

Optimization Methods and Software

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

A robust multi-batch L-BFGS method for machine learning

Albert S. Berahas & Martin Takáč

To cite this article: Albert S. Berahas & Martin Takáč (2019): A robust multi-batch L-BFGS method for machine learning, Optimization Methods and Software, DOI: <u>10.1080/10556788.2019.1658107</u>

To link to this article: https://doi.org/10.1080/10556788.2019.1658107

	Published online: 27 Aug 2019.
	Submit your article to this journal $oldsymbol{G}$
Q ^L	View related articles ☑
CrossMark	View Crossmark data 🗗

A robust multi-batch L-BFGS method for machine learning*

Albert S. Berahas D and Martin Takáč D

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

ABSTRACT

This paper describes an implementation of the L-BFGS method designed to deal with two adversarial situations. The first occurs in distributed computing environments where some of the computational nodes devoted to the evaluation of the function and gradient are unable to return results on time. A similar challenge occurs in a multi-batch approach in which the data points used to compute function and gradients are purposely changed at each iteration to accelerate the learning process. Difficulties arise because L-BFGS employs gradient differences to update the Hessian approximations, and when these gradients are computed using different data points the updating process can be unstable. This paper shows how to perform stable guasi-Newton updating in the multi-batch setting, studies the convergence properties for both convex and non-convex functions, and illustrates the behaviour of the algorithm in a distributed computing platform on binary classification logistic regression and neural network training problems that arise in machine learning.

ARTICLE HISTORY

Received 29 August 2018 Accepted 14 August 2019

KEYWORDS

L-BFGS; multi-batch; fault-tolerant; sampling; consistency; overlap

AMS SUBJECT CLASSIFICATIONS

90C30; 90C06; 90C53

1. Introduction

It is common in machine learning to encounter optimization problems involving tens of millions of training examples and millions of variables. To deal with the demands of time, storage and processing power imposed by such applications, high performance implementations of stochastic gradient and batch quasi-Newton methods have been developed, see e.g. [1,5,22,23,65,73,76]. In this paper, we study a batch approach based on the L-BFGS method [47,57] that strives to reach the right balance between efficient learning and productive parallelism.

At present, due to its fast learning properties and low per-iteration cost, the preferred method for very large-scale applications is the stochastic gradient (SG) method [12,67], and its variance-reduced and accelerated variants [24,33,34,40,41,46,55,56,68]. These methods are implemented either in an asynchronous manner (e.g. using a parameter server in a distributed setting) or following a synchronous mini-batch approach that exploits parallelism in the gradient evaluations [7,29,42,65,66,72]. A drawback of the asynchronous approach

*This work substantially extends [6] published at the Neural Information Processing Systems (NeurIPS) conference in 2016.

Supplemental data for this article can be accessed here. https://doi.org/10.1080/10556788.2019.1658107

is that it cannot use large batches, as this would cause updates to become too dense and compromise the stability and scalability of the method [48,65]. As a result, the algorithm spends more time in communication as compared to computation. On the other hand, using a synchronous mini-batch approach one can achieve a near-linear decrease in the number of SG iterations as the mini-batch size is increased, up to a certain point after which the increase in computation is not offset by the faster convergence [72].

An alternative to SG-type methods is batch methods, such as L-BFGS [57], because they parallelize well and are able to achieve high training accuracy. Batch methods allow for more computation per node, so as to achieve a better balance with the communication costs [5,75]; however, batch methods are not as efficient learning algorithms as SG methods in a sequential setting [14,32]. To benefit from both types of methods, some high performance machine learning systems implement both types of methods [1,23], and algorithms that transition from the stochastic to the batch regime [8,9,17,26] have also received attention recently.

The goal of this paper is to propose a single method that selects a sizeable subset (batch) of the training data to compute a step and changes this batch at every iteration to improve the learning abilities of the method. In order to differentiate it from the mini-batch approach used in conjunction with the SG method, which employs a very small subset of the training data, we call this the *multi-batch* approach. In this regime, it is natural to employ a quasi-Newton method, as incorporating second-order information imposes little computational overhead and improves the stability and speed of the method. However, the multi-batch approach can cause difficulties to quasi-Newton methods as these methods employ gradient differences to update the Hessian approximations.

More specifically, in this paper we study how to design a robust multi-batch implementation of the limited-memory version of the classical BFGS method [15,25,28,70] which we call the *multi-batch L-BFGS* method – in the presence of two adverse situations [6,35,36,60,61]. The first occurs in parallel implementations when some of the computational nodes devoted to the evaluation of the function and gradient are unable to return results on time, i.e. in the presence of faults. This amounts to using different data points to evaluate the function and gradient at the beginning and the end of the iteration, which can be harmful to quasi-Newton methods since they employ gradient differences to update Hessian approximations. A similar challenge occurs in a *multi-batch* approach in which the data points used to compute the function and gradient are purposely changed at each iteration (or every several iterations) to accelerate the learning process. The main objective of this paper is to show that stable quasi-Newton updating can be achieved in these settings without incurring extra computational cost or special synchronization. The key is to perform quasi-Newton updating based on the *overlap* between consecutive batches. The only restriction is that this overlap should not be insignificant, something that can be expected, or easily enforced, in most situations.

Recently, several stochastic quasi-Newton (SQN) methods have been proposed, see e.g. [6,11,18,20,30,37,51,69,74]. The methods enumerated above differ in three major aspects: (i) the update rules for the curvature (correction) pairs and the Hessian approximation, (ii) the frequency of updating and (iii) the required extra computational cost and synchronization required. Our method is different from these methods predominantly due to the fact that it does not modify the BFGS update equations or the form of the curvature pairs, and does not require extra (gradient) computations. Additionally, our method is designed to work in a distributed settings with faults, in which faults occur randomly and sample consistency cannot be assumed, and as such several SQN methods are not suitable.

We analyse the convergence properties of the multi-batch L-BFGS method using a fixed step length strategy, as well as a diminishing step length strategy, on both strongly convex and non-convex problems. This is appropriate in our setting, as using a fixed step length approach is popular in practice, and facilitates the study of the stability of quasi-Newton updating in a distributed setting. For strongly convex functions, we show that the algorithm converges, at a linear rate, to an approximate solution whose accuracy depends on the variance of the gradients and the step length. In the non-convex setting, we show that if cautious BFGS updating is employed, the expected value of the average norm-squared of the gradient is bounded.

We present numerical experiments on a plethora of problems that arise in machine learning and deep learning. We first illustrate the robustness of our proposed approach on binary classification logistic regression problems on a distributed computing platform with faults and in the serial multi-batch setting. The results indicate that the proposed method achieves a good balance between computation and communication costs. Moreover, we present results on neural network training tasks that illustrate when larger batch size is used, our algorithm is competitive with the state of the art. Finally, we demonstrate the strong and weak scaling properties of the proposed method.

The paper is organized as follows. In Section 2, we describe the multi-batch L-BFGS method in detail. In Section 3, we provide convergence analyses for the proposed method for strongly convex and non-convex functions. Numerical results that illustrate the practical performance and robustness of the multi-batch L-BFGS method are reported in Section 4. Finally, in Section 5 we provide some concluding remarks.

2. A multi-batch Quasi-Newton method

Ideally, in supervised learning, one seeks to minimize expected risk, defined as

$$R(w) = \int_{\Omega} f(w; x, y) \, dP(x, y) = \mathbb{E}[f(w; x, y)], \tag{2.1}$$

where (x, y) are input–output pairs, $f : \mathbb{R}^d \to \mathbb{R}$ is the composition of a prediction function (parametrized by w) and a loss function, and Ω is the space of input-output pairs endowed with a probability distribution P(x, y). Since the distribution P is typically not known, one approximates (2.1) by the empirical risk

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} f(w; x^{i}, y^{i}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w),$$

where (x^i, y^i) , for i = 1, ..., n, denote the training examples, also referred to as data points or samples. The training problem consists of finding an optimal choice of the parameters $w \in \mathbb{R}^{\bar{d}}$ with respect to \bar{F} , i.e. to compute a solution of the problem

$$\min_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w).$$
 (2.2)

In a pure batch approach, one applies a gradient-based method to the deterministic optimization problem (2.2). In this regime, a popular method is L-BFGS [47,57]. When n is large, it is natural to parallelize the computation of F and ∇F by assigning the evaluation of component functions f_i , or subsets of the component functions, to different processors. If this is done on a distributed computing platform, it is possible for some of the computational nodes, dedicated to a portion of the evaluation of the objective function and the gradient, to be slower than the rest. In this case, the contribution of the slow (or unresponsive) computational nodes could potentially be ignored given the stochastic nature of the true objective function (2.1). However, this leads to an inconsistency in the objective function and gradient at the beginning and at the end of the iteration, which can be detrimental to quasi-Newton methods, as mentioned above. Hence, we seek to develop a *fault-tolerant* version of the batch L-BFGS method that is capable of dealing with slow or unresponsive computational nodes.

A similar challenge arises in a *multi-batch* implementation of the L-BFGS method in which only a subset of the data is used to compute the gradient at every iteration. We consider a method in which the dataset is randomly divided into a number of batches and the minimization is performed with respect to a different batch at every iteration. Specifically, at the *k*th iteration the algorithm chooses $S_k \subset \{1, ..., n\}$, computes

$$F^{S_k}(w_k) = \frac{1}{|S_k|} \sum_{i \in S_k} f_i(w_k), \quad g_k^{S_k} = \nabla F^{S_k}(w_k) = \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(w_k), \quad (2.3)$$

and takes a step along the direction $-H_k g_k^{S_k}$, where H_k is an approximation to $\nabla^2 F(w_k)^{-1}$. Allowing the sample S_k to change freely at every iteration gives this approach flexibility and is beneficial to the learning process. Note, we refer to S_k as the sample of training points, even though S_k only indexes those points.

The case of unresponsive computational nodes and the multi-batch regime are similar in nature, i.e. the samples S_k used change from one iteration to the next. The main difference is that node failures create unpredictable changes to the samples, whereas a multi-batch method has control over the sample generation. In either case, the algorithm employs a stochastic approximation to the gradient and can no longer be considered deterministic. We must, however, distinguish our setting from that of the classical SG method, which employs small mini-batches. Our algorithm operates with much larger batches so that distributing the computation of the function and gradient is beneficial, and the compute time is not overwhelmed by communication costs. This gives rise to gradients with relatively small variance and justifies the use of a second-order method such as L-BFGS.

