B Taylor & Francis
w" Taylor & Francis Group

Optimization Methods and Software

Optimization
Methods & Software

—
i B ATk

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: https:.//www.tandfonline.com/loi/goms20

A robust multi-batch L-BFGS method for machine
learning

Albert S. Berahas & Martin Takac

To cite this article: Albert S. Berahas & Martin Takac¢ (2019): A robust multi-batch L-BFGS method
for machine learning, Optimization Methods and Software, DOI: 10.1080/10556788.2019.1658107

To link to this article: https://doi.org/10.1080/10556788.2019.1658107

ﬁ Published online: 27 Aug 2019.

N
[:J/ Submit your article to this journal &

A
& View related articles &'

N

(!) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=goms20


https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2019.1658107
https://doi.org/10.1080/10556788.2019.1658107
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2019.1658107
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2019.1658107
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1658107&domain=pdf&date_stamp=2019-08-27
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1658107&domain=pdf&date_stamp=2019-08-27

OPTIMIZATION METHODS & SOFTWARE Ialylcir & Francis
https://doi.org/10.1080/10556788.2019.1658107 aylor &Francis Group

[ W) Check for updates‘

A robust multi-batch L-BFGS method for machine learning*

Albert S. Berahas @ and Martin Takac

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

ABSTRACT ARTICLE HISTORY
This paper describes an implementation of the L-BFGS method Received 29 August 2018
designed to deal with two adversarial situations. The first occurs in Accepted 14 August 2019

distributed computing environments where some of the computa- KEYWORDS

tional nodes devoted to the evaluation of the function and gradi- L-BFGS; multi-batch:
ent are unable to return results on time. A similar challenge occurs fault-tolerant; sampling;
in a multi-batch approach in which the data points used to com- consistency; overlap

pute function and gradients are purposely changed at each iteration

to accelerate the learning process. Difficulties arise because L-BFGS ~ AMS SUBJECT

employs gradient differences to update the Hessian approximations, CLASSIFICATIONS
. . X o 90C30; 90C06; 90C53

and when these gradients are computed using different data points

the updating process can be unstable. This paper shows how to

perform stable quasi-Newton updating in the multi-batch setting,

studies the convergence properties for both convex and non-convex

functions, and illustrates the behaviour of the algorithm in a dis-

tributed computing platform on binary classification logistic regres-

sion and neural network training problems that arise in machine

learning.

1. Introduction

It is common in machine learning to encounter optimization problems involving tens of
millions of training examples and millions of variables. To deal with the demands of time,
storage and processing power imposed by such applications, high performance imple-
mentations of stochastic gradient and batch quasi-Newton methods have been developed,
see e.g. [1,5,22,23,65,73,76]. In this paper, we study a batch approach based on the L-
BFGS method [47,57] that strives to reach the right balance between efficient learning and
productive parallelism.

At present, due to its fast learning properties and low per-iteration cost, the preferred
method for very large-scale applications is the stochastic gradient (SG) method [12,67], and
its variance-reduced and accelerated variants [24,33,34,40,41,46,55,56,68]. These methods
are implemented either in an asynchronous manner (e.g. using a parameter server in a dis-
tributed setting) or following a synchronous mini-batch approach that exploits parallelism
in the gradient evaluations [7,29,42,65,66,72]. A drawback of the asynchronous approach

CONTACT Albert S. Berahas @ albertberahas@u.northwestern.edu
*This work substantially extends [6] published at the Neural Information Processing Systems (NeurlPS) conference in 2016.

@ Supplemental data for this article can be accessed here. https://doi.org/10.1080/10556788.2019.1658107

© 2019 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1658107&domain=pdf&date_stamp=2019-08-24
http://orcid.org/0000-0002-2371-9398
http://orcid.org/0000-0001-7455-2025
mailto:albertberahas@u.northwestern.edu
https://doi.org/10.1080/10556788.2019.1658107

2 (& A.S.BERAHAS AND M. TAKAC

is that it cannot use large batches, as this would cause updates to become too dense and
compromise the stability and scalability of the method [48,65]. As a result, the algorithm
spends more time in communication as compared to computation. On the other hand,
using a synchronous mini-batch approach one can achieve a near-linear decrease in the
number of SG iterations as the mini-batch size is increased, up to a certain point after
which the increase in computation is not offset by the faster convergence [72].

An alternative to SG-type methods is batch methods, such as L-BFGS [57], because they
parallelize well and are able to achieve high training accuracy. Batch methods allow for
more computation per node, so as to achieve a better balance with the communication costs
[5,75]; however, batch methods are not as efficient learning algorithms as SG methods in a
sequential setting [14,32]. To benefit from both types of methods, some high performance
machine learning systems implement both types of methods [1,23], and algorithms that
transition from the stochastic to the batch regime [8,9,17,26] have also received attention
recently.

The goal of this paper is to propose a single method that selects a sizeable subset
(batch) of the training data to compute a step and changes this batch at every iteration to
improve the learning abilities of the method. In order to differentiate it from the mini-batch
approach used in conjunction with the SG method, which employs a very small subset
of the training data, we call this the multi-batch approach. In this regime, it is natural to
employ a quasi-Newton method, as incorporating second-order information imposes little
computational overhead and improves the stability and speed of the method. However, the
multi-batch approach can cause difficulties to quasi-Newton methods as these methods
employ gradient differences to update the Hessian approximations.

More specifically, in this paper we study how to design a robust multi-batch imple-
mentation of the limited-memory version of the classical BFGS method [15,25,28,70] -
which we call the multi-batch L-BFGS method - in the presence of two adverse situations
[6,35,36,60,61]. The first occurs in parallel implementations when some of the computa-
tional nodes devoted to the evaluation of the function and gradient are unable to return
results on time, i.e. in the presence of faults. This amounts to using different data points
to evaluate the function and gradient at the beginning and the end of the iteration, which
can be harmful to quasi-Newton methods since they employ gradient differences to update
Hessian approximations. A similar challenge occurs in a multi-batch approach in which the
data points used to compute the function and gradient are purposely changed at each iter-
ation (or every several iterations) to accelerate the learning process. The main objective of
this paper is to show that stable quasi-Newton updating can be achieved in these settings
without incurring extra computational cost or special synchronization. The key is to per-
form quasi-Newton updating based on the overlap between consecutive batches. The only
restriction is that this overlap should not be insignificant, something that can be expected,
or easily enforced, in most situations.

Recently, several stochastic quasi-Newton (SQN) methods have been proposed, see e.g.
(6,11,18,20,30,37,51,69,74]. The methods enumerated above differ in three major aspects:
(i) the update rules for the curvature (correction) pairs and the Hessian approximation,
(ii) the frequency of updating and (iii) the required extra computational cost and synchro-
nization required. Our method is different from these methods predominantly due to the
fact that it does not modify the BFGS update equations or the form of the curvature pairs,
and does not require extra (gradient) computations. Additionally, our method is designed



OPTIMIZATION METHODS & SOFTWARE . 3

to work in a distributed settings with faults, in which faults occur randomly and sample
consistency cannot be assumed, and as such several SQN methods are not suitable.

We analyse the convergence properties of the multi-batch L-BFGS method using a fixed
step length strategy, as well as a diminishing step length strategy, on both strongly con-
vex and non-convex problems. This is appropriate in our setting, as using a fixed step
length approach is popular in practice, and facilitates the study of the stability of quasi-
Newton updating in a distributed setting. For strongly convex functions, we show that the
algorithm converges, at a linear rate, to an approximate solution whose accuracy depends
on the variance of the gradients and the step length. In the non-convex setting, we show that
if cautious BFGS updating is employed, the expected value of the average norm-squared of
the gradient is bounded.

We present numerical experiments on a plethora of problems that arise in machine
learning and deep learning. We first illustrate the robustness of our proposed approach
on binary classification logistic regression problems on a distributed computing platform
with faults and in the serial multi-batch setting. The results indicate that the proposed
method achieves a good balance between computation and communication costs. More-
over, we present results on neural network training tasks that illustrate when larger batch
size is used, our algorithm is competitive with the state of the art. Finally, we demonstrate
the strong and weak scaling properties of the proposed method.

The paper is organized as follows. In Section 2, we describe the multi-batch L-BFGS
method in detail. In Section 3, we provide convergence analyses for the proposed method
for strongly convex and non-convex functions. Numerical results that illustrate the prac-
tical performance and robustness of the multi-batch L-BFGS method are reported in
Section 4. Finally, in Section 5 we provide some concluding remarks.

2. A multi-batch Quasi-Newton method

Ideally, in supervised learning, one seeks to minimize expected risk, defined as
R(w) = / fwix,y) dP(x,y) = E[f(w; x, )], (2.1)
Q

where (x, y) are input-output pairs, f : R? — R is the composition of a prediction function
(parametrized by w) and a loss function, and €2 is the space of input-output pairs endowed
with a probability distribution P(x, y). Since the distribution P is typically not known, one
approximates (2.1) by the empirical risk

1 & o def 1 &
Fw) = — 3 flnsaty) & =3 ficw),
i=1 i=1

where (x, yi), fori =1,...,n, denote the training examples, also referred to as data points
or samples. The training problem consists of finding an optimal choice of the parameters
w € R? with respect to F, i.e. to compute a solution of the problem

weR4

1 n
min F(w) = — Z fi(w). (2.2)
i=1



4 (& A.S.BERAHAS AND M. TAKAC

In a pure batch approach, one applies a gradient-based method to the deterministic opti-
mization problem (2.2). In this regime, a popular method is L-BFGS [47,57]. When # is
large, it is natural to parallelize the computation of F and VF by assigning the evaluation
of component functions f;, or subsets of the component functions, to different processors.
If this is done on a distributed computing platform, it is possible for some of the compu-
tational nodes, dedicated to a portion of the evaluation of the objective function and the
gradient, to be slower than the rest. In this case, the contribution of the slow (or unrespon-
sive) computational nodes could potentially be ignored given the stochastic nature of the
true objective function (2.1). However, this leads to an inconsistency in the objective func-
tion and gradient at the beginning and at the end of the iteration, which can be detrimental
to quasi-Newton methods, as mentioned above. Hence, we seek to develop a fault-tolerant
version of the batch L-BFGS method that is capable of dealing with slow or unresponsive
computational nodes.

