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Abstract. We analyze how the amount of work dissipated by a fixed
nonequilibrium process depends on the initial distribution over states.
Specifically, we compare the amount of dissipation when the process is used
with some specified initial distribution to the minimal amount of dissipation
possible for any initial distribution. We show that the difference between those
two amounts of dissipation is given by a simple information-theoretic function
that depends only on the initial and final state distributions. Crucially, this
difference is independent of the details of the process relating those distributions.
We then consider how dissipation depends on the initial distribution for a
‘computer’, i.e. a nonequilibrium process whose dynamics over coarse-grained
macrostates implement some desired input-output map. We show that our
results still apply when stated in terms of distributions over the computer’s
coarse-grained macrostates. This can be viewed as a novel thermodynamic cost
of computation, reflecting changes in the distribution over inputs rather than
the logical dynamics of the computation.
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1. Introduction

The past few decades have seen great advances in nonequilibrium statistical phys-
ics [1-16], resulting in many novel predictions and experiments [17-19]. Some of the
most important results of this research have been powerful new tools for analyzing the
dissipated work (or ‘dissipation’ for short) in nonequilibrium processes. Dissipation is
the amount of work done on an evolving system that exceeds the theoretical minimal
amount needed to drive such a system from its initial to its final distribution [9, 11,
20-22]. Equivalently, it is proportional to the (irreversible) entropy production dur-
ing the course of the process, i.e. the total change in entropy of the system minus the
amount of entropy that flows from the heat bath to the system in the form of heat.
Several expressions for the amount of dissipation in any given process have been
derived by exploiting the detailed fluctuation theorems (DFTs) [5, 6, 23-25], typically
under the assumption of dynamics that obeys local detailed balance. These results
express the dissipation in terms of the Kullback—Leibler (KL) divergence [26, 27]
between the probability density over state trajectories occurring in the original pro-
cess and the probability density under a special ‘time-reversed’ version of the process.
However these results are impractical for quantifying dissipation in many cases of

https://doi.org/10.1088/1742-5468 /aaTeel 2


https://doi.org/10.1088/1742-5468/aa7ee1

Dependence of dissipation on the initial distribution over states

interest, since computing the KL divergence requires integration of a probability den-
sity over all possible trajectories.

Related research has investigated lower bounds on dissipation by studying opti-
mal processes. These are processes that achieve minimal dissipation subject to some
specified set of constraints [11, 20, 21]. For example, optimal processes have been
identified for transforming some desired initial Hamiltonian and state distribution into
a different Hamiltonian and state distribution under a finite-time constraint [28-30],
or while obeying a constraint on allowable work fluctuations [31]. Some authors have
also considered how changes to the initial distribution affect the work and dissipation
if the process is changed to be optimal for the new distribution [2, 3, 20]. Such research
is concerned with processes that minimize dissipation, and more generally with how
dissipation varies with changes to the process.

Here we consider a complementary problem, which to our knowledge has never been
previously analyzed. We suppose that there is a fixed process P, coupled to a heat
bath that is at a constant temperature. We then consider a very common real-world
scenario, in which this same process can be run with different initial distributions over
states. We ask, how does the the amount of work dissipated by P vary with changes
to the initial distribution? What is the maximal cost in extra dissipation that can arise
by using one initial distribution rather than another? How do these answers depend on
the details of the process P?

Surprisingly, we find that the dependence of dissipation on the initial distribuiton
has a simple information-theoretic form. Let ¢y be an initial distribution over the states
for which P dissipates the minimal amount of work. We prove that the dissipation
arising from using some arbitrary initial distribution ry is the dissipation arising from
using qo, plus the reduction of the Kullback-Leibler (KL) divergence between 7y and
qo from the beginning to the end of P. The additional dissipation incurred when P is
initialized with 7o # qo is independent of all intermediate details of how P changes the
initial distribution into the final one.

Our analysis provides a useful and novel tool for calculating dissipated work for a
given thermodynamic process run on a given initial distribution. For example, suppose
we design a process to be dissipationless (i.e. thermodynamically reversible) when run
with some initial state distribution. Our analysis can be used to calculate exactly how
much work would be dissipated if that process were run with some other state distri-
bution. As a demonstration appendix C, we consider a published model of Maxwell’s
demon [32], a device that extracts work from an incoming stream of bits, and compute
dissipation as a function of the distribution of bits.

More generally, consider a fixed process connected to a heat bath that is at a con-
stant temperature, which dissipates least work when prepared with some particular
initial distribution. For example, this might be a process in which a volume of gas
expands while pushing against a piston and lifting a weight. There will be some ‘opti-
mal’ initial distribution of the states of the gas which minimizes dissipated work. Our
results state how much more work will be dissipated when the gas is prepared with
some other initial distribution.

After deriving this result, we extend it to analyze dissipation in a physical computer.
More precisely, we suppose that there is a coarse-graining of the states of our system
into a set of macrostates. These macrostates are identified with logical values and the
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dynamics over the macrostates identified with the (possibly noisy) computation. The
initial distribution over the macrostates may reflect how a user of the computer initial-
izes its logical values. As before, we consider how the additional dissipation incurred
by a computer, above and beyond the minimum, depends on the initial macrostate
distribution. We show that the additional dissipation is still given by the drop in KL
divergence, only now stated in terms of distributions over the macrostates.

To illustrate the implications of this result for thermodynamics of computation,
suppose we construct a process that performs a given computation, and that achieves
zero dissipation for some initial distribution over its states (e.g. when employed by one
particular user of that computer). Our results quantify how much computer will dissi-
pate if it is instead initialized according to a different distribution (e.g. if the computer
is employed by some other user).