The robust implementation of the L-BFGS method, proposed in [6], is based on the following observation. The difficulties created by the use of a different sample S_k at each iteration can be circumvented if consecutive samples S_k and S_{k+1} have an overlap, so that

$$O_k = S_k \cap S_{k+1} \neq \emptyset.$$

One can then perform *stable quasi-Newton updating* by computing gradient differences based on this overlap, i.e. by defining

$$y_{k+1} = g_{k+1}^{O_k} - g_k^{O_k}, \quad s_{k+1} = w_{k+1} - w_k,$$
 (2.4)

in the notation given in (2.3), and using this correction pair (y_k, s_k) in the BFGS update. When the overlap set O_k is not too small, y_k is a useful approximation of the curvature of the objective function along the most recent displacement and leads to a productive quasi-Newton step. This observation is based on an important property of Newton-like methods, namely that there is much more freedom in choosing a Hessian approximation than in computing the gradient [4,10,16,49]. More specifically, a smaller sample O_k can be employed for updating the inverse Hessian approximation H_k , than for computing the batch gradient $g_k^{S_k}$ used to define the search direction $-H_k g_k^{S_k}$. In summary, by ensuring that unresponsive nodes do not constitute the vast majority of all compute nodes in a faulttolerant parallel implementation, or by exerting a small degree of control in the creation of the samples S_k in the multi-batch regime, one can design a robust method that naturally builds upon the fundamental properties of BFGS updating.

We should mention that a commonly used fix for ensuring stability of quasi-Newton updating in machine learning is to enforce gradient consistency [51,69], i.e. to use the same sample S_k to compute gradient evaluations at the beginning and the end of the iteration, at the cost of double gradient evaluations. Another popular remedy is to use the same batch S_k for multiple iterations [54], alleviating the gradient inconsistency problem at the price of slower convergence. In this paper, we assume that such sample consistency is not possible (the fault-tolerant case) or desirable (the multi-batch regime), and wish to design and analyse an implementation of L-BFGS that imposes minimal restrictions in the changes of the sample.

2.1. Specification of the method

Let us begin by considering a robust implementation of the multi-batch BFGS method and then consider its limited memory version. At the kth iteration, the multi-batch BFGS algorithm chooses a set $S_k \subset \{1, ..., n\}$ and computes a new iterate by the formula

$$w_{k+1} = w_k - \alpha_k H_k g_k^{S_k}, \tag{2.5}$$

where α_k is the step length, $g_k^{S_k}$ is the batch gradient (2.3) and H_k is the inverse BFGS Hessian matrix approximation that is updated at every iteration by means of the formula

$$H_{k+1} = V_k^{\mathrm{T}} H_k V_k + \rho_k s_k s_k^{\mathrm{T}}, \quad \rho_k = \frac{1}{y_k^{\mathrm{T}} s_k}, \quad V_k = 1 - \rho_k y_k s_k^{\mathrm{T}}.$$

To compute the correction vectors (s_k, y_k) , we determine the overlap set $O_k = S_k \cap S_{k+1}$ consisting of the samples that are common at the kth and k + 1st iterations. We define

$$g_k^{O_k} = \nabla F^{O_k}(w_k) = \frac{1}{|O_k|} \sum_{i \in O_k} \nabla f_i(w_k),$$

and compute the correction pairs as in (2.4). This completely specifies the algorithm, except for the choice of step length α_k ; in this paper we consider constant and diminishing step lengths.

In the limited memory version, the matrix H_k is defined at each iteration as the result of applying m BFGS updates to a multiple of the identity matrix, using a set of m correction pairs $\{s_i, y_i\}$ kept in storage. The memory parameter m is typically in the range 2–20. When computing the search direction (matrix–vector product) in (2.5) it is not necessary to form the dense matrix H_k since one can obtain this product via the two-loop recursion [58], using the m most recent correction pairs. Employing this mechanism, the search direction can be computed in $\mathcal{O}(d)$ floating operations, where d is the number of variables. After the step has been computed, the oldest pair (s_j, y_j) is discarded and the new curvature pair is stored.

A pseudo-code of the multi-batch limited-memory BFGS algorithm is given in Algorithm 1 and depends on several parameters. The parameter r denotes the fraction of samples in the dataset used to define the gradient, i.e. r = |S|/n. The parameter o denotes the length of overlap between consecutive samples and is defined as a fraction of the number of samples in a given batch S, i.e. o = |O|/|S|.

Algorithm 1 Multi-Batch L-BFGS

Input: w_0 (initial iterate), m (memory parameter), r (batch, fraction of n), o (overlap, fraction of batch), $k \leftarrow 0$ (iteration counter).

- 1: Create initial batch S₀
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Calculate the search direction $p_k = -H_k g_{\iota}^{S_k}$
- 4: Choose a step length $\alpha_k > 0$
- 5: Compute $w_{k+1} = w_k + \alpha_k p_k$
- 6: Create the next batch S_{k+1}
- 7: Compute the curvature pairs $s_{k+1} = w_{k+1} w_k$ and $y_{k+1} = g_{k+1}^{O_k} g_k^{O_k}$
- Replace the oldest pair (s_i, y_i) by s_{k+1}, y_{k+1} (if m pairs stored, else just add)
- 9: end for

2.2. Sample generation

The *fault-tolerant* and *multi-batch* settings differ in the way the samples S_k and O_k are formed (Lines 1 & 6, Algorithm 1). In the former, sampling is done automatically as a by-product of the nodes that fail to return a computation (gradient evaluation). In the latter, the samples S_k and O_k used at every iteration are purposefully changed in order to accelerate the learning process, thus sampling is user controlled. In either setting, independent sampling can be achieved, a necessary condition to establish convergence results. We first describe the *fault-tolerant* setting and then propose two sampling strategies that can be employed in the *multi-batch* setting. Let $T = \{(x^i, y^i), \text{ for } i = 1, \dots, n\}$ denote the training set.

Fault-Tolerant Sampling. Consider a distributed implementation in which slave nodes read the current iterate w_k from the master node, compute a local gradient on a subset of the dataset and send it back to the master node for aggregation in the calculation (2.3). Given a time (computational) budget, it is possible for some nodes to fail to return a result. The schematic in Figure 1(a) illustrates the gradient calculation across two iterations, k and

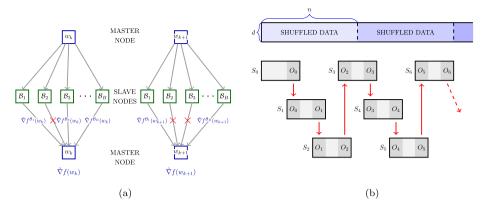


Figure 1. Sample and overlap formation for two adversarial situations: (a) fault-tolerant sampling and (b) multi-batch sampling.

k+1, in the presence of faults. Here, B is the total number of slave nodes, \mathcal{B}_i for $i=1,\ldots,B$ denote the batches of data that each slave node i receives $(T=\cup_i \mathcal{B}_i)$ and $\tilde{\nabla} f(w)$ is the gradient calculation using all nodes that responded within the preallocated time.

Let $\mathcal{J}_k \subset \{1, 2, \dots, B\}$ and $\mathcal{J}_{k+1} \subset \{1, 2, \dots, B\}$ be the set of indices of all nodes that returned a gradient at the kth and k+1st iterations, respectively. Using this notation $S_k = \bigcup_{j \in \mathcal{J}_k} \mathcal{B}_j$ and $S_{k+1} = \bigcup_{j \in \mathcal{J}_{k+1}} \mathcal{B}_j$, and we define $O_k = \bigcup_{j \in \mathcal{J}_k} \cap \mathcal{J}_{k+1} \mathcal{B}_j$. The simplest implementation in this setting preallocates the data on each compute node, requiring minimal data communication, i.e. only one data transfer. In this case, the samples S_k are independent if node failures occur randomly. On the other hand, if the same set of nodes fail, then the sample creation will be biased, which is harmful both in theory and in practice. One way to ensure independent sampling is to shuffle and redistribute the data to all nodes after every iteration or after a certain number of iterations.

Multi-Batch Sampling. In the *multi-batch* setting, several strategies can be employed, with the only restriction that consecutive batches S_k and S_{k+1} should, to a certain degree, overlap. We propose two sampling strategies: (i) overlaps O_k are forced in the sample creation process, (ii) the overlapping set O_k is subsampled from the batch S_k . In practice the two strategies perform on par, however, there is a subtle difference. In the second strategy, the batches are sampled independently, something that is not true for the strategy in which overlapping samples are forced. The independent sampling strategy of course does not come for free as this strategy incurs an increase in computational cost per iteration. However, as mentioned above, the overlapping set O_k need not be very large, and thus the increase in cost is negligible as compared to the rest of the computation. We now describe the two approaches in more detail.

Figure 1(b) illustrates the sample creation process in the first strategy. The dataset is shuffled and batches are generated by collecting subsets of the training set, in order. Every set (except S_0) is of the form $S_k = \{O_{k-1}, N_k, O_k\}$, where O_{k-1} and O_k are the overlapping samples with batches S_{k-1} and S_{k+1} respectively, and N_k are the samples that are unique to batch S_k . After each pass through the dataset, the samples are reshuffled, and the procedure described above is repeated. In our implementation, samples are drawn without

replacement, guaranteeing that after every epoch (pass over the whole dataset) all samples are used. This strategy has the advantage that it requires no extra computation in the evaluation of $g_k^{O_k}$ and $g_{k+1}^{O_k}$, but the samples S_k are not independent.

The second sampling strategy is simpler and requires less control. At every iteration k, a batch S_k is created by randomly selecting $|S_k|$ elements from $\{1, \ldots n\}$. The set O_k is then formed by randomly selecting $|O_k|$ elements from S_k (subsampling). Note, in this sampling strategy the samples O_k need not be in the set S_{k+1} . This strategy is slightly more expensive since $g_{k+1}^{O_k}$ requires extra computation, but if the overlap is small this cost is not significant.

3. Convergence analysis

In this section, we analyse the convergence properties of the multi-batch L-BFGS method (Algorithm 1) when applied to the minimization of *strongly convex* and *non-convex* objective functions, using a fixed step length strategy, as well as a diminishing step length strategy. We assume that the goal is to minimize the empirical risk F (2.2), but note that a similar analysis could be used to study the minimization of the expected risk (2.1).

