluate

equations (14) and (15). In fact, in this case we find the speedmatches exactly with the one derived by extending
theMandelstam–Tammbound based on an approach involving theQFI corresponding to the estimation of the
evolution time t of the probe state [29]. Therefore in this setting the bound is tight since the two approaches
coincide, andwe find

v
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Infigure 5(a)we show vQSL for various values of bath temperature,T. Clearly, when the system is thermalized
v 0QSL  . However, this is to be expected since the thermal state is a fixed point of the dynamicalmap.We see
the speed tends to reduce at a faster rate for larger values ofT, however this effect plays no role in the ability to
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precisely estimate the temperature of the environment. In fact, this is further evidenced in calculating theQSL
time shown in the inset. Herewefind regardless of the parameters chosen theQSL time is unaffected. This would
appear at variancewith the intuition posited previously, i.e. that the dynamics would reflect the optimal
temperature a systemwas ‘designed’ to probe.While in thefigure we have shown 1gD = = , we remark that
qualitatively the same behavior is exhibited for all parameter choices.

4.2. Finite dimensional environment
Changing the environment to befinite dimensional will introduce a degree of non-Markovianity to the
dynamics. Inwhat followswe consider the case when the dimensionality of both probe and environment are
equal, i.e. d d 2s E= = . In this situationwemust carefully define the interaction to ensure that the probe reaches
the thermal state at some point during the dynamics. This can be realized by using an excitation preserving
interaction and the free evolution terms

H H H
J

2
,

4
, 19s E z

s E
x
s

x
E

y
s

y
E

ints s s s s= =
D

= Ä + Ä( ) ( )( )

such that at t=π/J the thermal state of the environment is swappedwith the state of the probe. Equation (19)
can be understood as a simple version of a thermometer, that is similar in size to the quantum systemof interest.

In order to evaluate equations (14) and (15), we require the generator of the dynamics.While in principle
one could derive the associated equations ofmotion, given the comparative simplicity of the settingwe can
readily determine ñs(t) directly, and therefore ts̇ ( ). Infigure 5(b)we show vQSL for the same values of the
environmental temperature as in panel (a). Immediately, several similarities arise. In particular, we observe that
when the probe is in theGibbs state the speed vQSL=0. Furthermore, while different values of the
environmental temperature exhibit different dynamical speeds, again there is no indication of a ‘preferred’
temperature. The inset shows, inlinewith the infinite dimensional environment case, that the associated τQSL is
identical for all values ofT. Again, qualitatively identical results hold for any choice of parameters.

5. Concluding remarks

Wehave discussed precision thermometry via individual quantum systems. First we have focused on quantum
probes that have already thermalized, evaluating the ultimate precision achievable in temperature estimation for

Figure 5. (a)QSL for an infinite dimensional thermal environment, fixingΔ=γ=1withT= 0.25 (solid), 0.75 (dashed), 1.5 (dot-
dashed), 5 (dotted). (b)QSL against time for afinite dimensional environment fixing J=Δ=1 and takingT= 0.25, 0.75, 1.5, 5
(bottom to top curves). In both panels the insets show the respectiveQSL times, τQSL, equation (15), where all curves are identical
regardless ofT.
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quantum systems characterized by diverse energy spectra. Startingwith equally gapped spectra described by a
single energy spacingΔ, we have demonstrated that for any dimension of the quantum system there is a single
optimal temperature scaling linearly withΔ, confirming and extending to arbitrary dimension, the results
obtained previously in [7, 15].We have then shown that only by introducing anharmonicity to a systemwith
high dimensionality and high degeneracy, is it possible to go beyond these results and estimatemore than one
temperaturewith high accuracy, i.e. one obtains aQFIwithmore than single peak. Additionally in this case we
have discussed in detail the relationship between the energy splittingsΔj and the temperatures that can be
estimated efficiently. In particular we observed that taking splittings close together greatly enhances the
estimation of higher temperatures.

Given that at equilibrium the temperature determines the average energy of a system, we have analyzed the
relationship between thermometry and theQSL.Whereas for single systems in equilibrium the temperature and
theQSL are trivially related (since both are essentially estimated by the average energy), we falsified the
hypothesis that theQSL sets a preferred precision in dynamicalmeasurements. To this end, we studied
paradigmatic examples: systems relaxingwith an infinite heat reservoir and afinite thermometer.While theQSL
fully characterizes the thermalization dynamics, no clear relation to an extremumof theQFI for temperature
was unveiled.
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