We emphasize that these results are equalities, not just bounds. Furthermore, our
results give dissipation in terms of a difference in two KL divergences, concerning initial
and final state distributions. Thus they differ fundamentally from previously derived
DFTs, which give dissipation in terms of a single KL divergence, concerning forward
and time-reversed trajectory distributions. Moreover, in contrast to such DFTs, our
results do not assume local detailed balance.

Our analysis of dissipated work should also be distinguished from earlier analyses
of reversible work, in particular analyses expressing reversible work as a reduction of
KL divergence between nonequilibrium and equilibrium distributions at initial and
final times plus the difference of equilibrium free energies [21]. Reversible work is the
work required to perform a given transformation using an optimal process, and can be
thermodynamically recovered by reversing the process. Dissipated work, on the other
hand, is work that is irreversibly lost as entropy production. Furthermore, in general
the KL divergences that arise in our analysis do not necessarily involve equilibrium
distributions.

There is one previously-known result that is a special case of our analysis: if a sys-
tem is prepared with some nonequilibrium distribution 7y and then undergoes a non-
driven process in which it fully relaxes to equilibrium, the dissipated work is equal to
the KL divergence between 7y and the equilibrium distribution [33]. Our analysis gen-
eralizes this earlier result significantly, allowing for processes that do not relax fully to
equilibrium. It also applies to processes that are driven by an external work reservoir,
in which the equilibrium changes over time, during which the system can remain arbi-
trarily far from equilibrium at all times.

2. Formal background

We consider a physical system with a countable set of microstates X that evolves
across a countable set of times t € {0, A7,2A7,...,1}, while in contact with a heat
bath at temperature 7. We use zg ; := (2o, Zar, ..., 21) to indicate a particular tra-
jectory through the system’s state space. The system may also be connected to a
work reservoir throughout its evolution, which causes the system’s Hamiltonian to
change with time. We indicate the trajectory through the space of Hamiltonians as
H()._l = (Ho, HAT, Ce 7H1).

https://doi.org/10.1088/1742-5468 /aaTeel 4
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Note that the units of time are arbitrary and A7 can be arbitrarily small (though
non-zero). Accordingly our results hold exactly no matter how long the process takes,
and in particular even in the quasi-static limit. The choice of countable state space and
discretized time is used to simplify analysis, in line with much of the literature [5, 14,
34, 35]. However, our approach should extend to continuous state space and continu-
ous time.

Write the distribution of the system’s state at t as p;(z), or equivalently p(z;). Due
to thermal fluctuations and driving by the work reservoir, the system undergoes a sto-
chastic dynamics, represented by a conditional distribution of trajectories given initial
states, p(zo.1|To) (we make no assumptions about whether this dynamics is first-order
Markovian or not). The conditional distribution over trajectories in turn induces a con-
ditional distribution of final states given initial states, p(z1|2o) =3 .  0uf0:P(20.1|%0);
which we sometimes refer to as a map that takes initial states zy to ﬁnal states z;.

We refer to a given pair of Hy ; and p(xg.1]|z9) as a (thermodynamic) process
operating on the system, indicated generically as P. Note that any process P can be
prepared with different initial distributions py, giving different trajectory probabilities
p(wo.1) = p(x0.1|70) po(wo)-

Given a sequence of Hamiltonians Hy i, the total work done on the system if it fol-
lows state trajectory xq ; is

W($0..1) = Z Ht+AT($t) - Ht(ift)-
te{0,Ar,..,1}

(1)
For an initial distribution py, the expected work across all trajectories is

(Wpo = Z po(o) p(zo.1]|r0) W (x0.1)-

Z0..1

Suppose we seek to drive the system from some particular (possibly non-equilibrium)
initial distribution pg to some final distribution p;, while changing the Hamiltonian from
H, to Hy. Define the non-equilibrium free energy [11] of a system with Hamiltonian H;
and distribution p(x) as

F (Hy,py) = <Ht>pt — KT - S(pe),

where S(p):=—>,p(z)Inp(zr) indicates Shannon entropy (in nats). (Note that F
is equal to the equilibrium free energy when p; is the Boltzmann distribution for
Hamiltonian H;.) For any process P that transforms ( py, Hy) — (p1, H1), expected work
is lower bounded by

<W>p0 2 f(prl) - f(H():pO) . (2)

This inequality reflects the modern understanding of the second law [9, 11, 21, 22].

The difference of non-equilibrium free energies is called the reversible work.
Reversible work is the portion of expected work that could be recovered from the heat
bath and system after the process finishes, by transforming the system from Hp,p;
back to Hy,po in a thermodynamically reversible manner (in this way completing a
thermodynamic cycle). Reversible work can be either positive or negative, depending
on Hy,po, H; and py.

https://doi.org/10.1088,/1742-5468 /aaTeel 5
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Dissipated work or simply dissipation is the portion of expected work that cannot
be thermodynamically recovered [11, 21, 33]. It is written as

Wa(po) :== (W)p, — [F(H1,p1) — F(Ho, po)] - 3)

The dissipation associated with a process is always non-negative, and it is zero iff the
process is thermodynamically reversible. (Dissipation should not to be confused with
the dissipated heat, which is the total energy transferred to the heat bath, nor with
expected total work minus the change in equilibrium free energies, which is also some-
times called dissipated work [33, 36, 37].)