3.1. Strongly convex case

Due to the stochastic nature of the multi-batch approach, every iteration of Algorithm 1 employs a gradient that contains errors that do not converge to zero. Therefore, by using a fixed step length strategy one cannot establish convergence to the optimal solution w^* , but only convergence to a neighbourhood of w^* [52]. Nevertheless, this result is of interest as it reflects the common practice of using a fixed step length and decreasing it only if the desired testing error has not been achieved. It also illustrates the tradeoffs that arise between the size of the batch and the step length.

In our analysis, we make the following assumptions about the objective function and the algorithm.

Assumption A: (1) *F is twice continuously differentiable.*

- (2) There exist positive constants $\hat{\lambda}$ and $\hat{\Lambda}$ such that $\hat{\lambda}I \leq \nabla^2 F^O(w) \leq \hat{\Lambda}I$ for all $w \in \mathbb{R}^d$ and all sets $O \subset \{1, 2, ..., n\}$ of length $|O| = o \cdot r \cdot n$.
- (3) There exist constants $\gamma \geq 0$ and $\eta \geq 1$ such that $\mathbb{E}_S[\|\nabla F^S(w)\|^2] \leq \gamma^2 + \eta \|\nabla F(w)\|^2$ for all $w \in \mathbb{R}^d$ and all sets $S \subset \{1, 2, ..., n\}$ of length $|S| = r \cdot n$.
- (4) The samples S are drawn independently and $\nabla F^S(w)$ is an unbiased estimator of the true gradient $\nabla F(w)$ for all $w \in \mathbb{R}^d$, i.e. $\mathbb{E}_S[\nabla F^S(w)] = \nabla F(w)$.

Note that Assumption A.2 implies that the entire Hessian $\nabla^2 F(w)$ also satisfies

$$\lambda I \leq \nabla^2 F(w) \leq \Lambda I, \quad \forall \ w \in \mathbb{R}^d,$$
 (3.1)

for some constants λ , $\Lambda > 0$. Assuming that every subsampled function $F^O(w)$ is strongly convex is not unreasonable as a regularization term is commonly added in practice when that is not the case.

We begin by showing that the inverse Hessian approximations H_k generated by the multi-batch L-BFGS method have eigenvalues that are uniformly bounded above and away from zero. The proof technique used is an adaptation of that in [18].

Lemma 3.1: If Assumptions A.1 and A.2 hold, there exist constants $0 < \mu_1 \le \mu_2$ such that the inverse Hessian approximations $\{H_k\}$ generated by Algorithm 1 satisfy

$$\mu_1 I \leq H_k \leq \mu_2 I$$
, for $k = 0, 1, 2, ...$

Proof: Instead of analysing the inverse Hessian approximation H_k , we study the Hessian approximation $B_k = H_k^{-1}$. In this case, the limited memory quasi-Newton updating formula is given as follows:

- (1) Set $B_k^{(0)} = (y_k^{\mathrm{T}} y_k / s_k^{\mathrm{T}} y_k) I$ and $\tilde{m} = \min\{k, m\}$, where m is the memory in L-BFGS.
- (2) For $i = 0, ..., \tilde{m} 1$ set $j = k \tilde{m} + 1 + i$ and compute

$$B_k^{(i+1)} = B_k^{(i)} - \frac{B_k^{(i)} s_j s_j^{\mathsf{T}} B_k^{(i)}}{s_j^{\mathsf{T}} B_k^{(i)} s_j} + \frac{y_j y_j^{\mathsf{T}}}{y_j^{\mathsf{T}} s_j}.$$

(3) Set $B_{k+1} = B_k^{(\tilde{m})}$.

The curvature pairs s_k and y_k are updated via the following formulae:

$$y_{k+1} = g_{k+1}^{O_k} - g_k^{O_k}, \quad s_{k+1} = w_{k+1} - w_k.$$
 (3.2)

A consequence of Assumption A.2 is that the eigenvalues of any sub-sampled Hessian (|O| samples) are bounded above and away from zero. Utilizing this fact, the convexity of component functions and the definitions (3.2), we have

$$y_k^{\mathrm{T}} s_k \ge \frac{1}{\hat{\Lambda}} \|y_k\|^2 \quad \Rightarrow \quad \frac{\|y_k\|^2}{y_k^{\mathrm{T}} s_k} \le \hat{\Lambda}.$$
 (3.3)

On the other hand, strong convexity of the subsampled functions, the consequence of Assumption A.2 and definitions (3.2), provides a lower bound,

$$y_k^{\mathrm{T}} s_k \le \frac{1}{\hat{\lambda}} \|y_k\|^2 \quad \Rightarrow \quad \frac{\|y_k\|^2}{y_k^{\mathrm{T}} s_k} \ge \hat{\lambda}.$$
 (3.4)

Combining the upper and lower bounds (3.3) and (3.4)

$$\hat{\lambda} \le \frac{\|y_k\|^2}{y_k^T s_k} \le \hat{\Lambda}. \tag{3.5}$$

The above proves that the eigenvalues of the matrices $B_k^{(0)} = (y_k^T y_k / s_k^T y_k) I$ at the start of the L-BFGS update cycles are bounded above and away from zero, for all k. We now use a Trace-Determinant argument to show that the eigenvalues of B_k are bounded above and away from zero. Let tr(B) and det(B) denote the trace and determinant of matrix B, respectively, and set $j_i = k - \tilde{m} + i$. The trace of the matrix B_{k+1} can be expressed as

$$\operatorname{tr}(B_{k+1}) = \operatorname{tr}\left(B_{k}^{(0)}\right) - \operatorname{tr}\sum_{i=1}^{\tilde{m}} \left(\frac{B_{k}^{(i-1)}s_{j_{i}}s_{j_{i}}^{T}B_{k}^{(i-1)}}{s_{j_{i}}^{T}B_{k}^{(i-1)}s_{j_{i}}}\right) + \operatorname{tr}\sum_{i=1}^{\tilde{m}} \frac{y_{j_{i}}y_{j_{i}}^{T}}{y_{j_{i}}^{T}s_{j_{i}}}$$

$$\leq \operatorname{tr}\left(B_{k}^{(0)}\right) + \sum_{i=1}^{\tilde{m}} \frac{\|y_{j_{i}}\|^{2}}{y_{j_{i}}^{T}s_{j_{i}}} \leq \operatorname{tr}\left(B_{k}^{(0)}\right) + \tilde{m}\hat{\Lambda} \leq C_{1}, \tag{3.6}$$

for some positive constant C_1 , where the inequalities above are due to (3.5), and the fact that the eigenvalues of the initial L-BFGS matrix $B_k^{(0)}$ are bounded above and away from zero.

Using a result due to [62], the determinant of the matrix B_{k+1} generated by the multibatch L-BFGS method can be expressed as

$$\det(B_{k+1}) = \det\left(B_{k}^{(0)}\right) \prod_{i=1}^{\tilde{m}} \frac{y_{j_{i}}^{T} s_{j_{i}}}{s_{j_{i}}^{T} B_{k}^{(i-1)} s_{j_{i}}} = \det\left(B_{k}^{(0)}\right) \prod_{i=1}^{\tilde{m}} \frac{y_{j_{i}}^{T} s_{j_{i}}}{s_{j_{i}}^{T} S_{j_{i}}} \frac{s_{j_{i}}^{T} s_{j_{i}}}{s_{j_{i}}^{T} B_{k}^{(i-1)} s_{j_{i}}}$$

$$\geq \det\left(B_{k}^{(0)}\right) \left(\frac{\hat{\lambda}}{C_{1}}\right)^{\tilde{m}} \geq C_{2}, \tag{3.7}$$

for some positive constant C_2 , where the above inequalities are due to the fact that the largest eigenvalue of $B_k^{(i)}$ is less than C_1 and Assumption A.2.

The trace (3.6) and determinant (3.7) inequalities derived above imply that the largest eigenvalues of all matrices B_k are bounded from above, uniformly, and that the smallest eigenvalues of all matrices B_k are bounded away from zero, uniformly.

Before we present the main theorem for the multi-batch L-BFGS method that employs constant step lengths, we state one more intermediate Lemma that bounds the distance between the function value at any point $w \in \mathbb{R}^d$ and the optimal function value with respect to the norm of the gradient squared.

Lemma 3.2: Let Assumptions A.1 and A.2 hold, and let $F^* = F(w^*)$, where w^* is the minimizer of F. Then, for all $w \in \mathbb{R}^d$,

$$2\lambda(F(w) - F^{\star}) \le \|\nabla F(w)\|^2.$$

Proof: As a result of Assumptions A.1, A.2 and (3.1), for all $x, y \in \mathbb{R}^d$

$$F(x) \le F(y) + \nabla F(y)^{\mathrm{T}} (x - y) + \frac{1}{2\lambda} \|\nabla F(y) - \nabla F(x)\|^{2};$$

see [53, Chapter 2.1.3]. Let x = w and $y = w^*$

$$F(w) \le F^* + \nabla F(w^*)^{\mathrm{T}} (w - w^*) + \frac{1}{2\lambda} \|\nabla F(w) - \nabla F(w^*)\|^2$$

$$\le F^* + \frac{1}{2\lambda} \|\nabla F(w)\|^2.$$

Re-arranging the above expression yields the desired result.

Utilizing Lemmas 3.1 and 3.2, we show that the multi-batch L-BFGS method with a constant step length converges linearly to a neighbourhood of the optimal solution.

