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Abstract. We propose a novel framework for analyzing convergence rates of stochastic
optimization algorithms with adaptive step sizes. This framework is based on analyzing
properties of an underlying generic stochastic process; in particular, we derive a bound
on the expected stopping time of this process. We utilize this framework to analyze the
expected global convergence rates of a stochastic variant of a traditional trust-region
method. Although traditional trust-region methods rely on exact computations of the
gradient, Hessian, and values of the objective function, this method assumes that these
values are available only up to some dynamically adjusted accuracy. Moreover, this
accuracy is assumed to hold only with some sufficiently large—but fixed—probability
without any additional restrictions on the variance of the errors. This setting applies,
for example, to standard stochastic optimization and machine learning formulations.
Improving upon prior analysis, we show that the stochastic process defined by the
trust-region method satisfies the assumptions of our proposed general framework. The
stopping time in this setting is defined by an iterate satisfying a first-order accuracy
condition. We demonstrate the first global complexity bound for a stochastic trust-
region method under the assumption of sufficiently accurate stochastic gradients.
Finally, we apply the same framework to derive second-order complexity bounds under
additional assumptions.

Keywords: stochastic optimization • trust-region methods • stochastic processes • supermartingales • convergence rates
Q: 4

1. IntroductionQ: 5

InQ: 6 this paper, we aim to solve an unconstrained stochastic, possibly nonconvex, optimization problem:

min
x∈Rn

f (x). (1)

We assume f (x) is a smooth function, bounded from below, and we assume f (x) can only be computed with
some noise. Let f̃ (x, ξ) be the noisy computable version of f , where the noise ξ is a random variable. A common
setting of stochastic optimization can be described by

f (x) � Eξ[ f̃ (x, ξ)].
Stochastic optimization methods, in particular stochastic gradient descent (SGD), have recently become the
focus of much research in optimization, especially in applications to machine learning (ML) domains. This is
because objective functions of optimization problems arising from ML are typically sums of a (possibly) very
large number of terms, each term being the loss function evaluated using one data example. These ML
objectives can also be viewed as an expected loss, which cannot be accurately computed; it can only be
evaluated approximately given a subset of data examples. During the last decade, significant theoretical
and algorithmic advances were developed for convex optimization problems, such as logistic regression
and support vector machines. However, with the recent practical success of deep neural networks and
other nonlinear, nonconvex ML models, much focus has shifted to the analysis and development of methods
for nonconvex optimization problems. Although SGD remains the method of choice in the nonconvex setting
for ML applications, theoretical results are weaker than those in the convex case. In particular, little has been
achieved in terms of convergence rates. A notable paper by Ghadimi and Lan (2013) was the first to provide
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a convergence rate guarantee of a sort for a randomized stochastic gradient method in a nonconvex setting.
The analysis of this method, however, utilizes a carefully chosen step size and a randomized stopping scheme,
which are quite different from what is used in practice.

From a practical perspective, SGD has a low per-iteration complexity and requires a high number of it-
erations, making it sequential and ineffective in a distributed setting. On the other extreme, each iteration of a
full gradient method has a high per-iteration complexity and requires a low number of iterations but can be
efficiently distributed to reduce the overall wall-clock time. As an alternative to these extremes, several
variance reducing stochastic methods have been proposed recently within the ML domain, including SAGA
(Defazio et al. 2014), SVRG (Johnson and Zhang 2013)Q: 7 , and SARAH (Nguyen et al. 2017a). These methods
exploit the finite-sum structure of typical ML objectives; specifically, SVRG, which apparently has the fastest
demonstrable convergence rate in terms of number of data accesses of these three methods, requires the full
gradient of the objective function to be computed on some (but not all) of the iterations. In this sense, SVRG (as
well as SARAH) is a hybrid of an SGD method and a full gradient descent method. These hybrids do not easily
fit into either computational extreme because the methods alternate between cheap sequential stochastic
gradient computations and expensive distributable full gradient computations. For this reason, the superior
theoretical computational complexity of SVRG does not necessarily reflect its practical performance. More-
over, the assumption of a data set fixed prior to optimization—an assumption that underlies finite-sum
optimization—conflicts with the ultimate goal of learning, which is to obtain a solution with good gener-
alization performance. The method we describe in this paper is applicable to the fully stochastic setting; that is,
we do not assume a finite data set fixed prior to optimization. Our method implicitly relies on variance reduction
achievable simply by choosing adaptive sample sizes that (typically) increase as the algorithm progresses
to optimality. Such adaptive schemes have been proposed in the literature primarily for gradient descent
methods and in a convex setting (Byrd et al. 2012, Friedlander and Schmidt 2012).

With the rise of interest in nonconvex optimization, the ML community has begun to consider a classical
alternative to gradient descent/line-search methods: trust-region (TR) methods (Conn et al. 2000, Lin et al.
2007, Dauphin et al. 2014)Q: 8 . Their usefulness is largely dictated by their ability to utilize negative curvature in
Hessian approximations, potentially escaping the neighborhoods of saddle points (Dauphin et al. 2014)Q: 9 , which
can significantly slow down or even trap a line-search method. It has been argued that, although saddle points
are undesirable, local minima are typically sufficient for the purposes of training certain nonconvex ML models,
especially deep neural networks. Several recent works have proposed trust-region methods incorporating
stochastic gradient and Hessian estimates (Gratton et al. 2017, Xu et al. 2017), but these works assume that the
objective function is deterministic. A trust-region method for our setting of stochastic optimization was
proposed in Chang et al. (2013), and a more sophisticated adaptive sampling method was recently pro-
posed in Shashaani et al. (2015). In both of these methods, convergence is achieved by repeatedly sampling
the function values (and gradients, when applicable) so that the estimates are asymptotically error-free with
probability one. No convergence rates have been derived for these algorithms, likely because of these as-
ymptotic concerns. Trust-region methods with adaptive sampling in a fully stochastic setting, such as may be
used in ML contexts, have not yet been explored to our knowledge. We note that, additionally, our analysis
applies to the setting in which available function value and gradient estimates may be occasionally biased.

We refer to the primary method analyzed in this paper as stochastic trust-region optimization with random
models (STORM). STORM was introduced in Chen et al. (2018), and the authors proved almost sure con-
vergence of STORM to a first-order stationary point. STORM is a stochastic variance-reducing trust-region
method, essentially a minor modification of a classical trust-region framework. A similar method was an-
alyzed in Larson and Billups (2015) under more restrictive conditions on f̃ (x, ξ). We believe that our con-
vergence rate analysis framework can be applied to that method as well, but we choose to focus on STORM in
this manuscript.

STORM uses adaptive trust-region radii and resembles what is known to be efficient in practice; hence, in
this manuscript, we focus only on the theoretical analysis of STORM in both the first- and second-order
convergence regimes. We demonstrate a convergence rate for STORM with a dependence on ε matching that
of a deterministic trust-region method. Because STORM is randomized, our convergence rates are exhibited as
bounds on the expected number of iterations the algorithm takes to achieve ε-accuracy. In contrast and as one
example, the convergence rate results for SGD demonstrated in Ghadimi and Lan (2013) exhibit a bound on
the expectation of the sum of the norms of all gradients encountered up to the Tth iteration as a function of T.
Other weaker forms of convergence rates are established in Xu et al. (2017) and Tripuraneni et al. (2017). In
Xu et al. (2017), trust-region and cubic regularization methods utilizing sampled Hessians are considered.
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The number of samples is selected in such a way that the error in the Hessian approximation is smaller than ε
with overwhelming probability p. Then, a deterministic convergence rate is established under the assumption
that this condition on the Hessian approximation holds in every iteration until ε-accuracy is reached. Thus, the
established bound on the number of iterations T holds with probability pT; with probability 1 − pT, no bound is
guaranteed. A similar flavor of complexity result is derived in Tripuraneni et al. (2017) for a cubic regula-
rization method, in which gradients and Hessians are sampled at a rate dictated by ε, and the resulting
complexity bound holds only with some probability.

Algorithms in Xu et al. (2017) have some similarities with algorithms analyzed in Cartis and Scheinberg
(2018) and Gratton et al. (2017). In Cartis and Scheinberg (2018) and Gratton et al. (2017), the global rates of
convergence of trust-region, line-search, and adaptive cubic regularization methods are analyzed under the
assumption that available first- and second-order information is inexact but sufficiently accurate with some
probability. However, in all of these works, the analysis relies heavily on the assumption that function values
are computed exactly; in particular, the methods monotonically decrease the objective function. This implies
that the results in Cartis and Scheinberg (2018) and Gratton et al. (2017) cannot be applied to a stochastic
setting. This paper can be seen as an extension of Cartis and Scheinberg (2018) and Gratton et al. (2017) to a
fully stochastic setting.

Unlike most of the literature on stochastic methods, we do not make the assumption that function, gradient,
or Hessian estimates are unbiased. Instead, it is assumed that, in each iteration, the function values f (x), the
gradient ∇f (x), and possibly the Hessian ∇2f (x) can be approximated up to sufficient accuracy with a fixed but
sufficiently high probability p conditioned on the past. This assumption, which we formalize later, is very
general and does not explicitly specify how such approximations must be obtained. In a setting in which
unbiased estimators are available, one can utilize sampling techniques described, for example, in Xu et al.
(2017) and Chen et al. (2018). In Chen et al. (2018), examples are provided in which f̃ (x, ξ) is a biased estimator
of f (x), arbitrarily erroneous with some small fixed probability, yet the required approximations can be
constructed, and the trust-region method still converges to a minimum. Note that, because our condition on
the approximations holds only with probability p, we provide complexity results in expectation, thus ac-
counting for occasionally poor approximations.

The goal of our paper is twofold. First, we introduce a novel framework for bounding the expected
complexity of a stochastic optimization method. This framework is based on defining a renewal–reward
process associated with the algorithm and an associated stopping time: the time when the algorithm reaches a
desired accuracy. Then, under certain assumptions, we derive a bound on the expectation of this stopping time.
This framework, in principal, can be used in the analysis of convergence rates of a variety of algorithms. For
instance, it applies to all of the algorithms in Cartis and Scheinberg (2018) and Gratton et al. (2017). In recent
work by Paquette and Scheinberg (2018), this framework has been applied to analyze a stochastic line-search
method. In this paper, we use the new general framework to derive a bound on the convergence rate of
STORM by proving that STORM satisfies the framework’s assumptions. In particular, we show that the
expected number of iterations required to achieve ‖∇f (x)‖ ≤ ε is bounded in O(ε−2/(2p − 1)). This bound is an
improvement on the result in Ghadimi and Lan (2013) and is similar to a bound in Reddi et al. (2016) and
Nguyen et al. (2017b) in terms of dependence on ε; however, our method never requires the computation of a
“true” gradient. Our result is a natural extension of the best-known, worst-case complexity of any first-order
method for nonconvex optimization (Nesterov 2004). In this paper, we also make a significant improvement
upon the results in Chen et al. (2018) by relaxing a very restrictive condition on the size of the steps taken by
STORM. By again applying our general analytic framework, we also provide a second-order complexity
analysis for STORM. In particular, we show that a second-order STORM variant takes an expected number of
iterations bounded in O(ε−3/(2p − 1)) to ensure max{‖∇f (x)‖,−λmin(∇2f (x))} ≤ ε; this result requires slightly
stronger assumptions on the accuracy of the function estimates but provides a generalization of the results in
Xu et al. (2017) and Gratton et al. (2017) to the stochastic case.

Our main complexity results do not yet provide a termination criterion that would guarantee that ‖ f (x̄)‖ ≤ ε,
where x̄ is the last iterate of STORM. However, our analysis provides a foundation for establishing such a
criterion. In particular, although we bound only the expected value of a stopping time in this paper, bounding
the tail of the distribution of the stopping time would follow from the analysis here.