Define Q(z¢) as the expected total heat transferred from the bath to the system
during the process if the system starts in z; [6]. By conservation of energy we can write
this as

Qo) := Y _ p(h.1lwo) (Hi(7h) — Ho(wo) — W (xf,1)),

!
To..1

so that the total expected heat transferred is (Q(Xo))p, = >_,, P(70)Q(70). This allows
us to rewrite dissipation as

Wal(po) = KT[S(p1) — S(po)] — (Q(X0))po, )

where pi(2') =Y, p(x1]|z0) po(xo) is the final state distribution when the process is
initialized with py. Thus, dissipation is proportional to the entropy change that does
not correspond to heat exchanged with the heat bath, which is called the (irreversible)
entropy production [9, 11, 38].

In the remainder of this paper we choose units so that &7 = 1.

3. Dissipation due to incorrect priors

Let ¢y be an initial distribution that achieves minimum dissipation for a given P,

= arg min .
qo0 gpo Wd(p()) (5)
We call ¢y the prior distribution for P (for reasons made clear below). We do not
assume that the prior distribution is unique.

While ¢ is an initial distribution that results in minimal dissipation, in general P
may be prepared with some initial distribution 7, which we call the environment dis-
tribution that need not equal ¢y. By definition,

Wd(’f'o) — Wd(qo) } 0.

We call this extra dissipation when using 1y rather than ¢y the incorrect prior dis-
sipation. Notice that if P achieves zero dissipation for some initial distribution, then
Wy(qo) = 0 and dissipation and incorrect prior dissipation are equivalent.

Several papers have shown that it is possible to design a process that implements
any given stochastic map p(z|x¢) with zero dissipation for any given initial distribu-
tion py [39—41]. Incorrect prior dissipation first appeared in these analyses: it was shown
that a particular type of process that implements a given stochastic map and achieves

https://doi.org/10.1088/1742-5468 /aaTeel 6
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zero dissipation for a particular ¢y will dissipate work when prepared with a different
initial distribution rg # ¢o. Here we generalize these previous analyses; the main result
of our paper is a simple expression for incorrect prior dissipation that applies to any
thermodynamic process.

To derive our main result, note that by definition, the prior ¢y minimizes the
differentiable function W, over the set of all valid probability distributions. We assume
that ¢y has full support, i.e. it is in the interior of the unit simplex. (This assumption
will often hold; appendix D presents one particular sufficient condition concerning
p(z1]xo).) Then, for any initial state distribution ry, the directional derivative at g
must obey

(1o — qo) - VWa(qo) = 0, (6)

where - indicates the dot product.
Next we use equation (4) to write the | X| components of VW,( po),

oW,
S ) = - L plalro)h (%jp()(xa)p(wa)) — 1] + [ p(ao) + 1] — Qo)
= — > plar]ae) Inpy (1) + In po(a) — Qo). (7)
Combining equations (7) and (4) lets us express the inner products as
90 - VWalqo) = S(q1) — S(q0) — (@)g = Walqo) (8)
o - VWa(qo) = C(r1llq1) — C(rollge) — (@) 9
= D(rillar) = Dirollao) + Wa(ro). @
where C(pllq) := =), p(x)Ing(x) is the cross-entropy function and D(p|q) =

> . p(x)In ‘;% = C(pllq) — S(p) is the Kullback-Leibler (KL) divergence [26].
Combining equations (6), (8) and (9) leads to our main result: incorrect prior dis-

sipation for any distribution ry is
Wa(ro) = Walgo) = D(rollgo) — D(r1llq1)- (10)

(See appendix A for an extension of this result for the case where all distributions
are restricted to a convex subset of the unit simplex.)

Recall that the KL divergence D(r||q) is an information-theoretic measure of the
distinguishability of distributions r and ¢ [26]. Thus, our main result states that incor-
rect prior dissipation measures the decrease in our ability to distinguish whether the
initial distribution was ¢y or 1y as the system evolves from ¢t = 0 to ¢t = 1. Formally, this
drop reflects the ‘contraction of KL divergence’ under the action of the map p(zy|zo)
[42, 43]. It is non-negative due to the KL data processing inequality [44, lemma 3.11].
(This is consistent with our main result, since incorrect prior dissipation measures extra
dissipation relative to the minimum possible.)

Interestingly, the contraction of KL divergence reflects the logical reversibility of
the map p(z1|zo). If p(z1]zo) specifies a logically-reversible map from z to z; (i.e. a per-
mutation over X), then incorrect prior dissipation is 0 for all rp. At the other extreme, if

https://doi.org/10.1088,/1742-5468 /aaTeel 7
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p(z1]xo) is an input-independent map, where changing 1 has no effect on the resultant
distribution over z;, then D(r||¢;) = 0 and incorrect prior dissipation reaches its maxi-
mum value of D(ry||qo). In addition, in this case the prior distribution that minimizes
Wy(.) is unique, since Wy(ro) = D(rol|qo) = 0 iff 70 = go. More generally, in appendix E
we prove that if and only if p (z1]zo) is not a logically reversible map, then there must
exist an 1y such that Wy(rg) — Wy(qe) > 0.

For another perspective on equation (10), note that by the chain rule for KL diver-
gence [26, equation (2.67)],

D(r(Xo, X1)[lg(Xo, X1)) = D(rollqo) + D(r(X1|Xo)[lg(X1]Xo)) "
— D(rllar) + D(r(Xo|X1) | a(Xo|X1)). (1

However, since r(z1|xg) = q(x1]xo) = p(x1]|z0), D(r(X1|Xo)|l¢(X1]/Xo)) = 0. Thus, equa-
tion (10) is equivalent to

Wa(ro) — Wa(qo) = D(r(Xo|X1)[|q(Xo| X1)).