Theorem 3.3: Suppose that Assumptions A.1–A.4 hold, and let $F^* = F(w^*)$, where w^* is the minimizer of F. Let $\{w_k\}$ be the iterates generated by Algorithm 1, where $\alpha_k = \alpha$ satisfies

$$0 < \alpha \le \frac{\mu_1}{\mu_2^2 \eta \lambda},\tag{3.8}$$

and w_0 is the starting point. Then for all $k \geq 0$,

$$\mathbb{E}\left[F(w_k) - F^{\star}\right] \leq (1 - \alpha \mu_1 \lambda)^k \left[F(w_0) - F^{\star}\right] + \left[1 - (1 - \alpha \mu_1 \lambda)^k\right] \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda}$$

$$\xrightarrow{k \to \infty} \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda}.$$

Proof: We have that

$$F(w_{k+1}) = F(w_k - \alpha H_k \nabla F^{S_k}(w_k))$$

$$\leq F(w_k) + \nabla F(w_k)^{\mathrm{T}}(-\alpha H_k \nabla F^{S_k}(w_k)) + \frac{\Lambda}{2} \|\alpha H_k \nabla F^{S_k}(w_k)\|^2$$

$$\leq F(w_k) - \alpha \nabla F(w_k)^{\mathrm{T}} H_k \nabla F^{S_k}(w_k) + \frac{\alpha^2 \mu_2^2 \Lambda}{2} \|\nabla F^{S_k}(w_k)\|^2, \tag{3.9}$$

where the first inequality arises due to (3.1), and the second inequality arises as a consequence of Lemma 3.1. Taking the expectation (over S_k) of Equation (3.9)

$$\mathbb{E}_{S_{k}}[F(w_{k+1})] \leq F(w_{k}) - \alpha \nabla F(w_{k})^{\mathrm{T}} H_{k} \nabla F(w_{k}) + \frac{\alpha^{2} \mu_{2}^{2} \Lambda}{2} \mathbb{E}_{S_{k}} \left[\| \nabla F^{S_{k}}(w_{k}) \|^{2} \right]$$

$$\leq F(w_{k}) - \alpha \mu_{1} \| \nabla F(w_{k}) \|^{2} + \frac{\alpha^{2} \mu_{2}^{2} \Lambda}{2} \left(\gamma^{2} + \eta \| \nabla F(w) \|^{2} \right)$$

$$= F(w_{k}) - \alpha \left(\mu_{1} - \frac{\alpha \mu_{2}^{2} \eta \Lambda}{2} \right) \| \nabla F(w_{k}) \|^{2} + \frac{\alpha^{2} \mu_{2}^{2} \gamma^{2} \Lambda}{2}, \qquad (3.10)$$

$$\leq F(w_{k}) - \frac{\alpha \mu_{1}}{2} \| \nabla F(w_{k}) \|^{2} + \frac{\alpha^{2} \mu_{2}^{2} \gamma^{2} \Lambda}{2}, \qquad (3.11)$$

where the first inequality makes use of Assumption A.4, the second inequality arises due to Lemma 3.1 and Assumption A.3, and the third inequality is due to the step length (3.8). Since F is λ -strongly convex, we can substitute the result of Lemma 3.2 in (3.11),

$$\mathbb{E}_{S_{k}}[F(w_{k+1})] \leq F(w_{k}) - \frac{\alpha\mu_{1}}{2} \|\nabla F(w_{k})\|^{2} + \frac{\alpha^{2}\mu_{2}^{2}\gamma^{2}\Lambda}{2}$$

$$\leq F(w_{k}) - \alpha\mu_{1}\lambda[F(w_{k}) - F^{*}] + \frac{\alpha^{2}\mu_{2}^{2}\gamma^{2}\Lambda}{2}.$$
(3.12)

Let

$$\phi_k = \mathbb{E}[F(w_k) - F^*],\tag{3.13}$$

where the expectation is over all batches $S_0, S_1, \ldots, S_{k-1}$ and all history starting with w_0 . Equation (3.12) can be expressed as

$$\phi_{k+1} \le (1 - \alpha \mu_1 \lambda) \phi_k + \frac{\alpha^2 \mu_2^2 \gamma^2 \Lambda}{2}. \tag{3.14}$$

Since the step length is chosen according to (3.8), we deduce that $0 \le (1 - \alpha \mu_1 \lambda) < 1$. Subtracting $\alpha \mu_2^2 \gamma^2 \Lambda / 2\mu_1 \lambda$ from either side of (3.14) yields

$$\phi_{k+1} - \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda} \le (1 - \alpha \mu_1 \lambda) \phi_k + \frac{\alpha^2 \mu_2^2 \gamma^2 \Lambda}{2} - \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda}$$

$$= (1 - \alpha \mu_1 \lambda) \left[\phi_k - \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda} \right]. \tag{3.15}$$

Recursive application of (3.15) yields

$$\phi_k - \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda} \le (1 - \alpha \mu_1 \lambda)^k \left[\phi_0 - \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda} \right],$$

and thus,

$$\phi_k \le (1 - \alpha \mu_1 \lambda)^k \phi_0 + \left[1 - (1 - \alpha \mu_1 \lambda)^k\right] \frac{\alpha \mu_2^2 \gamma^2 \Lambda}{2\mu_1 \lambda}.$$

Finally using the definition of ϕ_k (3.13) with the above expression yields the desired result

$$\mathbb{E}\left[F(w_k) - F^{\star}\right] \le (1 - \alpha\mu_1\lambda)^k \left[F(w_0) - F^{\star}\right] + \left[1 - (1 - \alpha\mu_1\lambda)^k\right] \frac{\alpha\mu_2^2\gamma^2\Lambda}{2\mu_1\lambda}. \quad \blacksquare$$

The bound provided by this theorem has two components: (i) a term decaying linearly to zero and (ii) a term identifying the neighbourhood of convergence. Note, a larger step length yields a more favourable constant in the linearly decaying term, at the cost of an increase in the size of the neighbourhood of convergence. We consider these tradeoffs further in Section 4, where we also note that larger batch sizes increase the opportunities for parallelism and improve the limiting accuracy in the solution, but slow down the learning abilities of the algorithm. We should also mention that unlike the first-order variant of the algorithm ($H_k = I$), the step length range prescribed by the multi-batch L-BFGS method depends on μ_1 and μ_2 , the smallest and largest eigenvalues of the L-BFGS Hessian approximation. In the worst case, the presence of the matrix H_k can make the limit in Theorem 3.3 significantly worse than that of the first-order variant if the update has been unfortunate and generates ill-conditioned matrices. We should note, however, such worst-case behaviour is almost never observed in practice for BFGS updating.

One can establish convergence of the multi-batch L-BFGS method to the optimal solution w^* by employing a sequence of step lengths $\{\alpha_k\}$ that converge to zero according to the schedule proposed by [67]. However, that provides only a sub-linear rate of convergence, which is of little interest in our context where large batches are employed and some type of linear convergence is expected. In this light, Theorem 3.3 is more relevant to practice; nonetheless, we state the theorem here for completeness, and, for brevity, refer the reader to [18, Theorem 3.2] for more details and the proof.

Theorem 3.4: Suppose that Assumptions A.1-A.4 hold, and let $F^* = F(w^*)$, where w^* is the minimizer of F. Let $\{w_k\}$ be the iterates generated by Algorithm 1 with

$$\alpha_k = \frac{\beta}{k+1}$$
 and $\beta > \frac{\mu_1}{\mu_2^2 \eta \lambda}$,

starting from w_0 . Then for all $k \geq 0$,

$$\mathbb{E}\left[F(w_k) - F^{\star}\right] \leq \frac{Q(\beta)}{k+1},$$

where $Q(\beta) = \max\{\mu_2^2 \beta^2 \gamma^2 \Lambda / 2(2\mu_1 \lambda \beta - 1), F(w_0) - F^*\}.$

Theorem 3.4 shows that, for strongly convex functions, the multi-batch L-BFGS method with an appropriate schedule of diminishing step lengths converges to the optimal solution at a sublinear rate. We should mention that another way to establish convergence to the optimal solution for the multi-batch L-BFGS method is to employ variance-reduced gradients [24,34,41,46,55,56,68]. In this setting, one can establish linear convergence to the optimal solution using constant step lengths. We defer the analysis of the multi-batch L-BFGS method that employs variance reduced gradients to a different study [2].

3.2. Non-convex case

The BFGS method is known to fail on non-convex problems [21,50]. Even for L-BFGS, which makes only a finite number of updates at each iteration, one cannot guarantee that the Hessian approximations have eigenvalues that are uniformly bounded above and away from zero. To establish convergence of the (L-)BFGS method in the non-convex setting, several techniques have been proposed including cautious updating [45], modified updating [44] and *damping* [63]. Here we employ a cautious strategy that is well suited to our particular algorithm; we skip the Hessian update, i.e. set $H_{k+1} = H_k$, if the curvature condition

$$y_k^{\mathrm{T}} s_k \ge \epsilon \|s_k\|^2 \tag{3.16}$$

is not satisfied, where $\epsilon > 0$ is a predetermined constant. On the other hand, sufficient curvature is guaranteed when the updates are not skipped. Using said mechanism, we show that the eigenvalues of the Hessian matrix approximations generated by the multi-batch L-BFGS method are bounded above and away from zero (Lemma 3.5). The analysis presented in this section is based on the following assumptions.

Assumption B: (1) *F is twice continuously differentiable.*

- (2) The gradients of F are Λ -Lipschitz continuous for all $w \in \mathbb{R}^d$; the gradients of F^S are Λ_S -Lipschitz continuous for all $w \in \mathbb{R}^d$ and all sets $S \subset \{1, 2, ..., n\}$ of length $|S| = r \cdot n$; and, the gradients of F^O are Λ_O -Lipschitz continuous for all $w \in \mathbb{R}^d$ and all sets $O \subset$ $\{1, 2, \ldots, n\}$ of length $|O| = o \cdot r \cdot n$.
- (3) The function F(w) is bounded below by a scalar \hat{F} .
- (4) There exist constants $\gamma \geq 0$ and $\eta \geq 1$ such that $\mathbb{E}_S[\|\nabla F^S(w)\|^2] \leq \gamma^2 + \eta \|\nabla F(w)\|^2$ for all $w \in \mathbb{R}^d$ and all sets $S \subset \{1, 2, ..., n\}$ of length $|S| = r \cdot n$.

(5) The samples S are drawn independently and $\nabla F^S(w)$ is an unbiased estimator of the true gradient $\nabla F(w)$ for all $w \in \mathbb{R}^d$, i.e. $\mathbb{E}_S[\nabla F^S(w)] = \nabla F(w)$.

Similar to the strongly convex case, we first show that the eigenvalues of the L-BFGS Hessian approximations are bounded above and away from zero.