The rest of the paper is organized as follows. We begin by defining a framework for a stochastic process, and
we then derive a bound on its expected stopping time in Section 2. In Section 3, we provide the first-order
complexity analysis of STORM by showing that it fits into the framework introduced in Section 2. We then
perform a second-order complexity analysis in Section 4.
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1.1. Notation
Throughout the paper, we use ‖ · ‖ to denote the Euclidian norm. Several constants are denoted by κ with a
subscript meant to indicate the object that the given constant bounds. In particular, we use the constants

κef “error in the function value”,
κeg “error in the gradient”,
κfcd “fraction of Cauchy decrease”,
κbhm “bound on the Hessian of the models”.

We use l A( ) to denote the indicator of a random event A occurring.

2. A Renewal–Reward Martingale Process
In this section, we consider a random process and an associated stopping time T. We analyze the behavior of
this random process and derive a bound on the expected stopping time. These results are used later in the
manuscript to analyze the convergence rate of STORM and to argue that the framework presented in this
section can be applied to the convergence analysis of a variety of stochastic algorithms. We start by providing
the formal definition of a stopping time of a discrete time stochastic process.

Definition 1. Given a stochastic process {Xk} � {Xk : k ≥ 0}, we say that T is a stopping time with respect to {Xk}
if, for each m ≥ 0, the occurrence of the event {T � m} is determined by observing X1, . . . ,Xm. That is, {T � m} ∈
σ X0, . . . ,Xm( ), the σ-field generated by X1, . . . ,Xm, for each m ≥ 0.

Let { Φk,Δk( )} be a random process such that Φk ∈ [0,∞) and Δk ∈ [0,∞) for k ≥ 0. Let Vk+1 � Φk+1 −Φk for
k ≥ 0. Let Wk{ }∞k�0 be a sequence defined on the same probability space as { Φk,Δk( )} such that W0 � 1 and

P(Wk+1 � 1|^k) � p,

P(Wk+1 � −1|^k) � 1 − p,
(2)

where ^k is the σ-algebra generated by { Φ0,Δ0,W0( ), · · · , Φk,Δk,Wk( )}.1 Note that, because of (2), the Wks are
mutually independent and are moreover independent of the sequence Φj,Δj

( ){ }
k−1
j�0 .

Let Tε{ }ε> 0 be a family of stopping times with respect to ^k{ }k≥0, parameterized by some quantity ε> 0. We
impose the following assumptions on { Φk,Δk( )} and Tε.

Assumption 1.
i. There exist constants λ ∈ 0,∞( ) and Δmax � Δ0eλjmax (for some jmax ∈ Z) such that Δk ≤ Δmax for all k.
ii. There exists a constant Δε � Δ0eλjε (for some jε ∈ Z, jε ≤ 0) such that the following holds for each k ≥ 0:

l Tε > k( )Δk+1 ≥ l Tε > k( )min(ΔkeλWk+1 ,Δε), (3)

where Wk+1 satisfies (2) with p> 1
2.

iii. There exists a nondecreasing function h(·) : [0,∞) → (0,∞) and a constant Θ> 0 such that

E(Vk+1|^k)l Tε > k( ) ≤ −Θh(Δk)l Tε > k( ) (4)

or, equivalently,

E(Φk+1|^k)l Tε > k( ) ≤ Φkl Tε > k( ) −Θh(Δk)l Tε > k( ). (5)

In other words, Assumption 1 states that the nonnegative stochastic process Φk gets reduced by at least
Θh(Δk) at each step provided Tε > k. Also, Δk tends to increase whenever it is smaller than some threshold Δε.
Our goal is to bound E(Tε) in terms of h(Δε). What we show in this section is that, on average, Δk ≥ Δε occurs
frequently, and hence, it occurs sufficiently frequently that E(Φk+1 −Φk) can be bounded by a negative fixed
value (dependent on ε). This allows us to apply Wald’s identity (stated momentarily) and, hence, derive a
bound on E(Tε). To formalize this, we introduce a renewal process in which renewals occur at times k when
Δk ≥ Δε. We consider the sum of rewards Vjs obtained between two renewals.

In order to define this renewal process, we first define an auxiliary process Zk{ }∞k�0 by letting Z0 � jε and
setting

Zk+1 � min(Zk +Wk+1, jε).
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Note that the process Zk{ }∞k�0 is a birth–death process on the set k : k ≤ jε
{ }

. We then define the renewal process
An{ }∞n�0 by letting A0 � 0 and setting An � inf{m>An−1 : Zm � jε}. By (3), we have that

l Tε > k( )Δk+1 ≥ l Tε > k( )min(ΔkeλWk+1 ,Δε) ≥ l Tε > k( )Δ0 exp λZk+1( ),
where we have used a simple inductive argument to obtain the second inequality. In other words, on Tε > k,
the process An only counts the iterations for which Δk ≥ Δε. The interarrival times of this renewal process are
defined for all n ≥ 1 by

τn � An − An−1.
As a final piece of notation, we define the counting process:

N(k) � max{n : An ≤ k}.
That is, N(k) counts the number of renewals that occur before time k.

First, we have a lemma that relies on the simple structure of the process {Wk} to bound E[τn].
Lemma 1. Let τn be defined as before. Then, for all n,

E[τn] � p + 1 + 1
2p − 1

( )
1 − p
( ) � p/(2p − 1).

Define the process Z̄0 � −1, Z̄k+1 � Z̄k +Wk+1 for all k ≥ 1, which is a simple random walk. Define τ̄ � inf{n ≥
0 : Z̄n � 0}. It is well known (in fact, it follows from Wald’s identity) that

E τ̄( ) � 1
2p − 1

.

On the other hand, by conditioning on W1, we have that

E[τ1] � 1 · P W1 � 1( ) + (1 + E[τ̄])P W1 � −1( ).
This identity follows because the distribution of τ1 conditioned on Z1 � jε − 1 is the same as the distribution of
τ̄. Thus, we simplify this expression to conclude that

E[τ1] � p + 1 + 1
2p − 1

( )
1 − p
( )

.

We now bound the expected number of renewals that occur before the time Tε.

Lemma 2.

E(N(Tε − 1) + 1) ≤ Φ0

Θh(Δε) .

For ease of notation, let k ∧ Tε � min{k,Tε}. Consider the stochastic process defined by R0 � Φ0 and

Rk � Φk∧Tε
+Θ

∑k∧Tε( )−1

j�0
h(Δj),

for k ≥ 1, where Θ is from Assumption 1(iii). Observe that Rk is a nonnegative supermartingale with respect to
^k{ }; to see this, we first write

E[Rk+1|^k] � E[Rk+1l Tε > k( )|^k] + E[Rk+1l Tε ≤ k( )|^k].
Then,

E[Rk+1l Tε ≤ k( )|^k] � E ΦTε +Θ
∑Tε−1

j�0
h(Δj)

( )
l Tε ≤ k( )|^k

[ ]

� ΦTεl Tε ≤ k( ) +Θ
∑Tε−1

j�0
h(Δj)l Tε ≤ k( ),

(6)

where the last equality follows because Tε is a stopping time, and so the expectation of Tε is ^k-measurable.
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Because Tε ≥ k + 1{ } � Tε > k{ } � Tε ≤ k{ }c∈ ^k, we obtain

E[Rk+1l Tε > k( )|^k] � E[Rk+1|^k]l Tε > k( )

� E[Φk+1|^k]l Tε > k( ) + E Θ
∑k
j�0

h(Δj)|^k

[ ]
l Tε > k( )

≤ Φk −Θh(Δk) +Θ
∑k
j�0

h(Δj)
( )

l Tε > k( )

� Φk +Θ
∑k−1
j�0

h(Δj)
( )

l Tε > k( ), (7)

where we have used (5). Combining (6) and (7), we have that

E[Rk+1|^k] ≤ Rk,

as claimed. We then obtain, because Φk ≥ 0 for each k ≥ 0, that

ΘE
∑k∧Tε( )−1

j�0
h(Δj)

( )
� E[Rk] ≤ E[R0] � Φ0.

Now, because h(·) ≥ 0, observe that

0 ≤ ∑k∧Tε( )−1

j�0
h(Δj) ↗

∑Tε−1

j�0
h(Δj)

as k → ∞. Note that this conclusion holds even on the event {Tε � ∞}. Therefore, by the monotone convergence
theorem,

ΘE
∑Tε−1

j�0
h(Δj)

( )
� lim

k→∞
ΘE

∑k∧Tε( )−1

j�0
h(Δj)

( )
≤ E[R0] � Φ0. (8)

Now, by the definition of the counting process N(·), because the renewal times An satisfying ΔAn ≥ Δε are a
subset of the iterations 0, 1, . . . ,Tε and because h(·) is nondecreasing, we have

Θ
∑Tε−1

j�0
h(Δj) ≥ Θ

∑Tε−1

j�0
h(Δj)l j ∈ Ai{ }∞i�1

( )≥Θ N(Tε − 1) + 1( )h(Δε),

where one was added to N(Tε − 1) in the last equality because A0 � 0. Inserting this in (8),

E( N(Tε − 1) + 1( )) ≤ Φ0

Θh(Δε) ,

which concludes the proof.
We now state and prove a well-known theorem concerning expected stopping time, known as Wald’s

identity (e.g., see theorem 2.2.4 in Alsmeyer (2010)). We provide a proof here because Wald’s identity is
typically shown in the literature under the assumption that the stopping time is almost surely finite. Dropping
this assumption is particularly important in our framework as this assumption is equivalent to assuming that
the optimization algorithm that generates the stochastic process, in fact, converges. It is convenient and useful
not to have to prove the convergence result before establishing the convergence rate bounds because con-
vergence immediately follows from the existence of bounds on expected stopping time.

Theorem 1 (Wald’s Identity). Suppose that Yi{ }ni�1 is a sequence of independent random variables such that Yi ∈ [0,∞] with
probability one. DefineE Yi( ) � μi ∈ [0,∞] and let N ∈ [0,∞] be a stopping time with respect to the filtration generated by the
Yns. Define Sn � Y1 + . . . + Yn, S0 � 0, sn � μ1 + . . . + μn, and s0 � 0. Then

E SN( ) � E sN( ).
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Let m> 0 be an arbitrary integer and define Yi m( ) � min Yi,m( ), Nm � min N,m( ), μi m( ) � E Yi m( )( ), Sn m( ) �
Y1 m( ) + . . . + Yn m( ), and sn m( ) � μ1 m( ) + . . . + μn m( ). Note that all of these quantities are nonnegative and
nondecreasing in m. By the optional sampling theorem applied to the martingale Mn � Sn m( ) − sn m( ), we have
that

E SNm m( )( ) � E μ1 m( ) + . . . + μNm m( )( )
.

Because of monotonicity,

SNm m( ) ↗ SN

as m → ∞. If N � ∞, we interpret SN � supn≥0 supm Sn m( ). Similarly,

sNm m( ) ↗ sN ,

as m → ∞. By the monotone convergence theorem, we then conclude that

E SN( ) � E sN( ).

Remark 1. If μi � μ, then E SN( ) � μE N( ). If μ � 0, then Yi � 0 almost surely and SN � 0. Therefore, if μ � 0, we
interpret μE N( ) � 0 even if E N( ) � ∞. This interpretation is also consistent with the case in which N � 0 almost
surely; in this case, 0 � μE N( ) � E SN( ) even if μ � ∞.

We now apply Wald’s identity to Sn � An � ∑n
i�0 τi to obtain the main result of this section.

Theorem 2. Let Assumption 1 hold. Then

E[Tε] ≤ p
2p − 1

· Φ0

Θh(Δε) + 1.

Define &n � ^An ; that is,

&n � {A ∈ σ ∪∞
m�0^m

( )
: A ∩ {An ≤ k} ∈ ^k for all k}.

Note that An is a stopping time with respect to ^n{ }n≥0, so &n is well defined. We claim that the random
variable N Tε − 1( ) + 1 is a stopping time with respect to &n{ }n≥0. To see this, note that, because N k( ) ≤ k, we
have the equality of events

N Tε − 1( ) + 1 ≤ n{ } � ∪n−1
k�0 N k( ) ≤ n − 1,Tε − 1 � k{ }

� ∪n−1
k�0 N k( ) + 1 ≤ n,Tε � k + 1{ } ⊆ ^An .