(See also [41].) In this expression r(zg|z1) and ¢(zg|x;) are Bayesian posterior prob-
abilities of the initial state conditioned on the final state, for the assumed priors 1y and
qo respectively, and the shared likelihood function p(zi|xg). (This Bayesian formulation
of equation (10) is why we refer to the initial distribution ¢y as a ‘prior’.)

In appendix A, we show that if ¢y is not assumed to have full support, then the
RHS of (10) becomes a lower bound (rather than an equality) on the incorrect prior
dissipation.

4. Discussion of incorrect prior dissipation

In this section, we present some important implications and generalizations of our main
result, as well as some caveats that are important to keep in mind.

Note that a thermodynamic process P is specified by a large set of real numbers: the
values of the Hamiltonian H, ; and the conditional distribution p(zq_1|zo). (In fact, in
the A7 — 0 limit this set is infinite.) However, by equation (4), the dissipation function
Wy(-) can be specified using only |X|? real numbers: the | X| values of Q(x() and the
| X|(]X] — 1) values of p(z1|zo). Unfortunately, the values Q(z() may be impractical to
compute for a given P, since they involve expectations over a very large set of trajec-
tories. Indeed, the distribution over trajectories may not even be fully specified if some
details of the process are unknown.

Equation (10) shows that Wy(-) can alternatively be parameterized by the |X|?
numbers: the value of Wy(q), the | X| — 1 values of ¢, and the | X|(]X| — 1) values of
p(z1]xo). This also means that, perhaps surprisingly, calculating the amount of dis-
sipation above the minimum possible only requires knowledge of the stochastic map
p(z1]zo) and a minimizer ¢, and does not depend on any specifics of the intermediate
process. Given some initial distribution 7y, all physical details of how P manages to
transform ¢y — ¢1 and rq — r; are irrelevant for evaluating incorrect prior dissipation.

It is important to emphasize that our analysis above does not specify how to find the
minimizer ¢y. In some cases, it may be possible to find ¢y via numerical minimization of

https://doi.org/10.1088/1742-5468 /aaTeel 8
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the convex function Wy(pg) over a | X |*-dimensional space. (See appendix B for a proof
that W;is convex.) In others, such minimization may be achievable via analytical tech-
niques, or it may be possible to analytically find an initial distribution that achieves
zero dissipation (which must then be a minimizer). Some previous studies have used
these kinds of techniques to find priors ¢y and our results can provide additional insight
into those studies. For example, one published model of Maxwell’s demon used numer-
ical methods to derive an inequality for dissipated work [32, equation (10)]. As we
show in appendix C, our results can be used in a straightforward manner to derive this
inequality analytically—and in fact provide an exact expression for dissipated work.

It is also important to emphasize that our main result concerns only one contributor
to the total dissipated work (namely the amount in addition to the minimum amount
possible). Moreover, dissipated work itself is just one contributor to expected total
work. Thus, for instance, the fact that incorrect prior dissipation is related to the
logical irreversibility of the map p(z1|xy) does not necessarily have implications for
the relationship between logical irreversibility and the total dissipation and/or total
work involved in carrying out the map? In addition, note that the prior distribu-
tion ¢y, which minimizes dissipation, will not generally be the initial distribution that
minimizes expected total work. Indeed, since total expect work is linear in the initial
distribution over states, the distribution that minimizes expected total work is a delta
function about § = argmin, > . p(zo.1|To)W (70.1). In general, that delta function
distribution will not minimize dissipation.

There are some conditions, however, when incorrect prior dissipation can be related
to expected total work. Consider the case when the process P is thermodynamically-
reversible for some initial distribution, meaning that W;(qy) = 0. Then, the expected
work when P is prepared with initial distribution 7 is

(W)ro = D(rollgo) — D(r1llq1) + F (71, Hy) — F (1o, Ho)
= (H1)r, — (Ho)r, + C(rollgo) — C(r1llq1)-

If, furthermore, both the initial and final Hamiltonians H, and H; are uniform
over the space of allowed states, then expected work for initial distribution 7y is
C(rollgo) — C(r1]|q1)- (See [40] for an example of a physical system where this is the
case.)

Finally, it is possible to generalize our main result in two important ways, as shown
in appendix A. First, when the minimizer ¢y does not have full support, incorrect prior
dissipation is lower-bounded by (rather than equal to) the contraction of KL diver-
gence. In addition, our main result can be generalized to the case when ¢y is not the
minimizer of W, over all possible initial distributions, but only within some convex
subspace of distributions. Then, the result holds for any other initial distribution r
within the same subspace. The latter generalization is used in the next section to derive
a coarse-grained version of equation (10).

(12)

4Indeed, though logical reversibility and thermodynamic reversibility were associated in early work on the
thermodynamics of computation, it is now understood that they are independent. For instance, one can design a
process to erase a bit in a thermodynamically reversible manner even though bit-erasure is logically-irreversible
[45], assuming that the distribution over the states of the bit is exactly known to the designer.
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5. Thermodynamics of computation

We now extend our main result, to apply to the thermodynamics of computation.
Formally, this means that we analyze the implications of our main result for physi-
cal systems that perform information-processing operations over some coarse-grained
degrees of freedom.

Recent advances in nonequilibrium statistical physics [11, 45] have extended and
clarified the pioneering analysis of of Landauer, Bennett and others [46—49] regarding
the fundamental thermodynamics cost of information processing. In this section, we con-
sider the implications of incorrect prior dissipation for thermodynamics of computation.