A similar challenge arises in a multi-batch implementation of the L-BFGS method in
which only a subset of the data is used to compute the gradient at every iteration. We con-
sider a method in which the dataset is randomly divided into a number of batches and the
minimization is performed with respect to a different batch at every iteration. Specifically,
at the kth iteration the algorithm chooses Sy C {1,...,n}, computes

1 1
) = 102D i w), gl =VF%w) = — Y Vfiw),  (23)

ieSk |Sk| ieSy

and takes a step along the direction —H; kg,fk, where H is an approximation to V2F(wy) L.
Allowing the sample Sy to change freely at every iteration gives this approach flexibility and
is beneficial to the learning process. Note, we refer to Sy as the sample of training points,
even though Si only indexes those points.

The case of unresponsive computational nodes and the multi-batch regime are similar in
nature, i.e. the samples S used change from one iteration to the next. The main difference
is that node failures create unpredictable changes to the samples, whereas a multi-batch
method has control over the sample generation. In either case, the algorithm employs a
stochastic approximation to the gradient and can no longer be considered deterministic.
We must, however, distinguish our setting from that of the classical SG method, which
employs small mini-batches. Our algorithm operates with much larger batches so that dis-
tributing the computation of the function and gradient is beneficial, and the compute time
is not overwhelmed by communication costs. This gives rise to gradients with relatively
small variance and justifies the use of a second-order method such as L-BFGS.

The robust implementation of the L-BFGS method, proposed in [6], is based on the
following observation. The difficulties created by the use of a different sample Sy at each
iteration can be circumvented if consecutive samples S and Sk have an overlap, so that

Ok = Sk N Sk+1 # 9.

One can then perform stable quasi-Newton updating by computing gradient differences
based on this overlap, i.e. by defining

Ok Ok
Vil =8y — 8k 5 Skl = Wkl — W (2.4)



OPTIMIZATION METHODS & SOFTWARE . 5

in the notation given in (2.3), and using this correction pair (yj, sx) in the BFGS update.
When the overlap set Oy, is not too small, yx is a useful approximation of the curvature
of the objective function along the most recent displacement and leads to a productive
quasi-Newton step. This observation is based on an important property of Newton-like
methods, namely that there is much more freedom in choosing a Hessian approximation
than in computing the gradient [4,10,16,49]. More specifically, a smaller sample O can
be employed for updating the inverse Hessian approximation Hy, than for computing the
batch gradient g,fk used to define the search direction —Hkg,f". In summary, by ensuring
that unresponsive nodes do not constitute the vast majority of all compute nodes in a fault-
tolerant parallel implementation, or by exerting a small degree of control in the creation of
the samples Sy in the multi-batch regime, one can design a robust method that naturally
builds upon the fundamental properties of BFGS updating.

We should mention that a commonly used fix for ensuring stability of quasi-Newton
updating in machine learning is to enforce gradient consistency [51,69], i.e. to use the same
sample Sk to compute gradient evaluations at the beginning and the end of the iteration, at
the cost of double gradient evaluations. Another popular remedy is to use the same batch
Sk for multiple iterations [54], alleviating the gradient inconsistency problem at the price
of slower convergence. In this paper, we assume that such sample consistency is not possi-
ble (the fault-tolerant case) or desirable (the multi-batch regime), and wish to design and
analyse an implementation of L-BFGS that imposes minimal restrictions in the changes of
the sample.

2.1. Specification of the method

Let us begin by considering a robust implementation of the multi-batch BFGS method
and then consider its limited memory version. At the kth iteration, the multi-batch BFGS
algorithm chooses a set Sy C {1,...,n} and computes a new iterate by the formula

S
Wig1 = Wk — Olkagkk, (2.5)

where oy is the step length, g,fk is the batch gradient (2.3) and Hy is the inverse
BFGS Hessian matrix approximation that is updated at every iteration by means of the
formula

1
His1 = VEH Vi + prsksts ok = - Vi=1- PRYVSH -
Vi Sk
To compute the correction vectors (s, k), we determine the overlap set Ox = Si N Skt
consisting of the samples that are common at the kth and k + 1st iterations. We define

0 1
8" = VF%(wy) = Ol > Vi),
i€Ox

and compute the correction pairs as in (2.4). This completely specifies the algorithm, except
for the choice of step length «y; in this paper we consider constant and diminishing step
lengths.



6 (& A.S.BERAHAS AND M. TAKAC

In the limited memory version, the matrix Hy is defined at each iteration as the result of
applying m BFGS updates to a multiple of the identity matrix, using a set of m correction
pairs {s;, yi} kept in storage. The memory parameter m is typically in the range 2-20. When
computing the search direction (matrix-vector product) in (2.5) it is not necessary to form
the dense matrix Hj since one can obtain this product via the two-loop recursion [58],
using the m most recent correction pairs. Employing this mechanism, the search direction
can be computed in O(d) floating operations, where d is the number of variables. After the
step has been computed, the oldest pair (s;, y;) is discarded and the new curvature pair is
stored.

A pseudo-code of the multi-batch limited-memory BFGS algorithm is given in
Algorithm 1 and depends on several parameters. The parameter r denotes the fraction of
samples in the dataset used to define the gradient, i.e. r = |S|/n. The parameter o denotes
the length of overlap between consecutive samples and is defined as a fraction of the
number of samples in a given batch S, i.e. 0 = |O|/|S].

Algorithm 1 Multi-Batch L-BFGS
Input: wy (initial iterate), m (memory parameter), r (batch, fraction of #), o (overlap,
fraction of batch), k < 0 (iteration counter).
1: Create initial batch Sy
2: fork=0,1,2,..do
3 Calculate the search direction py = —Hkg,f"
Choose a step length o > 0
Compute w1 = Wi + aipk
Create the next batch Sk
Compute the curvature pairs sg1; = wxr1 — Wi and ygp1 = g,? L g,? k
Replace the oldest pair (s, y;) by sk+1, Vi1 (if m pairs stored, else just add)
end for

2.2. Sample generation

The fault-tolerant and multi-batch settings differ in the way the samples Sy and O are
formed (Lines 1 & 6, Algorithm 1). In the former, sampling is done automatically as a
by-product of the nodes that fail to return a computation (gradient evaluation). In the lat-
ter, the samples S; and Oy used at every iteration are purposefully changed in order to
accelerate the learning process, thus sampling is user controlled. In either setting, inde-
pendent sampling can be achieved, a necessary condition to establish convergence results.
We first describe the fault-tolerant setting and then propose two sampling strategies that
can be employed in the multi-batch setting. Let T = {(xi,yi), fori =1,...,n} denote the
training set.

Fault-Tolerant Sampling. Consider a distributed implementation in which slave nodes
read the current iterate wy from the master node, compute a local gradient on a subset
of the dataset and send it back to the master node for aggregation in the calculation (2.3).
Given a time (computational) budget, it is possible for some nodes to fail to return a result.
The schematic in Figure 1(a) illustrates the gradient calculation across two iterations, k and



OPTIMIZATION METHODS & SOFTWARE . 7

n

T T
w MASTER r d{l SHUFFLED DATA ! SHUFFLED DATA 1
NODE +1 i \
i il i Nopes Lol 122 128 .
VB (w) XVIE wi) V52 () VB i) X K V8 wee) l l
) s o o S5 |0, 05
MASTER W1 | ! z| 4 |
NODE =
VS wk) Vi (wisr)
(=) (b)

Figure 1. Sample and overlap formation for two adversarial situations: (a) fault-tolerant sampling and
(b) multi-batch sampling.

k + 1, 1in the presence of faults. Here, Bis the total number of slave nodes, B;fori =1, ...,B
denote the batches of data that each slave node i receives (T = U;15;) and 6f (w) is the
gradient calculation using all nodes that responded within the preallocated time.

Let Jx C {1,2,...,B} and Jxy1 C {1,2,..., B} be the set of indices of all nodes that
returned a gradient at the kth and k + 1st iterations, respectively. Using this notation Sy =
Uje7.Bj and Sky1 = Uje 5, Bj» and we define Oy = Uje 7,07, Bj. The simplest imple-
mentation in this setting preallocates the data on each compute node, requiring minimal
data communication, i.e. only one data transfer. In this case, the samples Sy are indepen-
dent if node failures occur randomly. On the other hand, if the same set of nodes fail, then
the sample creation will be biased, which is harmful both in theory and in practice. One
way to ensure independent sampling is to shuffle and redistribute the data to all nodes after
every iteration or after a certain number of iterations.

Multi-Batch Sampling. In the multi-batch setting, several strategies can be employed, with
the only restriction that consecutive batches Si and Sy should, to a certain degree, over-
lap. We propose two sampling strategies: (i) overlaps Oy, are forced in the sample creation
process, (ii) the overlapping set Ok is subsampled from the batch Si. In practice the two
strategies perform on par, however, there is a subtle difference. In the second strategy, the
batches are sampled independently, something that is not true for the strategy in which
overlapping samples are forced. The independent sampling strategy of course does not
come for free as this strategy incurs an increase in computational cost per iteration. How-
ever, as mentioned above, the overlapping set O need not be very large, and thus the
increase in cost is negligible as compared to the rest of the computation. We now describe
the two approaches in more detail.