The inclusion follows because N k( ) + 1 is a stopping time with respect to ^An

{ }
n≥0 (An ≥ n implies ^n ⊆ ^An ),

and Tε is a stopping time with respect to &n{ }n≥0 by construction.
Now, because of the independence assumption implied by (2), we have that

E[τn+1|&n] � E[τn+1] � p
2p − 1

.

Recalling that AN(Tε−1)+1 � ∑N(Tε−1)+1
k�1 τk, we invoke Wald’s identity to conclude that

E[AN(Tε−1)+1] �
p

2p − 1
E[N(Tε − 1) + 1].

Because AN(Tε−1)+1 ≥ Tε − 1, we obtain from Lemmas 1 and 2 that

E[Tε − 1] ≤ E[τ1]E[N(Tε − 1) + 1] ≤ p
2p − 1

Φ0

Θh(Δε)
( )

.

The statement of the theorem follows from the last inequality.
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3. The First-Order STORM Algorithm
We now state and analyze a stochastic TR algorithm (Algorithm 1), which is very similar to its deterministic
counterpart (Conn et al. 2000). Algorithm 1 uses inexact (noisy) information about f and its derivatives, just as
the commonly stated deterministic method uses exact information. Algorithm 1 and the assumptions on its
steps that we impose are intended to yield convergence to a first-order stationary point. In this section, we
analyze the global rate of convergence of Algorithm 1 to such a point, and in Section 4, we extend Algorithm 1
to yield convergence to second-order critical points.

Algorithm 1 (Stochastic DFO with Random Models; Chen et al. (2018)).

1: (Initialization): Choose constants γ> 1, η1 ∈ (0, 1), η2 > 0. Choose an initial point x0 and an initial trust-
region radius δ0 > 0 and the maximum radius δmax � γjmaxδ0 for some jmax ≥ 0. Set k ← 0.

2: (Model construction): Build a (random) model mk(xk + s) � fk + g�k s + 1
2 s

�Hks that approximates f (x) in the
ball B(xk, δk) with s � x − xk.

3: (Step calculation) Compute sk � arg min
s:‖s‖≤δk

mk(s) (approximately) so that it satisfies condition (9).

4: (Estimates calculation) Obtain estimates f 0k and f sk of f (xk) and f (xk + sk), respectively.
5: (Acceptance of the trial point): ComputeQ: 10 ρk � f 0k − f sk

mk(xk) −mk(xk + sk) .
If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set xk+1 � xk + sk; otherwise, set xk+1 � xk.

6: (Trust-region radius update): If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set δk+1 � min{γδk, δmax}; otherwise δk+1 � γ−1δk;
k ← k + 1 and go to step 2.

For every k, the step sk is computed so that the well-known Cauchy decrease condition is satisfied, that is,

mk(xk) −mk(xk + sk) ≥ κfcd

2
‖gk‖min

‖gk‖
‖Hk‖ , δk

{ }
(9)

for some constant κfcd ∈ (0, 1]. This condition is standard in the analysis of TR methods, easy to enforce in
practice, and discussed in detail in the literature (Conn et al. 2000), Nocedal and Wright 2006). Iterations k in
which xk+1 � xk + sk are called successful.

Algorithm 1 generates a random process. Randomness stems from the random models and estimates con-
structed on each iteration, which, in turn, are based on random information obtained from the stochastic function
f (x, ξ ). Mk denotes a random model in the kth iteration, and we use the notation mk � Mk(ω) for its realizations.
As a consequence of using random models, the iterates Xk, the trust-region radii Δk, and the steps Sk are also
random quantities; correspondingly, xk � Xk(ω), δk � Δk(ω), and sk � Sk(ω) denote their respective realizations.
Moreover, we let random variables {F0k ,Fsk} denote respective estimates of f (Xk) and f (Xk + Sk), and we denote
their realizations by f 0k � F0k(ω) and f sk � Fsk(ω). Hence, Algorithm 1 results in a stochastic process {Mk,Xk,
Sk,Δk,F0k ,F

s
k}. Our goal is to show that, under certain conditions on the sequences {Mk} and {Fk}≜ {(F0k , Fsk)}, the

resulting stochastic process has a desirable convergence rate. These conditions require that the models Mk and
estimates (F0k ,Fsk) are sufficiently accurate with sufficiently high probability conditioned on the past.

In the analysis of a deterministic TR method, the function value f (x) never increases after an iteration; the main
challenge of the analysis of Algorithm 1 lies in the fact that this monotonic property is certainly not guaranteed in
the presence of stochasticity. The key to our analysis lies in the assumption that accuracy improves in coordination
with the perceived progress of the algorithm. Our analysis is based on properties of supermartingales—in par-
ticular, supermartingales for which the increments depend on the change in function value between iterations,
which, as we show, tend to decrease. To make the analysis simpler, we need a technical assumption that these
increments are bounded from above. Thus, we make the following assumptions on f :

Assumption 2. Over all iterates xk generated by Algorithm 1, the gradient ∇f (·) is L-Lipschitz continuous and

f (xk) ≥ 0.

The assumptions of Lipschitz continuity of ∇f and boundedness of f from below are standard. For simplicity
and without loss of generality, we assume that the lower bound on f (·) is nonnegative.

3.1. Assumptions on the First-Order STORM Algorithm
Let ^M·F

k−1 denote the σ-algebra generated by M0, · · · ,Mk−1 and F0, · · · ,Fk−1. Let ^M·F
k−1/2 denote the σ-algebra

generated by M0, · · · ,Mk and F0, · · · ,Fk−1.
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Definition 2. (1) A functionmk is a κ-fully linear model of f on B(xk, δk) provided, for κ � (κef , κeg) and ∀y ∈ B(xk, δk),
‖∇f (xk) − gk‖ ≤ κegδk, (10)

| f (y) −mk(y)| ≤ κef δ
2
k .

(2) The estimates f 0k and f sk are εF-accurate estimates of f (xk) and f (xk + sk), respectively, for a given δk if

| f 0k − f (xk)| ≤ εFδ
2
k and | f sk − f (xk + sk)| ≤ εFδ

2
k . (11)

Definition 3. A sequence of random models {Mk} is said to be α-probabilistically κ-fully linear with respect to the
corresponding sequence {B(Xk,Δk)} if the events

Ik � l{Mk is a κ-fully linear model of f on B(Xk,Δk)} (12)

satisfy the condition

P(Ik � 1|^M·F
k−1 ) ≥ α.

Definition 4. A sequence of random estimates {Fk} is said to be β-probabilistically εF-accurate with respect to the
corresponding sequence {Xk,Δk, Sk} if the events

Jk � l{F0k , Fsk are εF-accurate estimates of f (xk) and f (xk + sk), respectively, for Δk} (13)

satisfy the condition

P(Jk � 1|^M·F
k−1/2) ≥ β,

where εF is a fixed constant.

We can now state our key assumption on the nature of the stochastic (and deterministic) information used
by our algorithm.

Assumption 3. The following hold for the quantities used in Algorithm 1:
a. The model Hessians satisfy ‖Hk‖2 ≤ κbhm for some κbhm ≥ 1 for all k deterministically.
b. The sequence of random models {Mk} generated by Algorithm 1 is α-probabilistically κ-fully linear for some

κ � (κef , κeg) and for a sufficiently large α ∈ (0, 1).
c. The sequence of random estimates {Fk} generated by Algorithm 1 is β-probabilistically εF-accurate for εF ≤ κef and

εF < 1
4 η1η2κfcd min η2

κbhm
, 1

{ }
and for a sufficiently large β ∈ (0, 1).

We comment on what is meant by “sufficiently large” in Assumption 3. Under Assumption 3, P{IkJk �
1|^M·F

k−1 } ≥ αβ and P{Ik + Jk � 0|^M·F
k−1 } ≤ (1 − α)(1 − β). In iteration k, if IkJk � 1, then the algorithm behaves like an

(inexact) deterministic algorithm in that iteration. In the other extreme, if Ik + Jk � 0, then, not only may
Algorithm 1 produce a bad step (a step in which the objective function value increases), but Algorithm 1 may
accept this bad step by mistaking it for an improving step (a step that decreases the function value). In the
remaining two cases in which exactly one of Ik � 0 or Jk � 0 holds, then either the model is good but the
estimates are faulty or the estimates are good and the model is faulty. In either case, an improving step is still
possible, but a bad step is impossible. In the worst case, no step is taken, and the trust-region radius is
reduced. The main idea of our framework is to choose the probabilities of the occurrence of IkJk � 1 and
Ik + Jk � 0 according to the possible corresponding increase or decrease in f (x) so that, in expectation, f (x) is
sufficiently decreased; this is achieved by selecting α and β sufficiently large. An important observation is that
α and β do not have to increase as the algorithm progresses; with the same constant—but sufficiently
small—probabilities, our models and estimates can be arbitrarily erroneous.

Remark 2. In Chen et al. (2018), the analysis of Algorithm 1 required an additional assumption that η2 ≥ κef ; for
simplicity, it was further assumed that η2 ≥ κbhm. This assumption is undesirable because it restricts the size of the
steps that can be taken by the trust-region algorithm. In this manuscript, we improve on the analysis of Chen et al.
(2018) and drop this assumption, allowing η2 to be set to a small value. Note that small values of η2 imply small
values of εF because of Assumption 3(c), representing a potential trade-off in the selection of η2. In one extreme,
this relationship indicates that, if εF � 0 (that is, there is no error in the function value estimates), then η2 can be
selected arbitrarily small.
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3.2. Useful Existing Results
Algorithm 1 was analyzed in Chen et al. (2018), and it was demonstrated that there exists a selection of α and β
such that, under Assumption 3 (and the additional assumption that η2 ≥ κef ; see Remark 2), the sequence of
random iterates {Xk} generated by Algorithm 1 almost surely satisfies lim

k→∞
‖∇f (Xk)‖ � 0. This is an almost sure

first-order convergence result.
Our primary goal in this manuscript is to bound the expected number of steps taken by Algorithm 1 before

‖∇f (Xk)‖ ≤ ε occurs. Our secondary goal, as mentioned in Remark 2, is to relax the assumption η2 ≥ κef . We
modify the analysis that led to the previous stationarity result in Chen et al. (2018). First, we state (without
proof) several auxiliary lemmas from Chen et al. (2018).

Lemma 3 (Good Model⇒ Function Value Reduction ∝ ‖gk‖). Suppose that a model mk is a (κef , κeg)-fully linear model of f
on B(xk, δk). If

δk ≤ min
1

κbhm
,
κfcd

8κef

{ }
‖gk‖,

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −κfcd

4
‖gk‖δk. (14)

Lemma 4 (Good Model ⇒ Function Value Reduction ∝ ‖∇f(xk)‖). Under Assumption 3(a), suppose that a model is
(κef , κeg)-fully linear on B(xk, δk). If

δk ≤ min
1

κbhm + κeg
,

1
8κef
κfcd

+ κeg

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭‖∇f (xk)‖, (15)

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −C1‖∇f (xk)‖δk (16)

for any C1 ≤ κfcd

4 ·max κbhm
κbhm+κeg

,
8κef

8κef+κfcdκeg

{ }
.

Lemma 5 (Good Model + Good Estimates⇒ Successful Step). Under Assumption 3(a), suppose that mk is (κef , κeg)-fully
linear on B(xk, δk) and the estimates {f 0k , f sk } are εF-accurate with εF ≤ κef . If

δk ≤ min
1

κbhm
,
1
η2

,
κfcd(1 − η1)

8κef

{ }
‖gk‖, (17)

then the kth iteration is successful.

Lemma 6 (Good Estimates + Successful Step ⇒ Function Value Reduction ∝ δ2k). Under Assumption 3(a), suppose that
the estimates {f 0k , f sk } are εF-accurate with

εF <
1
4
η1η2κfcd min

η2
κbhm

, 1
{ }

.