In keeping with previous analyses, we define a computer as a physical system with
microstates z € X undergoing a thermodynamic process P, together with a coarse-
graining of X into a set of computational macrostates (CMs) with labels v € V' (the set
of CMs are equivalent to what are called the ‘information bearing degrees of freedom’ in
[50], and the ‘information states’ in [51]). P induces a stochastic dynamics over X, and
the (possibly non-deterministic) computation is identified with the associated dynamics
over CMs. We use 7(v;|vg) to indicate this dynamical process over CMs, i.e. to indicate
a single iteration of the computation that maps inputs vy to outputs v;. The canonical
example of this kind of computation is a single iteration of a laptop, modifying the bit
pattern in its memory (i.e. its CM) [50]. In practice, computers are usually designed to
perform the same operation over their CMs from one iteration to the next. Formally,
this means that their dynamics are first-order Markovian and time-homogeneous.

In previous work [41], we showed that for any given 7 and input distribution, a
computer can be designed that implements 7 with zero dissipation for that input dis-
tribution. Here, we instead consider how the amount of dissipation for a fixed, given
computer depends on the choice of input distribution. We recover a coarse-grained
version of equation (10), expressing incorrect prior dissipation for a distribution over
input CMs. Thus, the exact same equations that determine how dissipation varies with
the initial distribution over microstates also determine how dissipation in a computer
varies with the initial distribution over computational macrostates.

Formally, let g : X — V be the coarse-graining function that maps the microstates
of a computer to its CMs. Let s(x|v) be a fixed distribution over the microstates corre-
sponding to the specified macrostate v, and so obeys s(x|v) = 0 if v # g(z). We use the
random variables Vj and V; to indicate the CM at the beginning and end of the pro-
cess, respectively. To avoid confusion between distributions over CMs and those over
microstates, distributions over CM are superscripted with a V. Thus, we write py (.)
and py (.) to indicate the distribution over CMs at t = 0 and at ¢ = 1, respectively, and
similarly for ¢}, q}, 7y and r{.

When combined with the conditional update distribution 7 (v, |vp), any initial distri-
bution py over CMs induces a final distribution over states of V at ¢t =1 in the obvi-
ous way. Such a p} also induces a t = 0 mixture distribution over microstates, given
by averaging the distributions s(z|v) over all possible v. It will be useful to write this
mixture with the shorthand

@) = 3 sele) Y (0) = slalg()) p¥ (9(2)) 3

v
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Thus, ®(.) is a map that takes distributions over V to distributions over X. The image
of ®, 7, is a convex subset of the set of distributions over X, containing all possible
mixtures of s(z|v) induced by distributions over V.

We make two assumptions in our analysis of computers, which capture some physi-
cal properties of what is commonly meant by ‘computers’, both in the real world and
in the literature on thermodynamics of computation.

First, we assume the initial distribution over microstates is determined by specify-
ing the initial distribution over CMs. This assumption reflects the fact that in current
real-world computers, the input is set by selecting some computational macrostate (e.g.
setting the pattern of logical bits in memory). It is not selected by the user selecting
a particular microstate of the system (which would occur, for example, if the user set
the positions and momenta of all atoms and electrons in the computer). Formally, this
assumption means that any allowed initial distribution py must be an element of 7,
and will satisfy po(xg) = [®(py )] (o) for some initial distribution over CMs py. We call
such an initial distribution over CMs an input distribution.

Second, we assume that the distribution of microstates, conditioned on the respec-
tive macrostate, is the same at the beginning and end of the thermodynamic process.
This assumption guarantees that the dynamics of a computer’s logical state is first-
order Markovian and time-homogeneous; in other words, the computer can be run for
multiple iterations, and it is guaranteed to obey the same logical rules in each iteration.
We formalize this assumption by requiring that the dynamics obey

plan,vifvo) _ Day urg@P(1]70)5(x0[v0)
p(v1|vo) p(v1|vo)

p(1|ve, v1) = = s(z1]v1)

for all z1,vg,v1. In words, this states that vy is conditionally independent of z; given v
(i.e. there is no information about vy ‘hidden’ in the microstate z; beyond that provided
by the fact that z; belongs to CM v;). This assumption also means that as long as the
initial microstate distribution py is induced by some distribution over CMs, then the
output microstate distribution p; is also induced by some distribution over CMs (i.e.
that p; € T so long as pp € T). We refer to any process that obeys this condition as
computationally cyclic.

When the computer is run with the microstate distribution ®(py), the amount of
dissipated work is Wy(®(pY)). Accordingly we refer to Wy(®(py)) as the dissipation of
the (macrostate) input distribution py, and when clear from context, write it simply as
Wa(py ).

In analogy with the case of dynamics over X, we say that an input distribution ¢
is a prior for the computer if it achieves minimum dissipation among all input distribu-
tions. As we did in our analysis of priors over microstates, we assume that the prior ¢
has full support. (More formally, see appendix D for a sufficient condition on 7 under
which this assumption will hold.)

Let qo:= ®(¢)) € T indicate the microstate distribution induced by g¢f. By
definition of ¢, go has minimum dissipation within the convex set 7. Furthermore,
by our assumption that ¢ has full support, ®(¢}) will be in the relative interior of T .

