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accuracy is assumed to hold only with some sufficiently large—but fixed—probability
without any additional restrictions on the variance of the errors. This setting applies,
for example, to standard stochastic optimization and machine learning formulations.
Improving upon prior analysis, we show that the stochastic process defined by the
trust-region method satisfies the assumptions of our proposed general framework. The
stopping time in this setting is defined by an iterate satisfying a first-order accuracy
condition. We demonstrate the first global complexity bound for a stochastic trust-
region method under the assumption of sufficiently accurate stochastic gradients.
Finally, we apply the same framework to derive second-order complexity bounds under
additional assumptions.
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1. Introduction

In this paper, we aim to solve an unconstrained stochastic, possibly nonconvex, optimization problem:
min f(x). 1)

We assume f(x) is a smooth function, bounded from below, and we assume f(x) can only be computed with

some noise. Let f(x, £) be the noisy computable version of f, where the noise £ is a random variable. A common
setting of stochastic optimization can be described by

f(x) = Ee[ f(x, E)].

Stochastic optimization methods, in particular stochastic gradient descent (SGD), have recently become the
focus of much research in optimization, especially in applications to machine learning (ML) domains. This is
because objective functions of optimization problems arising from ML are typically sums of a (possibly) very
large number of terms, each term being the loss function evaluated using one data example. These ML
objectives can also be viewed as an expected loss, which cannot be accurately computed; it can only be
evaluated approximately given a subset of data examples. During the last decade, significant theoretical
and algorithmic advances were developed for convex optimization problems, such as logistic regression
and support vector machines. However, with the recent practical success of deep neural networks and
other nonlinear, nonconvex ML models, much focus has shifted to the analysis and development of methods
for nonconvex optimization problems. Although SGD remains the method of choice in the nonconvex setting
for ML applications, theoretical results are weaker than those in the convex case. In particular, little has been
achieved in terms of convergence rates. A notable paper by Ghadimi and Lan (2013) was the first to provide
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a convergence rate guarantee of a sort for a randomized stochastic gradient method in a nonconvex setting.
The analysis of this method, however, utilizes a carefully chosen step size and a randomized stopping scheme,
which are quite different from what is used in practice.

From a practical perspective, SGD has a low per-iteration complexity and requires a high number of it-
erations, making it sequential and ineffective in a distributed setting. On the other extreme, each iteration of a
full gradient method has a high per-iteration complexity and requires a low number of iterations but can be
efficiently distributed to reduce the overall wall-clock time. As an alternative to these extremes, several
wariance reducing stochastic methods have been proposed recently within the ML domain, including SAGA
(Defazio et al. 2014), SVRG (Johnson and Zhang 2013), and SARAH (Nguyen et al. 2017a). These methods
exploit the finite-sum structure of typical ML objectives; specifically, SVRG, which apparently has the fastest
demonstrable convergence rate in terms of number of data accesses of these three methods, requires the full
gradient of the objective function to be computed on some (but not all) of the iterations. In this sense, SVRG (as
well as SARAH) is a hybrid of an SGD method and a full gradient descent method. These hybrids do not easily
fit into either computational extreme because the methods alternate between cheap sequential stochastic
gradient computations and expensive distributable full gradient computations. For this reason, the superior
theoretical computational complexity of SVRG does not necessarily reflect its practical performance. More-
over, the assumption of a data set fixed prior to optimization—an assumption that underlies finite-sum
optimization—conflicts with the ultimate goal of learning, which is to obtain a solution with good gener-
alization performance. The method we describe in this paper is applicable to the fully stochastic setting; that is,
we do not assume a finite data set fixed prior to optimization. Our method implicitly relies on variance reduction
achievable simply by choosing adaptive sample sizes that (typically) increase as the algorithm progresses
to optimality. Such adaptive schemes have been proposed in the literature primarily for gradient descent
methods and in a convex setting (Byrd et al. 2012, Friedlander and Schmidt 2012).

With the rise of interest in nonconvex optimization, the ML community has begun to consider a classical
alternative to gradient descent/line-search methods: trust-region (TR) methods (Conn et al. 2000, Lin et al.
2007, Dauphin et al. 2014). Their usefulness is largely dictated by their ability to utilize negative curvature in
Hessian approximations, potentially escaping the neighborhoods of saddle points (Dauphin et al. 2014), which
can significantly slow down or even trap a line-search method. It has been argued that, although saddle points
are undesirable, local minima are typically sufficient for the purposes of training certain nonconvex ML models,
especially deep neural networks. Several recent works have proposed trust-region methods incorporating
stochastic gradient and Hessian estimates (Gratton et al. 2017, Xu et al. 2017), but these works assume that the
objective function is deterministic. A trust-region method for our setting of stochastic optimization was
proposed in Chang et al. (2013), and a more sophisticated adaptive sampling method was recently pro-
posed in Shashaani et al. (2015). In both of these methods, convergence is achieved by repeatedly sampling
the function values (and gradients, when applicable) so that the estimates are asymptotically error-free with
probability one. No convergence rates have been derived for these algorithms, likely because of these as-
ymptotic concerns. Trust-region methods with adaptive sampling in a fully stochastic setting, such as may be
used in ML contexts, have not yet been explored to our knowledge. We note that, additionally, our analysis
applies to the setting in which available function value and gradient estimates may be occasionally biased.

We refer to the primary method analyzed in this paper as stochastic trust-region optimization with random
models (STORM). STORM was introduced in Chen et al. (2018), and the authors proved almost sure con-
vergence of STORM to a first-order stationary point. STORM is a stochastic variance-reducing trust-region
method, essentially a minor modification of a classical trust-region framework. A similar method was an-
alyzed in Larson and Billups (2015) under more restrictive conditions on f (x,&). We believe that our con-
vergence rate analysis framework can be applied to that method as well, but we choose to focus on STORM in
this manuscript.

STORM uses adaptive trust-region radii and resembles what is known to be efficient in practice; hence, in
this manuscript, we focus only on the theoretical analysis of STORM in both the first- and second-order
convergence regimes. We demonstrate a convergence rate for STORM with a dependence on € matching that
of a deterministic trust-region method. Because STORM is randomized, our convergence rates are exhibited as
bounds on the expected number of iterations the algorithm takes to achieve e-accuracy. In contrast and as one
example, the convergence rate results for SGD demonstrated in Ghadimi and Lan (2013) exhibit a bound on
the expectation of the sum of the norms of all gradients encountered up to the Tth iteration as a function of T.
Other weaker forms of convergence rates are established in Xu et al. (2017) and Tripuraneni et al. (2017). In
Xu et al. (2017), trust-region and cubic regularization methods utilizing sampled Hessians are considered.
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The number of samples is selected in such a way that the error in the Hessian approximation is smaller than e
with overwhelming probability p. Then, a deterministic convergence rate is established under the assumption
that this condition on the Hessian approximation holds in every iteration until e-accuracy is reached. Thus, the
established bound on the number of iterations T holds with probability p’; with probability 1 — pT, no bound is
guaranteed. A similar flavor of complexity result is derived in Tripuraneni et al. (2017) for a cubic regula-
rization method, in which gradients and Hessians are sampled at a rate dictated by €, and the resulting
complexity bound holds only with some probability.

Algorithms in Xu et al. (2017) have some similarities with algorithms analyzed in Cartis and Scheinberg
(2018) and Gratton et al. (2017). In Cartis and Scheinberg (2018) and Gratton et al. (2017), the global rates of
convergence of trust-region, line-search, and adaptive cubic regularization methods are analyzed under the
assumption that available first- and second-order information is inexact but sufficiently accurate with some
probability. However, in all of these works, the analysis relies heavily on the assumption that function values
are computed exactly; in particular, the methods monotonically decrease the objective function. This implies
that the results in Cartis and Scheinberg (2018) and Gratton et al. (2017) cannot be applied to a stochastic
setting. This paper can be seen as an extension of Cartis and Scheinberg (2018) and Gratton et al. (2017) to a
fully stochastic setting.

Unlike most of the literature on stochastic methods, we do not make the assumption that function, gradient,
or Hessian estimates are unbiased. Instead, it is assumed that, in each iteration, the function values f(x), the
gradient Vf(x), and possibly the Hessian V?f(x) can be approximated up to sufficient accuracy with a fixed but
sufficiently high probability p conditioned on the past. This assumption, which we formalize later, is very
general and does not explicitly specify how such approximations must be obtained. In a setting in which
unbiased estimators are available, one can utilize sampling techniques described, for example, in Xu et al.
(2017) and Chen et al. (2018). In Chen et al. (2018), examples are provided in which f (x, &) is a biased estimator
of f(x), arbitrarily erroneous with some small fixed probability, yet the required approximations can be
constructed, and the trust-region method still converges to a minimum. Note that, because our condition on
the approximations holds only with probability p, we provide complexity results in expectation, thus ac-
counting for occasionally poor approximations.

The goal of our paper is twofold. First, we introduce a novel framework for bounding the expected
complexity of a stochastic optimization method. This framework is based on defining a renewal-reward
process associated with the algorithm and an associated stopping time: the time when the algorithm reaches a
desired accuracy. Then, under certain assumptions, we derive a bound on the expectation of this stopping time.
This framework, in principal, can be used in the analysis of convergence rates of a variety of algorithms. For
instance, it applies to all of the algorithms in Cartis and Scheinberg (2018) and Gratton et al. (2017). In recent
work by Paquette and Scheinberg (2018), this framework has been applied to analyze a stochastic line-search
method. In this paper, we use the new general framework to derive a bound on the convergence rate of
STORM by proving that STORM satisfies the framework’s assumptions. In particular, we show that the
expected number of iterations required to achieve ||Vf(x)|| < € is bounded in O(e72/(2p — 1)). This bound is an
improvement on the result in Ghadimi and Lan (2013) and is similar to a bound in Reddi et al. (2016) and
Nguyen et al. (2017b) in terms of dependence on €; however, our method never requires the computation of a
“true” gradient. Our result is a natural extension of the best-known, worst-case complexity of any first-order
method for nonconvex optimization (Nesterov 2004). In this paper, we also make a significant improvement
upon the results in Chen et al. (2018) by relaxing a very restrictive condition on the size of the steps taken by
STORM. By again applying our general analytic framework, we also provide a second-order complexity
analysis for STORM. In particular, we show that a second-order STORM variant takes an expected number of
iterations bounded in O(e™3/(2p — 1)) to ensure max{||Vf(x)l|, ~Amin(V?f(x))} < €; this result requires slightly
stronger assumptions on the accuracy of the function estimates but provides a generalization of the results in
Xu et al. (2017) and Gratton et al. (2017) to the stochastic case.

