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Locality and Availability of Array Codes
Constructed From Subspaces

Natalia Silberstein, Tuvi Etzion , Fellow, IEEE, and Moshe Schwartz , Senior Member, IEEE

Abstract— We study array codes which are based on
subspaces of a linear space over a finite field, using spreads,
q-Steiner systems, and subspace transversal designs. We present
several constructions of such codes which are q-analogs of some
known block codes, such as the Hamming and simplex codes.
We examine the locality and availability of the constructed
codes. In particular, we distinguish between two types of locality
and availability: node versus symbol. The resulting codes have
distinct symbol/node locality/availability, allowing a more efficient
repair process for a single symbol stored in a storage node of a
distributed storage system, compared with the repair process for
the whole node.

Index Terms— Locally repairable codes, distributed storage,
availability, q-analog.

I. INTRODUCTION

DESIGNING efficient mechanisms to store, maintain, and
efficiently access large volumes of data is a highly rele-

vant problem. Indeed, ever-increasing amounts of information
are being generated and processed in the data centers of
Amazon, Facebook, Google, Dropbox, and many others. The
demand for ever-increasing amounts of cloud storage is sup-
plied through the use of Distributed Storage Systems (DSS),
where data is stored on a network of nodes (hard drives and
solid-state drives).
In the DSS paradigm, it is essential to store data

redundantly, in order to tolerate inevitable node fai-
lures [2], [19], [41]. Currently, the resilience against node
failures is typically the result of replication, where several
copies of each data object are stored on different storage nodes.
However, replication is highly inefficient in terms of storage
capacity. Recently, erasure-correcting codes have been used
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in DSS to reduce the large storage overhead of replicated
systems [8], [10], [24].
Apart from storage space, other metrics should be con-

sidered when designing an actual DSS. However, in contrast
with storage space, these metrics are adversely affected by the
straightforward use of simple erasure-correcting codes. One
such metric is the repair bandwidth: the amount of data that
needs to be transferred when a node has failed, and is thus
replaced. This metric is highly relevant as a prohibitively large
fraction of the network bandwidth in a DSS may be consumed
by such repair operations. Let us term all the information
stored by a DSS as the file. Traditional erasure-correcting
codes, and in particular maximum distance separable (MDS)
codes, usually require that all the file be downloaded in
order to regenerate a failed node. Recently, Dimakis et al. [9]
established a trade-off between the repair bandwidth and the
storage capacity of a node, and introduced a new family
of erasure-correcting codes, called regenerating codes, which
attain this trade-off. In particular, they proved that if a large
number of storage nodes can be contacted during the repair
of a failed node, and only a fraction of their stored data is
downloaded, then the repair bandwidth can be minimized.
Local repair of a DSS is an additional property which

is highly sought. The corresponding performance metric is
termed the locality of the coding scheme: the number of nodes
that must participate in a repair process when a particular node
fails. Local repair is of significant interest when a cost is asso-
ciated with contacting each node in the system. This is indeed
the case in real world scenarios, for example as the result
of network constraints. Codes which enable local repairs of
failed system nodes are called locally repairable codes (LRCs).
These codes were introduced by Gopalan et al. [20]. LRCs
which also minimize the repair bandwidth, called codes with
local regeneration, were considered in [28], [29], and [37].
Regenerating codes and LRCs are attractive primarily for

the storage of cold data – archival data that is rarely accessed.
On the other hand, they do not address the challenges posed
by the storage of frequently accessed hot data. For example,
hot-data storage must enable efficient reads of the same data
segments by several users in parallel. This property is referred
to as availability. Codes which provide both locality and
availability were first proposed in [39].
Recently, codes with locality and availability have found

another application in the well known area of private infor-
mation retrieval [7]. Shah et al. [45] were the first to consider
storage overhead for this important concept. In an important
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development, Fazeli et al. [15], [16] demonstrated how codes
with good availability can be used to save storage and to
obtain low storage overhead. Their new ideas have motivated
a series of papers with related results, e.g., [3], [4], [17], [31],
[35], [50], [51], [56]. Other codes which were studied in the
context of private information retrieval are batch codes [1],
[26]. These codes also have applications as distributed storage
system codes [40].
Regenerating codes are described in terms of stored infor-

mation in nodes (servers). In other words, regenerating codes
are usually array codes [49]. Reconstructing the files and
repairing failed nodes are the main tasks of regenerating codes.
LRCs and codes with availability are usually described as
block codes, and access and/or repair is described in terms
of symbols (scalars).
In this work we combine the two approaches and dis-

cuss two types of locality (respectively, availability): node
locality (availability), which resembles the first approach, and
symbol locality (availability), which resembles the second
approach. To our knowledge, such a combined approach was
not considered in the literature before. The motivation to
explore codes with different types of locality and availability
is the problem of latent sector errors (LSEs), where individual
sectors (symbols) on a drive (node) become unavailable [43].
Our solution approach will be based on array codes, con-

structed via subspaces of a finite vector space. A subspace
approach for DSS codes was considered for the first time
in [22] and later in [36]. Our approach is slightly different
from the approach in these two papers. We shall employ
spreads, q-Steiner systems, and subspace transversal designs in
our constructions. We will also analyze the node and symbol,
locality and availability, of the resulting codes. This subspace
approach for locality and availability is also novel.