Now consider any other input distribution rj, as well as its associated microstate
distribution ry := ®(r¢) € 7. Using the general statement of dissipation due to incor-
rect priors derived in appendix A,
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D(rollgo) — D(r1llq1)

(r(Vo, Xo)llg(Vo, Xo)) — D(r(Vi, X1)[lg(Vi, X1))
(ro llgg ) — D(ry llay)

+ D(r(Xo[Vo)l[¢(Xol[Vo)) — D(r(X:[V1) lg(X1[V1)),

Wa(®(rg ) — Wa(®(qq))

D
D

where the second line follows because vy and v; are deterministic functions of xy and
x1, and the third line follows from the chain rule for KL divergence. Next, note that
by definition r(xg|vg) = s(xo|ve) = q(xo|ve). So D(r(Xo|Vo)||q(Xo|Vo)) = 0. In addition,
by the cyclic condition, 7(z1|v1) = Y2, 7(volv1) p(w1]ve, v1) = s(z1]v1) and similarly for
q(z1|vr). So D(r(X1[V1)[lq(X1[V1)) = 0.

Combining leads to a coarse-grained version of our main result: for dynamics over

CMs, incorrect prior dissipation for any input distribution ry is

Wa(rg ) = Walgy ) = D(rg llgg ) — D(ry llay).

The obvious analog of equation (12) (and the associated discussion) holds for comp-
uters, if we replace distributions over microstates by distributions over CMs. These
results agree with the analysis for a specific model of a computer in [41]. However the
analysis here holds for any computer, no matter how it operates.

As before, if ¢} does not have full support, we recover an inequality rather than an
equality appendix A.

6. Conclusion

For a fixed nonequilibrium process, we have quantified the additional dissipation aris-
ing from using some arbitrary initial distribution, relative to the dissipation incurred
when using the initial distribution that achieves minimal dissipation. This additional
dissipation has a simple, information-theoretic form, being equal to the the contraction
of KL divergence between the actual and optimal initial distributions over the course
of the process.

We also considered computers, i.e. processes that implement some stochastic
map over a set of coarse-grained variables. We showed that our main result applies
to distributions over coarse-grained states of a system, so long as the fine-grained
dynamics obey several conditions. Landauer and co-workers pioneered analysis of
the thermodynamic cost of computation; in its modern formulation, Landauer’s
bound considers the minimal (dissipation-free) total work needed to perform a given
computation [9, 11]. Our result extends these analyses to include the dissipation cost
of computation, and in particular its dependence on the initial distribution of the
computer’s states.

Our results are derived with few assumptions. They do not require that the dynam-
ics obey local detailed balance, nor that they are Markovian. In addition, they hold
for both quasi-static and finite time processes, and regardless of how far the process is
from equilibrium.
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Appendix A. Dissipation due to incorrect priors over convex spaces
Let A be a convex subset of the set of all distributions over state space X. For a given
process P, define the prior distribution in A as

qo := arg min Wy(P, po).
PoEA

Proposition 1. For all initial distributions ro € A,
Wa(ro) — Walgo) = D(rollgo) — D(r1llar), (A.1)

where D(-||) is the KL divergence. If the prior distribution qy is in the relative interior
of A, the inequality is tight:

Wa(ro) — Wal(qo) = D(rollqo) — D(r1lq1)- (A.2)
Proof. First use equation (4) in the main text to write the | X| components of VIWy( po)
as
oW,
8p(xz = [ Zp x1|xo) hlZpO xy) p(a1|xy) — 1} [lnp(mo) + 1] — Q(x0)

= — Zp x1|To) lnpl(:nl) + Inpo(zo) — Qo). (A.3)

1

Note that by equations (7) and (4) in the main text, even though Wy( po) is not a linear
function of py, it is still true that for any py,

Zp Bp(eny (P0) = o VWalpo). (A.4)

The prior gy minimizes W, in the convex space A. Then, the directional derivative at
q toward 7o € A, written as (19 — qo) - VWa(qo), must be non-negative, since otherwise
W, could be decreased by slightly perturbing ¢y toward ry. Thus,

(ro — qo) - VWal(qo) = 0.

By equation (A.4),
o - VWal(qo) = Walqo).
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Plugging in equation (A.3), we rewrite,
ro - VWa(go) = =(Q)r, — Crollqo) + C(r1llqr)

= Wa(ro) — [D(rollgo) — D(rllgn)] (A.5)

where C(-]|-) is the cross-entropy. Combining establishes the inequality proposition A.1.

If o is in the relative interior of A, the directional derivatives at ¢y must be positive
toward and away-from ry. Thus,

(ro — qo) - VWal(qo) = 0 and (go — 7o) - VWa(qo) = 0,

leading to
(ro — qo) - VWa(qo) = 0. (A.6)

Combining equations (A.6), (A.4) and (A.5) establishes the equality proposition A.2. [

Appendix B. Dissipated work is convex

First, consider two initial distributions, specified by the conditional probabil-
ity distribution w(Xo=20|C =0) and w(Xy==x|C =1), as well as the mix-
ture w(Xo=2)=) . p(C=c)w(X =z|C=c). At the end of the process,
these distributions are mapped to w(X;=z|C=0), w(X;=z|C=1), and
w(Xy; =)= .pc(C=c)wX, =z|C=c).

To demonstrate that W, is convex, we will show that

P(C = 0)Wa(w(Xo|C = 0)) + p(C = D)Walw(Xo|C = 1)) = Walw(Xo)).

First, we subtract the RHS from the LHS, while using the expression for dissipated
work equation (4). The linear terms drop out, leaving the entropy terms:

p(C = 0)Wa(w(Xo|C = 0)) + p(C = DWa(w(Xo|C = 1)) — Wa(w(Xo))
=p(C = 0)[S(w(X|C =0)) = S(w(Xo|C = 1))]
+p(C =1 [S(w(X|C = 1)) = S(w(Xo|C = 1))]
= [S(w(Xy)) = S(w(Xo))]
=MI(Xo;C) — MI(Xy;C)
= 0.