Our main complexity results do not yet provide a termination criterion that would guarantee that || f(¥)|| <€,
where ¥ is the last iterate of STORM. However, our analysis provides a foundation for establishing such a
criterion. In particular, although we bound only the expected value of a stopping time in this paper, bounding
the tail of the distribution of the stopping time would follow from the analysis here.

The rest of the paper is organized as follows. We begin by defining a framework for a stochastic process, and
we then derive a bound on its expected stopping time in Section 2. In Section 3, we provide the first-order
complexity analysis of STORM by showing that it fits into the framework introduced in Section 2. We then
perform a second-order complexity analysis in Section 4.
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1.1. Notation
Throughout the paper, we use || - || to denote the Euclidian norm. Several constants are denoted by x with a

subscript meant to indicate the object that the given constant bounds. In particular, we use the constants

Kef “error in the function value”,

Keg “error in the gradient”,

Kfed “fraction of Cauchy decrease”,

Kphm “bound on the Hessian of the models”.

We use I(A) to denote the indicator of a random event A occurring.

2. A Renewal-Reward Martingale Process

In this section, we consider a random process and an associated stopping time T. We analyze the behavior of
this random process and derive a bound on the expected stopping time. These results are used later in the
manuscript to analyze the convergence rate of STORM and to argue that the framework presented in this
section can be applied to the convergence analysis of a variety of stochastic algorithms. We start by providing
the formal definition of a stopping time of a discrete time stochastic process.

Definition 1. Given a stochastic process {X} = {X\ : k > 0}, we say that T is a stopping time with respect to {X;}
if, for each m > 0, the occurrence of the event {T = m} is determined by observing Xi, ..., X;,. That is, {T = m} €
0(Xo, ..., Xm), the o-field generated by Xj, ..., X,,, for each m > 0.

Let {(Px, Ax)} be a random process such that @y € [0,00) and A € [0,00) for k > 0. Let Viyq = Opyq — Dy for
k> 0. Let {Wi}2, be a sequence defined on the same probability space as {(®y, Ax)} such that Wy =1 and

P(Wiaa = 11F) = p,

2
P(Wiet = ~11F) = 1 p, @)

where ¥y is the g-algebra generated by {(Po, Ag, Wo), - - -, (Dk, A, Wk)}.] Note that, because of (2), the Wis are

mutually independent and are moreover independent of the sequence {(®;, Aj)}<!

Let {T¢}..( be a family of stopping times with respect to {F;},.,, parameterized by some quantity e >0. We
impose the following assumptions on {(®k, Ar)} and Te.

Assumption 1.
i. There exist constants A € (0,00) and Amax = AgeVm> (for some jmax € Z) such that Ay < Ay for all k.
ii. There exists a constant A. = Aoe"e (for some je € Z, je < 0) such that the following holds for each k > 0:

W(Te > k)Ag1 = (Te > k) nﬁin(Ake/W\lk+1 /Ae), 3)

where Wi satisfies (2) with p> 3.
iii. There exists a nondecreasing function h(-) : [0,00) — (0, 00) and a constant @ >0 such that

E(Vis1|F)U(Te > k) < —Oh(Ap)I(Te > k) 4)
or, equivalently,
E(Pp 1| F)(Te > k) < OI(Te > k) — Oh(A)L(Te > k). (5)

In other words, Assumption 1 states that the nonnegative stochastic process @, gets reduced by at least
Oh(Ax) at each step provided Te >k. Also, A, tends to increase whenever it is smaller than some threshold A..
Our goal is to bound E(T¢) in terms of h(A¢). What we show in this section is that, on average, Ay > A, occurs
frequently, and hence, it occurs sufficiently frequently that E(®y.; — P) can be bounded by a negative fixed
value (dependent on €). This allows us to apply Wald’s identity (stated momentarily) and, hence, derive a
bound on E(T,). To formalize this, we introduce a renewal process in which renewals occur at times k when
Ar =2 Ac. We consider the sum of rewards V;s obtained between two renewals.

In order to define this renewal process, we first define an auxiliary process {Z;};2, by letting Zy = j. and
setting

Zir1 = min(Z + Wi, Je)-
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Note that the process {Z}2, is a birth-death process on the set {k : k < j.}. We then define the renewal process
{Au}o, by letting Ag = 0 and setting A, = inf{m>A,_1: Z,, = je}. By (3), we have that

I(Te > k) Ags1 = 1(Te > k) min(Age*Ve1, Ag) > 1(Te > k)Ag exp(AZy1),

where we have used a simple inductive argument to obtain the second inequality. In other words, on T, >k,
the process A, only counts the iterations for which Ay > A.. The interarrival times of this renewal process are
defined for all n > 1 by

Ty = An - An_1.
As a final piece of notation, we define the counting process:
N(k) = max{n : A, < k}.

That is, N(k) counts the number of renewals that occur before time k.
First, we have a lemma that relies on the simple structure of the process {Wi} to bound E[z,].

Lemma 1. Let 7, be defined as before. Then, for all n,

Elt,] =p+ (1 + Zpl— 1) (1-p)=p/2p-1).
D_eﬁne the process Zo = =1, Zks1 = Zy + Wiy for all k > 1, which is a simple random walk. Define 7 = inf{n >
0:Z, =0}. It is well known (in fact, it follows from Wald’s identity) that
1
E(7) = 2p7—1
On the other hand, by conditioning on W;, we have that
E[t1] =1-P(W; =1)+ (1 + E[T])P(W; = -1).

This identity follows because the distribution of 7; conditioned on Z; = j. — 1 is the same as the distribution of
7. Thus, we simplify this expression to conclude that

E[t1] =p+ (1 +2P1_ 1)(1 -p).

We now bound the expected number of renewals that occur before the time T.

Lemma 2.
)

For ease of notation, let k A Te = min{k, T.}. Consider the stochastic process defined by Ry = @y and

(kAT-)-1

Ri =D, +© D7 (A,
=0

for k > 1, where © is from Assumption 1(iii). Observe that Ry is a nonnegative supermartingale with respect to
{Fi}; to see this, we first write

E[Rg41|Fk] = E[Rg11(Te > k)| Fx] + E[R1 U(Te < k)|Fy ]
Then,

Te—1
(I)TE +0 Z h(A])) ]].(Tg < k)|@k
j=0

E[Rinl(Te < k)|F] = E

(6)

Te—1
= O I(Te <k)+ O > h(A)U(Te < k),
=0

where the last equality follows because T, is a stopping time, and so the expectation of T, is Fr-measurable.
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Because {T. > k+ 1} = {Te >k} = {Te < k}e F,, we obtain

IE[Rk+1]1(Te > k)|gk] = E[Rk+1|@k]]1(Te > k)

k
© > h(A)|Fk
j=0

= E[Dp1|FU(Te > k) + E I(Te > k)

<

Dy — Oh(A) + © ﬁ h(Aj)) I(T.> k)

=0

- (cpk +0 ki h(A) | U(Te > k), @)

=0

where we have used (5). Combining (6) and (7), we have that
E[Ry+1|%] < Ry,
as claimed. We then obtain, because @ > 0 for each k > 0, that

(kAT-)-1

OE( > h(A)| = B[R] < E[R,] = ®p.
=0

Now, because h(-) = 0, observe that
(kAT )1

T.-1
0< % h(4) / % h(A))
j= j=

as k — oo. Note that this conclusion holds even on the event {T, = co}. Therefore, by the monotone convergence
theorem,

Te—1 (kATe)-1
j=0 - j=0

Now, by the definition of the counting process N(-), because the renewal times A, satisfying Aj, > Ac are a
subset of the iterations 0,1,...,T. and because h(-) is nondecreasing, we have

Te—-1 Te—1
© > h(A) =0 X h(A)L(j € {Ai}y) = ON(Te — 1) + Dh(Ao),
j=0 j=0

where one was added to N(T¢ — 1) in the last equality because Ag = 0. Inserting this in (8),

D
E(N(Te-=1)+1)) < OnAy)’

which concludes the proof.

We now state and prove a well-known theorem concerning expected stopping time, known as Wald’s
identity (e.g., see theorem 2.2.4 in Alsmeyer (2010)). We provide a proof here because Wald’s identity is
typically shown in the literature under the assumption that the stopping time is almost surely finite. Dropping
this assumption is particularly important in our framework as this assumption is equivalent to assuming that
the optimization algorithm that generates the stochastic process, in fact, converges. It is convenient and useful
not to have to prove the convergence result before establishing the convergence rate bounds because con-
vergence immediately follows from the existence of bounds on expected stopping time.

Theorem 1 (Wald’s Identity). Suppose that {Y;} is a sequence of independent random variables such that Y; € [0, co] with
probability one. Define E(Y;) = p; € [0, c0] and let N € [0, oo] be a stopping time with respect to the filtration generated by the
Yys. Define S, = Y1+ ...4Yy,, So =0, 5, = 41 + ...+ Uy, and so = 0. Then

E(Sn) = E(sn).
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Let m>0 be an arbitrary integer and define Y;(m) = min(Y;, m), N,, = min(N,m), p;(m) = E(Y;(m)), Su(m) =
Yi(m)+ ...+ Yy(m), and s,(m) = ui(m) + ... + u,(m). Note that all of these quantities are nonnegative and
nondecreasing in m. By the optional sampling theorem applied to the martingale M,, = S, (m) — s,(m), we have
that

E(Sn,,(m)) = E(u1(m) + ... + un,, (m)).
Because of monotonicity,
Sn, (m) / Sn

as m — oo. If N = oo, we interpret Sy = sup, ., sup,, Su(m). Similarly,

SNm(m) /‘ SN/,
as m — oo. By the monotone convergence theorem, we then conclude that

E(SN) = E(SN).

Remark 1. If y; = u, then E(Sy) = pE(N). If 4 = 0, then Y; = 0 almost surely and Sy = 0. Therefore, if u =0, we
interpret ulE(N) = 0 even if E(N) = co. This interpretation is also consistent with the case in which N = 0 almost
surely; in this case, 0 = ulE(N) = E(Sy) even if p = oo.