Figure 1(b) illustrates the sample creation process in the first strategy. The dataset is
shuffled and batches are generated by collecting subsets of the training set, in order. Every
set (except Sp) is of the form Sy = {Ok_1, Nk, Ok}, where O_; and Oy, are the overlapping
samples with batches Sx_; and Sk respectively, and Nj are the samples that are unique
to batch S. After each pass through the dataset, the samples are reshuftled, and the pro-
cedure described above is repeated. In our implementation, samples are drawn without



8 (& A.S.BERAHAS AND M. TAKAC

replacement, guaranteeing that after every epoch (pass over the whole dataset) all sam-
ples are used. This strategy has the advantage that it requires no extra computation in the
evaluation of g,? *and gko > but the samples S are not independent.

The second sampling strategy is simpler and requires less control. At every iteration k,
a batch Sy is created by randomly selecting |Sx| elements from {1, . . . n}. The set O is then
formed by randomly selecting |Ok| elements from Sk (subsampling). Note, in this sampling
strategy the samples Oy need not be in the set Sx ;. This strategy is slightly more expensive
since gko f;l requires extra computation, but if the overlap is small this cost is not significant.

3. Convergence analysis

In this section, we analyse the convergence properties of the multi-batch L-BFGS method
(Algorithm 1) when applied to the minimization of strongly convex and non-convex objec-
tive functions, using a fixed step length strategy, as well as a diminishing step length
strategy. We assume that the goal is to minimize the empirical risk F (2.2), but note that a
similar analysis could be used to study the minimization of the expected risk (2.1).

3.1. Strongly convex case

Due to the stochastic nature of the multi-batch approach, every iteration of Algorithm 1
employs a gradient that contains errors that do not converge to zero. Therefore, by using
a fixed step length strategy one cannot establish convergence to the optimal solution w*,
but only convergence to a neighbourhood of w* [52]. Nevertheless, this result is of interest
as it reflects the common practice of using a fixed step length and decreasing it only if
the desired testing error has not been achieved. It also illustrates the tradeoffs that arise
between the size of the batch and the step length.

In our analysis, we make the following assumptions about the objective function and
the algorithm.

Assumption A: (1) F is twice continuously differentiable.

(2) There exist positive constants A and A such that Al < V2FO(w) < Al for all w € R?
and all sets O C {1,2,...,n} oflength |O| =0 -1 n.

(3) There exist constants y > 0 and n > 1 such that E[||VFS(W)||?] < y* + nl|[VEw)|?
forallw e R? and all sets S € {1,2,...,n) of length |S| =r - n.

(4) The samples S are drawn independently and V FS(w) is an unbiased estimator of the true
gradient VF(w) for all w € R4, i.e. E[VFS(w)] = VF(w).

Note that Assumption A.2 implies that the entire Hessian V2F(w) also satisfies
A < VEE(w) < AI, YweRY, (3.1)

for some constants A, A > 0. Assuming that every subsampled function FO(w) is strongly
convex is not unreasonable as a regularization term is commonly added in practice when
that is not the case.

We begin by showing that the inverse Hessian approximations Hj generated by the
multi-batch L-BFGS method have eigenvalues that are uniformly bounded above and away
from zero. The proof technique used is an adaptation of that in [18].



OPTIMIZATION METHODS & SOFTWARE . 9

Lemma 3.1: If Assumptions A.1 and A.2 hold, there exist constants 0 < w; < uy such that
the inverse Hessian approximations {Hy} generated by Algorithm 1 satisfy

I < Hy < pol, fork=0,1,2,...

Proof: Instead of analysing the inverse Hessian approximation Hy, we study the Hes-
sian approximation By = H, ! In this case, the limited memory quasi-Newton updating
formula is given as follows:

(1) Set BI(CO) = (ygyk/szyk)l and m = min{k, m}, where m is the memory in L-BFGS.
(2) Fori=0,...,m—1setj=k—m+ 1+ iand compute

(@) (@ T
. N Bsgs s'B Viyi
BUtD — gl K TR | 2

(3) SetByyy = BU™.
The curvature pairs s and yi are updated via the following formulae:
Yi+1 =g,?f;1 _gzi)k) Skl = Wit1 — Wk (3.2)
A consequence of Assumption A.2 is that the eigenvalues of any sub-sampled Hessian

(|O] samples) are bounded above and away from zero. Utilizing this fact, the convexity
of component functions and the definitions (3.2), we have

T 2 lyell® 2
Yk _||}’k|| = <A. (3.3)
=3 yisk

On the other hand, strong convexity of the subsampled functions, the consequence of
Assumption A.2 and definitions (3.2), provides a lower bound,

2
IIkaII > A (3.4)
Vi Sk

1
yisg < K||}’k||2 =

Combining the upper and lower bounds (3.3) and (3.4)

2
A< ”ka” < A. (3.5)
Vi Sk

The above proves that the eigenvalues of the matrices B( ) (yk Vi/si Tyi)I at the start of the
L-BFGS update cycles are bounded above and away from zero, for all k. We now use a Trace-
Determinant argument to show that the eigenvalues of By are bounded above and away
from zero. Let tr(B) and det(B) denote the trace and determinant of matrix B, respectively,



10 A.S.BERAHAS AND M. TAKAC

and set j; = k — m + i. The trace of the matrix By can be expressed as

m B(l 1)5 B(l 1) ¥i y
_ oY\ _ ji$ ji 77 ji
tr(Bys+1) = tr (Bk ) trZ TR + tr Z ,‘V
i=1 ji "k Ji i=1 “]Ji ji
<tr (B,ﬁ‘”) + Z b <tr (B,({")) +imA <G, (3.6)
i=1 y]1S]‘

for some positive constant C;, where the inequalities above are due to (3.5), and the fact
that the eigenvalues of the initial L-BFGS matrix B,(CO) are bounded above and away from
Zero.

Using a result due to [62], the determinant of the matrix By generated by the multi-
batch L-BFGS method can be expressed as

m )/~Tj m )’Tsj Tsf
(0) ji i (0) 77t —’
det(Bgy1) = det (B ( ) 1_[ TB(, D = det ( ) l_[ . TB(z 1)

i=1 j, Sji i=1 ]r Sji s Sji
A\ M
) [ *
= det(8”) (&) zc (3.7)
1
for some positive constant C,, where the above inequalities are due to the fact that the

largest eigenvalue of B(’) is less than C; and Assumption A.2.

The trace (3.6) and determinant (3.7) inequalities derived above imply that the largest
eigenvalues of all matrices By are bounded from above, uniformly, and that the smallest
eigenvalues of all matrices By are bounded away from zero, uniformly. n

Before we present the main theorem for the multi-batch L-BFGS method that employs
constant step lengths, we state one more intermediate Lemma that bounds the distance
between the function value at any point w € R and the optimal function value with
respect to the norm of the gradient squared.

Lemma 3.2: Let Assumptions A.1 and A.2 hold, and let F* = F(w*), where w* is the
minimizer of F. Then, for all w € R,

20(F(w) — F*) < [ VE)| .
Proof: As a result of Assumptions A.1, A.2 and (3.1), for all x,y € R?
1
F(x) < F() + VEQ)' (x =) + IIVF() = VE I
see [53, Chapter 2.1.3]. Let x = wand y = w*
1
F(w) < F* + VE(w") (w — w*) + 25 IVEw) — VEW)|?
< F + | VF(w) |
=T

Re-arranging the above expression yields the desired result. |



OPTIMIZATION METHODS & SOFTWARE . 1

Utilizing Lemmas 3.1 and 3.2, we show that the multi-batch L-BFGS method with a
constant step length converges linearly to a neighbourhood of the optimal solution.

Theorem 3.3: Suppose that Assumptions A.1-A.4 hold, and let F* = F(w*), where w* is the
minimizer of F. Let {wy} be the iterates generated by Algorithm 1, where oy = o satisfies

0<a< ’; L (3.8)
HyNA
and wy is the starting point. Then for all k > 0,
. K . K] @nay A
E[FOm) — 1] = (1= e [Fon) = ] + [1 = (1 — o] S22
1
koo QUIYEA
% —
2#1)\
Proof: We have that
F(wiy1) = Fwi — aHVES (wy))
T Sk A Sy 2
< F(wi) + VE(w) (—aHkVE* (wp) + — lleHik VE (wi) |
T S a?p3A S 2
< F(wx) — aVF(w) HkVF*(wg) + TIIVF Fwll, (3.9)

where the first inequality arises due to (3.1), and the second inequality arises as a conse-
quence of Lemma 3.1. Taking the expectation (over Si) of Equation (3.9)

2,2

B, [FOwg1)] = FOn) — aVFOn) HVEGn) + S22 B [V % mo 1]
< F(wg) — a1 [ VE(wi) 1> + % (y> + 0l VEw)|1?)
= F(w) —a (m = ““E”A) IVEGw) I + % (3.10)
< F(wy) — %HVF(WIJHZ + MTVZA (3.11)

where the first inequality makes use of Assumption A.4, the second inequality arises due
to Lemma 3.1 and Assumption A.3, and the third inequality is due to the step length (3.8).
Since F is A-strongly convex, we can substitute the result of Lemma 3.2 in (3.11),

ozz,u%yzA

2
azugyzA
—

Es, [F(wii1)] < Fwg) — %HVF(w;c)n2 +

< F(w) — ap1A[F(wy) — F*] + (3.12)

Let
¢k = E[F(wg) — F*], (3.13)



12 A.S.BERAHAS AND M. TAKAC

where the expectation is over all batches Sp, S1, . . ., Sx—; and all history starting with wy.
Equation (3.12) can be expressed as

azugyzA

> (3.14)