The last line follows from the data processing inequality for mutual information [26].

Appendix C. Analysis of ‘Maxwell’s demon’ model of Mandal and Jarzynski

We consider the work dissipated in the thermodynamic process corresponding to one
‘interaction interval’ of the information-processing ‘demon’ described in [32]. Let
X ={A0,B0,C0, A1, B1,C1} represent the state space of the model. Also let V be a
coarse-graining of X into a binary state (corresponding to the state of the bit on the
tape), where V' = 0 corresponds to { A0, B0, C0} and V' = 1 corresponds to { A1, B1,C1}.
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As in our main text, it will useful to distinguish distributions over V from those over
X with a superscript, e.g. writing rj rather than r.
The model is parameterized by:

(i) 7: the amount of time the demon interacts with each incoming bit, i.e. the length
of a single interaction interval. In our framework, this means that ¢ € [0, 1] maps
to a duration of physical time 7.

(ii) o: set the ‘excess’ of 0s in the incoming bit distribution (i.e. the distribution of V'
at the beginning of the interaction interval), via § = 7§ (V =0) —r¥ (V = 1).

(iii) e: set the ‘excess’ of 0 in the equilibrium distribution of outgoing bits (i.e.
the distribution of V at the end of an interaction interval as 7 — o0), via
e =py, (V =0) —pg, (V =1) [32, equation (6b)].

The parameter € is used to define a continuous-time | X| x |X| rate matrix & [32,
equation (S1)] specifying system dynamics. This rate matrix is then used to define a
transition matrix II" := e™# for interactions of duration 7.

In [32], it is noted that dissipation is 0 when § = €. In their Supporting Information,
the authors provide a complex derivation showing that dissipation is non-negative for
other cases. This is shown analytically for the quasi-static limit of interval lengths
(T — 00, i.e. when each interaction interval takes an infinite amount of time), but only
numerically for finite interval lengths [32, equation (S20)]. Here we show how to use
the results in our paper to prove strict positivity simply, and analytically, for all time
scales.

Note that & is irreducible, and hence has a unique stationary distribution, which we
call pﬁé(m) ( pgl is a marginalization of this stationary distribution onto the V subspace).
When the 6-state system is prepared with initial distribution pgfl, no work gets done
[32] and the nonequilibrium free energy doesn’t change, hence Wy ( pgg) is 0. Therefore,
in the language of our main text, peq is a prior distribution for this thermodynamic
process, since no other initial distribution can achieve lower dissipation.

Using our main result, we write dissipation when the system is prepared with initial
distribution rg and allowed to interact for duration 7 as

Wa (1) = Wa (pg) = Wa (r5)
=D (rllpdy) — D (Irg|1I7p;)
=D (r{l|pe) — D (I17rg || p2)

>0 whenever 5 # pgg

(C.1)

where the inequality arises from the fact that irreducible rate matrices have strict conv-

ergence to equilibrium [52, section 3.5].

Note that e = § means that 7§ (v) = pi,(v). Thus € = § is a necessary condition for
o (x) = pg,(x) (though not sufficient, since we would also need 79(z[v) = peq(z[v)). We
have thus shown that ¢ = § is a necessary condition for dissipation to be 0, and that

when € # J, dissipation is guaranteed to be strictly positive.
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Observe also that for any specific values 7,¢€,0, and ro(z|v), we can use equa-
tion (C.1) above to compute dissipation exactly.

Appendix D. Sufficient conditions for prior to have full support

In this section of the SM we assume that all components of p(z;|zy) are nonzero and
that Q(x) is finite for all zy, and show that this means that both minimizers ¢(z() and
q(vo) have full support.

To begin, expand equation (7) in the main text to write

ow, 5., o)) plh)
6]9(:160) (p0> - Q(JI(]) ;p(flfﬂ.fo) In [ P(IEO) ]

for any distribution py over X.
Define qo := argmin, coWy(po), where A is the |X|-dimensional unit simplex. To
show that ¢ has full support, hypothesize that there exists some zf such that g(z}) = 0.

(D.1)

Now consider the one-sided derivative 8‘2‘{5‘%) (go). By the assumption that p(xq|zg) >0
for all zg, 1, the numerator inside the logarithm in equation (D.1) is nonzero, while
by hypothesis the denominator is 0. Thus, the argument of the logarithm is posi-

tive infinite and (since Q(xf) is finite, by assumption) (qo) is negative infinite.

8:0)

Moreover, for any xj, where g(zj) > 0 4 (qp) is finite. This means that Wy(q) can

’ 3 ( 0)
be reduced by increasing ¢(z}) and (to maintain normalization) reducing ¢(zy), con-

trary to the definition of ¢p as a minimizer. Therefore our hypothesis must be wrong.
Next, consider the prior input distribution ¢} := arg min,y e av Wa(®( py)), where
AV is the |V|-dimensional unit simplex. To show that ¢} has full support under the
above assumptions, consider the partial derivative of dissipation wrt to each entry of
%}Eﬁ‘;”. Let pg := ®(py), and then use the chain

rule, equations (13), (D.1), and then (13) in the main text again to write

OW4(D(py Z Ma_ [q’(pv)](wo)( "
)

(9PV (Uo 8p l‘o a]0\/'(00 0

the input probability distribution,

-5 (o) s (o)

S | 00) = 3 planfag) =L

=Y | Qo) = D> p(x1|zo) In 2, Plnlo) D)

s (zolo0) poten) | 2 @olvo) — @.2)

for any distribution p{, over V.
Proceeding as before, hypothesize that there exists some v§ such that gy (vf) =0,

3Wd(¢(pv))(

) q ). By our hypothesis, the associated

and use equation (D.2) to evaluate
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value of the denominator in the logarithm in equation (D.2) is zero. Since p(z1|x) is
always nonzero by assumption, this means the sum over z; is positive infinite. Since

%},ﬁﬁv”(q{) is negative infinite.