We now apply Wald’s identity to S, = A, = X, 7; to obtain the main result of this section.
Theorem 2. Let Assumption 1 hold. Then

B[T.] <—F Do

2p—1 @niay) Tt

Define 94, = %, ; that is,
G, ={A ea(Uy_Fn) : AN{A, <k} € Fy for all k}.

Note that A, is a stopping time with respect to {F,},5,, so 9, is well defined. We claim that the random
variable N(T. —1) + 1 is a stopping time with respect to {9,},.,. To see this, note that, because N(k) <k, we
have the equality of events

(N(Te-1)+1<n}=Uj{N(k)<n-1,T.— 1=k}
=UMN(K) +1<n,Te =k+1} C Fa,.
The inclusion follows because N(k) + 1 is a stopping time with respect to {@A"}HZO (A; = n implies &, C Fa),

and Te is a stopping time with respect to {%,},>, by construction.
Now, because of the independence assumption implied by (2), we have that

E[1141|91] = E[Ty41] = ZpL—l

Recalling that Anr.-1)+1 = Zsz(lT‘_l)H Tr, we invoke Wald’s identity to conclude that

E[AN(r.-1)+1] = L_lE[N(Te -1)+1].

2p

Because Ay(r,-1)+1 = Te — 1, we obtain from Lemmas 1 and 2 that

P (Do
E[Te 1] < E[n1]E[N(Te = 1) +1] < 2p-1 (®h(Ae))'

The statement of the theorem follows from the last inequality.
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3. The First-Order STORM Algorithm

We now state and analyze a stochastic TR algorithm (Algorithm 1), which is very similar to its deterministic
counterpart (Conn et al. 2000). Algorithm 1 uses inexact (noisy) information about f and its derivatives, just as
the commonly stated deterministic method uses exact information. Algorithm 1 and the assumptions on its
steps that we impose are intended to yield convergence to a first-order stationary point. In this section, we
analyze the global rate of convergence of Algorithm 1 to such a point, and in Section 4, we extend Algorithm 1
to yield convergence to second-order critical points.

Algorithm 1 (Stochastic DFO with Random Models; Chen et al. (2018)).

1: (Initialization): Choose constants y>1, 1 € (0,1), 72 >0. Choose an initial point x° and an initial trust-
region radius 69 >0 and the maximum radius Omax = yfm“éo for some jmax > 0. Set k < 0.

2: (Model construction): Build a (random) model my(xi +5) = fi + g5 + %STHks that approximates f(x) in the
ball B(xy, 6x) with s = x — x;.

3: (Step calculation) Compute s, = arg min my(s) (approximately) so that it satisfies condition (9).

sillsll<ox
4: (Estimates calculation) Obtain estimates f and f{ of f(xx) and f(xx + s¢), respectively.
. . fe =K
5: (Acceptance of the trial point): Compute gy = -
(Accep point) Ut Pt = = i + 5

If pr >n1 and ||gkll = 20k, set g1 = Xk + sk; otherwise, set Xgy1 = Xk.
6: (Trust-region radius update): If py > 1 and ||gxl| > 720k, set Sxs1 = Min{ydx, Omax}; Otherwise Opq = ¥ 710y;
k < k+1 and go to step 2.

For every k, the step s; is computed so that the well-known Cauchy decrease condition is satisfied, that is,

K Cl .
)= s+ 5) > 5 i 51 o) ©)

for some constant xzy € (0,1]. This condition is standard in the analysis of TR methods, easy to enforce in
practice, and discussed in detail in the literature (Conn et al. 2000), Nocedal and Wright 2006). Iterations k in
which xp41 = x¢ + 5¢ are called successful.

Algorithm 1 generates a random process. Randomness stems from the random models and estimates con-
structed on each iteration, which, in turn, are based on random information obtained from the stochastic function
f(x, &). My denotes a random model in the kth iteration, and we use the notation my = My(w) for its realizations.
As a consequence of using random models, the iterates X, the trust-region radii Ay, and the steps Sy are also
random quantities; correspondingly, x; = Xj(w), 0k = Ar(w), and s = Si(w) denote their respective realizations.
Moreover, we let random variables {F, F;} denote respective estimates of f(Xy) and f(Xi + S¢), and we denote
their realizations by f? = F)(w) and f{ = F}(w). Hence, Algorithm 1 results in a stochastic process {M;, X,
Sk, Ay, FY, F;}. Our goal is to show that, under certain conditions on the sequences {M;} and {Fy} 2 (P, F})}, the
resulting stochastic process has a desirable convergence rate. These conditions require that the models M, and
estimates (FY, F}) are sufficiently accurate with sufficiently high probability conditioned on the past.

In the analysis of a deterministic TR method, the function value f(x) never increases after an iteration; the main
challenge of the analysis of Algorithm 1 lies in the fact that this monotonic property is certainly not guaranteed in
the presence of stochasticity. The key to our analysis lies in the assumption that accuracy improves in coordination
with the perceived progress of the algorithm. Our analysis is based on properties of supermartingales—in par-
ticular, supermartingales for which the increments depend on the change in function value between iterations,
which, as we show, tend to decrease. To make the analysis simpler, we need a technical assumption that these
increments are bounded from above. Thus, we make the following assumptions on f:

Assumption 2. Over all iterates x; generated by Algorithm 1, the gradient Vf(-) is L-Lipschitz continuous and
flxg) =2 0.

The assumptions of Lipschitz continuity of Vf and boundedness of f from below are standard. For simplicity
and without loss of generality, we assume that the lower bound on f(-) is nonnegative.

3.1. Assumptions on the First-Order STORM Algorithm
Let Mt denote the o-algebra generated by My, --,My_; and Fo,---,Fiy. Let FMF 1, denote the o-algebra
generated by My, -+, My and Fy,- -, Fx_1.
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Definition 2. (1) A function my is a x-fully linear model of f on B(xy, 6x) provided, for « = (., ko) and Vy € B(xx, 6x),

IV (xi) = Skl < Kegi, (10)
() = mW)l < xgr 6.

(2) The estimates f and f; are ep-accurate estimates of f(x;) and f(x; + s;), respectively, for a given &y if
If2 = f(xp)l < erdf and |ff — f(xx + sp)| < €rd?. (11)

Definition 3. A sequence of random models {M;} is said to be a-probabilistically x-fully linear with respect to the
corresponding sequence {B(Xy, Ay)} if the events

Iy = I{My is a x-fully linear model of f on B(X, Ay)} (12)

satisfy the condition

P(ly = 1|FM) > a.

Definition 4. A sequence of random estimates {Fy} is said to be -probabilistically er-accurate with respect to the
corresponding sequence {Xj, Ay, S} if the events

Ji = {F), F{ are ep-accurate estimates of f(x;) and f(x; + sy), respectively, for Az} (13)

satisfy the condition

where ¢ is a fixed constant.

We can now state our key assumption on the nature of the stochastic (and deterministic) information used
by our algorithm.

Assumption 3. The following hold for the quantities used in Algorithm 1:

a. The model Hessians satisfy ||Hll, < Kpnm for some wpp, > 1 for all k deterministically.

b. The sequence of random models {My} generated by Algorithm 1 is a-probabilistically x-fully linear for some
K = (Kef, Keg) and for a sufficiently large a € (0,1).

c. The sequence of random estimates {Fy} generated by Algorithm 1 is p-probabilistically ep-accurate for €r < x, and

€r < $MM2Kped min{ i 1} and for a sufficiently large B € (0, 1).

Kphm

We comment on what is meant by “sufficiently large” in Assumption 3. Under Assumption 3, P{L]J; =
1FIFY > ap and P{I + Ji = 0|FM1} < (1 — a)(1 - B). In iteration k, if IiJ; = 1, then the algorithm behaves like an
(inexact) deterministic algorithm in that iteration. In the other extreme, if I + J; = 0, then, not only may
Algorithm 1 produce a bad step (a step in which the objective function value increases), but Algorithm 1 may
accept this bad step by mistaking it for an improving step (a step that decreases the function value). In the
remaining two cases in which exactly one of Iy =0 or Jy =0 holds, then either the model is good but the
estimates are faulty or the estimates are good and the model is faulty. In either case, an improving step is still
possible, but a bad step is impossible. In the worst case, no step is taken, and the trust-region radius is
reduced. The main idea of our framework is to choose the probabilities of the occurrence of IiJy =1 and
I + Jk = 0 according to the possible corresponding increase or decrease in f(x) so that, in expectation, f(x) is
sufficiently decreased; this is achieved by selecting a and f sufficiently large. An important observation is that
a and p do not have to increase as the algorithm progresses; with the same constant—but sufficiently
small—probabilities, our models and estimates can be arbitrarily erroneous.

Remark 2. In Chen et al. (2018), the analysis of Algorithm 1 required an additional assumption that 1, > #,; for
simplicity, it was further assumed that 1, > xy,,. This assumption is undesirable because it restricts the size of the
steps that can be taken by the trust-region algorithm. In this manuscript, we improve on the analysis of Chen et al.
(2018) and drop this assumption, allowing 7, to be set to a small value. Note that small values of 7, imply small
values of er because of Assumption 3(c), representing a potential trade-off in the selection of ;. In one extreme,
this relationship indicates that, if er = 0 (that is, there is no error in the function value estimates), then 7, can be
selected arbitrarily small.
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3.2. Useful Existing Results

Algorithm 1 was analyzed in Chen et al. (2018), and it was demonstrated that there exists a selection of a and 8
such that, under Assumption 3 (and the additional assumption that n, > x,s; see Remark 2), the sequence of
random iterates {X;} generated by Algorithm 1 almost surely satisfies kh_)n; [IVF(Xi)l| = 0. This is an almost sure

first-order convergence result.

Our primary goal in this manuscript is to bound the expected number of steps taken by Algorithm 1 before
[IVf(Xi)ll < € occurs. Our secondary goal, as mentioned in Remark 2, is to relax the assumption 1, > x,r. We
modify the analysis that led to the previous stationarity result in Chen et al. (2018). First, we state (without
proof) several auxiliary lemmas from Chen et al. (2018).