If a trial step sk is accepted (a successful iteration occurs), then the improvement in f is bounded below like

f (xk+1) − f (xk) ≤ −C2δ
2
k , (18)

where

C2 � 1
2
η1η2κfcd min

η2
κbhm

, 1
{ }

− 2εF > 0. (19)

3.2.1. Choosing Constants. We now explain briefly the role of the constants η2, εF, α, and β. First, note that the
constants κef , κeg, and κbhm can be chosen arbitrarily large but should be ideally chosen as small as possible
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while guaranteeing Assumption 3. Let us assume that κef , κeg, and κbhm can be all chosen in Θ(L)2, where L is
the Lipschitz constant of ∇f (x) from Assumption 2. We acknowledge that L is generally not explicitly known;
see Conn et al. (2009) for a discussion of the construction of fully linear models in the case of unavailable
derivative estimates. Once these constants are chosen, εF is chosen to satisfy the conditions in Assumption 3(c).
Note that, if η2 is chosen in Θ(L), then Algorithm 1 only takes steps when (roughly) δk ≤ ‖gk‖

L ; this is similar to
restricting step sizes to 1

L in a gradient descent method. With these choices for constants, we see from
Assumption 3(c) that the estimates need to be slightly more accurate than the models, but the order of required
accuracy is similar (in Θ(L) but with a tighter constant). However, a choice of η2 ∈ Θ(L) may not be desir-
able—in trust-region methods, step sizes are meant to be chosen adaptively; hence, it is desirable to allow
larger steps, which is done by setting η2 as small as possible. But via Assumption 3(c), this requires a
proportionally small selection of εF; that is, the function value estimates have to be substantially more accurate
than the models. Yet another trade-off in choosing a value of η2 becomes apparent in our main complexity
results; we see that the expected improvement per iteration may depend on η2. However, selecting “rea-
sonable” values of η2 removes this dependency.

To simplify expressions for various constants, we assume that η1 � 0.1, γ � 2, and κfcd � 0.5, which are
frequently used values for these constants in practice. We also assume that κbhm ≤ 12κef and η2 ≤ κeg. To
simplify expressions further, we suppose κef � κeg. Clearly, if κef or κeg happen to be smaller (that is, the
models give better approximations of the true function), then bounds somewhat better than the ones derived
here can be derived. We are interested in deriving bounds in the pessimistic case in which κef or κeg may be
large. We note that our analysis can be performed for any other values of these constants; we again stress that
these choices of constants have been made entirely for convenience and simplicity.

The conditions on α and β under this choice of constants is shown in our results.

3.3. Defining and Analyzing the Process {Φk , Δk}
We consider a random process {Φk,Δk} derived from the process generated by Algorithm 1 with Δk the trust-
region radius and

Φk � νf (Xk) + (1 − ν)Δ2
k , (20)

where ν ∈ (0, 1) is a deterministic constant, sufficiently close to one, to be defined later. Clearly, Φk ≥ 0. We
simplify the notation ^M·F

k to ^k.
Define a random time:

Tε � inf{k ≥ 0 : ‖∇f (Xk)‖ ≤ ε}. (21)

It is easy to see that Tε is a stopping time for the stochastic process defined by Algorithm 1 and is, hence, a
stopping time for {Φk,Δk}.

As stated, our goal is to bound the expected stopping time E(Tε). We do so by showing that Assumption 1 is
satisfied for {Φk,Δk}, allowing us to apply the results of Section 2.

So we show that Assumption 1, (i) and (ii), holds with the following choice of Δε:

Δε � ε

ζ
, for ζ ≥ κeg +max{η2, κbhm,

8κef

κfcd(1 − η1)}. (22)

Note that, by our choice of algorithmic parameters, (22) is satisfied by ζ � 20κeg.
For simplicity of presentation and without loss of generality, we assume that Δε � γiδ0 for some integer

i ≤ 0. If not, we can always choose ζ within a factor of γ of its lower bound in (22). It follows that, for any k,
Δk � γikΔε for some integer ik. Choose λ in Assumption 1, (i) and (ii), so that eλ � γ. Assumption 1(i) then holds
automatically because of the definition of {Φk,Δk} and the choice of δmax imposed by Algorithm 1. For
Assumption 1(ii) to hold, we need to show that the dynamics (3) hold for Δk, which we do in the following
lemma.

Lemma 7. Let Assumptions 2 and 3 hold. Let α and β be such that αβ> 1/2. Then Assumption 1(ii) is satisfied for
Wk � 2(IkJk − 1

2), λ � log(γ), and p � αβ.

Clearly, inequality (3) holds when l(Tε > k) � 0. We show that, conditioned on Tε > k (i.e., l(Tε > k) � 1), we
have

Δk+1 ≥ min{Δε,min{Δmax, γΔk}IkJk + γ−1Δk(1 − IkJk)}. (23)
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First we note that, for each realization in which δk >Δε, we have δk ≥ γΔε, and hence, δk+1 ≥ Δε. Now, suppose
that δk ≤ Δε. Then, because Tε > k, we have ‖∇f (xk)‖> ε, and hence, from the definition of ζ, we have that

‖∇f (xk)‖ ≥ κeg +max η2, κbhm,
8κef

κfcd(1 − η1)
{ }( )

δk.

Assume that Ik � 1 and Jk � 1; that is, both the model and the estimates are good in the kth iteration. Because
the model mk is κ-fully linear,

‖gk‖ ≥ ‖∇f (xk)‖ − κegδk ≥ (ζ − κeg)δk ≥ max η2, κbhm,
8κef

κfcd(1 − η1)
{ }

δk.

Moreover, because the estimates {f 0k , f sk } are εF-accurate with εF ≤ κef , we conclude that condition (17) in
Lemma 5 holds. Thus, the kth iteration is successful; that is, xk+1 � xk + sk and δk+1 � max{δmax, γδk}.

If IkJk � 0, then δk+1 ≥ γ−1δk by the dynamics of Algorithm 1.
Finally, observing that P{IkJk � 1|^M·F

k−1} ≥ p � αβ, we conclude that (23) implies that Assumption 1(ii) holds.
We now show that Assumption 1(iii) holds; this is the key theorem in this section and is similar to theorem

4.11 in Chen et al. (2018) except we drop the restrictive conditions imposed on η2 mentioned in Remark 2 and
simplify the proof. We omit the parts of the proof that are identical to those of theorem 4.11 in Chen et al.
(2018).

Theorem 3. There exist probabilities α and β such that, if Assumptions 2 and 3 hold with these α and β, then there exists a
constant Θ> 0 such that

l(Tε > k)E[Φk+1 −Φk |^M·F
k−1 ] ≤ −l(Tε > k)ΘΔ2

k , (24)

conditioned on Tε > k.
Moreover, under our particular choice of constants, let α and β satisfy

(αβ − 1
2)

(1 − α)(1 − β) ≥ 10 + 30L
40κeg

,

and

β ≥ κeg + 0.064L + 4 · 10−4η2
κeg + 0.064L + 4.5 · 10−4η2 .

Then3 Θ � 1
1800min η2β, κ−1

eg

{ }
.

Because (24) holds trivially if Tε ≤ k, we assume in this proof that ‖∇f (Xk)‖> ε. We split the analysis into two
possible cases: ‖∇f (xk)‖ ≥ ζδk and ‖∇f (xk)‖< ζδk. We show that (24) holds in both cases, and hence, (24) holds
on every iteration. Let ν ∈ (0, 1) be such that

ν

1 − ν
> max

4γ2

ζC1
,

4γ2

η1η2κfcd
,
γ2

κef

{ }
, (25)

with C1 defined as in Lemma 4.
Let xk, δk, sk, gk, and φk denote realizations of random quantities Xk, Δk, Sk, Gk, and Φk, respectively. Consider

an arbitrary realization of Algorithm 1. Note that, on all successful iterations, xk+1 � xk + sk and δk+1 �
min{γδk, δmax} with γ> 1; hence,

φk+1 − φk ≤ ν( f (xk+1) − f (xk)) + (1 − ν)(γ2 − 1)δ2k . (26)

On all unsuccessful iterations, xk+1 � xk and δk+1 � 1
γ δk; that is,

φk+1 − φk � (1 − ν)( 1
γ2 − 1)δ2k ≡ b1 < 0. (27)
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Case 1. ‖∇f (xk)‖ ≥ ζδk with ζ satisfying (22).

Let α and β satisfy

(αβ − 1
2)

(1 − α)(1 − β) ≥
C3

C1
, (28)

with C1 defined in Lemma 4 and C3 � 1 + 3L
2ζ. We consider four subcases:

a. Ik � 1 and Jk � 1, that is, both the model and the estimates are good in the kth iteration. The proof is
almost identical to that of theorem 4.11 in Chen et al. (2018). However, because we do not assume that
η2 ≥ κbhm, there is a slight modification because of our definition of ζ.

Because Lemmas 4 and 5 hold, we have that

φk+1 − φk ≤ −νC1‖∇f (xk)‖δk + (1 − ν)(γ2 − 1)δ2k ≡ b2, (29)

for ν ∈ (0, 1) satisfying (25).
b. Ik � 1 and Jk � 0, that is, we have a good model and bad estimates in the kth iteration. The proof is

identical to that of theorem 4.11 in Chen et al. (2018), where it is shown that (27) holds.
c. Ik � 0 and Jk � 1, that is, we have a bad model and good estimates on iteration k. Again (27) holds, as is

shown in theorem 4.11 in Chen et al. (2018).
d. Ik � 0 and Jk � 0, that is, both the model and the estimates are bad on iteration k. The proof of theorem

4.11 in Chen et al. (2018) applies, where it is shown that

φk+1 − φk ≤ νC3‖∇f (xk)‖δk + (1 − ν)(γ2 − 1)δ2k ≡ b3. (30)

This holds with C3 � 1 + 3L
2ζ.

Next, following the proof of Case 1 of theorem 4.11 in Chen et al. (2018), we combine the outcomes of the
four subcases to obtain that, under condition (28), we have

E[Φk+1 −Φk |^M·F
k−1 , {‖∇f (Xk)‖ ≥ ζΔk}] ≤ − 1

4
C1ν‖∇f (Xk)‖Δk ≤ − 1

4
C1ν

ζ
Δ2
k ,

where the last inequality is because ‖∇f (Xk)‖ ≥ ζΔk.
We now derive bounds on the expectation of Φk+1 −Φk in the remaining case. This proof differs from the

analysis of Case 2 performed in theorem 4.11 of Chen et al. (2018) because of our weaker assumptions on η2.

Case 2. ‖∇f (xk)‖< ζδk with ζ satisfying (22).

Note that, if ‖gk‖< η2δk, then the kth iteration is unsuccessful, and (27) holds. Hence, we assume that
‖gk‖ ≥ η2δk. We consider only two subcases: in the first subcase, we show that, if the function value estimates
are good, then (27) holds. In the second subcase, because ‖∇f (xk)‖< ζδk, the increase in φk can be bounded from
above by a multiple of δ2k . Thus, by selecting an appropriate value for the probability β, we establish the same
bound on expected decrease in Φk as in Case 1.

a. Jk � 1, that is, the estimates are good on iteration k, and the model might be good or bad.
The iteration may or may not be successful. On successful iterations, the good estimates ensure reduction in f , and on

unsuccessful iterations, δk is reduced. Applying the same argument as in Case 1(c), we have that (27) holds.
b. Jk � 0, that is, the estimates are bad on iteration k, and the model might be good or bad.
Here, as in Case 1, we bound the maximum possible increase in φk. Using the Taylor expansion of f about xk,

the Lipschitz continuity of ∇f (x), and taking into account the bound ‖∇f (xk)‖< ζδk, we have

f (xk + sk) − f (xk) ≤ ‖∇f (xk)‖δk + 1
2
Lδ2k <C3ζδ

2
k .