A. Our Contribution

In this paper we present several constructions of array codes.
The parameters of these codes are summarized in Table I.
Note, that rs and rn denote symbol locality and node locality,
respectively, and ts and tn denote the symbol availability
and node availability, respectively (for formal definitions see
Definitions 1-3 in the following section).

• Construction 1 is based on all the b-dimensional sub-
spaces of FM

q . When b = 1, it yields the classic simplex
code, and hence it can be considered as its generalization
and q-analog.

• Construction 2 is based on a b-spread of FM
q , which are

very important and well studied in projective geometry
(see the definition of a b-spread in Section III-B). This
construction also yields the simplex code when b = 1,
and when M = 2b, it yields an MDS array code.
Moreover, its dual code is a perfect array code (see
Lemma 7).

• Construction 1 and Construction 2 are based on the two
extreme cases of the q-analog of combinatorial designs.
More generally, we provide Construction 3, which gener-
alizes the previous two constructions. It uses the q-analog
of block designs, namely, q-Steiner systems. However,

there is only one set of parameters (apart from the
parameters of Constructions 1 and 2) where they are
known to exist. Nonetheless, it is conjectured that infinite
families of such designs exist (see Section III-B).

• Construction 4 is based on a subspace transversal design.
These designs have similar properties to the ones of
q-Steiner systems, but unlike them, subspace transversal
designs are known to exist for many parameters (see the
definition of a subspace transversal design in Section III-
B). In particular, we consider two types of constructions
from subspace transversal designs, namely

1) based on a single parallel class of a subspace
transversal design;

2) based on all the subspaces in a subspace transversal
design.

When M = 2b, the first construction produces an MDS
array code. In addition, the dual code of the code obtained
from this construction is an asymptotically perfect array
code.

In addition to the node and symbol locality of the con-
structed codes summarized in Table I, we have node and
symbol availability for some of the codes. The code from
Construction 1 has symbol availability

ts =
⎧
⎨

⎩

[M−1
b−1

] − 1 1 < b < M,

qM−1 − 1

2
b = 1.

and node availability

tn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2

([M
2

] − 1
)

2 = b < M, even q ,

≥ 1

2

(
[M
2

] − 1 − q(q2 + q − 1)
[M−2

2

]
)

2 = b < M, odd q .

The symbol availability of the code from Construction 4 (the
one based on all the subspaces in a subspace transversal
design) is ts = q(M−b)(t−1) − 1.

B. Related Constructions

Codes with locality r and availability t allow us to recover
any code symbol by using t disjoint sets of cardinality r
(usually for r relatively small). This line of research has been
extremely active in the last few years as a consequence of
its practical importance. The results of some known code
constructions with locality and availability and their gener-
alizations, mainly related to the constructions presented in
this paper, are summarized below. We note that our combined
approach, that distinguishes between node and symbol locality
and availability, was not considered before. Many known
constructions in the literature are not array codes, therefore
precluding the distinction between nodes and symbols. Thus,
actual comparison with previous works is mostly impossible,
except for one simple case mentioned below.

• Codes with locality and availability. Constructions of
codes with locality and availability were proposed in
[25], [34], [39], [48], and [53]. Specifically, the con-
struction presented in [34] is based on partial geometries.
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TABLE I

PARAMETERS OF THE CONSTRUCTED CODES

Resolvable combinatorial designs, and modified pyramid
codes were used in [39]. The approach in [48] is based
on orthogonal partitions and on product codes. One-step
majority-logic decodable codes and product codes are
used in [25].

• Codes with locality and availability over small fields.
Codes over small alphabets (and in particular, binary
codes) are of particular interest due to their simple
implementation. The locality properties of the family of
binary simplex codes were proved in [6]. Modifications
of simplex codes based on anticodes technique yield opti-
mal codes with good locality and availability properties,
as shown in [47]. Binary cyclic LRCs were considered in
[21] and [54]. Binary codes for any given locality r and
availability t are provided in [53].

• Codes with local regeneration. Codes that combine the
properties of LRCs with regenerating codes, by allowing
to minimize the repair bandwidth locally, were presented
in [28], [29], and [37]. Most of these codes (i.e., [29],
[37]) are based on the properties of linearlized polyno-
mials. To the best of our knowledge, these are the only
previously known array codes that have locality proper-
ties. However, the locality for these codes is defined only
for nodes, and the symbol locality appears to be hard to
extract from the construction.

• Other extensions and generalizations of LRCs. Codes
that enable cooperative local recovery from multiple
erasures were presented in [38]. In other words, these
codes allow to recover any small set of codeword symbols
from a small number of other symbols. Codes where
symbols have different localities were considered in [27]
and [55]. Codes with hierarchical locality, which enable
local recovery from multiple erasures were presented
in [42]. The PIR array codes considered in [3] and [4]
have optimal symbol availability, with symbol locality 2,
for large number of nodes, but their node locality and
availability were not considered and again, appear to be
hard to extract.

• Fractional repetition codes. Construction of such codes,
e.g., in [11], [30], [46], and [57], provide arrays of
repeating symbols. These were not intended originally for
node and symbol locality and availability. However, their
relatively simple structure allows us to find their parame-
ters or bound them. In the notation of [46], an (n, α, ρ)-
FR code (Fractional Repetition code) is composed of
α × n arrays with θ � nα/ρ information symbols,
each appearing in ρ distinct columns. Thus, trivially,

the symbol locality is rs = 1, the symbol availability is
ts = ρ−1. For nodes we have the trivial upper bounds of
rn ≤ α and tn ≤ ρ−1. In [46] we find three constructions
of FR codes: [α×n, αn/2, 2] codes, [α×ρα, α2, ρ] codes
for ρ ≥ 3, and [(t+1)×(s+1)(st+1), (t+1)(st+1), s+1]
codes for t ≥ s (with further restrictions described in
detail in [46]). However, the main disadvantage of these
codes, compared with the codes we construct (see Table I)
is their low minimum distance.