Lemma 3 (Good Model = Function Value Reduction o ||gk|). Suppose that a model my is a (K.f, og)-fully linear model of f
on B(xy, 0k). If

|1 Kfcd}
O < min{——, ,
o= minf,

then the trial step sy leads to an improvement in f(xy + s¢) such that
K
fo 50 = far) < = =2 lgillow (14)

Lemma 4 (Good Model = Function Value Reduction o ||Vi(x)ll). Under Assumption 3(a), suppose that a model is
(Kef, Keg)-fully linear on B(xy, O¢). If

1

7
Kphm + Keg iﬁf + Keg
-fed

O < min{ }IIVf(xk)II, (15)

then the trial step sy leads to an improvement in f(xy + s) such that
Sk +s1) = floxe) < =Cal[Vf (i) l10% (16)

Kfed K, SKef
< L . bhm
fOT’ any Cl - 4 max{xb;m,-#mg’81<£f+1<ﬂ.d1<ag}‘

Lemma 5 (Good Model + Good Estimates = Successful Step). Under Assumption 3(a), suppose that my is (K, Keg)-fully
linear on B(xy, O) and the estimates {f,?, fi} are ep-accurate with e€r < k. If

1 1 xp(l—m)
r 7 ”gk”/
Ko~ 12 Biker

O < mm{ 17)

then the kth iteration is successful.

Lemma 6 (Good Estimates + Successful Step = Function Value Reduction o 62). Under Assumption 3(a), suppose that
the estimates {f,?, fi} are ep-accurate with

1 | m
- —, 1.
er< 1 1]11721<de mm{Kbhm , }

If a trial step sy is accepted (a successful iteration occurs), then the improvement in f is bounded below like

Flxkar) — fxe) < —Ca67, (18)
where
C = 11717721{ 4 min 2 1} —2er>0. (19)
2 fe Kbhm

3.2.1. Choosing Constants. We now explain briefly the role of the constants 1, €r, a, and p. First, note that the
constants K, Keg, and Ky, can be chosen arbitrarily large but should be ideally chosen as small as possible
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while guaranteeing Assumption 3. Let us assume that «,f, e, and xp, can be all chosen in O(L)?, where L is
the Lipschitz constant of Vf(x) from Assumption 2. We acknowledge that L is generally not explicitly known;
see Conn et al. (2009) for a discussion of the construction of fully linear models in the case of unavailable
derivative estimates. Once these constants are chosen, € is chosen to satisfy the conditions in Assumption 3(c).
Note that, if 1, is chosen in ©(L), then Algorithm 1 only takes steps when (roughly) 6, < Hg—Lk”; this is similar to
restricting step sizes to 1 in a gradient descent method. With these choices for constants, we see from
Assumption 3(c) that the estimates need to be slightly more accurate than the models, but the order of required
accuracy is similar (in @(L) but with a tighter constant). However, a choice of 1, € ©(L) may not be desir-
able—in trust-region methods, step sizes are meant to be chosen adaptively; hence, it is desirable to allow
larger steps, which is done by setting n, as small as possible. But via Assumption 3(c), this requires a
proportionally small selection of €f; that is, the function value estimates have to be substantially more accurate
than the models. Yet another trade-off in choosing a value of 7, becomes apparent in our main complexity
results; we see that the expected improvement per iteration may depend on 7,. However, selecting “rea-
sonable” values of n, removes this dependency.

To simplify expressions for various constants, we assume that 7, = 0.1, y =2, and gy = 0.5, which are
frequently used values for these constants in practice. We also assume that iy, < 12k, and 1z < x. To
simplify expressions further, we suppose &, = .. Clearly, if x,; or k. happen to be smaller (that is, the
models give better approximations of the true function), then bounds somewhat better than the ones derived
here can be derived. We are interested in deriving bounds in the pessimistic case in which . or k., may be
large. We note that our analysis can be performed for any other values of these constants; we again stress that
these choices of constants have been made entirely for convenience and simplicity.

The conditions on a and p under this choice of constants is shown in our results.

3.3. Defining and Analyzing the Process {®y, Ak}
We consider a random process {®@, A} derived from the process generated by Algorithm 1 with A the trust-
region radius and

D = vf(Xp) + (1 - v)AZ, (20)

where v € (0,1) is a deterministic constant, sufficiently close to one, to be defined later. Clearly, ®, > 0. We
simplify the notation FMF to ;.
Define a random time:

T. = inf{k > 0 : |VF(Xp)l| < €} 1)

It is easy to see that T, is a stopping time for the stochastic process defined by Algorithm 1 and is, hence, a
stopping time for {®y, Ac}.

As stated, our goal is to bound the expected stopping time E(T,). We do so by showing that Assumption 1 is
satisfied for {®, A}, allowing us to apply the results of Section 2.

So we show that Assumption 1, (i) and (ii), holds with the following choice of A.:
€ 8Kgf
Ae = for C > xq + max{n2, Kpm, =)

% (22)
Note that, by our choice of algorithmic parameters, (22) is satisfied by C = 20%,,.

For simplicity of presentation and without loss of generality, we assume that A. = y'0g for some integer
i < 0. If not, we can always choose C within a factor of y of its lower bound in (22). It follows that, for any k,
Ay = YA for some integer ix. Choose A in Assumption 1, (i) and (ii), so that e* = y. Assumption 1(i) then holds
automatically because of the definition of {®, Ay} and the choice of 6., imposed by Algorithm 1. For
Assumption 1(ii) to hold, we need to show that the dynamics (3) hold for Ay, which we do in the following
lemma.

Lemma 7. Let Assumptions 2 and 3 hold. Let o and p be such that af>1/2. Then Assumption 1(ii) is satisfied for
Wi = 2(IiJx — 3), A = log(y), and p = ap.

Clearly, inequality (3) holds when 1(Te > k) = 0. We show that, conditioned on Te >k (i.e., I(Te >k) = 1), we
have

Ags1 = min{Ae, min{Amax, YAk + 7 Ar(1 = LJi)}- (23)
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First we note that, for each realization in which 6, > Ac, we have 6, > YA, and hence, 641 > Ac. Now, suppose
that 6y < Ac. Then, because T¢ >k, we have ||Vf(xy)||>€, and hence, from the definition of {, we have that

8Kef })
V(x| = [Kee + maxing, Kppm, ——————¢ | Ok.
ISPl > (s +ma s o

Assume that [, =1 and J; = 1; that is, both the model and the estimates are good in the kth iteration. Because
the model my is x-fully linear,

BKer
> - = (C— 2 xeg(1=11)] ©
lIgkll = IVF (i)l — KegOk = (C — Keg)Ok = max{nz, Kbhm/Kde(l = Ul)}ék

Moreover, because the estimates {f,?, fi} are er-accurate with er < x,;, we conclude that condition (17) in
Lemma 5 holds. Thus, the kth iteration is successful; that is, xp41 = xx + s¢ and Oxr1 = max{Omax, YO }-

If ]y =0, then Opyq > y’lék by the dynamics of Algorithm 1.

Finally, observing that P{iJ; = 1|%MT} > p = aB, we conclude that (23) implies that Assumption 1(ii) holds.

We now show that Assumption 1(iii) holds; this is the key theorem in this section and is similar to theorem
4.11 in Chen et al. (2018) except we drop the restrictive conditions imposed on 7, mentioned in Remark 2 and
simplify the proof. We omit the parts of the proof that are identical to those of theorem 4.11 in Chen et al.
(2018).

Theorem 3. There exist probabilities o and f such that, if Assumptions 2 and 3 hold with these o and f, then there exists a
constant ® >0 such that

I(Te > k)E[@yy1 — D FNT] < —I(T. > k)OAZ, (24)

conditioned on T >k.
Moreover, under our particular choice of constants, let o and f satisfy

(ap -1 30L
Ao —p > 0 G0y

and

Keg +0.064L + 4 - 107,
" Keg +0.064L +4.5- 10741,

Then® © = ﬁmm{nzﬁ, K;ql>

Because (24) holds trivially if T, < k, we assume in this proof that ||[Vf(X)|| > €. We split the analysis into two
possible cases: [|[Vf(xi)|| = Cox and ||Vf(x)|| < Cox. We show that (24) holds in both cases, and hence, (24) holds
on every iteration. Let v € (0,1) be such that

2 2 2
. max{ﬂ,L,V_}, (25)
CC1 MMaKped ™ Kef

1-v

with C; defined as in Lemma 4.

Let xx, Ok, sk, 8k, and ¢, denote realizations of random quantities X, Ax, Sk, Gy, and @, respectively. Consider
an arbitrary realization of Algorithm 1. Note that, on all successful iterations, xrs1 =xx + s and 41 =
min{ydk, Omax} With y>1; hence,

Prr — P < V(F(arr) — f() + (L =) = D&} (26)

On all unsuccessful iterations, x;.1 = xx and Oy = %6;(,' that is,

Py — P =(1- V)(% ~1)87 = by <0. 27)
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Case 1. ||Vf(xi)|| = COx with C satisfying (22).
Let a and f satisfy

(ap - % G

T-a-pC .

with C; defined in Lemma 4 and C3 =1 + 3—L We consider four subcases:

a. I, =1 and J; =1, that is, both the model and the estimates are good in the kth iteration. The proof is
almost identical to that of theorem 4.11 in Chen et al. (2018). However, because we do not assume that
M2 > Kpum, there is a slight modification because of our definition of C.

Because Lemmas 4 and 5 hold, we have that

Prir — O < —vClIVFxOI6 + (1 = v)(* = 1)5; = by, (29)

for v € (0,1) satisfying (25).

b. Ik =1 and Jy =0, that is, we have a good model and bad estimates in the kth iteration. The proof is
identical to that of theorem 4.11 in Chen et al. (2018), where it is shown that (27) holds.

c. [y =0 and J; = 1, that is, we have a bad model and good estimates on iteration k. Again (27) holds, as is
shown in theorem 4.11 in Chen et al. (2018).

d. Iy =0 and J; =0, that is, both the model and the estimates are bad on iteration k. The proof of theorem
4.11 in Chen et al. (2018) applies, where it is shown that

Drey — P S VCIIVF IOk + (1 = v)(y* — 1)6 = bs. (30)

This holds with C3 =1+ %

Next, following the proof of Case 1 of theorem 4.11 in Chen et al. (2018), we combine the outcomes of the
four subcases to obtain that, under condition (28), we have

_ 1 1Cv
E[®esr = T VXN 2 CA < =3 CAVFXlIA < = 3 =A%,

where the last inequality is because [[Vf(Xy)|| = CAy.

We now derive bounds on the expectation of @1 — P in the remaining case. This proof differs from the
analysis of Case 2 performed in theorem 4.11 of Chen et al. (2018) because of our weaker assumptions on 5.

Case 2. ||Vf(xx)l| < Cox with C satisfying (22).