%W(qg) is finite for any v) where qy (vg) > 0. Thus Wy(®(q)))
can be reduced by increasing gy (v}) and (to maintain normalization) reducing gy (vy),

by assumption Q(x) is bounded, this means that

At the same time,

contrary to the definition of ¢} as a minimizer. Therefore our hypothesis must be
wrong.

Appendix E. Proof of strictly positive dissipation for non-invertible maps

Suppose the driven dynamics p (z1]z) is a stochastic map from X — X that results in
minimal dissipation for some prior distribution g.

Theorem 1. Suppose that qy has full support. Then, there exists ry with incorrect prior
dissipation Wy(ro) — Wa(qo) > 0 iff p (z1]xo) is not an invertible map.

Proof. If gy has full support, then suppry C suppqo for all ry. Then equation (10) states
that if initial distribution 7y is used, extra dissipation is equal to

Wa(ro) — Wa(qo) = D(rollqo) — D(r1]|q1) E.1

= D(r(XolX1)lla(Xo| X)) 1
KL divergence is invariant under invertible transformations. Therefore, if p (x|x) is
an invertible map, then D(ro||q0) = D(r1||¢1) = Wa(ro) — Walqo) =0 V 7.

We now prove that if p (x1]|z¢) is not an invertible map, then there exists ry such that
Wa(ro) — Wa(go) > 0. For simplicity, write the dynamics p (x1]|zo) as the right stochas-
tic matrix M. Because M is a right stochastic matrix, it has a right (column) eigenvector
17 = (1,...,1)T with eigenvalue 1.

Furthermore, it is known that if M is not an invertible map, i.e. permutation matrix,
then | det M| < 1 [53]. Since the determinant is the product of the eigenvalues and the
magnitude of any eigenvalue of a stochastic matrix is upper bounded by 1, M must
have at least one eigenvalue A with |\| < 1. Let s represent the non-zero left eigenvec-
tor corresponding to A. Note that due to biorthgonality of eigenvectors, s17 = 0. We
use s(x) to refer to elements of s indexed by x € X. Without loss of generality, assume
s is scaled such that max, |s(x)| = min,, g (zo) (which is greater than 0, by assumption
that ¢ has full support).

We now define ry as

7 (o) := q(z0) + s (20)

Due to the scaling of s and because s17 = 0, ry is a valid probability distribution.

We use the notation s(x1) ==, 5 (o) p(71]20) and
7 (w1) =, 7 (w0) p(z1]m0) = q(21) + s (21). We also use the notation C := suppr;.
The fact that ¢y has full support also means that C C suppq;.
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The proof proceeds by contradiction. Assume that Wy(rg) — Wy(go) = 0. Using equa-
tion (E.1) and due to properties of KL divergence, this means that for each xy € X and
xr1 € C,

q (zo|r1) = 7 (m0]21)
q (o) p(z1]|z0) _r (o) p (z120)
q(z1) a r(z1)

gy P =Ty k)

Taking absolute value of both sides gives

|5 (z1)| g (zo|z1) = |5 (w0)| p (21]70)

Summing over xq € X and z; € C,

Z Z s (z1)] q (zo|z1) = Z Z Is (zo)| p(x1]|zo)

zr1€C xoeX x1€C xpeX
S lst)l = Y ls@)l = 3 3 s @)l p(arlw) )
z1€X z1¢C z1€X 20€X
- Z Z |s (z0)| p (@1]0)
21¢C xo€X

Note that for all 21 ¢ C, r (z,) = 0, meaning that s (z;) = —q (z;). Thus,

Z |s (21)| = Z q(z1)

Zl¢c £B1¢C

Furthermore, for all 21 ¢ C, 7 (x1) = Y., 7 (x0) p(21]z0) = 0. Thus, for all zp € X
where p (z1|7o) > 0 for some 71 ¢ C, r (zy) = 0, meaning s (z9) = —¢q (xo). This allows
us to rewrite the last term in equation (E.2) as

Z Z |s (zo)] p (z1]20)

1 %C xoEX

_ Z Z |s (z0)| p (z1|20)

21¢C zo:p(z1|20)>0

:Z Z q (o) p (x1]wo)

z1¢C zo:p(z1|z0)>0

= ZQ(%)

z1¢C
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Cancelling terms that equal legc q (z1) from both sides of equation (E.2), we rewrite

Z|s T |—ZZ|8 o)| p (z1]z0) = Z’S o) (E.3)

In matrix notation, equation (E.3) states that

IsM]l, = [l (E.4)

where ||-||; indicates the vector ¢; norm. However, by definition sM = \s. Hence,
[sMIly = [[Aslly = [A[lIslly < Islly

meaning that equation (E.4) cannot be true and the original assumption
Wa(re) — Wa(qo) = 0 is incorrect. We have shown that for non-invertible maps, there
always exists an ry for which Wy(ro) — Wa(go) > 0. H
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