C. Paper Organization

The rest of this paper is organized as follows. Preliminaries
are given in Section II. Our subspace approach, constructions
of codes, and analysis of their locality and availability, are
presented in Section III. We conclude in Section IV with a
short discussion and some open problems.

II. PRELIMINARIES

Let Fq denote the finite field of size q . For a natural
number m ∈ N, we use the notation [m] � {1, 2, . . . ,m}.
We use lower-case letters to denote scalars. Overlined letters
denote vectors, which by default are assumed to be column
vectors. Matrices are denoted by upper-case letters. However,
the codewords of array codes, which are arrays (matrices),
will be denoted by bold lower-case letters. Thus, typically,
we shall have a generator matrix G, whose j th column is g j ,
and whose (i, j)th entry is gi, j . An array code will usually be
denoted by C , whose typical codeword will be denoted by c.
We use 0 to denote the scalar zero, 0 for the all-zero column
vector, and 0 for the all-zero matrix. Also, given a (possibly
empty) set of vectors, v1, . . . , vm ∈ F

n
q , their span is denoted

by 〈v1, . . . , vm〉.
Our main object of study is a linear array code, formally

defined as follows.
Definition 1: A [b×n, M, d] array code over Fq , denoted C,

is a linear subspace of b×n matrices over Fq. Matrices c ∈ C
are referred to as codewords. The elements of a codeword are
denoted by ci, j , i ∈ [b], j ∈ [n], and are referred to as
symbols. Columns of codewords are denoted by c j , j ∈ [n].
We denote by M � dim(C) the dimension of the code as a
linear space over Fq. The weight of an array is defined as the
number of non-zero columns, i.e., for c ∈ C,

wt(c) �
∣
∣
{
c j : c j �= 0, j ∈ [n]}∣∣ .
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Finally, the minimum distance of the code, denoted d, is the
defined as the minimal weight of a non-zero codeword,

d � min
c∈C
c �=0

wt(c).

We make two observations to avoid confusion with other
notions of error-correcting codes. The first observation is that
by reading the symbols of codewords, column by column,
and within each column, from first to last entry, we may
flatten the b × n codewords to vectors of length bn. This
results in a code over Fq of length bn, dimension M , but
more often than not, a different minimum distance, since the
above definition considers non-zero columns and not non-zero
symbols. Assume G is an M × bn generator matrix for the
flattened code. By abuse of notation, we shall also call G the
generator matrix for the original array code C . Note that in
G, columns ( j − 1)b + 1, . . . , jb, correspond to the symbols
appearing in the j th codeword column in C . We shall call
these b columns in G by the j th thick column of G, similarly
to [28]. Thus, G is a matrix comprised of n thick columns,
corresponding to the n columns of codewords in C .
Example 1: Over F2, let C be a [2 × 5, 5, 3] array code,

and let

c =
(
0 0 0 0 1
0 1 1 0 0

)

be a codeword of C with weight 3. The corresponding flattened
codeword is (0001010010), which is exactly the last row of the
following generator matrix G for C,

G =

⎛

⎜
⎜
⎜
⎜
⎝

10 00 01 01 00
00 10 00 01 01
01 00 10 00 01
01 01 00 10 00
00 01 01 00 10

⎞

⎟
⎟
⎟
⎟
⎠

,

which has 5 thick columns (separated by vertical lines).
The second observation is that we may use the well known

isomorphism F
b
q

∼= Fqb , and consider each column of a
codeword as a single element from Fqb . We get an Fq -
linear code over Fqb (sometimes called a vector-linear code),
of length n, minimum distance d , but with a dimension (taken
as usual over Fqb ) not necessarily M .
In a typical distributed-storage setup, we would like to store

a file containing M sectors. We choose Fq such that it is large
enough to contain all possible sectors as symbols. The file is
encoded into an array c ∈ C from a [b× n, M, d] array code.
Each codeword column of c is stored in a different node. The
minimum distance d of the code ensures that any failure of at
most d − 1 nodes may be corrected. Figure 1 illustrates this
idea using the code from Example 1.
Two important properties of codes for distributed storage are

locality and availability. An important feature of this paper
is the distinction between symbol locality and node locality
(respectively, availability). Note that this approach is different
from the standard one, where only node locality and avail-
ability are considered. The motivation to explore codes with
different types of locality and availability is the problem of
latent sector errors (LSEs), where individual sectors (symbols)

Fig. 1. Distributed storage system based on the binary [2 × 5, 5, 3] array
code from Example 1.