Lemma 3.5: Suppose that Assumptions B.1 and B.2 hold. Let $\{H_k\}$ be the inverse Hessian approximations generated by Algorithm 1, with the modification that the inverse Hessian approximation update is performed only when (3.16) is satisfied, for some $\epsilon > 0$, else $H_{k+1} = H_k$. Then, there exist constants $0 < \mu_1 \le \mu_2$ such that

$$\mu_1 I \leq H_k \leq \mu_2 I$$
, for $k = 0, 1, 2, ...$

Proof: Similar to the proof of Lemma 3.1, we study the direct Hessian approximation $B_k = H_k^{-1}$. The curvature pairs s_k and y_k are updated via the following formulae:

$$y_{k+1} = g_{k+1}^{O_k} - g_k^{O_k}, \quad s_{k+1} = w_{k+1} - w_k.$$

The skipping mechanism (3.16) provides both an upper and lower bound on the quantity $||y_k||^2/y_k^T s_k$, which in turn ensures that the initial L-BFGS Hessian approximation is bounded above and away from zero. The lower bound is attained by repeated application of Cauchy's inequality to condition (3.16). We have from (3.16) that

$$\epsilon \|s_k\|^2 \le y_k^{\mathrm{T}} s_k \le \|y_k\| \|s_k\| \quad \Rightarrow \quad \|s_k\| \le \frac{1}{\epsilon} \|y_k\|,$$

from which it follows that

$$s_k^{\mathrm{T}} y_k \le \|s_k\| \|y_k\| \le \frac{1}{\epsilon} \|y_k\|^2 \quad \Rightarrow \quad \frac{\|y_k\|^2}{s_k^{\mathrm{T}} y_k} \ge \epsilon.$$
 (3.17)

The upper bound is attained by the Lipschitz continuity of sample gradients (Assumption B.2),

$$y_k^{\mathrm{T}} s_k \ge \epsilon \|s_k\|^2 \ge \epsilon \frac{\|y_k\|^2}{\Lambda_O^2} \quad \Rightarrow \quad \frac{\|y_k\|^2}{s_k^{\mathrm{T}} y_k} \le \frac{\Lambda_O^2}{\epsilon}.$$
 (3.18)

Combining (3.17) and (3.18),

$$\epsilon \le \frac{\|y_k\|^2}{y_k^{\mathrm{T}} s_k} \le \frac{\Lambda_O^2}{\epsilon}.$$

The above proves that the eigenvalues of the matrices $B_k^{(0)} = (y_k^T y_k / s_k^T y_k)I$ at the start of the L-BFGS update cycles are bounded above and away from zero, for all k. The rest of the proof follows the same Trace-Determinant argument as in the proof of Lemma 3.1, the only difference being that the last inequality in (3.7) comes as a result of the cautious update strategy.

We now follow the analysis in [13, Chapter 4] to establish the following result about the behaviour of the gradient norm for the multi-batch L-BFGS method with a cautious update strategy.

Theorem 3.6: Suppose that Assumptions B.1-B.5 hold. Let $\{w_k\}$ be the iterates generated by Algorithm 1, with the modification that the inverse Hessian approximation update is performed only when (3.16) is satisfied, for some $\epsilon > 0$, else $H_{k+1} = H_k$, where $\alpha_k = \alpha$ satisfies

$$0<\alpha\leq\frac{\mu_1}{\mu_2^2\eta\lambda},$$

and w_0 is the starting point. Then, for all $k \geq 0$,

$$\mathbb{E}\left[\frac{1}{\tau}\sum_{k=0}^{\tau-1}\|\nabla F(w_k)\|^2\right] \leq \frac{\alpha\mu_2^2\gamma^2\Lambda}{\mu_1} + \frac{2[F(w_0) - \hat{F}]}{\alpha\mu_1\tau}$$

$$\xrightarrow{\tau \to \infty} \frac{\alpha\mu_2^2\gamma^2\Lambda}{\mu_1}.$$

Proof: Starting with (3.11) and taking the expectation over all batches $S_0, S_1, \ldots, S_{k-1}$ and all history starting with w_0 yields

$$\phi_{k+1} - \phi_k \le -\frac{\alpha \mu_1}{2} \mathbb{E} \|\nabla F(w_k)\|^2 + \frac{\alpha^2 \mu_2^2 \gamma^2 \Lambda}{2},$$
 (3.19)

where $\phi_k = \mathbb{E}[F(w_k)]$. Summing (3.19) over the first τ iterations

$$\sum_{k=0}^{\tau-1} [\phi_{k+1} - \phi_k] \le -\frac{\alpha \mu_1}{2} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla F(w_k)\|^2 + \sum_{k=0}^{\tau-1} \frac{\alpha^2 \mu_2^2 \gamma^2 \Lambda}{2}$$

$$= -\frac{\alpha \mu_1}{2} \mathbb{E} \left[\sum_{k=0}^{\tau-1} \|\nabla F(w_k)\|^2 \right] + \frac{\alpha^2 \mu_2^2 \gamma^2 \Lambda \tau}{2}.$$
(3.20)

The left-hand side of the above inequality is a telescoping sum

$$\sum_{k=0}^{\tau-1} [\phi_{k+1} - \phi_k] = \phi_{\tau} - \phi_0 = \mathbb{E}[F(w_{\tau})] - F(w_0) \ge \hat{F} - F(w_0).$$

Substituting the above expression into (3.20) and rearranging terms

$$\mathbb{E}\left[\sum_{k=0}^{\tau-1} \|\nabla F(w_k)\|^2\right] \leq \frac{\alpha \mu_2^2 \gamma^2 \Lambda \tau}{\mu_1} + \frac{2[F(w_0) - \hat{F}]}{\alpha \mu_1}.$$

Dividing the above equation by τ completes the proof.

This result bounds the average norm of the gradient of F after the first $\tau - 1$ iterations and shows that, in expectation, the iterates spend increasingly more time in regions where the objective function has a small gradient. Under appropriate conditions, we can establish a convergence rate for the multi-batch L-BFGS method with cautious updates to a stationary point of F, similar to the results proven for the SG method [27]. For completeness, we state and prove the result.

Theorem 3.7: Suppose that Assumptions B.1–B.5 hold. Let $\{w_k\}$ be the iterates generated by Algorithm 1, with the modification that the inverse Hessian approximation update is performed only when (3.16) is satisfied, for some $\epsilon > 0$, else $H_{k+1} = H_k$. Let

$$\alpha_k = \alpha = \frac{c}{\sqrt{\tau}}, \quad c = \sqrt{\frac{2(F(w_0) - \hat{F})}{\mu_2^2 \gamma^2 \Lambda}}, \quad \delta(\alpha) = \mu_1 - \frac{\alpha \mu_2^2 \eta \Lambda}{2},$$

where $\tau > c^2 \mu_2^4 \eta^2 \Lambda^2 / 4 \mu_1^2$, and w_0 is the starting point. Then,

$$\min_{0 \le k \le \tau - 1} \mathbb{E}\left[\|\nabla F(w_k)\|^2 \right] \le \sqrt{\frac{2(F(w_0) - \hat{F})\mu_2^2 \gamma^2 \Lambda}{\delta(\alpha)^2 \tau}}.$$

Proof: Starting with (3.10), we have

$$\mathbb{E}_{S_{k}}[F(w_{k+1})] \leq F(w_{k}) - \alpha \left(\mu_{1} - \frac{\alpha \mu_{2}^{2} \eta \Lambda}{2}\right) \|\nabla F(w_{k})\|^{2} + \frac{\alpha^{2} \mu_{2}^{2} \gamma^{2} \Lambda}{2}$$

$$= F(w_{k}) - \alpha \delta(\alpha) \|\nabla F(w_{k})\|^{2} + \frac{\alpha^{2} \mu_{2}^{2} \gamma^{2} \Lambda}{2}, \qquad (3.21)$$

where $\delta(\alpha) = \mu_1 - \alpha \mu_2^2 \eta \Lambda/2$. We require that this quantity is greater than zero, $\delta(\alpha) > 0$; this discussion is deferred to the end of the proof.

Taking an expectation over all batches S_0, S_1, \dots, S_{k-1} and all history starting with w_0 , and rearranging (3.21) yields

$$\mathbb{E}\left[\|\nabla F(w_k)\|^2\right] \leq \frac{1}{\alpha\delta(\alpha)}\mathbb{E}[F(w_k) - F(w_{k+1})] + \frac{\alpha\mu_2^2\gamma^2\Lambda}{2\delta(\alpha)}.$$

Summing over $k = 0, ..., \tau - 1$ and dividing by τ

$$\min_{0 \le k \le \tau - 1} \mathbb{E}\left[\|\nabla F(w_k)\|^2\right] \le \frac{1}{\tau} \sum_{k=0}^{\tau - 1} \mathbb{E}\left[\|\nabla F(w_k)\|^2\right]$$

$$\le \frac{1}{\alpha\delta(\alpha)\tau} \mathbb{E}[F(w_0) - F(w_\tau)] + \frac{\alpha\mu_2^2\gamma^2\Lambda}{2\delta(\alpha)}$$

$$\le \frac{1}{\alpha\delta(\alpha)\tau} [F(w_0) - \hat{F}] + \frac{\alpha\mu_2^2\gamma^2\Lambda}{2\delta(\alpha)}$$

$$\le \frac{1}{\delta(\frac{c}{\sqrt{\tau}})c\sqrt{\tau}} [F(w_0) - \hat{F}] + \frac{c\mu_2^2\gamma^2\Lambda}{2\delta(\frac{c}{\sqrt{\tau}})\sqrt{\tau}}.$$

The first inequality holds because the minimum value is less than the average value, and the third inequality holds because $\hat{F} \leq F(x_{\tau})$ (Assumption *B*.3). The last expression comes as a result of using the definition of the step length, $\alpha = c/\sqrt{\tau}$. Setting

$$c = \sqrt{\frac{2(F(w_0) - \hat{F})}{\mu_2^2 \gamma^2 \Lambda}}$$
 (3.22)

yields the desired result.

We now comment on the quantity $\delta(\alpha)$ that first appears in (3.21), and that is required to be positive. To ensure that $\delta(\alpha) > 0$, the step length must satisfy, $\alpha < 2\mu_1/\mu_2^2\eta\Lambda$. Since the explicit form of the step length is $\alpha = c/\sqrt{\tau}$, where c is (3.22), we require that

$$\alpha = \frac{c}{\sqrt{\tau}} < \frac{2\mu_1}{\mu_2^2 \eta \Lambda}.\tag{3.23}$$

In order to ensure that (3.23) holds, we impose that

$$\tau > \frac{c^2 \mu_2^4 \eta^2 \Lambda^2}{4 \mu_1^2} = \frac{(F(w_0) - \hat{F}) \mu_2^2 \eta^2 \Lambda}{2 \gamma^2 \mu_1^2}.$$

The result of Theorem 3.7 establishes a sublinear rate of convergence, to a stationary point of F, for the multi-batch L-BFGS method on non-convex objective functions. The result is somewhat strange as it requires a-priori knowledge of τ , the total number of iteration. In practice, one would use $\alpha_k = 1/\sqrt{k}$, which would result in a $\mathcal{O}(1/\sqrt{k})$ convergence rate.