Note that, if [|gill <720k, then the kth iteration is unsuccessful, and (27) holds. Hence, we assume that
Igkll = m26x. We consider only two subcases: in the first subcase, we show that, if the function value estimates
are good, then (27) holds. In the second subcase, because |[Vf(xi)|| < (O, the increase in ¢, can be bounded from
above by a multiple of 6?. Thus, by selecting an appropriate value for the probability B, we establish the same
bound on expected decrease in @ as in Case 1.

a. Jy =1, that is, the estimates are good on iteration k, and the model might be good or bad.

The iteration may or may not be successful. On successful iterations, the good estimates ensure reduction in f, and on
unsuccessful iterations, Oy is reduced. Applying the same argument as in Case 1(c), we have that (27) holds.

b. Ji =0, that is, the estimates are bad on iteration k, and the model might be good or bad.

Here, as in Case 1, we bound the maximum possible increase in ¢,. Using the Taylor expansion of f about xy,
the Lipschitz continuity of Vf(x), and taking into account the bound [|Vf(x;)|| < Cor, we have

1
f Qe +s0) = f(x) < [|VF(x)llox + ELéf < C300%.
Thus, the change in ¢ is bounded like
Proy — O, < [VC3T+ (1 —v)(y* — 1)]67. (31)

We are now ready to bound the expectation of ¢, — ¢, as we did in Case 1. In Case 2, however, we only need
to combine (31), which holds with probability at most (1 — ), with (27), which holds otherwise:

E[@re1 — Pl FPE, {IVA(X < CARH
< B - V)G~ DA? (32)
+(1 =BGl + (1 - v)(y? - 1)]AL
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If we choose € (0,1] so that

B . 21v)2C5C

52 a-no2-1 " G

holds, then the first (negative) term in the right-hand side of (32) is at least twice as large in absolute value as
the (positive) second term of the right-hand side. We, thus, have

Bl = DT, (VFOX < CA0] < 3801 =)z = D% 69

To complete the proof of the theorem, it remains to substitute the appropriate constants into these expressions.

In particular, because of our assumptions that xp, < 12k, and k. = k.5, we can choose C; = % and, recalling

the choice of C = 20xe, y =2, 11 = 0.1, kra = 0.5, and 1z < %, (25) reduces to
2

v, 7

> > , 35
1=v = mmkea — M2 (35)

which holds if

320
V.
320 + 2

We can assume that v> % without loss of generality.

Case 1. For the probabilities @ and f to satisfy (28) with C3 =1 + %, it is sufficient that

(ap -1 30L
A—wa-_p=10* 10nyg

Then, using v> 1 in (31) implies that

1 2

E[D,.1 — OUFMF (VA(X A £ ——~— AL
[Dr11 k[ FrZ1, AV (Xl < CARY] < 1600%x, k

Case 2. Recalling the expression for Cs, recalling the values for the constants C and y = 2, and choosing v so that
(35) is satisfied with equality, we see that (33) is satisfied if

B 4x3200ky+3L)
(1-p) 31 ’

which is satisified if

B 1280(14ic, + L)
ek nz +8, (36)

which, in turn, is satisfied by

L2 10% +1280L +87y _ kg +0.064L +4- 10,
P 2 10ty + 12801 + 91y ieg + 0.064L 45 1047,

Then, observing that v is chosen so that 1 —v = 326’71,72, from (34) and 1, <320 (because v> %),

31]2

_ aM-F It R
El e = DT (VX0 < A < = il

1
A2 < ———BA2.
‘B k = 1800 TIZ‘B k
Thus, we conclude that
E[dy — O|FMT] < —~OA?

for © = wlwmin{qzﬁ, K;gl}, which completes the proof.
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Our almost sure stationarity result follows immediately from Theorem 3 with the same proof as given in Chen
et al. (2018); however, we do not assume that 1, > x.s.

Theorem 4. Let Assumptions 2 and 3 hold. Let a and  satisfy the conditions of Theorem 3. Then, the sequence of random
iterates {Xy} generated by Algorithm 1 almost surely satisfies

lim [Vf(X)] = 0
Using Theorem 3, we can moreover demonstrate the validity of Assumption 1(iii), which is more directly
related to the primary goal in this manuscript. We state the result for completeness and convenience of reference.
Lemma 8. Let the assumptions of Theorem 3 hold. Then Assumption 1(iii) is satzsﬁed with © = 35 mm{nzﬁ /Ko } for the
process {®y, Ay}, where @y is defined as in (20) with v satisfying (25) and h(d) =
3.4. Complexity Result for First-Order STORM Algorithm
We immediately arrive at the following theorem.

Theorem 5. Consider Algorithm 1 and the corresponding stochastic process. Let T be defined as in (21). Then, under the
assumptions of Theorem 3,

af (20Doke
BTl <505 1( oz 1)

where © = g mm{nzﬁ Keg} Dy defined as in (20) with k = 0 with v satisfying (25).

3.5. Example of Models and Estimates Satisfying Assumption 3

Although Assumption 3 was sufficiently general to allow us to develop our general complexity analysis,
Assumption 3 is easy to satisfy in practice in the classical stochastic optimization setting by taking a sufficient
number of samples of the function, gradient, and Hessian estimates. A number of recent papers rely on this
technique to produce sufficiently accurate gradient and Hessian approximations. For example, lemma 4 in
Tripuraneni et al. (2017) uses matrix concentration results from Tropp (2015) to show that given a bound on
the variance of the gradient

B[IVf(x, &) = VF(lll < o
the average of @(j—%) gradient samples Vf(x, &) (denoted by g) satisfies

llg =Vl <e

with probability p, where 0 hides a term dependent on —log(1 — p). A similar result was established for the
Hessian sample average approximation. Another similar result for the function estimates, given variance oy, is
a simpler version of the same inequalities and can be derived using Chebyshev’s inequality.

Using these results, we can obtain a-probabilistically fully linear models as follows. We compute fi by

- \/-)) samples f(x;, &), and we independently compute g; as an average of @( T log(ﬁ))

gradient samples Vf(x, &). This ensures that [|gx — Vf(x;)|| < KegAx and |fi — f(xi)| < A with probablhty at least
a. The fully linear condition [m(y) — f(y)| < ksA? follows automatically with an appropriately chosen .. Note
that all of these sample sizes are determined by quantities that are either known by the algorithm or can be
accurately estimated.

Similarly, we can obtain B-probabilistically ef-accurate estimates f and f; by averaging @( 251 log( \/_
samples of f(xi, &) and f(x; + sy, &), respectively.

In the case of simulation optimization, when Vf(x, &) is not available, x-fully linear models my can be
constructed via polynomial interpolation (Conn et al. 2009); a-probabilistically x-fully linear models can be
similarly obtained by combining interpolation and sufficiently accurate function value estimates (see, e.g.,
Shashaani et al. (2015)). 5

Another setting that is explored in Chen et al. (2018) is when f(x) (and, possibly, Vf(x)) are computed
accurately via some procedure, but this procedure may fail with some small, but fixed, probability. In this
case, f(x,&) and Vf(x, &) are the true values of the function and the gradients or some arbitrarily corrupted
values. If the probability of failure is sufficiently small, conditioned on the past, then STORM still converges
almost surely.
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4. The Second-Order STORM Algorithm
We now introduce a variant of Algorithm 1 that is intended to achieve second-order criticality in the fully
stochastic setting; we use the same notation as in Algorithm 1.

In this second-order setting, the putative subproblem solution generally needs to provide more than just
Cauchy decrease (9). In particular, we require that, in the kth iteration, for all realizations m (as defined in
Step 2 of Algorithm 1) of M;, we are able to compute a step s, satisfying

Ksed
2

my(x) — my (o +s¢) >

ligell (Sk],max{—/\min(Hk), 0}5%} (37)

max ||¢x|| min
“k ATk

for some constant ks € (0,1]. A step satisfying this (typical) second-order assumption is given, for instance, by
computing both the Cauchy step and, in the presence of negative curvature in the model, the eigenstep and by
choosing the one that provides the largest reduction in the model* (Conn et al. 2000).

Our analysis (but not the algorithm itself) uses, in lieu of Vf, the following measure of proximity to a second-
order stationary point for the objective f:

() = max{|IV/@)Il, ~Amin(VZf (x))}. (38)

The corresponding optimality measure for the model my, following Bandeira et al. (2014), is defined anal-
ogously as

[Vm ()|
"(IVEm ()l
The additional term in (39) not present in (38) is necessary because there is no upper bound on the model

Hessians on all iterations as in the first-order case (kyn,). We only ever apply (39) to the iterate xi, in which
case (39) becomes

(x) = max{mm[HVm(x)n ] —/\min(Vzm(x))}. (39)

o = max{min| gl 51~ A0 (40)

We are now ready to present our second-order STORM algorithm, a modification of the first-order STORM
algorithm.

Algorithm 2 (Second-Order Stochastic DFO with Random Models).

Like Algorithm 1, but with the following modifications to Steps 3, 5, and 6:
3: (Step calculation) Compute s, = arg min my(s) (approximately) so that s, satisfies condition (37).
5: (Acceptance of the trial point): If p Sk”rﬁ" and 1}' > 720k, set X1 = xx + 5;; otherwise, set xpyq = x4
6: (Trust-region radius update): If p; > 177 and 7} > nzék, set Ogy1 = Min{ydx, Omax}; otherwise, set 81 =y~ 16;

k< k+1 and go to step 2.

The analysis for the Algorithm 2 variant again uses the framework proposed in Section 2, thus serving as
another illustration of the applicability of this generic framework. Before proceeding, we need to describe the
additional assumptions required for our second-order analysis. In particular, we need to assume one more
order of smoothness than was assumed in Assumption 2:

Assumption 4. The function f satisfies Assumption 2, and f is twice continuously differentiable. The Hessian V>f is
Ly-Lipschitz continuous.

4.1. Assumptions on the Second-Order STORM Algorithm
We introduce a measure of second-order accuracy of the models 1 (see Conn et al. (2009), Billups et al. (2011),
and Larson and Billups (2015) for more details).