on a drive (node) become unavailable [43]. As can be observed
in the sequel, symbol locality can be smaller when compared
to the node locality. Thus, a more efficient recovery of a
single symbol is possible, compared with the recovery of an
entire node, since fewer nodes need to be contacted. Similarly,
symbol availability can be larger when compared to the node
availability, which also enhances the recovery process of a
single symbol compared with an entire node.
Definition 2: Let C be a [b × n, M, d] array code. We say

a codeword column j ∈ [n] has node locality rn, if its content
may be obtained via linear combinations of the contents of the
recovery-set columns. More precisely, there exists a recovery
set S = {

j1, . . . , jrn
} ⊆ [n]\{ j} of rn other codeword columns,

and scalars a(i)
�,m ∈ Fq , i, � ∈ [b], m ∈ [rn], such that for all

i ∈ [b],

ci, j =
rn∑

m=1

b∑

�=1

a(i)
�,mc�, jm (1)

simultaneously for all codewords c ∈ C. If all codeword
columns have this property, we say the code has node locality
of rn.
Similarly, we say the code has symbol locality rs, if for

every coordinate, i ∈ [b] and j ∈ [n], there exists a recovery
set S = {

j1, . . . , jrs
} ⊆ [n]\{ j} of rs other codeword columns,

and scalars a�,m ∈ Fq , � ∈ [b], m ∈ [rs], such that for every
codeword c ∈ C,

ci, j =
rs∑

m=1

b∑

�=1

a�,mc�, jm . (2)

Thus, each code symbol may be recovered from the code
symbols in rs other codeword columns.

Note that the coefficients in (2) are not necessarily the same
as those in (1). Additionally, it is obvious that rs ≤ rn.

Once locality is defined, we can also define availability.
Definition 3: The node availability, denoted tn, (respec-

tively, the symbol availability, denoted ts) is the number of
pairwise-disjoint recovery sets (as in the definition of locality)
that exist for any codeword column (respectively, symbol).
Note that each recovery set should be of size at most rn
(respectively, rs).
Example 2: One can verify that the code from Example 1

has symbol locality rs = 2, but node locality rn = 3.
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Additionally, it has symbol availability ts = 2, but node
availability tn = 1.

We also recall some useful facts regarding Gaussian coef-
ficients. Let V be a vector space of dimension n over Fq .
For any integer 0 ≤ k ≤ n, we denote by

[V
k

]
the set of

all k-dimensional subspaces (k-subspaces, in short) of V . The
Gaussian coefficient is defined for n, k, and q as

[
n

k

]

q
� (qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Whenever the size of the field, q , is clear from the context,
we shall remove the subscript q .
It is well known that the number of k-subspaces of an n-

dimensional space over Fq is given by
[n
k

]
. In a more general

form, the number of k′-subspaces of V which intersect a given
k-subspace of V in an i -subspace is given by

q(k′−i)(k−i)
[
n − k

k ′ − i

][
k

i

]

. (3)

Additionally, the Gaussian coefficients satisfy the following
recursions,

[
n

k

]

=
[
n − 1

k

]

+ qn−k
[
n − 1

k − 1

]

= qk
[
n − 1

k

]

+
[
n − 1

k − 1

]

. (4)

For more on Gaussian coefficients, the reader is referred to
[52, Ch. 24].

III. A SUBSPACE APPROACH TO LRCS

Let C be a [b × n, M, d] array code over Fq . Throughout
this section we further assume that b ≤ M . We now describe
an approach to viewing such array codes which will lead to
the main results of this section.
Denote V � F

M
q the M-dimensional vector space over Fq .

Let G be a generator matrix for the (flattened) array code C .
For each j ∈ [n], we define Vj , such that Vj ∈ ⋃b

k=0

[V
k

]
,

to be the column space of the j th thick column of G, i.e.,

Vj �
〈
g( j−1)b+1,, g( j−1)b+2, . . . , g jb

〉
.

We say Vj is associated with the j th thick column of G, or
equivalently, associated with the j th column of the codewords
of C .
Example 3: The 2-dimensional vector space associated

with the second thick column of the code from Example 1
is V2 = 〈

(01000)T , (00011)T
〉
.

The following equivalence is fundamental to the construc-
tions and analysis of this section.
Lemma 1: Let C be a [b×n, M, d] array code over Fq , and

let Vj , j ∈ [n], be the subspaces associated with the codeword
columns. Then S = { j1, . . . , jm} ⊆ [n] \ { j} is a recovery set
for codeword column j ∈ [n], if and only if

Vj ⊆ Vj1 + Vj2 + · · · + Vjm .

Similarly, S is a recovery set for symbol (i, j), i ∈ [b], if
g( j−1)b+i ∈ Vj1 + Vj2 + · · · + Vjm ,

where g( j−1)b+i is the i th column in the j th thick column of
a generating matrix G for C.

Proof: This is a simple restatement of (1) and (2).
With this equivalence, we may obtain the node/symbol

locality/availability using subspace properties of the thick
columns of a generating matrix. Another definition of interest
is the following.
Definition 4: Let C be a [b × n, M, d] array code over

Fq , and let Vj be the subspace associated with the j th thick
column. If dim(Vj ) = b for all j ∈ [n] we call C full column
rank.