Grr1 < (1 —apu M) +

Since the step length is chosen according to (3.8), we deduce that 0 < (1 — au1r) < 1.
Subtracting a,u%yzA /212 from either side of (3.14) yields

2.,2 2,,2.,2 2.,2
apusy A a3y A apusytA
- £ < (1- A —
Pk+1 S < (1 —aumr)er + 5 2n

2.,2

ausyeA

=1 —aud) [ — ———|. (3.15)

2,LL1)»

Recursive application of (3.15) yields

2.2 2.2
auyy A ausy A
dr— —2— < (1 —am)* [go— —2—|,
21 2
and thus,
apsy?A

B = (1= amh)go + [1- (1 — ai)’] o

Finally using the definition of ¢ (3.13) with the above expression yields the desired result

au%yzA

E[Fw) —F] <1 - apih)k [F(wo) — F*] + [1 -(1- Ol,ul)»)k] o

The bound provided by this theorem has two components: (i) a term decaying linearly
to zero and (ii) a term identifying the neighbourhood of convergence. Note, a larger step
length yields a more favourable constant in the linearly decaying term, at the cost of an
increase in the size of the neighbourhood of convergence. We consider these tradeoffs fur-
ther in Section 4, where we also note that larger batch sizes increase the opportunities for
parallelism and improve the limiting accuracy in the solution, but slow down the learn-
ing abilities of the algorithm. We should also mention that unlike the first-order variant
of the algorithm (Hj = I), the step length range prescribed by the multi-batch L-BFGS
method depends on w; and p;, the smallest and largest eigenvalues of the L-BFGS Hes-
sian approximation. In the worst case, the presence of the matrix Hy can make the limit
in Theorem 3.3 significantly worse than that of the first-order variant if the update has
been unfortunate and generates ill-conditioned matrices. We should note, however, such
worst-case behaviour is almost never observed in practice for BFGS updating.

One can establish convergence of the multi-batch L-BFGS method to the optimal solu-
tion w* by employing a sequence of step lengths {a} that converge to zero according to the
schedule proposed by [67]. However, that provides only a sub-linear rate of convergence,
which is of little interest in our context where large batches are employed and some type
of linear convergence is expected. In this light, Theorem 3.3 is more relevant to practice;
nonetheless, we state the theorem here for completeness, and, for brevity, refer the reader
to [18, Theorem 3.2] for more details and the proof.



OPTIMIZATION METHODS & SOFTWARE . 13

Theorem 3.4: Suppose that Assumptions A.1-A.4 hold, and let F* = F(w*), where w* is the
minimizer of F. Let {wy} be the iterates generated by Algorithm 1 with

B H1
= — d ,
= +1 and > wini
starting from wy. Then for all k > 0,
Q(A)
E|F - —_—,
[F(wp) ] = P

where Q(B) = max{u3B*y>A/22u1AB — 1), F(wo) — F*}.

Theorem 3.4 shows that, for strongly convex functions, the multi-batch L-BFGS method
with an appropriate schedule of diminishing step lengths converges to the optimal solu-
tion at a sublinear rate. We should mention that another way to establish convergence to
the optimal solution for the multi-batch L-BFGS method is to employ variance-reduced
gradients [24,34,41,46,55,56,68]. In this setting, one can establish linear convergence to
the optimal solution using constant step lengths. We defer the analysis of the multi-batch
L-BFGS method that employs variance reduced gradients to a different study [2].

3.2. Non-convex case

The BFGS method is known to fail on non-convex problems [21,50]. Even for L-BFGS,
which makes only a finite number of updates at each iteration, one cannot guarantee
that the Hessian approximations have eigenvalues that are uniformly bounded above and
away from zero. To establish convergence of the (L-)BFGS method in the non-convex set-
ting, several techniques have been proposed including cautious updating [45], modified
updating [44] and damping [63]. Here we employ a cautious strategy that is well suited to
our particular algorithm; we skip the Hessian update, i.e. set Hy;; = Hj, if the curvature
condition

yisk > ellsel? (3.16)

is not satisfied, where € > 0 is a predetermined constant. On the other hand, sufficient
curvature is guaranteed when the updates are not skipped. Using said mechanism, we show
that the eigenvalues of the Hessian matrix approximations generated by the multi-batch L-
BFGS method are bounded above and away from zero (Lemma 3.5). The analysis presented
in this section is based on the following assumptions.

Assumption B: (1) F is twice continuously differentiable.

(2) The gradients of F are A-Lipschitz continuous for all w € R the gradients of FS are As-
Lipschitz continuous for all w € R4 and all sets S C {1,2,...,n} of length |S| =1 - n;
and, the gradients of FO are Ao-Lipschitz continuous for all w € R and all sets O C
{1,2,...,n}of length |O| =0 -7 - n.

(3) The function F(w) is bounded below by a scalar F.

(4) There exist constants y > 0 and n > 1 such that E[||VFS(w)||?] < y* + nl[VEw)|?
forallw e RY and all sets S € {1,2,...,n} of length |S| =r - n.



14 A.S.BERAHAS AND M. TAKAC

(5) The samples S are drawn independently and VFS(w) is an unbiased estimator of the true
gradient VF(w) for all w € R4, i.e. E[VFS(w)] = VF(w).

Similar to the strongly convex case, we first show that the eigenvalues of the L-BFGS
Hessian approximations are bounded above and away from zero.

Lemma 3.5: Suppose that Assumptions B.1 and B.2 hold. Let {Hy} be the inverse Hessian
approximations generated by Algorithm 1, with the modification that the inverse Hessian
approximation update is performed only when (3.16) is satisfied, for some € > 0, else Hy1 =
Hy. Then, there exist constants 0 < 11 < [ty such that

w1l < Hy X wal, fork=0,1,2,...

Proof: Similar to the proof of Lemma 3.1, we study the direct Hessian approximation By =
H !, The curvature pairs s and yi are updated via the following formulae:
Oy Oy
Yi+1 = 8xv1 — 8k > Sk+1 = Wik+1 — Wk

The skipping mechanism (3.16) provides both an upper and lower bound on the quan-
tity [|lyxll?/ ygsk, which in turn ensures that the initial L-BFGS Hessian approximation is
bounded above and away from zero. The lower bound is attained by repeated application
of Cauchy’s inequality to condition (3.16). We have from (3.16) that

1
2 . T
€llskll™ = yesk = llyillllsell = lisill = = llyll,

from which it follows that

lyell?
s{yk

> €. (3.17)

T, Lo
seVk < lsklllyell = c Iyel® =

The upper bound is attained by the Lipschitz continuity of sample gradients (Assump-
tion B.2),

2 2 AZ
b il _ A3 o1

T J—
0 S Vk €

T 2
Yisk = €llsgll” > €

Combining (3.17) and (3.18),

_ld® _ A%

€ < —.
— T J—
Vi Sk €

The above proves that the eigenvalues of the matrices B](CO) = (yzyk /s{yk)l at the start of
the L-BFGS update cycles are bounded above and away from zero, for all k. The rest of
the proof follows the same Trace-Determinant argument as in the proof of Lemma 3.1,
the only difference being that the last inequality in (3.7) comes as a result of the cautious
update strategy. |

We now follow the analysis in [13, Chapter 4] to establish the following result about the
behaviour of the gradient norm for the multi-batch L-BFGS method with a cautious update
strategy.



OPTIMIZATION METHODS & SOFTWARE . 15

Theorem 3.6: Suppose that Assumptions B.1-B.5 hold. Let {wy} be the iterates generated
by Algorithm 1, with the modification that the inverse Hessian approximation update is
performed only when (3.16) is satisfied, for some € > 0, else Hyy1 = Hy, where oy = o

satisfies
O<ac< 'L;I R
HanA
and wy is the starting point. Then, for all k > 0,
T—1 2.2 2
4 A 2[F(wo) — F]
Z IVE(wp)|)? 27 4
T~ w1 oapT

T—00 (xu%yzl\
_—
M1

Proof: Starting with (3.11) and taking the expectation over all batches Sy, Sy, . . .

all history starting with wy yields

2..2.,2
o o A
Bkt — dx < —%Enwwwnz + %

where ¢ = E[F(wg)]. Summing (3.19) over the first 7 iterations

T—1

2
> ki1 — ol <——ZE||VF(Wk>|| +Z°‘ Ky

k=0

A

2 2.,2
ap uyy AT
=——E[§ ||VF<Wk)||} —22 :
k=0

The left-hand side of the above inequality is a telescoping sum

T—1
D [brs1 — ¢kl = ¢c — o = E[F(we)] — F(wo) = F — F(wy).
k=0

Substituting the above expression into (3.20) and rearranging terms

= 2.2 .
E [Z ||VF(wk)||2i| < ““2: At 2[F(w) — F]
= 1

e

Dividing the above equation by  completes the proof.

, Sk_1 and

(3.19)

(3.20)

This result bounds the average norm of the gradient of F after the first T — 1 iterations
and shows that, in expectation, the iterates spend increasingly more time in regions where
the objective function has a small gradient. Under appropriate conditions, we can establish
a convergence rate for the multi-batch L-BFGS method with cautious updates to a station-
ary point of F, similar to the results proven for the SG method [27]. For completeness, we

state and prove the result.