Thus, the change in φ is bounded like

φk+1 − φk ≤ [νC3ζ + (1 − ν)(γ2 − 1)]δ2k . (31)

We are now ready to bound the expectation of φk+1 − φk as we did in Case 1. In Case 2, however, we only need
to combine (31), which holds with probability at most (1 − β), with (27), which holds otherwise:

E[Φk+1 −Φk |^M·F
k−1 , {‖∇f (Xk)‖< ζΔk}]

≤ β(1 − ν)( 1γ2 − 1)Δ2
k

+ (1 − β)[νC3ζ + (1 − ν)(γ2 − 1)]Δ2
k .

(32)
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If we choose β ∈ (0, 1] so that

β

1 − β
≥ 2νγ2C3ζ

(1 − ν)(γ2 − 1) + 2γ2 (33)

holds, then the first (negative) term in the right-hand side of (32) is at least twice as large in absolute value as
the (positive) second term of the right-hand side. We, thus, have

E[Φk+1 −Φk |^M·F
k−1 , {‖∇f (Xk)‖< ζΔk}] ≤ 1

2
β(1 − ν)( 1

γ2 − 1)Δ2
k . (34)

To complete the proof of the theorem, it remains to substitute the appropriate constants into these expressions.
In particular, because of our assumptions that κbhm ≤ 12κef and κef � κeg, we can choose C1 � 1

10 and, recalling
the choice of ζ � 20κeg, γ � 2, η1 � 0.1, κfcd � 0.5, and η2 ≤ κeg, (25) reduces to

ν

1 − ν
≥ 4γ2

η1η2κfcd
≥ 320

η2
, (35)

which holds if

ν ≥ 320
320 + η2

.

We can assume that ν> 1
2 without loss of generality.

Case 1. For the probabilities α and β to satisfy (28) with C3 � 1 + 3L
2ζ, it is sufficient that

(αβ − 1
2)

(1 − α)(1 − β) ≥ 10 + 30L
40κeg

.

Then, using ν> 1
2 in (31) implies that

E[Φk+1 − Φk |^M·F
k−1 , {∇f (Xk)‖< ζΔk}] ≤ − 1

1600κeg
Δ2
k .

Case 2. Recalling the expression for C3, recalling the values for the constants ζ and γ � 2, and choosing ν so that
(35) is satisfied with equality, we see that (33) is satisfied if

β

(1 − β) ≥
4 × 320(40κeg + 3L)

3η2
+ 8,

which is satisified if

β

(1 − β) ≥
1280(14κeg + L)

η2
+ 8, (36)

which, in turn, is satisfied by

β ≥ 2 · 104κeg + 1280L + 8η2
2 · 104κeg + 1280L + 9η2

� κeg + 0.064L + 4 · 10−4η2
κeg + 0.064L + 4.5 · 10−4η2 .

Then, observing that ν is chosen so that 1 − ν � η2
320+η2, from (34) and η2 < 320 (because ν> 1

2),

E[Φk+1 −Φk |^M·F
k−1 , {‖∇f (Xk)‖< ζΔk}] ≤ − 3η2

8(320 + η2) βΔ
2
k ≤ − 1

1800
η2βΔ

2
k .

Thus, we conclude that

E[Φk+1 −Φk |^M·F
k−1 ] ≤ −ΘΔ2

k

for Θ � 1
1800min η2β, κ−1

eg

{ }
, which completes the proof.
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Our almost sure stationarity result follows immediately from Theorem 3 with the same proof as given in Chen
et al. (2018); however, we do not assume that η2 ≥ κef .

Theorem 4. Let Assumptions 2 and 3 hold. Let α and β satisfy the conditions of Theorem 3. Then, the sequence of random
iterates {Xk} generated by Algorithm 1 almost surely satisfies

lim
k→∞

‖∇f (Xk)‖ � 0.

Using Theorem 3, we can moreover demonstrate the validity of Assumption 1(iii), which is more directly
related to the primary goal in this manuscript. We state the result for completeness and convenience of reference.

Lemma 8. Let the assumptions of Theorem 3 hold. Then Assumption 1(iii) is satisfied with Θ � 1
1800min η2β, κ−1

eg

{ }
for the

process {Φk,Δk}, where Φk is defined as in (20) with ν satisfying (25) and h(δ) � δ2.

3.4. Complexity Result for First-Order STORM Algorithm
We immediately arrive at the following theorem.

Theorem 5. Consider Algorithm 1 and the corresponding stochastic process. Let Tε be defined as in (21). Then, under the
assumptions of Theorem 3,

E[Tε] ≤ αβ

2αβ − 1
20Φ0κeg

Θε2
+ 1

( )
,

where Θ � 1
1800min η2β, κ−1

eg

{ }
, Φ0 defined as in (20) with k � 0 with ν satisfying (25).

3.5. Example of Models and Estimates Satisfying Assumption 3
Although Assumption 3 was sufficiently general to allow us to develop our general complexity analysis,
Assumption 3 is easy to satisfy in practice in the classical stochastic optimization setting by taking a sufficient
number of samples of the function, gradient, and Hessian estimates. A number of recent papers rely on this
technique to produce sufficiently accurate gradient and Hessian approximations. For example, lemma 4 in
Tripuraneni et al. (2017) uses matrix concentration results from Tropp (2015) to show that given a bound on
the variance of the gradient

E[‖∇f̃ (x, ξ) − ∇f (x)‖] ≤ σ2g,

the average of 2̃(σ2gε2) gradient samples ∇f̃ (x, ξ) (denoted by g) satisfies

‖g − ∇f (x)‖ ≤ ε

with probability p, where 2̃ hides a term dependent on − log(1 − p). A similar result was established for the
Hessian sample average approximation. Another similar result for the function estimates, given variance σf , is
a simpler version of the same inequalities and can be derived using Chebyshev’s inequality.

Using these results, we can obtain α-probabilistically fully linear models as follows. We compute fk by

averaging 2(σ
2
f

Δ4
k
log( 1

1− ��
α

√ )) samples f̃ (xk, ξ), and we independently compute gk as an average of 2̃( σ2g
κ2
egΔ

2
k
log( 1

1− ��
α

√ ))
gradient samples ∇f̃ (xk, ξ). This ensures that ‖gk − ∇f (xk)‖ ≤ κegΔk and | fk − f (xk)| ≤ Δ2

k with probability at least
α. The fully linear condition |m(y) − f (y)| ≤ κefΔ

2
k follows automatically with an appropriately chosen κef . Note

that all of these sample sizes are determined by quantities that are either known by the algorithm or can be
accurately estimated.

Similarly, we can obtain β-probabilistically εF-accurate estimates f 0k and f sk by averaging 2̃( σ2f
ε2FΔ

4
k
log( 1

1− ��
β

√ ))
samples of f̃ (xk, ξ) and f̃ (xk + sk, ξ), respectively.

In the case of simulation optimization, when ∇f (x, ξ) is not available, κ-fully linear models mk can be
constructed via polynomial interpolation (Conn et al. 2009); α-probabilistically κ-fully linear models can be
similarly obtained by combining interpolation and sufficiently accurate function value estimates (see, e.g.,
Shashaani et al. (2015)).

Another setting that is explored in Chen et al. (2018) is when f (x) (and, possibly, ∇f̃ (x)) are computed
accurately via some procedure, but this procedure may fail with some small, but fixed, probability. In this
case, f̃ (x, ξ) and ∇f̃ (x, ξ) are the true values of the function and the gradients or some arbitrarily corrupted
values. If the probability of failure is sufficiently small, conditioned on the past, then STORM still converges
almost surely.
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4. The Second-Order STORM Algorithm
We now introduce a variant of Algorithm 1 that is intended to achieve second-order criticality in the fully
stochastic setting; we use the same notation as in Algorithm 1.

In this second-order setting, the putative subproblem solution generally needs to provide more than just
Cauchy decrease (9). In particular, we require that, in the kth iteration, for all realizations mk (as defined in
Step 2 of Algorithm 1) of Mk, we are able to compute a step sk satisfying

mk(xk) −mk(xk + sk) ≥ κscd

2
max ‖gk‖min

‖gk‖
‖Hk‖ , δk
[ ]

,max{−λmin(Hk), 0}δ2k
{ }

(37)

for some constant κscd ∈ (0, 1]. A step satisfying this (typical) second-order assumption is given, for instance, by
computing both the Cauchy step and, in the presence of negative curvature in the model, the eigenstep and by
choosing the one that provides the largest reduction in the model4 (Conn et al. 2000).

Our analysis (but not the algorithm itself) uses, in lieu of ∇f , the following measure of proximity to a second-
order stationary point for the objective f :

τ(x) � max ‖∇f (x)‖,−λmin(∇2f (x)){ }
. (38)

The corresponding optimality measure for the model mk, following Bandeira et al. (2014), is defined anal-
ogously as

τm(x) � max min ‖∇m(x)‖, ‖∇m(x)‖
‖∇2m(x)‖

[ ]
,−λmin(∇2m(x))

{ }
. (39)

The additional term in (39) not present in (38) is necessary because there is no upper bound on the model
Hessians on all iterations as in the first-order case (κbhm). We only ever apply (39) to the iterate xk, in which
case (39) becomes

τmk � max min ‖gk‖, ‖gk‖‖Hk‖
[ ]

,−λmin(Hk)
{ }

. (40)

We are now ready to present our second-order STORM algorithm, a modification of the first-order STORM
algorithm.

Algorithm 2 (Second-Order Stochastic DFO with Random Models).

Like Algorithm 1, but with the following modifications to Steps 3, 5, and 6:
3: (Step calculation) Compute sk � arg min

s:‖s‖≤δk
mk(s) (approximately) so that sk satisfies condition (37).

5: (Acceptance of the trial point): If ρk ≥ η1 and τmk ≥ η2δk, set xk+1 � xk + sk; otherwise, set xk+1 � xk.
6: (Trust-region radius update): If ρk ≥ η1 and τmk ≥ η2δk, set δk+1 � min{γδk, δmax}; otherwise, set δk+1 � γ−1δk;

k ← k + 1 and go to step 2.

The analysis for the Algorithm 2 variant again uses the framework proposed in Section 2, thus serving as
another illustration of the applicability of this generic framework. Before proceeding, we need to describe the
additional assumptions required for our second-order analysis. In particular, we need to assume one more
order of smoothness than was assumed in Assumption 2:

Assumption 4. The function f satisfies Assumption 2, and f is twice continuously differentiable. The Hessian ∇2f is
LH-Lipschitz continuous.

4.1. Assumptions on the Second-Order STORM Algorithm
We introduce a measure of second-order accuracy of the models mk (see Conn et al. (2009), Billups et al. (2011),
and Larson and Billups (2015) for more details).

Definition 5. (1) A function mk is a κ-fully quadratic model of f on B(xk, δk) provided, for κ � (κef , κeg, κeh) and
∀y ∈ B(xk, δk),

‖∇2f (xk) −Hk‖ ≤ κehδk,

‖∇f (y) − ∇mk(y)‖ ≤ κegδ2k ,

| f (y) −mk(y)| ≤ κef δ3k .
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(2) The estimates f 0k and f sk are εF-s.o.-accurate (s.o. for “second order”) estimates of f (xk) and f (xk + sk), re-
spectively, for a given δk provided

| f 0k − f (xk)| ≤ εFδ
3
k and | f sk − f (xk + sk)| ≤ εFδ

3
k . (41)

Definition 6. A sequence of random models {Mk} is said to be α-probabilistically κ-fully quadratic (see Bandeira
et al. (2013)) with respect to the corresponding sequence {B(Xk,Δk)} if the events

Ik � l{Mk is a κ-fully quadratic model of f on B(Xk,Δk)} (42)

satisfy the condition

P(Ik � 1|^M·F
k−1 ) ≥ α.