A. Generalized Simplex Codes via Subspaces

We start with a construction of array codes which may be
considered as a generalization and a q-analog of the classical
simplex code, the dual of the Hamming code (see [32, pp. 30]).
Construction 1: Fix a finite field Fq , positive integers

1 ≤ b ≤ M, and V = F
M
q . Construct a b × [M

b

]
array code

whose set of columns are associated with the subspaces
[V
b

]
,

each appearing exactly once. To make the dependence on the
code parameters explicit, we denote this code by CM

b .
Note that when we choose b = 1 in Construction 1 we

obtain the simplex code. This fact will be used in the proof
of Theorem 1 below.
We make a note here, which is also relevant for the construc-

tions to follow. Once we fix the set of subspaces associated
with the codeword columns, the code is constructed in the
following way: for each j ∈ [n], and associated subspace Vj ,
we arbitrarily choose a set of b vectors from F

M
q that form

a basis for Vj . These b vectors are placed (in some arbitrary
order) as the columns comprising the j th thick column of
a generator matrix G. The resulting matrix G generates the
constructed code.1

Lemma 2: Fix a finite field Fq , positive integers b < M,
and V = F

M−1
q . For any V ′ ∈ [ V

b−1

]
, given as the column

space of an (M − 1) × (b − 1) matrix G′, and for any non-
zero vector u ∈ F

M−1
q such that uT G′ = 0

T
, the following

hold:

1) If x, y ∈ F
M−1
q are in the same coset of V ′, then uT x =

uT y.
2) The number of cosets of V ′, all of whose vectors x satisfy

uT x = a, for some fixed a ∈ Fq , is exactly qM−b−1.
Proof: Denote the columns of G′ as g′

1, . . . , g
′
b−1. If x

and y are in the same coset of V ′, then there exist scalars
a1, . . . , ab−1 such that

x = y +
b−1∑

j=1

a j g
′
j .

Multiplying on the left by uT , and recalling that uT G′ = 0
T
,

we obtain the first claim.
The number of cosets of V ′ is exactly qM−b, each con-

taining qb−1 vectors. Since u �= 0, the number of vectors

1Permuting the thick columns in the construction results in equivalent codes.
If a canonical representation is required, we may choose the basis of each
thick column to be in reduced row echelon form.
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x ∈ F
M−1
q such that uT x = a is qM−2. Dividing this by the

number of vectors per coset we obtain the second claim.
We are now ready for the first claim on the properties of

the codes from Construction 1.
Theorem 1: The array code obtained from Construction 1

is a [b × [M
b

]
, M, d] array code, with

d =
[
M

b

]

−
[
M − 1

b

]

= qM−b
[
M − 1

b − 1

]

.

Additionally, except for the all-zero array codeword, all other
codewords have the same constant weight d.

Proof: Apart from the minimum distance of the code,
all other parameters are trivial. We shall prove the minimum
distance property by proving the constant-weight property of
the non-zero codewords by induction on M and b (we refer
to this induction as induction A). Additionally, we assert an
auxiliary claim on the thick columns of the generator matrix,
namely, that each thick column has rank b. We will prove this
claim by induction as well (we refer to this second induction
as induction B).
For the basis of induction A we have the following cases.

When considering CM
M , the codewords are M × 1 arrays, and

trivially, any non-zero codeword has weight

1 = qM−M
[
M − 1

M − 1

]

.

Another base case is CM
1 . In the resulting generator matrix,

each thick column contains just a single column, and the
matrix is nothing but a generator matrix for the well known
simplex code. The codewords are 1×(qM −1)/(q−1) arrays.
The weight of the non-zero codewords in the simplex code is
known to be qM−1, and indeed we get a constant weight of

qM−1 = qM−1
[
M − 1

0

]

.

We additionally note that in both cases, each thick column has
rank b, i.e., the basis for induction B holds.
Assume now the claim holds for CM−1

b−1 and for CM−1
b , for

both inductions, A and B. For the induction step we prove
the claim also holds for CM

b . Let their respective generating
matrices be GM−1

b−1 and GM−1
b . Since we are not in any of the

induction-base cases, we additionally have 1 < b < M .
We construct a new matrix, G by concatenating modified

thick columns from GM−1
b−1 and GM−1

b . We first take each thick
column of GM−1

b , append a bottom row of all zeros, and place
it as a thick column of G. We call these columns thick columns
of type I.
All the remaining thick columns of G, which we call

of type II, are formed by the thick columns of GM−1
b−1 as

follows. Consider such a single thick column, which is an
(M −1)× (b−1) matrix on its own. Denote its column space
by V ′ ⊆ F

M−1
q , which by the hypothesis of induction B, has

rank b − 1. Thus, there are qM−b cosets of V ′ in F
M−1
q . Let

v ′
1, . . . , v

′
qM−b be arbitrary coset representatives of the distinct

cosets of V ′. We create qM−b thick columns in G from the
given thick column of GM−1

b−1 by placing it, each time with v ′
i as

a bth column, and with an appended bottom row of 0, . . . , 0, 1.

Fig. 2. The two types of thick columns in the constructed matrix G: a
type I thick column, created by a thick column (a) from GM−1

b , and a type

II thick column, created by a thick column (b) from GM−1
b−1 and one of its

column-space coset representatives.