16 (&) A.S.BERAHAS AND M. TAKAC

Theorem 3.7: Suppose that Assumptions B.1-B.5 hold. Let {wy} be the iterates generated
by Algorithm 1, with the modification that the inverse Hessian approximation update is
performed only when (3.16) is satisfied, for some € > 0, else Hi11 = Hy. Let

c 2(F(wqo) — 13) 5() cx,u%nA
g=0=—, =, ,)]—F——, o) = u] — ,

where T > czu§n2A2/4M%, and wy is the starting point. Then,

2(F(wp) — Fyu2y2A
S(a)%t

min E [IVEwi) 1] f\/

0<k=

Proof: Starting with (3.10), we have

2 2,,2.,2
ausnA a“puy A
Es, [F(wk1)] < F(wy) — (m -2 ) IVE(wi) 1> + ZT
ozz,uzyzA
= F(wp) — a8(@) [ VE(wp) 1> + ZT, (3.21)

where§(a) = 1 — « M%nA /2. We require that this quantity is greater than zero, § (o) > 0;
this discussion is deferred to the end of the proof.

Taking an expectation over all batches Sy, S1, . . ., Sk—1 and all history starting with wy,
and rearranging (3.21) yields

E[IVFool’] < — ;(a)E[F(Wk) — F(wip)] + %
Summing over k =0, ...,7 — 1 and dividing by ¢
o in B [IVFwI?] < % gE [IVEwi %]
< S3@ye BLEw) = Fovo)l + %
< i@y o) - Fl+ %
2,,2
< WWWO) ~H+ 2;?;%

The first inequality holds because the minimum value is less than the average value, and
the third inequality holds because F < F(x;) (Assumption B.3). The last expression comes
as a result of using the definition of the step length, @ = ¢/4/7. Setting

[2(F(wp) — F)
= [— 7 3.22
‘ u3y2A (322

yields the desired result.



OPTIMIZATION METHODS & SOFTWARE . 17

We now comment on the quantity §(«) that first appears in (3.21), and that is required
to be positive. To ensure that § (o) > 0, the step length must satisfy, @ < 241/ /L%UA. Since
the explicit form of the step length is & = ¢//T, where ¢ is (3.22), we require that

c 2p1

0= —< . (3.23)
VToouinA
In order to ensure that (3.23) holds, we impose that
Cuin? > (F(wo) — Fyudn’A
443 2y2 13
|

The result of Theorem 3.7 establishes a sublinear rate of convergence, to a stationary
point of F, for the multi-batch L-BFGS method on non-convex objective functions. The
result is somewhat strange as it requires a-priori knowledge of 7, the total number of itera-
tion. In practice, one would use iy = 1/ Vk, which would resultina O(1 / Vk) convergence
rate.

4, Numerical results

We present numerical experiments on several problems that arise in machine learning,
such as logistic regression binary classification and neural network training, in order
to evaluate the performance of the proposed multi-batch L-BFGS method. The experi-
ments verify that the proposed method is robust, competitive and achieves a good balance
between computation and communication in the distributed setting. In Section 4.1, we
evaluate the performance of the multi-batch L-BFGS method on binary classification tasks
in both the multi-batch and fault-tolerant settings. In Section 4.2, we demonstrate the
performance of the multi-batch L-BFGS method on neural network training tasks and
compare against some of the state-of-the-art methods. Finally, in Section 4.3, we illustrate
the strong and weak scaling properties of the multi-batch L-BFGS method.

4.1. Logistic regression

In this section, we focus on logistic regression problems; the optimization problem can be
stated as

1 — i Ty o
: _ —y'(wx') e 2
min, F(w) H;IOg(lJre )+ 2w,
where (x', )", denote the training examplesand o = 1/n is the regularization parameter.

We present numerical results that evaluate the performance of the proposed robust
multi-batch L-BFGS scheme (Algorithm 1) in both the multi-batch (Figure 2) and fault
tolerant (Figure 3) settings, on the webspam dataset.! We compare our proposed method
(Robust L-BFGS) against three methods: (i) multi-batch L-BFGS without enforcing sample

consistency (L-BFGS), where gradient differences are computed using different sam-

ples, i.e. yx = g,ff:ll - g,f"; (ii) multi-batch gradient descent (Gradient Descent), which is



18 A.S. BERAHAS AND M. TAKAC

. webspam =1 r=1% K =16 0=20% . webspam =1 r=5% K= 16 0=20% N webspam =1 r=10% K= 16 0=20%
10 10 10
-8-Robust L-BFGS -8-Robust L-BFGS -8-Robust L-BFGS
-e-L-BFGS -e-L-BFGS -e-L-BFGS
, ~#-Gradient Descent F 5 -#-Gradient Descent y |- Gradient Descent
10° & -~ |=sGD ) A% 10 " | —=SGD

|VF(w)||
IVF (@)
3

o - -
0 05 1 1.5 25 3 %0 05 1.5 25 3 %% 05 1 1.5 25 3
Epochs Epochs Epochs
\ webspam = 0.1 r=1% K =16 0=20% § webspam = 0.1 r=5% K =16 0=20% ) webspam @ =0.1 r=10% K = 16 0=20%

10 10 10
% [-a-Robust L-BFGS =~ Robust L-BFGS —=-Robust L-BFGS
[\ |-e-L-BFGS -e-L-BFGS -e-L-BFGS

10° 2 +«+| - Gradient Descent 10° -#-Gradient Descent| s -#-Gradient Descent|

A |==saD (|=-sGD b —~-SGD

5 = 5
L 107 107 4
107 107
107" 107
0 05 1 15 25 3 [ 05 15 25 3 0 05 1 15 25 3
Epochs Epochs Epochs
) webspam a =1 r=1% K = 16 0=5% 5 webspam =1 r=1% K =16 0=10% ) webspam a=1 r=1% K = 16 0=30%
10 10 10
-8 Robust L-BFGS -8 Robust L-BFGS -8 Robust L-BFGS
-e-L-BFGS -e-L-BFGS P . .-|-e-L-BFGS
10° -#-Gradient Descent] -#-Gradient Descent| 4 v _-+"% /" | #-Gradient Descent]
. a |m=sGD —-SGD 10 o |mesaD

=10"

|V F(w)
IVF ()]l

0 05 1 25 3 0 0.5 1

Figure 2. webspam dataset. Comparison of robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforc-
ing sample consistency), gradient descent (multi-batch gradient method) and SGD. Top part: We
used o € {1,0.1}, r € {1%, 5%, 10%} and o = 20%. Bottom part: We used « =1, r=1% and o €
{5%, 10%, 30%]}. Solid lines show average performance, and dashed lines show worst and best perfor-

mance, over 10 runs (per algorithm). K = 16 MPI processes.

webspam &= 0.1 p=0.1 K=16

—& Robust L-BFGS| -&-Robust L-BFGS| - |-=-Robust L-BFGS]]
-o-L-BFGS ¥ -©-L-BFGS § i [-e-L-BFGS

webspam o= 0.1 p=0.3 K=16 webspam o= 0.1 p=0.5 K=16

0

IV E(w)]|

200 250 300 0 50

0 50 100 150
Iterations/Epochs

200 250 300 0 50

100 150 250 300
Iterations/Epochs

100 150 200
Iterations/Epochs

Figure 3. webspam dataset. Comparison of robust L-BFGS and L-BFGS in the presence of faults. We used
a =0.1andp € {0.1,0.3,0.5}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.

obtained by setting Hy = I in Algorithm 1 and (iii) serial SGD (SGD), where at every iter-
ation one sample is used to compute the gradient. We run each method with 10 different
random seeds, and, where applicable, report results for different batch () and overlap (o)
sizes. In Figures 2 and 3, we show the evolution of the norm of the gradient in terms of
epochs.

In the multi-batch setting, the proposed method is more stable than the standard L-
BFGS method; this is especially noticeable when  is small. On the other hand, serial SGD



OPTIMIZATION METHODS & SOFTWARE . 19

achieves similar accuracy as the robust L-BFGS method and at a similar rate, at the cost
of n communications per epoch versus 1/r(1 — 0) communications per epoch. Figure 2
also indicates that the robust L-BFGS method is not too sensitive to the size of the overlap.
Similar behaviour was observed on other datasets, in regimes where r - 0 was not too small,
see [3, Section A.1].

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in the
presence of faults. In these experiments, p denotes the probability that a single node (MPI
process) will not return a gradient evaluated on local data within a given time budget. We
illustrate the performance of the methods for @ = 0.1 and p € {0.1,0.3,0.5}. We observe
that the robust implementation is not affected much by the failure probability p. Similar
behaviour was observed on other datasets, see [3, Section A.2].

4.2. Neural networks

In this section, we study the performance of the multi-batch L-BFGS method? on Neural
Network tasks, on the MNIST and CIFAR10/CIFAR100 datasets.’ Table 1 summarizes the
network architectures that we used, see [3, Section B] for more details. The first problem
is convex; all other problems are non-convex.

We implemented our algorithm in PyTorch [59] and compare against popular and read-
ily available algorithms: (i) SGD [67] and (ii) Adam [39]. We denote our proposed method
as LBFGS in the figures in this section. Note, we implemented our method with the cau-
tious updating strategy, and for each method, we conducted a grid search to find the best
learning rate o € (29,271, ...,2719) ‘and also investigated the effect of different batch sizes
|S| € {50,100, 200, 500, 1000, 2000, 4000}; see [3, Section B] for detailed experiments with
all batch sizes. For the multi-batch L-BFGS method, we also investigated the effect of his-
tory length m € {1, 2,5, 10, 20}. The overlap used in our proposed method was 20% of the
batch, o = 0.20.

The authors in [37] observed that the widely used Barzilai-Borwein-type scaling
(sgyk / ygyk)l of the initial Hessian approximation may lead to quasi-Newton updates that
are not stable when small batch sizes are employed, especially for deep neural training tasks,
and as such propose an Agadrad-like scaling of the initial BFGS matrix. To obviate this
instability, we implement a variant of the multi-batch L-BFGS method (LBFGS2) in which
we scale the initial Hessian approximations as «I. We ran experiments with both scaling
strategies and the overall results were similar. Therefore, in the figures in this section we
only show results for the latter strategy.