Definition 5. (1) A function my is a x-fully quadratic model of f on B(xy, 0x) provided, for x = (kf, ke, Ken) and
V]/ € B(Xk, 6k),
IV3f (x) = Hill < ®enbx,
IVF(y) = Vimg(y)l| < K,
|f ) = mi(y)] < Ky}
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(2) The estimates f and f; are ep-s.o.-accurate (s.o0. for “second order”) estimates of f(xx) and f(xi + si), re-

spectively, for a given 6, provided
R = fleol < erdi and |ff = f(xe + sl < exdy- (41)

Definition 6. A sequence of random models {M;} is said to be a-probabilistically x-fully quadratic (see Bandeira
et al. (2013)@h respect to the corresponding sequence {B(X, Ax)} if the events

I = {My is a x-fully quadratic model of f on B(Xj, Ax)} (42)

satisfy the condition
P(Iy = 1|FMF) > a.

Definition 7. A sequence of random estimates {F{, F}} is said to be p-probabilistically e-s.0.-accurate with respect
to the corresponding sequence {Xj, Ay, Si} if the events

Ji = I{F), F{ are ef-s.0.accurate estimates of f(x;) and f(x; + s;), respectively, for A} (43)

satisfy the condition
P(Jx = 1F0) 2 B,

where ¢r is a fixed constant.

We no longer utilize Assumption 3(a); that is, we no longer explicitly assume that model Hessians Hj are
bounded in norm. Instead, we demonstrate in the following lemma that ||H|| is uniformly bounded from above
as a direct consequence of my being a fully quadratic model of f.

Lemma 9 (Bandeira et al. (2014)). Let Assumption 4 hold. Given constants K, Keg, Kef, and Omax, there exists a constant
Kphm = 1 such that, uniformly over every k and every realization my of My such that my. is a (kef, Keg, Ken)-fully quadratic model
of f on B(xy, 6x) and 6x < Omax, we have

IHKll < %ppm-

The proof follows trivially from the definition of fully quadratic models and the fact that ||V?f|| < L; this follows
from the gradient of f being Lipschitz continuous with constant L. Thus, we can take Kpuy = OmaxKen + L.

For our convergence analysis, we again need to impose conditions on the stochastic (and deterministic)
information used by STORM.

Assumption 5. Within Algorithm 2,

a. The sequence of random models {My} generated by Algorithm 2 is a-probabilistically x-fully quadratic for some
K = (Kef, Keg, Ken) and for a sufficiently large a € (0,1).

b. The sequence of random estimates {F},F;} generated by Algorithm 2 is B-probabilistically ep-s.o.-accurate for
er < min{,f, § MiMoksca min{ny, 13} and sufficiently large B € (0,1).

Note that, as in our first-order analysis, we allow for unrestricted values of 1, in Algorithm 2, involving a
potential trade-off with an increased accuracy requirement on the function estimates.

4.2. Useful Preliminary Results for Second-Order STORM Analysis

The analysis of Algorithm 2 is similar to the analysis of Algorithm 1. However, there are more cases to
consider and the convergence rate to the second-order stationary point is different as one would expect
from the second-order convergence analysis of a deterministic TR method. There is one more significant
difference—an additional assumption on function estimates—to be detailed in the next section. First, we state
and prove analogues of Lemmas 3-6 for function decrease in terms of first- and second-order optimality. The
first three lemmas are almost identical to Lemmas 3-5, with the notable exceptions that (1) the models are
assumed to be fully quadratic instead of fully linear, (2) the model decrease condition (37) is used, and (3) the
condition |[Hg|| € Ky is only valid in iterations k for which the model my is fully quadratic (as seen in Lemma
9). For completeness, we have included the proofs of Lemmas 10-12 in the appendix.
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Lemma 10 (Good Quadratic Model = Function Reduction o ||g||). Let Assumption 4 hold. Suppose that a model my. is a
(Kef Keg, Ken)-fully quadratic model of f on B(xy, Ok). If 0k < 1 and

1 e

O < min{

}ngkn,

4
Kbhm SKef

then the trial step sy leads to an improvement in f(xy + s) such that

Ksed
= lIgkllok-

e +sp) —fl) < - 1

Lemma 11 (Good Quadratic Model = Function Reduction o [[Vf(x)||). Let Assumption 4 hold. Suppose that a model is
(Kef, Keg, Ken)-fully quadratic on B(x, ). If 0k < 1 and

1

’
Kphm + Keg E:ﬁ +
scd

O < min{ }IIVf (oIl (44)

Keg
then the trial step sy leads to an improvement in f(xy + sx) such that
SO+ s1) = f o) < =Cal[Vf (i) l16%, (45)

8k,
Ksed Kbhm ef
fOT any Cl < 4 max{xbhmﬂgg 4 8K5f+KSCLngX}.

Lemma 12 (Good Quadratic Model + Good s.o. Estimates = Successful Step). Let Assumption 4 hold. Suppose that my is
(Kef, Keg, Ken)-fully quadratic on B(xy, ) and the estimates {fko, fi} are ep-s.o.-accurate with er < wy. If 6p < 1 and

(46)

1 xyy(l—
O < min{ Fsa( m)}llgkﬂ,

7 7
Kohm 112Kbhm 8ier

then the kth iteration is successful.

The remaining lemmas address negative curvature in the model and second-order accurate estimates.
Lemma 13 (Good Quadratic Model = Function Reduction oc Amin(Hk)). Let Assumption 4 hold. Suppose that a model my, is
a (Kef, Keg, Ken)-fully quadratic model of f on B(xy, 6¢). If

O <

g;:; (_Amm(Hk))r (47)

then the trial step sy leads to an improvement in f(xy + s¢) such that

F + 1) = f0) < == (=) (48)

Whenever Apin(Hi) <0, the decrease condition (37) ensures that

K
5201 (_Amin (Hk))éi

my(x) — my(xx + sg) >

Because the model is x-fully quadratic, the improvement in f achieved by s; is
SO+ i) = fxie) = f o + 5¢) — m(xic + sic) + m(xe + si) — m(xi) + m(xi) — f(xe)
KSC
< 2Kef6i - Td (_/\mm(Hk))éi

KSC
% (= Amin(HR)) 52,

< -
4

where the last inequality is implied by (47).
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Lemma 14 (Good Quadratic Model = Function Reduction o« Amin(V2f(xk))). Let Assumption 4 hold. Suppose that a model
is (Kef, Keg, Ken)-fully quadratic on B(xy, 0x). If
1

+ Kepy

O <

(_Amin (sz(xk)))/ (49)

81\")/'
Ksed

then the trial step sy leads to an improvement in f(xy + s) such that

Fla+51) = f(0) < =Cal=Amin(Vf (10)))F, (50)
Using corollary 8.5.6 from Golub and Loan (1989), the definition of a x-fully quadratic model implies that
_/\min(Hk) > (_Amin(vzf(xk))) - Kehék' (51)

Because (49) implies that —A;,(V?f(xx)) > (i:df + Ken)0r, we have

SKEf

_Amin Hy) = Ok
(Hk) g
Thus, the conditions of Lemma 13 hold, and we have
KSC

FOok o+ 5) = f(r) < = =7 (= Auin(Hi)) O} (52)

From (51) and (49), we also have
8Kgf
_minH Zi—mmvz .
i) g2 (AP 50) 53)

Combining (52) and (53) yields (50).
Lemma 15 (Good Quadratic Model + Good s.o. Estimates = Successful Step). Let Assumption 4 hold. Suppose that my, is
(Kef, Keg, Ken)-fully quadratic on B(xy, 6x) and the estimates {fko, f¢} are ep-s.o.-accurate with e < k. If

. 1 Kscd(l_nl)}
O < — = (= Amin(Hk)), 54
o minfo, S 1) 69

then the kth iteration is successful.

From the model decrease condition (37),

5 (i (Hi))2. (55)

my(x) — my(xx + sg) > >

From the definition of the model my being (k.f, ke)-fully quadratic,

|f(xk) — mi(xe)| < 103, and (56)
|f (i + s0) = (e + 50| < KO- (57)

Because the estimates are er-s.o.-accurate with €r < x,r, we obtain

£ = fo)l < oy, and [ff = f(xe + 50)] < K5y (58)
We have
o1 = R-f
(X)) — my(xg + si.)
R = fx) L S mmila) () — i+ i)

) — i+ 5) ) — e + sg) () — (v + %)
my (X + si) — f (X + s¢) 3 flxx +s6) = f¢
() — (o +55) (o) — my(o + sg)”
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which, combined with (55)—(58), implies
8Kef5£
Kscd(_/\min(Hk))(S%

where we have used the assumptions 6, < %;m)(—/\mm(Hk)) to deduce the last inequality. Thus, py > 1.
Moreover, the first term in (54) and (40) imply 7} > (=Ain(Hi)) > 1720k. The conclusion of the lemma follows.

Lemma 16 (Good s.o. Estimates + Successful Step = Function Decrease o« 63). Suppose the estimates {fko, fi} are ep-s.o.-
accurate with ep < 1, min{1, no}kseq. If O < 1 and a trial step sy is accepted (the kth iteration is successful), then the
improvement in f is bounded below like

f(xeen) = () < —Caf, (59)
where
1
C = 5Nz min{1, N2}y — 26> 0. (60)

If the kth iteration is successful, then p > 11, and either min{llgkII,%} > 120k Or —Ayin(Hi) = m20k. Let us first
suppose that min{||gk||,%} > 1,0k. Then,
R = £ = mme(x) — my(xi + s¢))

K .
> g minf 1 )

1
> E M1 Ksed?]2 min{l, T]Z}(Si

1
> 5 MKscdll2 min{1, 7,}53,

where we used the supposition 0; < 1.
Let us now suppose that —A,,(Hi) = 1720k. Then,

= f = m(mi(x) — m(xi + i)

K
>m SZCd (=Amin (Hr))SF

1
> E m UZKscd(S]%

1
> 5 MKscall2 min{1,1n,}63.

Thus, in either case, using the fact that the estimates are er-s.o.-accurate, we have

FOo+s0) = f) = flax+s0) —fg +ff =+ — flx) < -G,
where C, is defined in (60).

4.2.1. Choosing Constants. To simplify our calculations, just as we did in our first-order analysis, we par-
ticularize our choices of constants, but we clearly state when we use these choices. We let x,s = 0.5, 1 = 0.1,
Y =2, dmax =1, and ke = Keg = Kep = ©(L), where L =max{L,Ly}. To satisfy Assumption 5, we let er =
155 min{1, 2} < ke and 7, < 18. Note that we cannot impose upper bounds on &y, as such a bound cannot

be chosen freely; as seen in Lemma 9, we have xpy, = &g, + L < 2 max{«e, L}.