In such thick columns of type II, the left b − 1 coordinates
are called the recursive part, whereas the last coordinate is
called the coset part. The two types of thick columns of G
(depending on their source) are depicted in Figure 2.
Simple bookkeeping shows that we have

[M−1
b

]
thick

columns of type I, and qM−b
[M−1

b

]
thick columns of type

II, for a total of
[
M − 1

b

]

+ qM−b
[
M − 1

b − 1

]

=
[
M

b

]

thick columns, where we used (4). They are easily seen to have
distinct associated subspaces, each of dimension b, accounting
for all the b-subspaces of V = F

M
q . Thus, G is indeed a

generator matrix for the code from Construction 1, where each
column has rank b.
Now that we have proven a decomposition for the generator

matrix G, we can proceed with the proof of the constant weight
of all non-zero codewords. It is easily seen that G has full
rank. We consider several cases, depending on the rows of G
participating in the linear combination creating the codeword
at question.
In the simplest case, if a codeword of CM

b is formed by
the last row of G only, then its weight is qM−b

[M−1
b−1

]
, as the

number of thick columns of type II.
For the second case, let us consider a codeword c ∈ CM

b
formed by a linear combination of some rows from the first
M −1 rows of G. By the hypothesis of induction A, the thick
columns of type I contribute

[M−1
b

] − [M−2
b

]
to the weight

of c. Also by the hypothesis of induction A, the recursive
parts of thick columns of type II contribute qM−b(

[M−1
b−1

] −
[M−2
b−1

]
) to the weight. Finally, even if for some thick column

of type II the recursive part may produce a combination of all
zeros, the coset part may be non-zero, thus contributing to the
weight of c. More precisely, we have

[M−2
b−1

]
recursive parts the

linear combination zeros. Therefore, by Lemma 2, the coset
part of exactly

[M−2
b−1

]
(q − 1)qM−b−1 becomes non-zero, and

contributes to the weight of c. In total we get,

wt(c) =
[
M − 1

b

]

−
[
M − 2

b

]

+ qM−b
([

M − 1

b − 1

]

−
[
M − 2

b − 1

])

+
[
M − 2

b − 1

]

(q − 1)qM−b−1

=
[
M

b

]

−
[
M − 1

b

]

.
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Finally, we consider a linear combination that, non-trivially,
uses some rows from the set of M − 1 first rows, as well as
the last row. The 1’s in the last row are located exactly at the
coset part of thick columns of type II. Since by Lemma 2, the
linear combination results in an equal number of appearances
of each element of Fq in the coset parts, an addition of
a multiple of the last row will not change that, and the
weight of the codeword remains the same as in the previous
case.
Lemma 3: The array code obtained from Construction 1,

with parameters b < M, has node locality of rn = 2, and
symbol locality of

rs =
{
1 b > 1,

2 b = 1.

Proof: Let C be a code generated by Construction 1 with
a generator matrix G. We first examine the case of b > 1.
For symbol locality, given any column of G, denoted g ∈ F

M
q ,

by (3), there are exactly
[M−1
b−1

]
b-subspaces of FM

q containing
g, each corresponding to a thick column of G. Since b < M ,
we have

[M−1
b−1

]
> 1, and there exists a thick column different

than the one containing the column g, whose column space
contains g. Hence, rs = 1.
For node locality, given any subspace Vj associated with the

j th thick column of G, we can easily find two other subspaces
Vj1 and Vj2 , j �∈ { j1, j2}, such that Vj ⊆ Vj1 + Vj2 . For
example: fix a basis for Vj . Take the first basis element and
complete it to a basis of some b-subspace of FM

q , denoted Vj1 .
Take the remaining b − 1 basis elements of Vj and complete
them to a different b-subspace, denoted Vj2 . This can always
be done when 1 < b < M . Hence, rn = 2.
Finally, we consider the case b = 1. In this case, each thick

column of G comprises of a single column. By definition this
means that rn = rs, and since each column may be shown as
the sum of two other columns, we have rn = rs = 2.
We note that we ignored the case of b = M in the previous

lemma, since then the array codewords have a single column,
and locality is not defined.
We now turn to consider availability. Symbol availability is

trivial.
Corollary 1: The array code obtained from Construction 1,

with parameters 1 < b < M, has symbol availability

ts =
[
M − 1

b − 1

]

− 1

and for b = 1 ts = qM−1−1
2 .

Proof: We use (3) to find the number of associated
subspaces containing a given vector.

Unlike locality, it appears that determining the node avail-
ability is a difficult task. We consider only the simplest non-
trivial case of b = 2.
Lemma 4: The array code obtained from Construction 1,

with parameters 2 = b < M, has node availability

tn = 1

2

([
M

2

]

− 1

)

,

when q is even, and

tn ≥ 1

2

([
M

2

]

− 1 − q(q2 + q − 1)

[
M − 2

2

])

,

when q is odd.
Proof: Let us consider some codeword column of the

code, and its associated subspace, V = 〈v1, v2〉. We count the
number of pairwise-disjoint pairs of subspaces U,W �= V ,
such that V ⊆ U + W . We show how all subspaces (except
for V ) may be paired in such a manner, except perhaps for a
few due to parity issues. We distinguish between two different
kinds of subspaces, where the subspaces of the first kind
intersect V in a one-dimensional subspace (a projective point),
and where the subspaces of the second kind have only trivial
intersection with V .
First, we consider subspaces of the first kind. There are[M−1
1

] − 1 = q
[M−2

1

]
associated subspaces different form V

that contain a given vector v ∈ V , v �= 0, and we denote
them by Vv . Since there are

[2
1

] = q + 1 projective points
in V , denoted v1, . . . , vq+1, we have q(q+1)

[M−2
1

]
associated

subspaces which intersect V in a one-dimensional subspace.
Note that if U ∈ Vv i and W ∈ Vv j , with i �= j , then V ⊆
U +W . We now further partition each Vv i into q sets of equal
size, arbitrarily. We denote these V j

v i
, where j ∈ [q + 1] \ {i}.

The size of each such set is
∣
∣
∣V j

v i

∣
∣
∣ =

[
M − 2

1

]

.