Table 1. Structure of neural networks.

Network Type # of layers d Ref.
MNIST MLC fully connected (FC) 1 7.8k [43]
MNIST DNN (SoftPlus) conv+FC 4 1T.1M [64]
MNIST DNN (ReLU) conv+FC 4 1.1M [64]
CIFAR10 LeNet conv+FC 5 62.0k [43]
CIFART0 VGG11 conv—+batchNorm+FC 29 9.2M [71]
CIFAR100 VGG11 conv+batchNorm—+FC 29 9.2M [71]

MLC, multiclass linear classifier.



20 A.S.BERAHAS AND M. TAKAC

MNIST Multiclass Linear Classifier MNIST DNN with SoftPlus MNIST DNN with ReLU

1
00 25 50 75 100 125 150 175 200 00 25 50 7.5 100 125 150 175 200 00 25 50 75 100 125 150 175 200

Epochs Epochs Epochs
o CIFAR10 LeNet N CIFAR10 VGG11 N CIFAR100 VGG11
237 Rt .
L e e st e 09 277 09 // / f
- 08 — 08 /
06 e // / /,/

2
07117
4

01

0.1 0.1
00 25 50 7.5 100 125 150 175 200 00 25 50 7.5 100 125 150 175 200 00 25 50 75 100 125 150 175 200

Epochs Epochs Epochs

Figure 4. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and test-
ing accuracy for the best parameter setting for each method and problem. Top right: MNIST multiclass
linear classifier; top middle: MNIST DNN (SoftPlus); top right: MNIST DNN (ReLU); bottom left: CIFAR10
LeNet; bottom middle: CIFAR10 VGG11; bottom right: CIFAR100 VGG11.

Figure 4 illustrates the evolution of the running maximum of the training accuracy
(dashed lines) and testing accuracy (solid lines) for the best parameter settings for each
method over the first 20 epochs of training. By best parameter settings, we mean the
run that achieved the highest training accuracy within 20 epochs. One can make several
observations. First, it appears that the multi-batch L-BFGS method is competitive with the
first-order methods on all training problems, except for CIFAR10 LeNet, in terms of both
training and testing accuracy. Second, for half of the problems (three out of six), the best
runs of the multi-batch L-BFGS method use larger batch sizes than the first-order meth-
ods. Of course, this benefit is not as clear on the neural network training problems as it
is in the logistic regression problems. Third, the benefits of incorporating second-order
information are not as apparent in these non-convex problems as compared to the prob-
lems presented in Section 4.1. We attribute this to two things: (i) non-convex problems
are hard and (ii) quasi-Newton methods are better in capturing curvature information for
convex problems.

We now investigate the effect of the batch size. In Figure 5, we show the evolution
of the running maximum of the training/testing accuracy for different batch sizes || €
{50, 500, 4000} for three of the problems. For a complete set of results, see [3, Section B].
Overall, one can observe that for small batch sizes, the multi-batch L-BFGS variants per-
form worse than the first-order methods. However, when large batches are employed (a
regime that is favourable for GPU computing), the multi-batch L-BFGS method performs
on par with the other methods. Moreover, it appears that on several problems the perfor-
mance of the multi-batch L-BFGS method is less affected by the size of the batch, i.e. the
variability in the final training and testing error (after 20 epochs) in terms of batch size is
smaller for the multi-batch L-BFGS method than for the stochastic first-order methods,
see also [3, Section B].

In order to understand why the multi-batch L-BFGS method does not perform well for
small batches, we looked at two diagnostic measures: (i) the angle between the true gradient



OPTIMIZATION METHODS & SOFTWARE ‘ 21

o MNIST Multiclass Linear Classifier batch size: 50 0MN|5T Multiclass Linear Classifier batch size: 500 BIINIST Multiclass Linear Classifier batch size: 4000

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200

Epochs Epochs Epochs
1.0 MNIST DNN with ReLU batch size: 50 N MNIST DNN with ReLU batch size: 500 N MNIST DNN with ReLU batch size: 4000
09 %‘;—'—;k 09 ,;;:——-__—’—__—%ﬁ [ e |

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Epochs Epochs Epochs

CIFAR10 VGG11 batch size: 50 CIFAR10 VGG11 batch size: 500 CIFAR10 VGG11 batch size: 4000

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Epochs Epochs Epochs

Figure 5. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and test-
ing accuracy for different batch sizes (S| € {50, 500, 4000}). Top row: MNIST multiclass linear classifier;
middle row: MNIST DNN (ReLU); bottom row: CIFAR10 VGG11.

curvature vector y; and subsampled gradient curvature vector ys ({ys, va)/llys|lly4ll) and
(ii) the ratio of subsampled gradient curvature vector to true gradient curvature vector
(ys/y4). These measures indicate how informative the curvature information captured by
the multi-batch L-BFGS method really is. Values close to 1 (dashed red lines) are ideal for
both measures. We chose three different points (the starting point, a point after 3 epochs of
Adam, and a point after 10 epochs of Adam). From those points, we took a gradient descent
step with sufficiently small step length and computed the true gradient curvature vector
(y4). We also computed 100 different stochastic variants of the gradient curvature vector
(ys) using different batch sizes (|S| € {50, 100, 200, 500, 1000, 2000, 4000}) and calculated
the values of the two metrics. We illustrate the results in Figure 6, see [3, Section B] for
more results. Several observations can be drawn from this figure. First, not surprisingly, the
metrics improve (get closer to 1) as the batch size increases. Second, for the convex case, the
metrics perform as expected both close and far from the solution; as a result (sufficiently)
good curvature information is captured and the method performs well. On the other hand,
for the non-convex problems, the metrics indicate that, especially for small batch sizes, the
curvature information captured can be terrible.

We should note that using a large batch size is not a bottleneck for current high per-
formance computing hardware, on the contrary, using small batch sizes leads to under
utilization of computational hardware and in fact hinders the ability to parallelize the meth-
ods. Figure 7 illustrates this phenomenon; we show the average computational time of a
gradient evaluation (over 1000 evaluations) for different batch sizes ranging from 1 to 4096



22 A.S. BERAHAS AND M. TAKAC

MNIST Convex MNIST DNN with ReLU CIFAR10 VGG11
e

! 0.50

[

Ty Tlyall

vs.va)

50 100 200 500 1000 2000 4000 50 100 200 500 1000 2000 4000 50 100 200 500 1000 2000 4000

Batch Size Batch Size Batch Size
MNIST Convex MNIST DNN with ReLU 102 CIFAR10 VGG11
}
. . =
=
% ‘ 1
100 +
¥ % | i
E 55 +H.ol o
22 . == éil 4+,
8 11 A i TT’L'
-
107
50 100 200 500 1000 2000 4000 10100 260 00 1000 2000 4000 50 100 200 500 1000 2000 4000
Batch Size Batch Size Batch Size

Figure 6. Multi-batch  L-BFGS  diagnostic ~metrics for  different batch sizes |§] €
{50, 100, 200, 500, 1000, 2000, 4000}. Top row: angle between the true gradient curvature vector
yq and subsampled gradient curvature vector ys ({ys, ¥4}/ l¥sllllyall); bottom row: ratio of subsampled
gradient curvature vector to true gradient curvature vector (ys/y,). Left column: MNIST multiclass linear
classifier; middle column: MNIST DNN (ReLU); right column: CIFAR10 VGG11.

Gradient Computation
T T

T
-=+- MNIST Multiclass Linear Classifier A
MNIST DNN with SoftPlus Pt
o .| ~ MNIST DNN with ReLU i
= 0% -~ CIFAR10 LeNet 7
S -=- CIFAR10 VGG11 ,:" e
g -<- CIFAR100 VGG11 b £,
=~ A A
n P o
O] 1 } 4 o1 7
L0 ¥ o
© ! | Eecia N i e
E i kY ,;' AN N " i X -
o SN oy |77
7 \ i x 4
’ k) i -1 e
/ N X i
100 , ) kW o TTx” LR SRR
"-:‘h o iRl it 2l il
100 101 102 103
Batch-Size

Figure 7. Relative slow down of computational time to compute gradients for different batch sizes
compared to the computational time to compute gradients with batch size 1.

relative to the computational time of the computation of the gradient using a single data
point. The computation was performed on an NVIDIA Tesla K80 GPU using PyTorch. It
is clear that for the Multiclass Linear classification task, the compute time of a single gra-
dient is roughly the same as the compute time of a gradient based on a batch of size 1024,
whereas for the larger training tasks, the compute time of the gradients appear constant
up to batch sizes of roughly 128. We should note however that there is a risk of decreased
generalization when increasing the batch size, unless other strategies such as modifying
the step size or regularization are used, see e.g. [31,38].



OPTIMIZATION METHODS & SOFTWARE . 23

4.3. Scaling of the multi-batch L-BFGS implementation

In this section, we study the strong and weak scaling properties of the robust multi-batch
L-BFGS method on artificial data. For various values of batch size () and nodes (K), we
measure the time needed to compute a gradient (Gradient) and the time needed to compute
and communicate the gradient (Gradient+C), as well as the time needed to compute the
L-BFGS direction (L-BFGS) and the associated communication overhead (L-BFGS+C).
The function of which we are computing the gradient is logistic regression. The L-BFGS
direction is computed using the Vector-Free L-BFGS implementation [19]. We should note
that the time to compute the gradient, which of course is required for computing the L-
BFGS direction, is not included in L-BFGS and L-BFGS+C. We report the extra time to
compute the L-BFGS step, after having computed the gradient. Thus the goal of this section
is to show that the time needed to compute the L-BFGS direction is insignificant com-
pared to the cost of computing the gradient, which is needed in any case to run first-order
methods.