4.3. Defining and Analyzing the Process {®4, A} for Second-Order Convergence

Seeing as how the order of the function decrease that can be guaranteed on good iterations of Algorithm 2
changed from 67 in the first-order analysis (c.f. Lemma 3) to &} in the second-order analysis (c.f. Lemma 16), we
must modify the process @, accordingly. We let {®y, Ay} be derived from the process generated by Algorithm 2,
where, once again, A, denotes the trust-region radius, but this time we let

D = vf(Xp) + (1 = v)A}, (61)
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where v € (0,1) is a deterministic constant sufficiently close to one, which we define later. Once again, it is
clear that @, > 0. We define a random time

Te=inf{k > 0: [VF(X)ll <€ and Amin(VA(Xy)) > —€}, (62)

which is a stopping time for the stochastic process defined by Algorithm 2 and is, hence, also a stopping time
for {q)k y Ak}

To bound the expected stopping time E(T¢) for Algorithm 2, we show that Assumption 1 is satisfied for
{®k, Ar} and apply the results of Section 2.

Similarly to our first-order analysis, we can show that Assumption 1, (i) and (ii), holds with A =logy and
with the settings

€ 8«
Ac = Z/ for C> maX{Keg/ Ken} + maX{TIZKbhm/ Kohm, anl)}, (63)
with € € (0,1]. We reuse our assumption from the first-order analysis that A. = 6 for some i < 0. Note that
(63), € € (0,1], and «ppy = 1 together imply that A < 1.

Lemma 17. Let Assumptions 4 and 5 hold. Let o and B be such that af > 1/2. Then, Assumption 1(ii) is satisfied for the
stochastic process generated by Algorithm 2 with Wi = 2(IJy —3), A = logy, and p = ap.

The proof is similar to that of Lemma 7. We show that, conditioned on T, >k (that is, 1(T. > k) = 1), where T,
is defined in (62), (23) holds with A, as defined in (63). The case that differs from the proof of Lemma 7 and
needs to be addressed here is when 6y < A. In this case, conditioned on T, >k, we have that either ||[Vf(x;)|| > €
or Amin(V2f(xx)) < —€, and hence, from the definition of C in (63), we have that at least one of

8Kef })
V(x| = | Kee + maxi noKpum, Ko, ——————1¢ | 64
ISP > s+ s, o o (64)
or
~Amin(Vf(xp)) = (K +max{ 81{74})(‘) (65)
min k)) = eh nz,Kscd(l_Th) ks

holds, where we used the fact that xy,;, > 1.
Suppose that Iy = 1 and J; = 1; that is, both the model and the estimates are good in the kth iteration. Because
the model my is k-fully quadratic and 6 < A, <1, then, if (64) holds, we have

81<€f
> ||VF(xp)|| = keeOr = (C—x 52max{ Kphm, K m,}(S. 66
llgkll = IV (xi)ll = KegOx = ( eg)Ok 12K phms Koh P L (66)
If (65) holds, we have
) SKef
_/\min(Hk) = _Amin(v f(xk)) - Keh(sk = max M2, 6k~ (67)
Kscd(l - 771)

As the estimates {f,f{} are ep-s.o.- accurate with er < Kef, (66) implies that condition (46) in Lemma 12 holds
and (67) implies that condition (54) in Lemma 15 holds. Thus, in either case, iteration k is successful; that is,
X1 = Xk + Sk and 01 = max{Omax, YOk}

If IJx = 0, then 841 > Y716 simply by the dynamics of Algorithm 2. Finally, observing that P{I;Ji} > p = af,
we conclude that (23) implies Assumption 1(ii).

To show that Assumption 1(iii) holds, we need an additional assumption on the accuracy of the function
estimates. In addition, we make a simplifying assumption of an upper bound on the trust-region radius’ in
Algorithm 2.

Assumption 6. We assume that
a. There exists a constant xp such that, at any iteration k,

E[F - FaDIFT ] <
and
E“Fi _f(xk + Sk)”g"%f/z] < KFéi.

b. The upper bound Omax in Algorithm 2 is chosen so that Omax < 1.
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Note that the bound on the expectation of |F) —f(x?)| and |F} —f(x¢ + s¢)|, in principle, implies that the
estimates are f-probabilistically er-s.o.-accurate. However, for er to satisfy the conditions in Assumption 5(b),
additional conditions would have to be imposed on «xr. Thus, for our purposes here, we choose to allow any
finite xr >0 and impose a bound only on er.

Assumption 6(a) is needed for the case when we have a bad model and bad estimates in the kth iteration, the
case in which the (true) objective may increase after a successful step. Without Assumption 6(a), it is possible
that the increase in the objective is, in the worst case, on the order of 6% (because of first-order terms).
Meanwhile, in the worst case, the objective decrease attained on other, successful steps is only guaranteed to
be on the order of 6,3; (because of second-order terms). Such a situation would make it impossible to balance the
increase and decrease in the objective over the course of the algorithm in such a way as to ensure that the
stochastic process @, decreases on average.

We now prove that Assumption 1(iii) holds for Algorithm 2.

Theorem 6. Let Assumptions 4-6 hold. Then, there exist probabilities o and p and a constant ® >0 such that, for each
iteration k of Algorithm 2, we have

I(Te > k)E[@yy1 — D FNT] < —I(Te > k)OAS, (68)

conditioned on Te >k, where T, is defined in (62) and Py is defined in (61).
Moreover, with the particular choice of constants describe, let a and B satisfy

1-a)1-p) < min{0.0S,0.000B %ﬁlm}} (69)
and
g xr + 0.0081, min{1, n,} ‘ (70)
Kr + 000851’]2 min{l, T]z}

Then, C = 20k, = 20(x, + L) and © > 6 - 10741, min{1, 1}

Because (68) clearly holds if Te <k, we suppose in what follows that T. > k. Then, t(x;)>¢€, where 7(x) is
defined in (38). We consider two possible cases: 7(x;) > (6, and t(x;) < Cdk, where C is defined in (63). We show
that (68) holds in either case, from which we can conclude that (68) holds for all k< T.. Let v € (0,1) be such
that
v y3

> ) (71)
1—v = min{CC, (Cy4, Cp}

with C; defined as in Lemma 11, C4 defined as in Lemma 14, and C, defined as in Lemma 16. Note that, on all
successful iterations, X1 = xx + s¢ and Oxr1 = min{y Ok, Opar} With y>1; hence,

Ppor = O < V(f (1) = () + (1 =) = 1)} (72)

On all unsuccessful iterations, xj11 = x; and Oxy1 = %5](; that is,
1
¢k+1 - (Pk = (1 - V)()ﬁ - 1)6£ = b <0. (73)

Case 1. T(x¢) = max{||Vf (¥)ll, =Amin(V?f (x¢))} = Cox.

a. Iy =1 and Ji = 1; that is, both the model and the estimates are good in the kth iteration. From the definition
of C and Case 1, we know that either (64) or (65) holds. Because Iy = 1 and 6max < 1 (via Assumption 6(b)), (64)
implies that condition (44) in Lemma 11 holds, and (65) implies that condition (49) in Lemma 14 holds.
Therefore, the trial step s leads to a decrease in f as in (45) or a decrease in f as in (50), respectively. Again
from Iy =1 and Omax < 1, (64) or (65) implies that (66) or (67) holds, respectively. Because J; =1 and €r < «,y,
(66) and (67) imply that condition (46) in Lemma 12 and (54) in Lemma 15 hold, respectively. Thus, in either
case, iteration k is successful; that is, x1 = xx + ¢ and Ox1 = max{Omax, YOk}

Combining (45) and (72), we have that

Gpr = O < —VClIVFIISE + (1 =1)(° - 15}, (74)
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with C; defined in Lemma 11. Because |[Vf(xx)|| > COr, we have that
Pra1 — O S [-vC1T+H A =v)(° =115, < by, (75)

with b; defined in (73) for v € (0,1) satisfying (71).
Combining (50) and (72), we have that

Bpr = O S VCAuin(VF (XN + (1 =v)(° = 1)5}, (76)
with C4 defined in Lemma 14. Again, because —A,,(Vf (X¥)) > Ok, we have that
Pra1 — O < [-vCal+ (1 =v)(° =115, < by, (77)

with b1 defined in (73), for v € (0,1) satisfying (71).

b. Iy =1 and J; = 0; that is, we have a good model and bad estimates in the kth iteration. In this case, the
analysis of case (a) again applies; either Lemma 11 or 14 demonstrate that s; yields a sufficient decrease in f.
However, the step can be erroneously rejected because of inaccurate function estimates, in which case we have
an unsuccessful iteration and (73) holds. Because (71) holds, (73) applies whether the iteration is successful or
not.

c. Iy =0 and Ji = 1; that is, we have a bad model and good estimates in the kth iteration. In this case, as in
case (b), the kth iteration can be either successful or unsuccessful; in the latter case, (73) holds. In the former,
because the estimates are er-accurate and (41) holds, then by Lemma 16 and Assumption 6(b), (59) holds with
some C; >0. Thus,

P — P < [-vC2 + (1 =) = D16 < by, (78)

because v € (0,1) satisfies (71).

d. I =0 and J; = 0; that is, both the model and the estimates are bad in the kth iteration. Inaccurate es-
timates can cause the algorithm to accept a bad step, which may lead to an increase in both f and 6. Thus, in
this case, ¢,,, — ¢, may be positive. We can derive a bound on the increase in f(x;) on successful steps in terms
of the error of the estimates like

Ppar = P < V(e +50) = f(w) + (1 -v)0° - D5
< V((flv+50) =) + (F =) + (FOa) =) + (1 =v)(° = 1o} (79)
< v(IfCae+s1) = il + 1f o) = fO + A=) = 1.

Even in unsuccessful iterations, (73) still applies; this means that the right-hand side of (79) dominates and
(79) holds whether the kth iteration is successful or not. Note that nowhere in the analysis of case (d) have we
used the definition of Case 1.