4. Numerical results

We present numerical experiments on several problems that arise in machine learning, such as logistic regression binary classification and neural network training, in order to evaluate the performance of the proposed multi-batch L-BFGS method. The experiments verify that the proposed method is robust, competitive and achieves a good balance between computation and communication in the distributed setting. In Section 4.1, we evaluate the performance of the multi-batch L-BFGS method on binary classification tasks in both the multi-batch and fault-tolerant settings. In Section 4.2, we demonstrate the performance of the multi-batch L-BFGS method on neural network training tasks and compare against some of the state-of-the-art methods. Finally, in Section 4.3, we illustrate the strong and weak scaling properties of the multi-batch L-BFGS method.

4.1. Logistic regression

In this section, we focus on logistic regression problems; the optimization problem can be stated as

$$\min_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-y^i (w^T x^i)} \right) + \frac{\sigma}{2} ||w||^2,$$

where $(x^i, y^i)_{i=1}^n$ denote the training examples and $\sigma = 1/n$ is the regularization parameter. We present numerical results that evaluate the performance of the proposed robust multi-batch L-BFGS scheme (Algorithm 1) in both the multi-batch (Figure 2) and fault tolerant (Figure 3) settings, on the webspam dataset. We compare our proposed method (Robust L-BFGS) against three methods: (i) multi-batch L-BFGS without enforcing sample consistency (L-BFGS), where gradient differences are computed using different samples, i.e. $y_k = g_{k+1}^{S_{k+1}} - g_k^{S_k}$; (ii) multi-batch gradient descent (Gradient Descent), which is

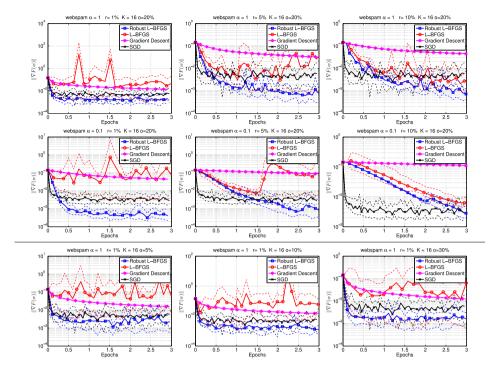


Figure 2. webspam dataset. Comparison of robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing sample consistency), gradient descent (multi-batch gradient method) and SGD. Top part: We used $\alpha \in \{1, 0.1\}$, $r \in \{1\%, 5\%, 10\%\}$ and o = 20%. Bottom part: We used $\alpha = 1$, r = 1% and $o \in \{1, 0.1\}$, $r \in \{1\%, 5\%, 10\%\}$ and $o \in \{1, 0.1\}$, $o \in \{1, 0.1\}$, o{5%, 10%, 30%}. Solid lines show average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

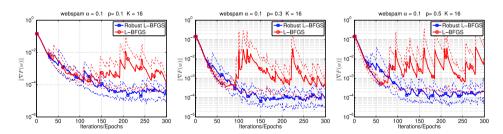


Figure 3. webspam dataset. Comparison of robust L-BFGS and L-BFGS in the presence of faults. We used $\alpha = 0.1$ and $p \in \{0.1, 0.3, 0.5\}$. Solid lines show average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16 MPI processes.

obtained by setting $H_k = I$ in Algorithm 1 and (iii) serial SGD (SGD), where at every iteration one sample is used to compute the gradient. We run each method with 10 different random seeds, and, where applicable, report results for different batch (r) and overlap (o) sizes. In Figures 2 and 3, we show the evolution of the norm of the gradient in terms of epochs.

In the multi-batch setting, the proposed method is more stable than the standard L-BFGS method; this is especially noticeable when r is small. On the other hand, serial SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate, at the cost of *n* communications per epoch versus 1/r(1-o) communications per epoch. Figure 2 also indicates that the robust L-BFGS method is not too sensitive to the size of the overlap. Similar behaviour was observed on other datasets, in regimes where $r \cdot o$ was not too small, see [3, Section A.1].

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in the presence of faults. In these experiments, p denotes the probability that a single node (MPI process) will not return a gradient evaluated on local data within a given time budget. We illustrate the performance of the methods for $\alpha = 0.1$ and $p \in \{0.1, 0.3, 0.5\}$. We observe that the robust implementation is not affected much by the failure probability p. Similar behaviour was observed on other datasets, see [3, Section A.2].

4.2. Neural networks

In this section, we study the performance of the multi-batch L-BFGS method² on Neural Network tasks, on the MNIST and CIFAR10/CIFAR100 datasets.³ Table 1 summarizes the network architectures that we used, see [3, Section B] for more details. The first problem is convex; all other problems are non-convex.

We implemented our algorithm in PyTorch [59] and compare against popular and readily available algorithms: (i) SGD [67] and (ii) Adam [39]. We denote our proposed method as LBFGS in the figures in this section. Note, we implemented our method with the cautious updating strategy, and for each method, we conducted a grid search to find the best learning rate $\alpha \in \{2^0, 2^{-1}, \dots, 2^{-10}\}$, and also investigated the effect of different batch sizes $|S| \in \{50, 100, 200, 500, 1000, 2000, 4000\}$; see [3, Section B] for detailed experiments with all batch sizes. For the multi-batch L-BFGS method, we also investigated the effect of history length $m \in \{1, 2, 5, 10, 20\}$. The overlap used in our proposed method was 20% of the batch, o = 0.20.

The authors in [37] observed that the widely used Barzilai-Borwein-type scaling $(s_k^{\mathrm{T}} y_k / y_k^{\mathrm{T}} y_k)I$ of the initial Hessian approximation may lead to quasi-Newton updates that are not stable when small batch sizes are employed, especially for deep neural training tasks, and as such propose an Agadrad-like scaling of the initial BFGS matrix. To obviate this instability, we implement a variant of the multi-batch L-BFGS method (LBFGS2) in which we scale the initial Hessian approximations as αI . We ran experiments with both scaling strategies and the overall results were similar. Therefore, in the figures in this section we only show results for the latter strategy.

Table 1. Structure of neural networks.

Network	Туре	# of layers	d	Ref.
MNIST MLC	fully connected (FC)	1	7.8 k	[43]
MNIST DNN (SoftPlus)	conv+FC	4	1.1 M	[64]
MNIST DNN (ReLU)	conv + FC	4	1.1 M	[64]
CIFAR10 LeNet	conv + FC	5	62.0 k	[43]
CIFAR10 VGG11	conv+batchNorm+FC	29	9.2 M	[71]
CIFAR100 VGG11	conv+batchNorm+FC	29	9.2 M	[71]

MLC, multiclass linear classifier.

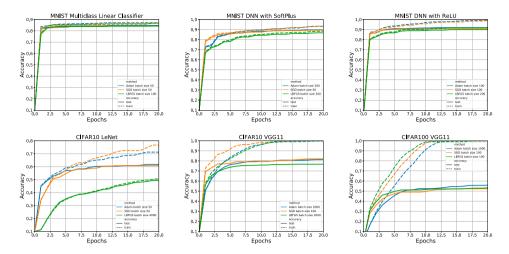


Figure 4. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing accuracy for the best parameter setting for each method and problem. Top right: MNIST multiclass linear classifier; top middle: MNIST DNN (SoftPlus); top right: MNIST DNN (ReLU); bottom left: CIFAR10 LeNet; bottom middle: CIFAR10 VGG11; bottom right: CIFAR100 VGG11.

Figure 4 illustrates the evolution of the running maximum of the training accuracy (dashed lines) and testing accuracy (solid lines) for the best parameter settings for each method over the first 20 epochs of training. By best parameter settings, we mean the run that achieved the highest training accuracy within 20 epochs. One can make several observations. First, it appears that the multi-batch L-BFGS method is competitive with the first-order methods on all training problems, except for CIFAR10 LeNet, in terms of both training and testing accuracy. Second, for half of the problems (three out of six), the best runs of the multi-batch L-BFGS method use larger batch sizes than the first-order methods. Of course, this benefit is not as clear on the neural network training problems as it is in the logistic regression problems. Third, the benefits of incorporating second-order information are not as apparent in these non-convex problems as compared to the problems presented in Section 4.1. We attribute this to two things: (i) non-convex problems are hard and (ii) quasi-Newton methods are better in capturing curvature information for convex problems.

We now investigate the effect of the batch size. In Figure 5, we show the evolution of the running maximum of the training/testing accuracy for different batch sizes $|S| \in \{50, 500, 4000\}$ for three of the problems. For a complete set of results, see [3, Section B]. Overall, one can observe that for small batch sizes, the multi-batch L-BFGS variants perform worse than the first-order methods. However, when large batches are employed (a regime that is favourable for GPU computing), the multi-batch L-BFGS method performs on par with the other methods. Moreover, it appears that on several problems the performance of the multi-batch L-BFGS method is less affected by the size of the batch, i.e. the variability in the final training and testing error (after 20 epochs) in terms of batch size is smaller for the multi-batch L-BFGS method than for the stochastic first-order methods, see also [3, Section B].

In order to understand why the multi-batch L-BFGS method does not perform well for small batches, we looked at two diagnostic measures: (i) the angle between the true gradient

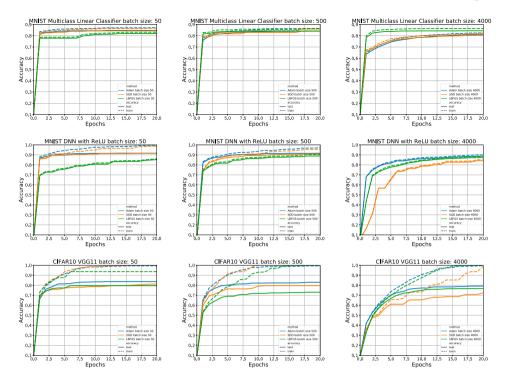


Figure 5. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing accuracy for different batch sizes ($|S| \in \{50, 500, 4000\}$). Top row: MNIST multiclass linear classifier; middle row: MNIST DNN (ReLU); bottom row: CIFAR10 VGG11.

curvature vector y_d and subsampled gradient curvature vector y_s ($\langle y_s, y_d \rangle / \|y_s\| \|y_d\|$) and (ii) the ratio of subsampled gradient curvature vector to true gradient curvature vector (y_s/y_d) . These measures indicate how informative the curvature information captured by the multi-batch L-BFGS method really is. Values close to 1 (dashed red lines) are ideal for both measures. We chose three different points (the starting point, a point after 3 epochs of Adam, and a point after 10 epochs of Adam). From those points, we took a gradient descent step with sufficiently small step length and computed the true gradient curvature vector (y_d) . We also computed 100 different stochastic variants of the gradient curvature vector (y_s) using different batch sizes ($|S| \in \{50, 100, 200, 500, 1000, 2000, 4000\}$) and calculated the values of the two metrics. We illustrate the results in Figure 6, see [3, Section B] for more results. Several observations can be drawn from this figure. First, not surprisingly, the metrics improve (get closer to 1) as the batch size increases. Second, for the convex case, the metrics perform as expected both close and far from the solution; as a result (sufficiently) good curvature information is captured and the method performs well. On the other hand, for the non-convex problems, the metrics indicate that, especially for small batch sizes, the curvature information captured can be terrible.