Strong scaling

Figure 8 depicts the strong scaling properties of the multi-batch L-BFGS method, for differ-
ent batch sizes (r) and nodes (K = 1,2,...,128). For this task, we generate a dataset with
n = 107 samples and d = 10* dimensions, where each sample has 160 randomly chosen
non-zero elements (dataset size 24 GB). One can observe that as the number of nodes (K)
is increased, the compute times for the gradient and the L-BFGS direction decrease. How-
ever, when communication time is considered, the combined cost increases slightly as K is
increased. Notice that for large K, even when r = 10% (i.e. 10% of all samples processed in
one iteration, ~ 18MB of data), the amount of local work is not sufficient to overcome the
communication cost.

Strong Scaling

=.10.00% -5 Gradient
e -0 Gradient+C
-» |L-BFGS
4> L-BFGS+C
el
............... G....--E@

= ‘..;-...'!—"ﬂlhf'-N

Elapsed Time [s]

Number of MPI processes - K

Figure 8. Strong scaling of robust multi-batch L-BFGS on a problem with artificial data, n = 107 and
d = 10 Each sample has 160 non-zero elements (dataset size 24 GB).



24 A.S.BERAHAS AND M. TAKAC

Weak scaling - fixed problem dimension, increasing data size

In order to illustrate the weak scaling properties of the algorithm, we generate a data matrix
X e R™4 (n =107, d = 10%) and compute the gradient and the L-BFGS direction on a
shared cluster with different number of MPI processes (K = 1,2, ..., 128). Each sample
has 10 - K non-zero elements, thus for any K the size of local problem is roughly 1.5GB (for
K = 128 size of data 192GB). Effectively, the dataset size (#) is held fixed, but the sparsity
of the data decreases as more MPI processes are used. The compute time for the gradient
is almost constant, this is because the amount of work per MPI process (rank) is almost
identical, see Figure 9. On the other hand, because we are using a Vector-Free L-BFGS
implementation [19] for computing the L-BFGS direction, the amount of time needed for
each node to compute the L-BFGS direction decreases as K is increased. However, increas-
ing K does lead to larger communication overhead, and as such the overall time needed to
compute and communicate the L-BFGS direction increases slightly as K is increased. For
K = 128 (192GB of data) and r = 10%, almost 20 GB of data are processed per iteration
in less than 0.1 seconds, which implies that one epoch would take around 1 second.

Increasing problem dimension, fixed data size and K

In this experiment, we investigate the effect of a change in the dimension (d) of the prob-
lem on the computation of the gradient and the L-BFGS direction. We fix the size of data
(29GB) and the number of MPI processes (K = 8), and generate data with n = 107 sam-
ples, where each sample has 200 non-zero elements. Figure 10 shows that increasing the
dimension d has a mild effect on the computation time of the gradient, while the effect on
the time needed to compute the L-BFGS direction is more apparent. However, if commu-
nication time is taken into consideration, the time required for the gradient computation
and the L-BFGS direction computation increase as d is increased. We should note that

Weak Scaling - Fix problem dimensions

1 T
10 (l[-u.lQ.Q.Q:é_____ SERIPARY SR
2B B0Y00 - rureaars e
_zﬁl‘___g____g____g»
10
@
@,
[0 -3
£ 10
l_
©
2
Q10 =2 |
w B Sl e e
5|~ Gradient Bk T Y T
107 F |0 Gradient+C = -muzy
-% |-BFGS
-> L-BFGS+C
10 ‘ ‘

10 10°
Number of MPI processes - K

Figure 9. Weak scaling of robust multi-batch L-BFGS on a problem with artificial data,n = 10’ andd =
10%. Each sample has 10 - K non-zero elements (size of local problem 1.5 GB).



OPTIMIZATION METHODS & SOFTWARE . 25

K=8, Incresing d

)
(0]
S
'—
©°
@
(%))
o
]
i
- =
4=
e ¥ -o- Gradient
10® 7'* -0 Gradient+C | |
-# L-BFGS
-pb- L-BFGS+C
10 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6
d %10

Figure 10. Scaling of robust multi-batch L-BFGS on a problem with artificial data; n = 107, increasing d
and K = 8 MPI processes. Each sample had 200 non-zero elements (dataset size 29 GB).

the results presented in Figure 10 are not surprising; there is minimal change in perfor-
mance (in terms of the gradient computation) as dimension increases, since the number
of non-zero elements is fixed and sparse matrix operations are employed.

5. Final remarks

In this paper, we assumed that sample consistency is not possible (fault-tolerant setting)
or desirable (multi-batch setting), and described a novel and robust variant of the L-BFGS
method designed to deal with two adversarial situations. The success of the algorithm relies
on the fact that gradient differences need not be computed on the full batch, rather a small
subset can be used alleviating the need for double function evaluations while still main-
taining useful curvature information. The method enforces a small degree of control in
the sampling process and avoids the pitfalls of using inconsistent gradient differences by
performing quasi-Newton updating on the overlap between consecutive samples.

Our numerical results indicate that provided the overlap is not too small, the proposed
method is efficient in practice on machine learning tasks such as binary classification logis-
tic regression and neural network training. The experiments presented in this paper show
that the empirical performance of the method matches that predicted by the theory for
both strongly convex and non-convex functions. Specifically, in the strongly convex case
the multi-batch L-BFGS method with a constant step length converges to a neighbour-
hood of the solution at a linear rate, and in the non-convex case the iterates produced by
the multi-batch L-BFGS method converge to a neighbourhood of a stationary point.

Of course, the development, both theoretical and practical, of SQN methods is far from
complete, and there are many interesting directions that can and should be investigated.
Theoretical analysis that would suggest the batch size and overlap size would be of great
interest in practice. Moreover, an investigation of the multi-batch L-BFGS method that



26 (&) A.S.BERAHAS AND M.TAKAC

employs variance reduced gradients in lieu of the stochastic gradients could have both
theoretical and practical advantages. Finally, a stochastic line search that could work in
conjunction with the multi-batch L-BFGS method would be novel both algorithmically
and theoretically, and would most probably make the method even more competitive in
practice.

Notes

1. LIBSVM: https://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/binary.html
2. Code available at https://github.com/OptMLGroup/Multi-Batch_L-BFGS.
3. MNIST available at http://yann.lecun.com/exdb/mnist/. CIFAR10/CIFAR100 available at

https://www.cs.toronto.edu/ ~ kriz/cifar.html.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partially supported by DARPA Lagrange award HR- 00111750039 and U.S.
National Science Foundation, under award numbers NSF:CCF:1618717, NSF:CMMI:1663256 and
NSF:CCF:1740796.

ORCID

Albert S. Berahas ‘© http://orcid.org/0000-0002-2371-9398
Martin Takdc¢ (@ http://orcid.org/0000-0001-7455-2025

References

(1]

A. Agarwal, O. Chapelle, M. Dudik, and J. Langford, A reliable effective terascale linear learning
system, J. Mach. Learn. Res. 15 (2014), pp. 1111-1133.

A.S. Berahas and M. Taka¢, A multi-batch L-BFGS method with variance-reduced gradients:
Theory and experiments, preprint (2017). Available at arXiv.

A.S. Berahas and M. Taka¢, A robust multi-batch L-BFGS method for machine learning:
Supplementary materials (2019).

A.S. Berahas, R. Bollapragada, and J. Nocedal, An investigation of Newton-sketch and subsam-
pled Newton methods, arXiv:1705.06211 (2017).

A.S. Berahas, M. Jahani, and M. Taka¢, Quasi-Newton methods for deep learning: Forget the past,
just sample, preprint (2019). Available at arXiv:1901.09997.

A.S. Berahas, ]. Nocedal, and M. Taka¢, A multi-batch L-BFGS method for machine learning,
Advances in Neural Information Processing Systems 29, 2016, pp. 1055-1063.

D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Vol. 23, Prentice Hall, Englewood Cliffs, NJ, 1989.

R. Bollapragada, D. Mudigere, J. Nocedal, H.J.M. Shi, and P.T.P. Tang, A progressive batching
L-BFGS method for machine learning, Proceedings of the 35th International Conference on
Machine Learning, 2018, pp. 619-628.

R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for stochastic optimiza-
tion, SIAM J. Optim. 28 (2018), pp. 3312-3343.

R. Bollapragada, R.H. Byrd, and J. Nocedal, Exact and inexact subsampled newton methods for
optimization, IMA J. Numer. Anal. 39 (2018), pp. 545-578.

A. Bordes, L. Bottou, and P. Gallinari, SGD-QN: careful quasi-Newton stochastic gradient
descent, J. Mach. Learn. Res. 10 (2009), pp. 1737-1754.


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://github.com/OptMLGroup/Multi-Batch_L-BFGS
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://orcid.org/0000-0002-2371-9398
http://orcid.org/0000-0001-7455-2025

(12]
(13]
(14]
[15]
[16]
(17]
(18]
[19]
(20]
[21]

[22]
(23]
(24]
(25]
[26]
(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

OPTIMIZATION METHODS & SOFTWARE . 27

L. Bottou and Y. Le Cun, Large scale online learning, Advances in Neural Information Process-
ing Systems 16, 2003, pp. 217-224.

L. Bottou, EE. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning,
SIAM Rev. 60 (2018), pp. 223-311.

O.Bousquetand L. Bottou, The tradeoffs of large scale learning, Advances in Neural Information
Processing Systems 20, 2007, pp. 161-168.

C.G. Broyden, Quasi-Newton methods and their application to function minimisation, Math.
Comput. 21 (1967), pp. 368-381.