Definition 7. A sequence of random estimates {F0k ,Fsk} is said to be β-probabilistically εF-s.o.-accurate with respect
to the corresponding sequence {Xk,Δk,Sk} if the events

Jk � l{F0k , Fsk are εF-s.o.accurate estimates of f (xk) and f (xk + sk), respectively, for Δk} (43)

satisfy the condition

P(Jk � 1|^M·F
k−1/2) ≥ β,

where εF is a fixed constant.
We no longer utilize Assumption 3(a); that is, we no longer explicitly assume that model Hessians Hk are

bounded in norm. Instead, we demonstrate in the following lemma that ‖Hk‖ is uniformly bounded from above
as a direct consequence of mk being a fully quadratic model of f .

Lemma 9 (Bandeira et al. (2014)). Let Assumption 4 hold. Given constants κeh, κeg, κef , and δmax, there exists a constant
κbhm ≥ 1 such that, uniformly over every k and every realization mk ofMk such that mk is a (κef , κeg, κeh)-fully quadratic model
of f on B(xk, δk) and δk ≤ δmax, we have

‖Hk‖ ≤ κbhm.

The proof follows trivially from the definition of fully quadratic models and the fact that ‖∇2f ‖ ≤ L; this follows
from the gradient of f being Lipschitz continuous with constant L. Thus, we can take κbhm � δmaxκeh + L.

For our convergence analysis, we again need to impose conditions on the stochastic (and deterministic)
information used by STORM.

Assumption 5. Within Algorithm 2,
a. The sequence of random models {Mk} generated by Algorithm 2 is α-probabilistically κ-fully quadratic for some

κ � (κef , κeg, κeh) and for a sufficiently large α ∈ (0, 1).
b. The sequence of random estimates {F0k , Fsk} generated by Algorithm 2 is β-probabilistically εF-s.o.-accurate for

εF < min{κef , 14 η1η2κscd min{η2, 1}} and sufficiently large β ∈ (0, 1).
Note that, as in our first-order analysis, we allow for unrestricted values of η2 in Algorithm 2, involving a

potential trade-off with an increased accuracy requirement on the function estimates.

4.2. Useful Preliminary Results for Second-Order STORM Analysis
The analysis of Algorithm 2 is similar to the analysis of Algorithm 1. However, there are more cases to
consider and the convergence rate to the second-order stationary point is different as one would expect
from the second-order convergence analysis of a deterministic TR method. There is one more significant
difference—an additional assumption on function estimates—to be detailed in the next section. First, we state
and prove analogues of Lemmas 3–6 for function decrease in terms of first- and second-order optimality. The
first three lemmas are almost identical to Lemmas 3–5, with the notable exceptions that (1) the models are
assumed to be fully quadratic instead of fully linear, (2) the model decrease condition (37) is used, and (3) the
condition ‖Hk‖ ≤ κbhm is only valid in iterations k for which the model mk is fully quadratic (as seen in Lemma
9). For completeness, we have included the proofs of Lemmas 10–12 in the appendix.
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Lemma 10 (Good Quadratic Model ⇒ Function Reduction ∝ ‖gk‖). Let Assumption 4 hold. Suppose that a model mk is a
(κef , κeg, κeh)-fully quadratic model of f on B(xk, δk). If δk ≤ 1 and

δk ≤ min
1

κbhm
,
κscd

8κef

{ }
‖gk‖,

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −κscd

4
‖gk‖δk.

Lemma 11 (Good Quadratic Model ⇒ Function Reduction ∝ ‖∇f(xk)‖). Let Assumption 4 hold. Suppose that a model is
(κef , κeg, κeh)-fully quadratic on B(xk, δk). If δk ≤ 1 and

δk ≤ min
1

κbhm + κeg
,

1
8κef
κscd

+ κeg

⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭‖∇f (xk)‖, (44)

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −C1‖∇f (xk)‖δk, (45)

for any C1 ≤ κscd
4 ·max κbhm

κbhm+κeg
,

8κef

8κef+κscdκeg

{ }
.

Lemma 12 (Good Quadratic Model + Good s.o. Estimates⇒ Successful Step). Let Assumption 4 hold. Suppose that mk is
(κef , κeg, κeh)-fully quadratic on B(xk, δk) and the estimates {f 0k , f sk } are εF-s.o.-accurate with εF ≤ κef . If δk ≤ 1 and

δk ≤ min
1

κbhm
,

1
η2κbhm

,
κscd(1 − η1)

8κef

{ }
‖gk‖, (46)

then the kth iteration is successful.

The remaining lemmas address negative curvature in the model and second-order accurate estimates.

Lemma 13 (Good Quadratic Model⇒ Function Reduction ∝ λmin(Hk)). Let Assumption 4 hold. Suppose that a model mk is
a (κef , κeg, κeh)-fully quadratic model of f on B(xk, δk). If

δk ≤ κscd

8κef
(−λmin(Hk)), (47)

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −κscd

4
(−λmin(Hk))δ2k . (48)

Whenever λmin(Hk)< 0, the decrease condition (37) ensures that

mk(xk) −mk(xk + sk) ≥ κscd

2
(−λmin(Hk))δ2k .

Because the model is κ-fully quadratic, the improvement in f achieved by sk is

f (xk + sk) − f (xk) � f (xk + sk) −m(xk + sk) +m(xk + sk) −m(xk) +m(xk) − f (xk)
≤ 2κef δ

3
k −

κscd

2
(−λmin(Hk))δ2k

≤ −κscd

4
(−λmin(Hk))δ2k ,

where the last inequality is implied by (47).

: XXX
18 INFORMS Journal on Optimization, Articles in Advance, pp. 1–27, © 2019 INFORMS



Lemma 14 (Good Quadratic Model ⇒ Function Reduction ∝ λmin(∇2f(xk))). Let Assumption 4 hold. Suppose that a model
is (κef , κeg, κeh)-fully quadratic on B(xk, δk). If

δk ≤ 1
8κef
κscd

+ κeh

(−λmin(∇2f (xk))), (49)

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −C4(−λmin(∇2f (xk)))δ2k , (50)

for any C4 ≤ κscd
4 · 8κef

8κef+κscdκeh
.

Using corollary 8.5.6 from Golub and Loan (1989), the definition of a κ-fully quadratic model implies that

−λmin(Hk) ≥ (−λmin(∇2f (xk))) − κehδk. (51)

Because (49) implies that −λmin(∇2f (xk)) ≥ (8κef

κscd
+ κeh)δk, we have

−λmin(Hk) ≥ 8κef

κscd
δk.

Thus, the conditions of Lemma 13 hold, and we have

f (xk + sk) − f (xk) ≤ −κscd

4
(−λmin(Hk))δ2k . (52)

From (51) and (49), we also have

−λmin(Hk) ≥ 8κef

8κef + κscdκeg
(−λmin(∇2f (xk))). (53)

Combining (52) and (53) yields (50).

Lemma 15 (Good Quadratic Model + Good s.o. Estimates⇒ Successful Step). Let Assumption 4 hold. Suppose that mk is
(κef , κeg, κeh)-fully quadratic on B(xk, δk) and the estimates {f 0k , f sk } are εF-s.o.-accurate with εF ≤ κef . If

δk ≤ min
1
η2

,
κscd(1 − η1)

8κef

{ }
(−λmin(Hk)), (54)

then the kth iteration is successful.

From the model decrease condition (37),

mk(xk) −mk(xk + sk) ≥ κscd

2
(−λmin(Hk))δ2k . (55)

From the definition of the model mk being (κef , κeg)-fully quadratic,

| f (xk) −mk(xk)| ≤ κef δ
3
k , and (56)

| f (xk + sk) −mk(xk + sk)| ≤ κef δ
3
k . (57)

Because the estimates are εF-s.o.-accurate with εF ≤ κef , we obtain

| f 0k − f (xk)| ≤ κef δ
3
k , and | f sk − f (xk + sk)| ≤ κef δ

3
k . (58)

We have

ρk � f 0k − f sk
mk(xk) −mk(xk + sk)

� f 0k − f (xk)
mk(xk) −mk(xk + sk) +

f (xk) −mk(xk)
mk(xk) −mk(xk + sk) +

mk(xk) −mk(xk + sk)
mk(xk) −mk(xk + sk)

+mk(xk + sk) − f (xk + sk)
mk(xk) −mk(xk + sk) + f (xk + sk) − f sk

mk(xk) −mk(xk + sk) ,
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which, combined with (55)–(58), implies

|ρk − 1| ≤ 8κef δ3k
κscd(−λmin(Hk))δ2k

≤ 1 − η1,

where we have used the assumptions δk ≤ κscd(1−η1)
8κef

(−λmin(Hk)) to deduce the last inequality. Thus, ρk ≥ η1.

Moreover, the first term in (54) and (40) imply τmk ≥ (−λmin(Hk)) ≥ η2δk. The conclusion of the lemma follows.

Lemma 16 (Good s.o. Estimates + Successful Step⇒ Function Decrease ∝ δ3k). Suppose the estimates {f 0k , f sk } are εF-s.o.-
accurate with εF < 1

4 η1η2 min{1, η2}κscd. If δk ≤ 1 and a trial step sk is accepted (the kth iteration is successful), then the
improvement in f is bounded below like

f (xk+1) − f (xk) ≤ −C2δ
3
k , (59)

where

C2 � 1
2
η1η2 min{1, η2}κscd − 2εF > 0. (60)

If the kth iteration is successful, then ρ ≥ η1, and either min ‖gk‖, ‖gk‖‖Hk‖
{ }

≥ η2δk or −λmin(Hk) ≥ η2δk. Let us first

suppose that min ‖gk‖, ‖gk‖‖Hk‖
{ }

≥ η2δk. Then,

f 0k − f sk ≥ η1(mk(xk) −mk(xk + sk))
≥ η1

κscd

2
‖gk‖min

‖gk‖
‖Hk‖ , δk

{ }
≥ 1
2
η1κscdη2 min{1, η2}δ2k

≥ 1
2
η1κscdη2 min{1, η2}δ3k ,

where we used the supposition δk ≤ 1.
Let us now suppose that −λmin(Hk) ≥ η2δk. Then,

f 0k − f sk ≥ η1(mk(xk) −mk(xk + sk))
≥ η1

κscd

2
(−λmin(Hk))δ2k

≥ 1
2
η1η2κscdδ

3
k

≥ 1
2
η1κscdη2 min{1, η2}δ3k .

Thus, in either case, using the fact that the estimates are εF-s.o.-accurate, we have

f (xk + sk) − f (xk) � f (xk + sk) − f sk + f sk − f 0k + f 0k − f (xk) ≤ −C2δ
3
k ,

where C2 is defined in (60).

4.2.1. Choosing Constants. To simplify our calculations, just as we did in our first-order analysis, we par-
ticularize our choices of constants, but we clearly state when we use these choices. We let κscd � 0.5, η1 � 0.1,
γ � 2, δmax � 1, and κef � κeg � κeh � Θ(L), where L � max{L,LH}. To satisfy Assumption 5, we let εF �
1

160 η2 min{1, η2} ≤ κeh and η2 ≤ 18. Note that we cannot impose upper bounds on κbhm as such a bound cannot
be chosen freely; as seen in Lemma 9, we have κbhm � κeh + L ≤ 2max{κeh,L}.

4.3. Defining and Analyzing the Process {Φk ,Δk} for Second-Order Convergence
Seeing as how the order of the function decrease that can be guaranteed on good iterations of Algorithm 2
changed from δ2k in the first-order analysis (c.f. Lemma 3) to δ3k in the second-order analysis (c.f. Lemma 16), we
must modify the process Φk accordingly. We let {Φk,Δk} be derived from the process generated by Algorithm 2,
where, once again, Δk denotes the trust-region radius, but this time we let

Φk � νf (Xk) + (1 − ν)Δ3
k , (61)
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where ν ∈ (0, 1) is a deterministic constant sufficiently close to one, which we define later. Once again, it is
clear that Φk ≥ 0. We define a random time

Tε � inf{k ≥ 0 : ‖∇f (Xk)‖ ≤ ε and λmin(∇2f (Xk)) ≥ −ε}, (62)

which is a stopping time for the stochastic process defined by Algorithm 2 and is, hence, also a stopping time
for {Φk,Δk}.