Finally, for each i, j ∈ [q + 1], i �= j , we arbitrarily create
pairs of elements, one from V j

v i
, and one from V i

v j
. The total

number of such pairs is
(q+1

2

)[M−2
1

]
.

Next we consider associated subspaces of the second kind.
There are

[M
2

] − 1 − q(q + 1)
[M−2

1

]
such subspaces. We will

prove that for even q one can partition all these subspaces into
disjoint pairs, and for odd q one can partition all but a few
such subspaces into disjoint pairs. The statement of the lemma
then follows from this proof.
Given an associated subspace U = 〈u1, u2〉, U ∩ V = {

0
}
,

we define a set SU of q4 subspaces, as follows:

SU = {〈u1 + x1, u2 + x2〉 : x1, x2 ∈ V } .

Note that since U ∩V = {
0
}
, the vectors u1 + x1 and u2 + x2

are linearly independent. One can easily verify that SU is well
defined, and the choice of two basis vectors, u1 and u2, does
not change SU .
Additionally, if we have two distinct associated subspaces

of the second kind, U �= U ′, then either SU ∩ SU ′ = ∅ or
SU = SU ′ . To see that, assume W1 ∈ SU ∩ SU ′ , i.e.,

W1 = 〈u1 + x1, u2 + x2〉 ∈ SU ,

W1 = 〈
u′
1 + x ′

1, u
′
2 + x ′

2

〉 ∈ SU ′ ,

with x1, x2, x ′
1, x

′
2 ∈ V . Then there exist

α1,1, α1,2, α2,1, α2,2 ∈ Fq such that

u1 + x1 = α1,1(u
′
1 + x ′

1) + α1,2(u
′
2 + x ′

2),

u2 + x2 = α2,1(u
′
1 + x ′

1) + α2,2(u
′
2 + x ′

2),
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and

� = det

(
α1,1 α1,2
α2,1 α2,2

)

�= 0.

We cannot have α1,1 = α1,2 = 0, and we assume α1,2 �= 0
where the other case is symmetric. Then, given W2 ∈ SU ,
W2 = 〈

u1 + y1, u2 + y2
〉
, where y1, y2 ∈ V , we define

y′
1 � x ′

1 + α1,2

�

(
α2,2

α1,2
(y1 − x1) − (y2 − x2)

)

,

y′
2 � x ′

2 + 1

α1,2

(
y1 − x1 − α1,1(y

′
1 − x ′

1)
)
.

Obviously, y ′
1, y

′
2 ∈ V . We also observe that

u1 + y1 = α1,1(u
′
1 + y′

1) + α1,2(u
′
2 + y′

2),

u2 + y2 = α2,1(u
′
1 + y ′

1) + α2,2(u
′
2 + y′

2),

and so W2 = 〈
u′
1 + y ′

1, u
′
2 + y′

2

〉 ∈ SU ′ . Hence, if SU ∩SU ′ �=
∅, then SU = SU ′ .
Thus, as U ranges over all associated subspaces of the sec-

ond kind, SU partitions that set of subspaces into equivalence
classes. We arbitrarily identify each such class with a subspace
U , and a pair of basis vectors, u1, u2 ∈ U .

Depending on the parity of q we have two cases. First we
consider even q . We partition each class SU , identified by U
and u1, u2 ∈ U , into disjoint pairs as follows: We pair each

W = 〈u1 + x1, u2 + x2〉 ∈ SU ,

with

f (W ) = 〈u1 + x1 + v1, u2 + x2 + v2〉 ∈ SU .

Since q is even, this is indeed well defined since f ( f (W )) =
W . Additionally, the objective is met since

V = 〈v1, v2〉 ⊆ W + f (W ).

When q is odd, we partition each class SU , identified by U
and u1, u2 ∈ U , into disjoint pairs by pairing

W = 〈u1 + x1, u2 + x2〉 ∈ SU ,

with

f (W ) = 〈u1 − x1, u2 − x2〉 ∈ SU .

Except for x1 = x2 = 0, this is indeed a pairing since
f ( f (W )) = W . Additionally, whenever x1 and x2 are linearly
independent, we have

V = 〈v1, v2〉 ⊆ W + f (W ).

The number of such pairs is 1
2 (q

2 − 1)(q2 − q). Hence, we
are not using q(q2 + q − 1) subspaces of the q4 subspaces in
SU , and there are

[M−2
2

]
sets SU .

B. Codes From Subspace Designs

In this subsection we focus on constructing codes by using
certain subspace designs. We first present a different gener-
alization of simplex codes by using spreads. The resulting
code is known, and we analyze it for completeness, and for
motivating another construction that uses subspace designs.
Consider a finite field Fq and the vector space V � F

M
q .

A b-spread of V is a set {V1, V2, . . . , Vn} ⊆ [M
b

]
such that

Vi ∩ Vj = {
0
}
for all i, j ∈ [n], i �= j , and additionally,

⋃
i∈[n] Vi = V = F

M
q . Thus, except for the zero vector, 0,

a spread is a partition of FM
q into subspaces. It is known that

a b-spread exists if and only if b|M . Simple counting shows
that the number of subspaces in a spread is

n = qM − 1

qb − 1
=

[M
1

]

[b
1

] .