R.H. Byrd, G.M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian information
in optimization methods for machine learning, SIAM J. Optim. 21 (2011), pp. 977-995.

R.H. Byrd, G.M. Chin, ]. Nocedal, and Y. Wu, Sample size selection in optimization methods for
machine learning, Math. Program. 134 (2012), pp. 127-155.

R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, SIAM ]. Optim. 26 (2016), pp. 1008-1031.

W. Chen, Z. Wang, and J. Zhou, Large-scale L-BFGS using MapReduce, Advances in Neural
Information Processing Systems, 2014, pp. 1332-1340.

E Curtis, A self-correcting variable-metric algorithm for stochastic optimization, Proceedings of
the 33rd International Conference on Machine Learning, 2016, pp. 632-641.

Y.H. Dai, Convergence properties of the BFGS algorithm, SIAM ]. Optim. 13 (2002), pp.
693-701.

D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul, and P.
Dubey, Distributed deep learning using synchronous stochastic gradient descent, preprint (2016).
Available at arXiv:1602.06709.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M. Mao, Marc’Aurelio Ranzato, A.
Senior, P. Tucker, K. Yang, and A. Ng, et al., Large scale distributed deep networks, Advances in
Neural Information Processing Systems 25, 2012, pp. 1223-1231.

A. Defazio, E Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives, Advances in Neural Information Processing
Systems 27, 2014, pp. 1646-1654.

R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970), pp. 317-322.
M.P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data fitting,
SIAM J. Sci. Comput. 34 (2012), pp. A1380-A1405.

S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic
programming, SIAM J. Optim. 23 (2013), pp. 2341-2368.

D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput.
24 (1970), pp. 23-26.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. Available at
http://www.deeplearningbook.org.

R. Gower, D. Goldfarb, and P. Richtarik, Stochastic block BEGS: Squeezing more curvature out
of data, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp.
1869-1878.

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He, Accurate, large minibatch sgd: Training imagenet in 1 hour, preprint (2017). Available at
arXiv:1706.02677.

M. Hardt, B. Recht, and Y. Singer, Train faster, generalize better: Stability of stochastic gradient
descent, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp.
1225-1234.

X. He and M. Taka¢, Dual free SDCA for empirical risk minimization with adaptive probabilities,
OptML Workshop, Advances in Neural Information Processing Systems, arXiv:1510.06684,
2015.

R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, Advances in Neural Information Processing Systems 26, 2013, pp. 315-323.


http://www.deeplearningbook.org

28 (&) A.S.BERAHAS AND M.TAKAC

(35]

(36]

(37]

(38]

(39]
(40]
[41]

[42]

[46]
(47]

(48]

(49]
(50]
(51]

(52]

(53]

(54]

(55]

[56]

(571

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Straggler mitigation in distributed optimization
through data encoding, Advances in Neural Information Processing Systems 30, 2017, pp.
5434-5442.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Redundancy techniques for straggler mitigation in
distributed optimization and learning, preprint (2018). Available at arXiv:1803.05397.

N.S. Keskar and A.S. Berahas, adaQN: An adaptive Quasi-Newton algorithm for training RNN,
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
2016, pp. 1-16.

N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and PT.P. Tang, On large-batch training
for deep learning: Generalization gap and sharp minima, Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2014.

J. Kone¢ny and P. Richtarik, Semi-stochastic gradient descent methods, Front. Appl. Math. Statist.
3(2017), p. 9.

J. Koneény, J. Liu, P. Richtdrik, and M. Taka¢, Mini-batch semi-stochastic gradient descent in the
proximal setting, IEEE ]. Sel. Top. Signal Process. 10 (2016), pp. 242-255.

R. Leblond, E. Pedregosa, and S. Lacoste-Julien, ASAGA: Asynchronous parallel SAGA, Pro-
ceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017,
pp- 46-54.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86 (1998), pp. 2278-2324.

D.H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex
minimization, ]. Comput. Appl. Math. 129 (2001), pp. 15-35.

D.H. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex
unconstrained optimization problems, SIAM J. Optim. 11 (2001), pp. 1054-1064.

H. Lin, J. Mairal, and Z. Harchaoui, A universal catalyst for first-order optimization, Advances
in Neural Information Processing Systems 28, 2015, pp. 3384-3392.

D.C. Liuand]J. Nocedal, On the limited memory BFGS method for large scale optimization, Math.
Program. 45 (1989), pp. 503-528.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M.I. Jordan, Per-
turbed iterate analysis for asynchronous stochastic optimization, SIAM J. Optim. 27 (2017), pp.
2202-2229.

J. Martens, Deep learning via Hessian-free optimization, Proceedings of the 27th International
Conference on Machine Learning, 2010, pp. 735-742.

W.E Mascarenhas, The BFGS method with exact line searches fails for non-convex objective
functions, Math. Program. 99 (2004), pp. 49-61.

A. Mokhtari and A. Ribeiro, Global convergence of online limited memory BFGS, ]. Mach. Learn.
Res. 16 (2015), pp. 3151-3181.

A. Nedi¢ and D. Bertsekas, Convergence rate of incremental subgradient algorithms, in Stochas-
tic Optimization: Algorithms and Applications, S. Uryasev and P.M. Pardalos, eds., Vol. 54,
Springer, Boston, MA, 2001, pp. 223-264.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer
Science & Business Media, Boston, MA, 2013.

J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, and A.Y. Ng, On optimization methods for
deep learning, Proceedings of the 28th International Conference on Machine Learning, 2011,
pp- 265-272.

L. Nguyen, J. Liu, K. Scheinberg, and M. Taka¢, SARAH: A novel method for machine learning
problems using stochastic recursive gradient, Proceedings of the 34th International Conference
on Machine Learning, 2017.

L.M. Nguyen, J. Liu, K. Scheinberg, and M. Taka¢, Stochastic recursive gradient algorithm for
nonconvex optimization, preprint (2017). Available at arXiv:1705.07261.

J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp.
773-782.



(58]
(59]

[60]

[61]

[62]
[63]
(64]
[65]

[66]

(67]
(68]

[69]

[76]

OPTIMIZATION METHODS & SOFTWARE . 29

J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer, New York, 1999.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer, Automatic differentiation in pytorch (2017).

J. Pei, B. Cheng, X. Liu, PM. Pardalos, and M. Kong, Single-machine and parallel-machine serial-
batching scheduling problems with position-based learning effect and linear setup time, Ann.
Oper. Res. 272 (2019), pp. 217-241.

J. Pei, J. Wei, B. Liao, X. Liu, and PM. Pardalos, Two-agent scheduling on bounded parallel-
batching machines with an aging effect of job-position-dependent, Ann. Oper. Res. (2019), pp.
1-33. Available at https://link.springer.com/article/10.1007/s10479-019-03160-y

M.]. Powell, Some global convergence properties of a variable metric algorithm for minimization
without exact line searches, Nonlinear Program. 9 (1976), pp. 53-72.

M.]J. Powell, Algorithms for nonlinear constraints that use Lagrangian functions, Math. Program.
14 (1978), pp. 224-248.

Pytorch examples. Available at https://github.com/pytorch/examples/blob/master/mnist/main.
py, accessed: 2019-03-29.

B. Recht, C. Re, S. Wright, and E. Niu, Hogwild: A lock-free approach to parallelizing stochastic
gradient descent, Advances in Neural Information Processing Systems 24, 2011, pp. 693-701.
S.J. Reddi, A. Hefny, S. Sra, B. Poczos, and A.]. Smola, On variance reduction in stochastic gradi-
ent descent and its asynchronous variants, Advances in Neural Information Processing Systems
28, 2015, pp. 2647-2655.

H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951),
pp. 400-407.

M. Schmidt, N. Le Roux, and E Bach, Minimizing finite sums with the stochastic average
gradient, Math. Program. 162 (2016), pp. 1-30.

N.N. Schraudolph, J. Yu, and S. Giinter, A stochastic Quasi-Newton method for online convex
optimization, Proceedings of the 10th International Conference on Artificial Intelligence and
Statistics, Vol. 7, 2007, pp. 436-443.

D.E Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput.
24 (1970), pp. 647-656.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, preprint (2014). Available at arXiv:1409.1556.

M. Takag¢, A. Bijral, P. Richtarik, and N. Srebro, Mini-batch primal and dual methods for SVMs,
Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 1022-1030.
J. Tsitsiklis, D. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic
gradient optimization algorithms, IEEE Trans. Automat. Contr. 31 (1986), pp. 803-812.

X. Wang, S. Ma, D. Goldfarb, and W. Liu, Stochastic quasi-newton methods for nonconvex
stochastic optimization, SIAM J. Optim. 27 (2017), pp. 927-956.

Y. Zhang and X. Lin, DiSCO: Distributed optimization for self-concordant empirical loss,
Proceedings of the 32th International Conference on Machine Learning, 2015, pp. 362-370.
M. Zinkevich, M. Weimer, L. Li, and A.]. Smola, Parallelized stochastic gradient descent,
Advances in Neural Information Processing Systems 28, 2010, pp. 2595-2603.


https://link.springer.com/article/10.1007/s10479-019-03160-y
https://github.com/pytorch/examples/blob/master/mnist/main.py

	1. Introduction
	2. A multi-batch Quasi-Newton method
	2.1. Specification of the method
	2.2. Sample generation

	3. Convergence analysis
	3.1. Strongly convex case
	3.2. Non-convex case

	4. Numerical results
	4.1. Logistic regression
	4.2. Neural networks
	4.3. Scaling of the multi-batch L-BFGS implementation

	5. Final remarks
	Notes
	Disclosure statement
	Funding
	ORCID
	References