We should note that using a large batch size is not a bottleneck for current high performance computing hardware, on the contrary, using small batch sizes leads to under utilization of computational hardware and in fact hinders the ability to parallelize the methods. Figure 7 illustrates this phenomenon; we show the average computational time of a gradient evaluation (over 1000 evaluations) for different batch sizes ranging from 1 to 4096

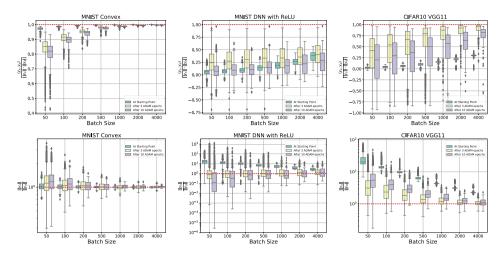


Figure 6. Multi-batch L-BFGS diagnostic metrics for different batch sizes $|S| \in \{50, 100, 200, 500, 1000, 2000, 4000\}$. Top row: angle between the true gradient curvature vector y_d and subsampled gradient curvature vector y_s ($\langle y_s, y_d \rangle / \|y_s\| \|y_d\|$); bottom row: ratio of subsampled gradient curvature vector (y_s/y_d). Left column: MNIST multiclass linear classifier; middle column: MNIST DNN (ReLU); right column: CIFAR10 VGG11.

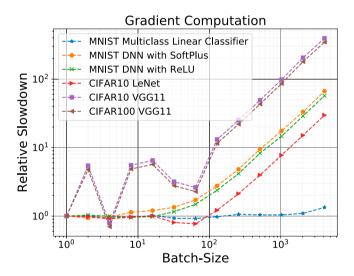


Figure 7. Relative slow down of computational time to compute gradients for different batch sizes compared to the computational time to compute gradients with batch size 1.

relative to the computational time of the computation of the gradient using a single data point. The computation was performed on an NVIDIA Tesla K80 GPU using PyTorch. It is clear that for the *Multiclass Linear classification* task, the compute time of a single gradient is roughly the same as the compute time of a gradient based on a batch of size 1024, whereas for the larger training tasks, the compute time of the gradients appear constant up to batch sizes of roughly 128. We should note however that there is a risk of decreased generalization when increasing the batch size, unless other strategies such as modifying the step size or regularization are used, see e.g. [31,38].

4.3. Scaling of the multi-batch L-BFGS implementation

In this section, we study the strong and weak scaling properties of the robust multi-batch L-BFGS method on artificial data. For various values of batch size (r) and nodes (K), we measure the time needed to compute a gradient (Gradient) and the time needed to compute and communicate the gradient (Gradient+C), as well as the time needed to compute the L-BFGS direction (L-BFGS) and the associated communication overhead (L-BFGS+C). The function of which we are computing the gradient is logistic regression. The L-BFGS direction is computed using the Vector-Free L-BFGS implementation [19]. We should note that the time to compute the gradient, which of course is required for computing the L-BFGS direction, is not included in L-BFGS and L-BFGS+C. We report the extra time to compute the L-BFGS step, after having computed the gradient. Thus the goal of this section is to show that the time needed to compute the L-BFGS direction is insignificant compared to the cost of computing the gradient, which is needed in any case to run first-order methods.

Strong scaling

Figure 8 depicts the strong scaling properties of the multi-batch L-BFGS method, for different batch sizes (r) and nodes (K = 1, 2, ..., 128). For this task, we generate a dataset with $n = 10^7$ samples and $d = 10^4$ dimensions, where each sample has 160 randomly chosen non-zero elements (dataset size 24 GB). One can observe that as the number of nodes (K) is increased, the compute times for the gradient and the L-BFGS direction decrease. However, when communication time is considered, the combined cost increases slightly as K is increased. Notice that for large K, even when r = 10% (i.e. 10% of all samples processed in one iteration, ~ 18 MB of data), the amount of local work is not sufficient to overcome the communication cost.

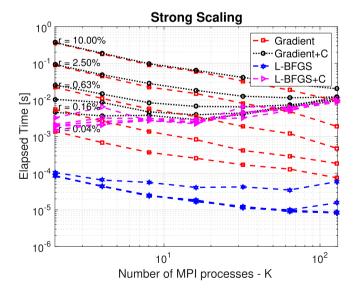


Figure 8. Strong scaling of robust multi-batch L-BFGS on a problem with artificial data, $n = 10^7$ and $d = 10^4$. Each sample has 160 non-zero elements (dataset size 24 GB).

Weak scaling – fixed problem dimension, increasing data size

In order to illustrate the weak scaling properties of the algorithm, we generate a data matrix $X \in \mathbb{R}^{n \times d}$ ($n = 10^7$, $d = 10^4$) and compute the gradient and the L-BFGS direction on a shared cluster with different number of MPI processes (K = 1, 2, ..., 128). Each sample has $10 \cdot K$ non-zero elements, thus for any K the size of local problem is roughly 1.5GB (for K = 128 size of data 192GB). Effectively, the dataset size (n) is held fixed, but the sparsity of the data decreases as more MPI processes are used. The compute time for the gradient is almost constant, this is because the amount of work per MPI process (rank) is almost identical, see Figure 9. On the other hand, because we are using a Vector-Free L-BFGS implementation [19] for computing the L-BFGS direction, the amount of time needed for each node to compute the L-BFGS direction decreases as K is increased. However, increasing K does lead to larger communication overhead, and as such the overall time needed to compute and communicate the L-BFGS direction increases slightly as K is increased. For K = 128 (192GB of data) and K = 100, almost 20 GB of data are processed per iteration in less than 0.1 seconds, which implies that one epoch would take around 1 second.

Increasing problem dimension, fixed data size and K

In this experiment, we investigate the effect of a change in the dimension (d) of the problem on the computation of the gradient and the L-BFGS direction. We fix the size of data (29GB) and the number of MPI processes (K=8), and generate data with $n=10^7$ samples, where each sample has 200 non-zero elements. Figure 10 shows that increasing the dimension d has a mild effect on the computation time of the gradient, while the effect on the time needed to compute the L-BFGS direction is more apparent. However, if communication time is taken into consideration, the time required for the gradient computation and the L-BFGS direction computation increase as d is increased. We should note that

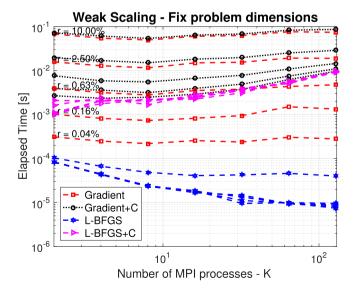


Figure 9. Weak scaling of robust multi-batch L-BFGS on a problem with artificial data, $n = 10^7$ and $d = 10^4$. Each sample has $10 \cdot K$ non-zero elements (size of local problem 1.5 GB).

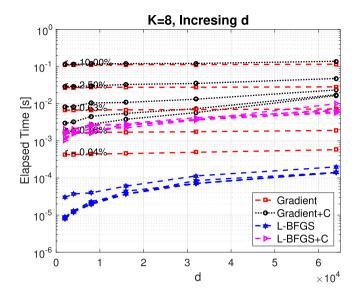


Figure 10. Scaling of robust multi-batch L-BFGS on a problem with artificial data; $n = 10^7$, increasing d and K = 8 MPI processes. Each sample had 200 non-zero elements (dataset size 29 GB).

the results presented in Figure 10 are not surprising; there is minimal change in performance (in terms of the gradient computation) as dimension increases, since the number of non-zero elements is fixed and sparse matrix operations are employed.

5. Final remarks

In this paper, we assumed that sample consistency is not possible (*fault-tolerant* setting) or desirable (*multi-batch* setting), and described a novel and robust variant of the L-BFGS method designed to deal with two adversarial situations. The success of the algorithm relies on the fact that gradient differences need not be computed on the full batch, rather a small subset can be used alleviating the need for double function evaluations while still maintaining useful curvature information. The method enforces a small degree of control in the sampling process and avoids the pitfalls of using inconsistent gradient differences by performing quasi-Newton updating on the overlap between consecutive samples.

Our numerical results indicate that provided the overlap is not too small, the proposed method is efficient in practice on machine learning tasks such as binary classification logistic regression and neural network training. The experiments presented in this paper show that the empirical performance of the method matches that predicted by the theory for both strongly convex and non-convex functions. Specifically, in the strongly convex case the multi-batch L-BFGS method with a constant step length converges to a neighbourhood of the solution at a linear rate, and in the non-convex case the iterates produced by the multi-batch L-BFGS method converge to a neighbourhood of a stationary point.

Of course, the development, both theoretical and practical, of SQN methods is far from complete, and there are many interesting directions that can and should be investigated. Theoretical analysis that would suggest the batch size and overlap size would be of great interest in practice. Moreover, an investigation of the multi-batch L-BFGS method that

employs variance reduced gradients in lieu of the stochastic gradients could have both theoretical and practical advantages. Finally, a stochastic line search that could work in conjunction with the multi-batch L-BFGS method would be novel both algorithmically and theoretically, and would most probably make the method even more competitive in practice.

Notes

- 1. LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
- 2. Code available at https://github.com/OptMLGroup/Multi-Batch L-BFGS.
- 3. MNIST available at http://yann.lecun.com/exdb/mnist/. CIFAR10/CIFAR100 available at https://www.cs.toronto.edu/~kriz/cifar.html.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partially supported by DARPA Lagrange award HR- 001117S0039 and U.S. National Science Foundation, under award numbers NSF:CCF:1618717, NSF:CMMI:1663256 and NSF:CCF:1740796.