To bound the expected stopping time E(Tε) for Algorithm 2, we show that Assumption 1 is satisfied for
{Φk,Δk} and apply the results of Section 2.

Similarly to our first-order analysis, we can show that Assumption 1, (i) and (ii), holds with λ � logγ and
with the settings

Δε � ε

ζ
, for ζ ≥ max{κeg, κeh} +max η2κbhm, κbhm,

8κef

κscd(1 − η1)
{ }

, (63)

with ε ∈ (0, 1]. We reuse our assumption from the first-order analysis that Δε � γiδ0 for some i ≤ 0. Note that
(63), ε ∈ (0, 1], and κbhm ≥ 1 together imply that Δε ≤ 1.

Lemma 17. Let Assumptions 4 and 5 hold. Let α and β be such that αβ ≥ 1/2. Then, Assumption 1(ii) is satisfied for the
stochastic process generated by Algorithm 2 with Wk � 2(IkJk − 1

2), λ � logγ, and p � αβ.

The proof is similar to that of Lemma 7. We show that, conditioned on Tε > k (that is, l(Tε > k) � 1), where Tε

is defined in (62), (23) holds with Δε as defined in (63). The case that differs from the proof of Lemma 7 and
needs to be addressed here is when δk ≤ Δε. In this case, conditioned on Tε > k, we have that either ‖∇f (xk)‖ ≥ ε
or λmin(∇2f (xk)) ≤ −ε, and hence, from the definition of ζ in (63), we have that at least one of

‖∇f (xk)‖ ≥ κeg +max η2κbhm, κbhm,
8κef

κscd(1 − η1)
{ }( )

δk (64)

or

−λmin(∇2f (xk)) ≥ κeh +max η2,
8κef

κscd(1 − η1)
{ }( )

δk, (65)

holds, where we used the fact that κbhm ≥ 1.
Suppose that Ik � 1 and Jk � 1; that is, both the model and the estimates are good in the kth iteration. Because

the model mk is κ-fully quadratic and δk ≤ Δε ≤ 1, then, if (64) holds, we have

‖gk‖ ≥ ‖∇f (xk)‖ − κegδk ≥ (ζ − κeg)δk ≥ max η2κbhm, κbhm,
8κef

κscd(1 − η1)
{ }

δk. (66)

If (65) holds, we have

−λmin(Hk) ≥ −λmin(∇2f (xk)) − κehδk ≥ max η2,
8κef

κscd(1 − η1)
{ }

δk. (67)

As the estimates {f 0k , f sk } are εF-s.o.- accurate with εF ≤ κef , (66) implies that condition (46) in Lemma 12 holds
and (67) implies that condition (54) in Lemma 15 holds. Thus, in either case, iteration k is successful; that is,
xk+1 � xk + sk and δk+1 � max{δmax, γδk}.

If IkJk � 0, then δk+1 ≥ γ−1δk simply by the dynamics of Algorithm 2. Finally, observing that P{IkJk} ≥ p � αβ,
we conclude that (23) implies Assumption 1(ii).

To show that Assumption 1(iii) holds, we need an additional assumption on the accuracy of the function
estimates. In addition, we make a simplifying assumption of an upper bound on the trust-region radius5 in
Algorithm 2.

Assumption 6. We assume that
a. There exists a constant κF such that, at any iteration k,

E[|F0k − f (x0k)||^M·F
k−1/2] ≤ κFδ

3
k

and

E[|Fsk − f (xk + sk)||^M·F
k−1/2] ≤ κFδ

3
k .

b. The upper bound δmax in Algorithm 2 is chosen so that δmax ≤ 1.
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Note that the bound on the expectation of |F0k − f (x0k)| and |Fsk − f (xk + sk)|, in principle, implies that the
estimates are β-probabilistically εF-s.o.-accurate. However, for εF to satisfy the conditions in Assumption 5(b),
additional conditions would have to be imposed on κF. Thus, for our purposes here, we choose to allow any
finite κF > 0 and impose a bound only on εF.

Assumption 6(a) is needed for the case when we have a bad model and bad estimates in the kth iteration, the
case in which the (true) objective may increase after a successful step. Without Assumption 6(a), it is possible
that the increase in the objective is, in the worst case, on the order of δ2k (because of first-order terms).
Meanwhile, in the worst case, the objective decrease attained on other, successful steps is only guaranteed to
be on the order of δ3k (because of second-order terms). Such a situation would make it impossible to balance the
increase and decrease in the objective over the course of the algorithm in such a way as to ensure that the
stochastic process Φk decreases on average.

We now prove that Assumption 1(iii) holds for Algorithm 2.

Theorem 6. Let Assumptions 4–6 hold. Then, there exist probabilities α and β and a constant Θ> 0 such that, for each
iteration k of Algorithm 2, we have

l(Tε > k)E[Φk+1 −Φk |^M·F
k−1 ] ≤ −l(Tε > k)ΘΔ3

k , (68)

conditioned on Tε > k, where Tε is defined in (62) and Φk is defined in (61).
Moreover, with the particular choice of constants described on page 30Q: 11 , let α and β satisfy

(1 − α)(1 − β) ≤ min 0.05, 0.0003
η2 min{1, η2}

κF

{ }
(69)

and

β ≥ κF + 0.008η2 min{1, η2}
κF + 0.0085η2 min{1, η2} . (70)

Then, ζ � 20κbhm � 20(κeh + L) and Θ ≥ 6 · 10−4η2 min{1, η2}.
Because (68) clearly holds if Tε ≤ k, we suppose in what follows that Tε > k. Then, τ(xk)> ε, where τ(x) is

defined in (38). We consider two possible cases: τ(xk) ≥ ζδk and τ(xk)< ζδk, where ζ is defined in (63). We show
that (68) holds in either case, from which we can conclude that (68) holds for all k<Tε. Let ν ∈ (0, 1) be such
that

ν

1 − ν
≥ γ3

min ζC1, ζC4,C2{ } , (71)

with C1 defined as in Lemma 11, C4 defined as in Lemma 14, and C2 defined as in Lemma 16. Note that, on all
successful iterations, xk+1 � xk + sk and δk+1 � min{γδk, δmax} with γ> 1; hence,

φk+1 − φk ≤ ν( f (xk+1) − f (xk)) + (1 − ν)(γ3 − 1)δ3k . (72)

On all unsuccessful iterations, xk+1 � xk and δk+1 � 1
γ δk; that is,

φk+1 − φk � (1 − ν)( 1
γ3 − 1)δ3k ≡ b1 < 0. (73)

Case 1. τ(xk) � max{‖∇f (xk)‖,−λmin(∇2f (xk))} ≥ ζδk.

a. Ik � 1 and Jk � 1; that is, both the model and the estimates are good in the kth iteration. From the definition
of ζ and Case 1, we know that either (64) or (65) holds. Because Ik � 1 and δmax ≤ 1 (via Assumption 6(b)), (64)
implies that condition (44) in Lemma 11 holds, and (65) implies that condition (49) in Lemma 14 holds.
Therefore, the trial step sk leads to a decrease in f as in (45) or a decrease in f as in (50), respectively. Again
from Ik � 1 and δmax ≤ 1, (64) or (65) implies that (66) or (67) holds, respectively. Because Jk � 1 and εF ≤ κef ,
(66) and (67) imply that condition (46) in Lemma 12 and (54) in Lemma 15 hold, respectively. Thus, in either
case, iteration k is successful; that is, xk+1 � xk + sk and δk+1 � max{δmax, γδk}.

Combining (45) and (72), we have that

φk+1 − φk ≤ −νC1‖∇f (xk)‖δ2k + (1 − ν)(γ3 − 1)δ3k , (74)
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with C1 defined in Lemma 11. Because ‖∇f (xk)‖ ≥ ζδk, we have that

φk+1 − φk ≤ [−νC1ζ + (1 − ν)(γ3 − 1)]δ3k ≤ b1, (75)

with b1 defined in (73) for ν ∈ (0, 1) satisfying (71).
Combining (50) and (72), we have that

φk+1 − φk ≤ νC4λmin(∇2f (Xk))δ2k + (1 − ν)(γ3 − 1)δ3k , (76)

with C4 defined in Lemma 14. Again, because −λmin(∇2f (Xk)) ≥ ζδk, we have that

φk+1 − φk ≤ [−νC4ζ + (1 − ν)(γ3 − 1)]δ3k ≤ b1, (77)

with b1 defined in (73), for ν ∈ (0, 1) satisfying (71).
b. Ik � 1 and Jk � 0; that is, we have a good model and bad estimates in the kth iteration. In this case, the

analysis of case (a) again applies; either Lemma 11 or 14 demonstrate that sk yields a sufficient decrease in f .
However, the step can be erroneously rejected because of inaccurate function estimates, in which case we have
an unsuccessful iteration and (73) holds. Because (71) holds, (73) applies whether the iteration is successful or
not.

c. Ik � 0 and Jk � 1; that is, we have a bad model and good estimates in the kth iteration. In this case, as in
case (b), the kth iteration can be either successful or unsuccessful; in the latter case, (73) holds. In the former,
because the estimates are εF-accurate and (41) holds, then by Lemma 16 and Assumption 6(b), (59) holds with
some C2 > 0. Thus,

φk+1 − φk ≤ [−νC2 + (1 − ν)(γ3 − 1)]δ3k ≤ b1, (78)

because ν ∈ (0, 1) satisfies (71).
d. Ik � 0 and Jk � 0; that is, both the model and the estimates are bad in the kth iteration. Inaccurate es-

timates can cause the algorithm to accept a bad step, which may lead to an increase in both f and δk. Thus, in
this case, φk+1 − φk may be positive. We can derive a bound on the increase in f (xk) on successful steps in terms
of the error of the estimates like

φk+1 − φk ≤ ν( f (xk + sk) − f (xk)) + (1 − ν)(γ3 − 1)δ3k
≤ ν(( f (xk + sk) − f sk ) + ( f sk − f 0k ) + ( f (xk) − f 0k )) + (1 − ν)(γ3 − 1)δ3k
≤ ν(| f (xk + sk) − f sk | + | f (xk) − f 0k )| + (1 − ν)(γ3 − 1)δ3k .

(79)

Even in unsuccessful iterations, (73) still applies; this means that the right-hand side of (79) dominates and
(79) holds whether the kth iteration is successful or not. Note that nowhere in the analysis of case (d) have we
used the definition of Case 1.

Now we are ready to compute the expectation of Φk+1 − Φk in Case 1. Case (d) occurs with probability at
most (1 − α)(1 − β); in case (d), φk+1 − φk is bounded from above as in (79). Cases (a)–(c) occur otherwise; in
cases (a)–(c), φk+1 − φk is bounded from above by b1 < 0 with b1 defined in (73). Thus, we obtain

E[Φk+1 −Φk |^M·F
k−1 , {τ(Xk) ≥ ζΔk}]

� E[Φk+1 − Φk |^M·F
k−1 , Ik + Jk � 0] + E[Φk+1 − Φk |^M·F

k−1 , {τ(Xk) ≥ ζΔk}, Ik + Jk > 0]
≤ (1 − α)(1 − β) νE[| f (xk + sk) − f sk | + |f (xk) − f 0k ‖^M·F

k−1 ] + (1 − ν)(γ3 − 1)E[Δ3
k |^M·F

k−1 ]
( )

+ (1 − (1 − α)(1 − β))(1 − ν)( 1
γ3 − 1)E[Δ3

k |^M·F
k−1 ].