Now we are ready to compute the expectation of @y, — P, in Case 1. Case (d) occurs with probability at

most (1 —a)(1 - p); in case (d), ¢,,; — ¢, is bounded from above as in (79). Cases (a)-(c) occur otherwise; in
cases (a)—(c), ¢;,4 — ¢, is bounded from above by by <0 with b; defined in (73). Thus, we obtain

E[@p1 — Dl FpET, {T(Xi) > CARH
= E[®y1 — DTV, I + ] = 0] + B[Dpyq — PpFMTE {7(X0) = CALY, Ik + ] > 0]
< (1= a)1 = B)VEIIf(xe +s0) = fi] + [ (i) = fAIFUE] + (1 = v)(»® = DE[AYFE])
F(1-(1-a)d-p)- v)(ylg — DE[ANFNT]

Recalling Assumption 6, noting that E[A|FF] = A?, and rearranging terms, we obtain
E[®1 — DT, {1(Xk) = CAL]

< (@- ) -pavee + - v)(yﬂ S+ (- a)1-PA-1)(° - ;3> AL
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Choosing a € (0,1] and g € (0,1] such that

. 1 1-v 1
(1 — 0()(1 - ﬁ) < mm{m,% (1 - ;)}, (80)
we conclude that
1 1
E[@g1 = DT {r(Xe) 2 LAY < =4 (1- v)(l - ;) AR (81)

Case 2. T(x) = max{[IVf (xi)ll, = Amin(V2f (xi))} < Tk

i. Jy = 1; that is, we have good estimates but the model may be bad. The analysis of this case is similar to the
analysis of Case 1(c), and so (78) holds on successful steps. Thus, decrease bounded by b; can again be
guaranteed for ¢, whether the iteration is successful or not.

ii. Jx = 0; that is, we have bad estimates and the model may also be bad. In this case, the analysis of Case
1(d) again applies because both f and 0; may increase. We can once again upper bound the potential increase
in ¢, using (79) on both successful and unsuccessful steps.®

We are now ready to compute the expectation of @1 — @y in Case 2. Case 2(i) occurs with probability at
least §; in Case 2(i), ¢, — ¢, is bounded above by b; <0 with b; defined in (73). Case 2(ii) happens with
probability at most (1 —f); in Case 2(ii), the possible increase in ¢, is bounded like (79). We obtain

E[@11 — Ol FprT, {T(Xe) < CARH
<(1- ﬁ)(vE[lf(xk+sk) = fl+ () = FAIFMT] + (1 =v)(57° = DE[AYIFYT])
+p(1 - v)(——l)E[leMF]

From Assumption 6 and because E[A}|FMF] = A}, we obtain
E[® = QFLE {r(X) <CAH < {1 = Pl2vicr + (1 =) =]+ -v) (B - 1)} (82)

Choosing g € (0,1] such that

B 2P vee +(1- 0GP - 1)]
-7 a-vor-1 (59
we conclude that
B0 = U, (100 <Cou] < =351 -1 - L en

In conclusion, for v satisfying (71) and a and g satisfying (80) and (83), respectively, the expected decrease in
@y in (68) holds with

e= jImin{Z‘B, 131 - v)(l - %)

Now, let us particularize these results with the constants give : Usmg N2 <18 and xppy = Ko + L,
we deduce that C:=20xy,, = 20(x., + L) satisfies (63). A select of C1 =Cy = ﬁ satlsfles the conditions in
Lemmas 11 and 14. By Lemma 16 and our particular choice of er, we select C; = 80 n, min{1, np}. Thus, from
(71) and because €r < k. < Ky, v must satisfy

v 8 320
1—v = min{2kpm, C2}  n2min{l, p}’

We select v = € (0,1). With these selections, (80) is equivalent to

320
320+1, min{1,m,}

(1-a)1- ﬁ)<mm{1 M}

18" 211.10kf
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which is implied by our choice in (69). Likewise, with these selections, the bound (83) is equivalent to

P el 040K 41
1-8 7n, min{1, np}

which is implied by

2-10%kF + 167, min{1, 15}
2103 + 170, min{1, np}’

B>

which is implied by our choice in (70). Our choice of ® also follows by noting that n, min{1, n;} < 18.

We contrast the second-order results of Theorem 6 with the first-order results of Theorem 3. The effect of the
stronger assumption on the estimates in Assumption 6(a) is clearly seen in the appearance of xr in the
denominator of (69). Also, because of our particular choice of constants and requirements on the accuracy of
the estimates, 7, was assumed to be smaller than the Lipschitz constants L and «,;; hence, 1, appears in the
numerator of (69), and Lipschitz constants do not. In this light, 7, can be interpreted as an additional means to
control/ensure model quality, which is perhaps unsurprising given the definition of 7, in Algorithm 2.

We now state and prove the main complexity result for Algorithm 2.

Theorem 7 (Complexity of Second-Order STORM Algorithm). Consider Algorithm 2 and its corresponding stochastic
process. Let T, be defined as in (62) with € € (0,1]. Then, under the assumptions of Theorem 6, for sufficiently large a € (0,1]
and B € (0,1] with ap>1/2, we have

(Xﬁ q)0C3
E[T] < 5~ 51 ( o * 1), (85)

where @ is defined in (61) with k =0, v is defined in (71), and C is definied in (63).
Moreover, with the particular choices of constants described en—page-30 and in Theorem 6, (85) becomes

@ (e + L)
0 + 1],

ap
E[T.] <8- 1032a5 — (

where © > 6 - 1074, min{1, 1,}.

The validity of Assumption 1(iii) follows from Theorem 6 with i(5) = 6* and A, defined in (63). Lemma 17
and the discussion preceding it imply that Theorem 2 applies, from which we conclude (85).
A liminf-type almost sure convergence result trivially follows.

Corollary 1 (Convergence of Second-Order STORM Algorithm). Under the conditions of Theorem 7, the iterates {X;}
generated by Algorithm 2 almost surely contain a subsequence convergent to a second-order stationary point of f.

As in our discussion in Section 3.5, similar techniques for computing function, gradient, and Hessian
estimates can be derived that satisfy Assumptions 5 and 6 for Algorithm 2 (Bandeira et al. 2014).

5. Conclusion

In this manuscript, we propose a general framework based on a stochastic process that can be used to bound
the expected complexity of optimization algorithms. This framework can be applied beyond the algorithms
discussed in this paper and has already been used in recent work on a stochastic line-search method (Paquette
and Scheinberg 2018). We then applied this framework to demonstrate that a stochastic trust-region method
with dynamic stochastic estimates of the gradient has essentially the same complexity as any other first-order
method in a nonconvex setting. We then showed that a second-order stochastic trust-region method converges
to a second-order stationary point and, moreover, demonstrated that the expected complexity of this second-
order method essentially matches the known complexity of second-order methods for second-order methods
in nonconvex optimization settings. Although the algorithms we analyzed require stochastic estimates to be
progressively more accurate, the algorithms never require the computation of a full gradient; hence, the
algorithms apply to purely stochastic settings.

Appendix
This appendix contains proofs of several lemmas that are novel but whose proofs are similar to existing results. We include
them here for completeness.
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Proof of Lemma 10. Using the optimal decrease condition (37), the upper bound on model Hessian from Lemma 9, and the fact
that ||gx|| = KpumOr, we have

Kscd ; ”gk | | } Ksed
my(x) — my (X + i) = min{—>—,0x; = Op.
) =+ 50 2 55 g minf S5 0] =

Because the model is x-fully quadratic, the improvement in f achieved by s; is

FO +s1) = f (i) = f(x + s5) — m(xg + s) + m(xg + s) — mxe) + m(x) — f(xe)

Cscd C Ksed
é < —
2 “gk” k= 1

< iy — lIgxlox,

where the last inequality is implied by 6% < 6 < ;%‘;Hgk”. i

Proof of Lemma 11. The definition of a x-fully quadratic model yields that
lgell = [IVF ()l = g%

Because condition (44) implies that ||Vf(xy)|| > max{Kbhm + Keg,% + Kgg}ék, using Or <1, we have

8k,
llgkll = maX{Kbhm, ef}ék-
Kscd

Hence, the conditions of Lemma 10 hold, and we have

KSC
2 gl16%- (A1)

Sl +sK) = fx) < - 1

Because [|gxl| = [[Vf(x)]| — %40k in which 6, satisfies (44), we also have

Kblm 8ier }
> max , Vi (xp)||- A2
el 2 max| e 2ol (A2

Combining (A.1) and (A.2) yields (45). O

Proof of Lemma 12. Because & < %, the model decrease condition (37) and the uniform bound on Hy under Lemma 9
immediately yield that

K . K. N
() — (e + 1) > <5 g min 18K 5, | = Ky, (A3)
2 Kohm 2

The model my being (i, Keg, Ken)-fully quadratic implies that

|f (k) = mi(xp)| < 107, and (A4)
[f Gk + s6) = m (e + 50| < xegr ;. (A.5)

Because the estimates are er-s.o.-accurate with er < x,r, we obtain

|f,? —flxp)l < Kgf63, and |ff — flxx +s)| < Kgféz’. (A.6)
We have
mmy(xx) — my(xx + si)
_ £ —flx) f ) = my(a) 1y (Xg) — (X + )
my(xp) — m (g +s5) (o) — mg (g +s¢) (o) — (X + sg)
my(xx + si) — f(oxx + ) fOox +s0) = f¢

mye () — my(x + ) () = my (e + sg)”
which, combined with (A.3)-(A.6), implies

8k, 02
1 < "ok <1l-n,

o= 1< el



XXX
INFORMS Journal on Optimization, Articles in Advance, pp. 1-27, © 2019 INFORMS 27

where we have used the assumptions 67 < & < %}”1) llgkll to deduce the last inequality. Hence, px > 11. Moreover, because

gl

} > 20, and the kth iteration is successful. O
bhm

lgell > MoK, then T > mm{ng Il

Endnotes

! One can always enlarge the g-algebras by adding sources of randomness that are independent from J; and consider such enlarged c-algebras.
In order to not add further notation, we prefer to work with J; as defined.

?Note that it is possible to have ks and & of different magnitudes. In particular, when &, is small, we obtain correspondingly accurate
gradients, but x,s remains in ©(L). Our analysis and results apply then as well.

¥ Note that because > } always, if n, > 2k}, then © =

o’ % Kog ! independently of 1. This implies that small values for 1, are permissible if the
value of ., is large.

*The eigenstep is the minimizer of the quadratic model in the trust region along an eigenvector corresponding to the smallest (negative)
eigenvalue of Hy.

¥ This restriction can be avoided if one allows a more involved discussion on dominating terms in the proofs of Lemmas 10-12 and 16 and in the
proof of the main result.

® Note that, under additional assumptions on Ky and 12, one can further refine the analysis here to account for the decrease in ¢, that could be
achieved when I, = 1.
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