ORCID

Albert S. Berahas http://orcid.org/0000-0002-2371-9398 *Martin Takáč* http://orcid.org/0000-0001-7455-2025

References

- [1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, A reliable effective terascale linear learning system, J. Mach. Learn. Res. 15 (2014), pp. 1111-1133.
- [2] A.S. Berahas and M. Takáč, A multi-batch L-BFGS method with variance-reduced gradients: Theory and experiments, preprint (2017). Available at arXiv.
- [3] A.S. Berahas and M. Takáč, A robust multi-batch L-BFGS method for machine learning: Supplementary materials (2019).
- [4] A.S. Berahas, R. Bollapragada, and J. Nocedal, An investigation of Newton-sketch and subsampled Newton methods, arXiv:1705.06211 (2017).
- [5] A.S. Berahas, M. Jahani, and M. Takáč, Quasi-Newton methods for deep learning: Forget the past, just sample, preprint (2019). Available at arXiv:1901.09997.
- [6] A.S. Berahas, J. Nocedal, and M. Takáč, A multi-batch L-BFGS method for machine learning, Advances in Neural Information Processing Systems 29, 2016, pp. 1055–1063.
- [7] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Vol. 23, Prentice Hall, Englewood Cliffs, NJ, 1989.
- [8] R. Bollapragada, D. Mudigere, J. Nocedal, H.J.M. Shi, and P.T.P. Tang, A progressive batching L-BFGS method for machine learning, Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 619–628.
- [9] R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for stochastic optimization, SIAM J. Optim. 28 (2018), pp. 3312-3343.
- [10] R. Bollapragada, R.H. Byrd, and J. Nocedal, Exact and inexact subsampled newton methods for optimization, IMA J. Numer. Anal. 39 (2018), pp. 545-578.
- [11] A. Bordes, L. Bottou, and P. Gallinari, SGD-QN: careful quasi-Newton stochastic gradient descent, J. Mach. Learn. Res. 10 (2009), pp. 1737-1754.

- [12] L. Bottou and Y. Le Cun, Large scale online learning, Advances in Neural Information Processing Systems 16, 2003, pp. 217-224.
- [13] L. Bottou, F.E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018), pp. 223-311.
- [14] O. Bousquet and L. Bottou, The tradeoffs of large scale learning, Advances in Neural Information Processing Systems 20, 2007, pp. 161–168.
- [15] C.G. Broyden, Quasi-Newton methods and their application to function minimisation, Math. Comput. 21 (1967), pp. 368-381.
- [16] R.H. Byrd, G.M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian information in optimization methods for machine learning, SIAM J. Optim. 21 (2011), pp. 977-995.
- [17] R.H. Byrd, G.M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization methods for machine learning, Math. Program. 134 (2012), pp. 127–155.
- [18] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for largescale optimization, SIAM J. Optim. 26 (2016), pp. 1008-1031.
- [19] W. Chen, Z. Wang, and J. Zhou, Large-scale L-BFGS using MapReduce, Advances in Neural Information Processing Systems, 2014, pp. 1332–1340.
- [20] F. Curtis, A self-correcting variable-metric algorithm for stochastic optimization, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 632–641.
- [21] Y.H. Dai, Convergence properties of the BFGS algorithm, SIAM J. Optim. 13 (2002), pp. 693-701.
- [22] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul, and P. Dubey, Distributed deep learning using synchronous stochastic gradient descent, preprint (2016). Available at arXiv:1602.06709.
- [23] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M. Mao, Marc'Aurelio Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng, et al., Large scale distributed deep networks, Advances in Neural Information Processing Systems 25, 2012, pp. 1223–1231.
- [24] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives, Advances in Neural Information Processing Systems 27, 2014, pp. 1646-1654.
- [25] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970), pp. 317–322.
- [26] M.P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data fitting, SIAM J. Sci. Comput. 34 (2012), pp. A1380-A1405.
- [27] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming, SIAM J. Optim. 23 (2013), pp. 2341–2368.
- [28] D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput. 24 (1970), pp. 23-26.
- [29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. Available at http://www.deeplearningbook.org.
- [30] R. Gower, D. Goldfarb, and P. Richtarik, Stochastic block BFGS: Squeezing more curvature out of data, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 1869-1878.
- [31] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, Accurate, large minibatch sgd: Training imagenet in 1 hour, preprint (2017). Available at arXiv:1706.02677.
- [32] M. Hardt, B. Recht, and Y. Singer, Train faster, generalize better: Stability of stochastic gradient descent, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 1225-1234.
- [33] X. He and M. Takáč, Dual free SDCA for empirical risk minimization with adaptive probabilities, OptML Workshop, Advances in Neural Information Processing Systems, arXiv:1510.06684,
- [34] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, Advances in Neural Information Processing Systems 26, 2013, pp. 315–323.

- [35] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Straggler mitigation in distributed optimization through data encoding, Advances in Neural Information Processing Systems 30, 2017, pp. 5434-5442.
- [36] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Redundancy techniques for straggler mitigation in distributed optimization and learning, preprint (2018). Available at arXiv:1803.05397.
- [37] N.S. Keskar and A.S. Berahas, adaON: An adaptive Quasi-Newton algorithm for training RNNs, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2016, pp. 1-16.
- [38] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P.T.P. Tang, On large-batch training for deep learning: Generalization gap and sharp minima, Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.
- [39] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014.
- [40] J. Konečný and P. Richtárik, Semi-stochastic gradient descent methods, Front. Appl. Math. Statist. 3 (2017), p. 9.
- [41] J. Konečný, J. Liu, P. Richtárik, and M. Takáč, Mini-batch semi-stochastic gradient descent in the proximal setting, IEEE J. Sel. Top. Signal Process. 10 (2016), pp. 242-255.
- [42] R. Leblond, F. Pedregosa, and S. Lacoste-Julien, ASAGA: Asynchronous parallel SAGA, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017, pp. 46-54.
- [43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998), pp. 2278-2324.
- [44] D.H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math. 129 (2001), pp. 15-35.
- [45] D.H. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim. 11 (2001), pp. 1054-1064.
- [46] H. Lin, J. Mairal, and Z. Harchaoui, A universal catalyst for first-order optimization, Advances in Neural Information Processing Systems 28, 2015, pp. 3384–3392.
- [47] D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1989), pp. 503-528.
- [48] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M.I. Jordan, Perturbed iterate analysis for asynchronous stochastic optimization, SIAM J. Optim. 27 (2017), pp. 2202-2229.
- [49] J. Martens, Deep learning via Hessian-free optimization, Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 735–742.
- [50] W.F. Mascarenhas, The BFGS method with exact line searches fails for non-convex objective functions, Math. Program. 99 (2004), pp. 49-61.
- [51] A. Mokhtari and A. Ribeiro, Global convergence of online limited memory BFGS, J. Mach. Learn. Res. 16 (2015), pp. 3151–3181.
- [52] A. Nedić and D. Bertsekas, Convergence rate of incremental subgradient algorithms, in Stochastic Optimization: Algorithms and Applications, S. Uryasev and P.M. Pardalos, eds., Vol. 54, Springer, Boston, MA, 2001, pp. 223–264.
- [53] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer Science & Business Media, Boston, MA, 2013.
- [54] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, and A.Y. Ng, On optimization methods for deep learning, Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 265-272.
- [55] L. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, SARAH: A novel method for machine learning problems using stochastic recursive gradient, Proceedings of the 34th International Conference on Machine Learning, 2017.
- [56] L.M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, Stochastic recursive gradient algorithm for nonconvex optimization, preprint (2017). Available at arXiv:1705.07261.
- [57] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp. 773-782.

- [58] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer, New York, 1999.
- [59] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic differentiation in pytorch (2017).
- [60] J. Pei, B. Cheng, X. Liu, P.M. Pardalos, and M. Kong, Single-machine and parallel-machine serialbatching scheduling problems with position-based learning effect and linear setup time, Ann. Oper. Res. 272 (2019), pp. 217-241.
- [61] J. Pei, J. Wei, B. Liao, X. Liu, and P.M. Pardalos, Two-agent scheduling on bounded parallelbatching machines with an aging effect of job-position-dependent, Ann. Oper. Res. (2019), pp. 1–33. Available at https://link.springer.com/article/10.1007/s10479-019-03160-y
- [62] M.J. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, Nonlinear Program. 9 (1976), pp. 53–72.
- [63] M.J. Powell, Algorithms for nonlinear constraints that use Lagrangian functions, Math. Program. 14 (1978), pp. 224–248.
- [64] Pytorch examples. Available at https://github.com/pytorch/examples/blob/master/mnist/main. py, accessed: 2019-03-29.
- [65] B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Advances in Neural Information Processing Systems 24, 2011, pp. 693–701.
- [66] S.J. Reddi, A. Hefny, S. Sra, B. Poczos, and A.J. Smola, On variance reduction in stochastic gradient descent and its asynchronous variants, Advances in Neural Information Processing Systems 28, 2015, pp. 2647-2655.
- [67] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951), pp. 400-407.
- [68] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient, Math. Program. 162 (2016), pp. 1–30.
- [69] N.N. Schraudolph, J. Yu, and S. Günter, A stochastic Quasi-Newton method for online convex optimization, Proceedings of the 10th International Conference on Artificial Intelligence and Statistics, Vol. 7, 2007, pp. 436-443.
- [70] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput. 24 (1970), pp. 647-656.
- [71] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint (2014). Available at arXiv:1409.1556.
- [72] M. Takáč, A. Bijral, P. Richtarik, and N. Srebro, Mini-batch primal and dual methods for SVMs, Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 1022-1030.
- [73] J. Tsitsiklis, D. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Automat. Contr. 31 (1986), pp. 803-812.
- [74] X. Wang, S. Ma, D. Goldfarb, and W. Liu, Stochastic quasi-newton methods for nonconvex stochastic optimization, SIAM J. Optim. 27 (2017), pp. 927–956.
- [75] Y. Zhang and X. Lin, DiSCO: Distributed optimization for self-concordant empirical loss, Proceedings of the 32th International Conference on Machine Learning, 2015, pp. 362–370.
- [76] M. Zinkevich, M. Weimer, L. Li, and A.J. Smola, Parallelized stochastic gradient descent, Advances in Neural Information Processing Systems 28, 2010, pp. 2595–2603.