Recalling Assumption 6, noting that E[Δ3
k |^M·F

k−1 ] � Δ3
k , and rearranging terms, we obtain

E[Φk+1 − Φk |^M·F
k−1 , {τ(Xk) ≥ ζΔk}]

≤ (1 − α)(1 − β)2νκF + (1 − ν)( 1
γ3 − 1) + (1 − α)(1 − β)(1 − ν)(γ3 − 1

γ3)
( )

Δ3
k .
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Choosing α ∈ (0, 1] and β ∈ (0, 1] such that

(1 − α)(1 − β) ≤ min
1

2(γ3 + 1) ,
1 − ν

8κFν
1 − 1

γ3

( ){ }
, (80)

we conclude that

E[Φk+1 − Φk |^M·F
k−1 , {τ(Xk) ≥ ζΔk}] ≤ − 1

4
(1 − ν) 1 − 1

γ3

( )
Δ3
k . (81)

Case 2. τ(xk) � max{‖∇f (xk)‖,−λmin(∇2f (xk))}< ζδk.

i. Jk � 1; that is, we have good estimates but the model may be bad. The analysis of this case is similar to the
analysis of Case 1(c), and so (78) holds on successful steps. Thus, decrease bounded by b1 can again be
guaranteed for φk whether the iteration is successful or not.

ii. Jk � 0; that is, we have bad estimates and the model may also be bad. In this case, the analysis of Case
1(d) again applies because both f and δk may increase. We can once again upper bound the potential increase
in φk using (79) on both successful and unsuccessful steps.6

We are now ready to compute the expectation of Φk+1 − Φk in Case 2. Case 2(i) occurs with probability at
least β; in Case 2(i), φk+1 − φk is bounded above by b1 < 0 with b1 defined in (73). Case 2(ii) happens with
probability at most (1 − β); in Case 2(ii), the possible increase in φk is bounded like (79). We obtain

E[Φk+1 − Φk |^M·F
k−1 , {τ(Xk)< ζΔk}]

≤ (1 − β) νE[| f (xk + sk) − f sk | + |f (xk) − f 0k ‖^M·F
k−1 ] + (1 − ν)(γ3 − 1)E[Δ3

k |^M·F
k−1 ]

( )
+ β(1 − ν)( 1

γ3 − 1)E[Δ3
k |^M·F

k−1 ].

From Assumption 6 and because E[Δ3
k |^M·F

k−1 ] � Δ3
k , we obtain

E[Φk+1 −Φk |^M·F
k−1 , {τ(Xk)< ζΔk}] ≤ (1 − β)[2νκF + (1 − ν)(γ3 − 1)] + β(1 − ν) 1

γ3 − 1
( ){ }

Δ3
k . (82)

Choosing β ∈ (0, 1] such that

β

1 − β
≥ 2γ3[2νκF + (1 − ν)(γ3 − 1)]

(1 − ν)(γ3 − 1) , (83)

we conclude that

E[Φk+1 − Φk |^M·F
k−1 , {τ(Xk)< ζΔk}] ≤ − 1

2
β(1 − ν) 1 − 1

γ3

( )
Δ3
k . (84)

In conclusion, for ν satisfying (71) and α and β satisfying (80) and (83), respectively, the expected decrease in
Φk in (68) holds with

Θ � 1
4
min{2β, 1}(1 − ν) 1 − 1

γ3

( )
.

Now, let us particularize these results with the constants given on page 30.Q: 12 Using η2 ≤ 18 and κbhm � κeh + L,
we deduce that ζ :� 20κbhm � 20(κeh + L) satisfies (63). A selection of C1 � C4 � 1

10 satisfies the conditions in
Lemmas 11 and 14. By Lemma 16 and our particular choice of εF, we select C2 � 1

80 η2 min{1, η2}. Thus, from
(71) and because εF ≤ κeh ≤ κbhm, ν must satisfy

ν

1 − ν
≥ 8
min 2κbhm,C2{ } �

320
η2 min{1, η2} .

We select ν � 320
320+η2 min{1,η2} ∈ (0, 1). With these selections, (80) is equivalent to

(1 − α)(1 − β) ≤ min
1
18

,
7η2 min{1, η2}

211 · 10κF

{ }
,
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which is implied by our choice in (69). Likewise, with these selections, the bound (83) is equivalent to

β

1 − β
≥ 16

640κF

7η2 min{1, η2} + 1
[ ]

,

which is implied by

β ≥ 2 · 103κF + 16η2 min{1, η2}
2 · 103κF + 17η2 min{1, η2} ,

which is implied by our choice in (70). Our choice of Θ also follows by noting that η2 min{1, η2} ≤ 18.
We contrast the second-order results of Theorem 6 with the first-order results of Theorem 3. The effect of the

stronger assumption on the estimates in Assumption 6(a) is clearly seen in the appearance of κF in the
denominator of (69). Also, because of our particular choice of constants and requirements on the accuracy of
the estimates, η2 was assumed to be smaller than the Lipschitz constants L and κeh; hence, η2 appears in the
numerator of (69), and Lipschitz constants do not. In this light, η2 can be interpreted as an additional means to
control/ensure model quality, which is perhaps unsurprising given the definition of η2 in Algorithm 2.

We now state and prove the main complexity result for Algorithm 2.

Theorem 7 (Complexity of Second-Order STORM Algorithm). Consider Algorithm 2 and its corresponding stochastic
process. Let Tε be defined as in (62)with ε ∈ (0, 1]. Then, under the assumptions of Theorem 6, for sufficiently large α ∈ (0, 1]
and β ∈ (0, 1] with αβ> 1/2, we have

E[Tε] ≤ αβ

2αβ − 1
Φ0ζ3

Θε3
+ 1

( )
, (85)

where Φ0 is defined in (61) with k � 0, ν is defined in (71), and ζ is definied in (63).
Moreover, with the particular choices of constants described on page 30Q: 13 and in Theorem 6, (85) becomes

E[Tε] ≤ 8 · 103 αβ

2αβ − 1
Φ0(κeh + L)3

Θε3
+ 1

( )
,

where Θ ≥ 6 · 10−4η2 min{1, η2}.
The validity of Assumption 1(iii) follows from Theorem 6 with h(δ) � δ3 and Δε defined in (63). Lemma 17

and the discussion preceding it imply that Theorem 2 applies, from which we conclude (85).
A lim inf-type almost sure convergence result trivially follows.

Corollary 1 (Convergence of Second-Order STORM Algorithm). Under the conditions of Theorem 7, the iterates {Xk}
generated by Algorithm 2 almost surely contain a subsequence convergent to a second-order stationary point of f .

As in our discussion in Section 3.5, similar techniques for computing function, gradient, and Hessian
estimates can be derived that satisfy Assumptions 5 and 6 for Algorithm 2 (Bandeira et al. 2014).

5. Conclusion
In this manuscript, we propose a general framework based on a stochastic process that can be used to bound
the expected complexity of optimization algorithms. This framework can be applied beyond the algorithms
discussed in this paper and has already been used in recent work on a stochastic line-search method (Paquette
and Scheinberg 2018). We then applied this framework to demonstrate that a stochastic trust-region method
with dynamic stochastic estimates of the gradient has essentially the same complexity as any other first-order
method in a nonconvex setting. We then showed that a second-order stochastic trust-region method converges
to a second-order stationary point and, moreover, demonstrated that the expected complexity of this second-
order method essentially matches the known complexity of second-order methods for second-order methods
in nonconvex optimization settings. Although the algorithms we analyzed require stochastic estimates to be
progressively more accurate, the algorithms never require the computation of a full gradient; hence, the
algorithms apply to purely stochastic settings.

Appendix
This appendix contains proofs of several lemmas that are novel but whose proofs are similar to existing results. We include
them here for completeness.
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Proof of Lemma 10. Using the optimal decrease condition (37), the upper bound onmodel Hessian from Lemma 9, and the fact
that ‖gk‖ ≥ κbhmδk, we have

mk(xk) −mk(xk + sk) ≥ κscd

2
‖gk‖min

‖gk‖
‖Hk‖ , δk
{ }

� κscd

2
‖gk‖δk.

Because the model is κ-fully quadratic, the improvement in f achieved by sk is

f (xk + sk) − f (xk) � f (xk + sk) −m(xk + sk) +m(xk + sk) −m(xk) +m(xk) − f (xk)
≤ 2κef δ

3
k −

κscd

2
‖gk‖δk ≤ −κscd

4
‖gk‖δk,

where the last inequality is implied by δ2k ≤ δk ≤ κscd
8κef

‖gk‖. □

Proof of Lemma 11. The definition of a κ-fully quadratic model yields that

‖gk‖ ≥ ‖∇f (x)‖ − κegδ
2
k .

Because condition (44) implies that ‖∇f (xk)‖ ≥ max κbhm + κeg,
8κef

κscd
+ κeg

{ }
δk, using δk ≤ 1, we have

‖gk‖ ≥ max κbhm,
8κef

κscd

{ }
δk.

Hence, the conditions of Lemma 10 hold, and we have

f (xk + sk) − f (xk) ≤ −κscd

4
‖gk‖δk. (A.1)

Q: 14 Because ‖gk‖ ≥ ‖∇f (x)‖ − κegδk in which δk satisfies (44), we also have

‖gk‖ ≥ max
κbhm

κbhm + κeg
,

8κef

8κef + κscdκeg

{ }
‖∇f (xk)‖. (A.2)

Combining (A.1) and (A.2) yields (45). □

Proof of Lemma 12. Because δk ≤ ‖gk‖
κbhm

, the model decrease condition (37) and the uniform bound on Hk under Lemma 9
immediately yield that

mk(xk) −mk(xk + sk) ≥ κscd

2
‖gk‖min

‖gk‖
κbhm

, δk

{ }
� κscd

2
‖gk‖δk. (A.3)

The model mk being (κef , κeg, κeh)-fully quadratic implies that

| f (xk) −mk(xk)| ≤ κef δ
3
k , and (A.4)

| f (xk + sk) −mk(xk + sk)| ≤ κef δ
3
k . (A.5)

Because the estimates are εF-s.o.-accurate with εF ≤ κef , we obtain

| f 0k − f (xk)| ≤ κef δ
3
k , and | f sk − f (xk + sk)| ≤ κef δ

3
k . (A.6)

We have

ρk � f 0k − f sk
mk(xk) −mk(xk + sk)

� f 0k − f (xk)
mk(xk) −mk(xk + sk) +

f (xk) −mk(xk)
mk(xk) −mk(xk + sk) +

mk(xk) −mk(xk + sk)
mk(xk) −mk(xk + sk)

+mk(xk + sk) − f (xk + sk)
mk(xk) −mk(xk + sk) + f (xk + sk) − f sk

mk(xk) −mk(xk + sk) ,

which, combined with (A.3)–(A.6), implies

|ρk − 1| ≤ 8κef δ
3
k

κscd‖gk‖δk ≤ 1 − η1,
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where we have used the assumptions δ2k ≤ δk ≤ κscd(1−η1)
8κef

‖gk‖ to deduce the last inequality. Hence, ρk ≥ η1. Moreover, because

‖gk‖ ≥ η2κbhmδk, then τmk ≥ min ‖gk‖, ‖gk‖κbhm

{ }
≥ η2δk and the kth iteration is successful. □

Endnotes
1One can always enlarge the σ-algebras by adding sources of randomness that are independent from^k and consider such enlarged σ-algebras.
In order to not add further notation, we prefer to work with ^k as defined.
2Note that it is possible to have κef and κeg of different magnitudes. In particular, when κeg is small, we obtain correspondingly accurate
gradients, but κef remains in Θ(L). Our analysis and results apply then as well.
3Note that because β> 1

2 always, if η2 ≥ 2κ−1
eg , then Θ � 1

1800κ
−1
eg independently of η2. This implies that small values for η2 are permissible if the

value of κeg is large.
4The eigenstep is the minimizer of the quadratic model in the trust region along an eigenvector corresponding to the smallest (negative)
eigenvalue of Hk .
5This restriction can be avoided if one allows a more involved discussion on dominating terms in the proofs of Lemmas 10–12 and 16 and in the
proof of the main result.
6Note that, under additional assumptions on κef and η2, one can further refine the analysis here to account for the decrease in φk that could be
achieved when Ik � 1.
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