Let us start with a code obtained from a single spread. This
code was already described in [33], in the context of self-
repairing codes, and we bring it here for completeness.
Construction 2: Fix a finite field Fq , positive integers b|M,

and V = F
M
q . Construct a b × [M

1

]
/
[b
1

]
array code whose set

of columns are associated with the subspaces of a b-spread of
V , each appearing exactly once.
Theorem 2: The array code obtained from Construction 2

is a [b × [M
1

]
/
[b
1

]
, M, qM−b] array code. Additionally, except

for the all-zero array codeword, all other codewords have the
same constant weight.

Proof: Denote u �
[M
1

]
/
[b
1

]
. Consider an M×bu generator

matrix G for the code C from Construction 2. It contains u
thick columns, each made up of b columns. Let Gi , i ∈ [u],
be the M ×b submatrix of G containing the b columns of the
i th thick column, i.e., G = (G1|G2| . . . |Gu).

We now take each Gi , i ∈ [u], and construct from it an
M × (qb − 1) matrix we call Gext

i , whose columns are the
column space of Gi except for 0. We concatenate those to
obtain the M × (qM − 1) matrix

Gext �
(
Gext

1 |Gext
2 | . . . |Gext

u

)
.

Since the thick columns of G form a b-spread of F
M
q , the

columns of Gext contain each possible vector exactly once,
except for 0.

We now observe that a row of Gext
i is 0

T
iff it is 0

T
in Gi .

Additionally, a non-zero row of Gext
i contains exactly qb−1

occurrences of each non-zero element of Fq . Finally, each
non-zero element of Fq appears qM−1 times in each row of
Gext. Thus, given a row of Gext, exactly qM−1/qb−1 = qM−b

of its u thick columns are non-zero, implying the same for
the corresponding row in G, and then the associated array
codeword has weight qM−b.
We now want to prove the same thing for every non-trivial

linear combination of the rows of G. First, note that having
a b-spread of FM

q is equivalent to having rank(Gi ) = b, and
rank(Gi |G j ) = 2b, for all i, j ∈ [u], i �= j . Consider a
linear combination of rows i1, i2, . . . , i� of G, each with a
non-zero coefficient, resulting in a row vector vT . Replace
row i� of G by the vector vT to obtain a new matrix
G′ = (G′

1|G′
2| . . . |G′

u). Since the rank is invariant to such
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operations, rank(G′
i ) = b and rank(G′

i |G′
j ) = 2b for all

i, j ∈ [u], i �= j . Thus, G′ is equivalent to a b-spread (perhaps
different from the original one induced by G). Using the same
logic as before, exactly qM−b of the thick columns of vT are
non-zero, completing the proof.

Lemma 5: The array code obtained from Construction 2,
b < M, has symbol locality rs = 2, and its node locality
satisfies 2 ≤ rn ≤ b + 1. Moreover, there exist such array
codes with rn ≤ M/b.

Proof: To prove the symbol locality, we note that any
column of G can be presented as a linear combination of
two other columns which belong to two other distinct thick
columns. Otherwise, if these two columns belong to the same
thick column, we obtain a contradiction to the definition of a
spread. Thus, rs ≤ 2. We also obviously have rs ≥ 2, otherwise
we contradict the partitioning property of the spread.
For the node locality, since in general rs ≤ rn we have that

2 ≤ rn. Let {v1, . . . , vb} be a basis for a thick column of G
which represents an element (subspace) Vi of the spread. Take
an arbitrary w �∈ Vi and define ui � v i + w, for all i ∈ [b].
Observe that w and all the vectors ui , i ∈ [b], belong to
b+ 1 different subspaces (corresponding to thick columns) in
a spread, or else these would intersect Vi non-trivially. Clearly,
Vi can be reconstructed from these b + 1 subspaces.
For the remainder of the proof let us assume that the

spread is constructed in a specific way, inferred from [13],
given in more detail in [18], and described as follows. Every
element (subspace) in the constructed spread is presented as
the row space of a row-reduced echelon-form b × M matrix
(0|0| . . . |0|Ib|A1|A2| . . . |At ), where each block is of size
b × b, Ib is the b × b, identity matrix, and (A1| . . . |At) is
a codeword of a Gabidulin code of length bt and minimum
rank distance b. Of particular interest are the “unit” subspaces,

Ui � rowsp(0| . . . |0
︸ ︷︷ ︸

i−1

|Ib|0| . . . |0),

for all i ∈ [M/b]. Obviously,
M/b∑

i=1

Ui = F
M
q .

Thus, except for unit subspaces from U � {Ui }i∈[M/b], for
every other subspace of the spread, the set U is a recovery set
of M/b thick columns.
We are left with the task of finding recovery sets of unit

subspaces of the form Ui . For every i ∈ [M/b − 1], we have

Ui ⊆ Ui+1 + rowsp(0| . . . |0
︸ ︷︷ ︸

i−1

|Ib|A|0| . . . |0),

where A �= 0 is a codeword of the above-mentioned Gabidulin
code. Finally,

UM/b ⊆ UM/b−1 + rowsp(0| . . . |0|Ib|A),

since A is full rank due to the minimum rank distance of
the Gabidulin code. Thus, each Ui has a recovery set of size
2 ≤ M/b.

The code of Construction 2 is also a generalization of the
simplex code. Indeed, when we take b = 1 the resulting
generator matrix is that of a simplex code.
Corollary 2: When M = 2b, the code from Construction 2

is an MDS array code with rn = rs = 2.
Proof: The node and symbol locality are trivial since

the subspaces associated with thick columns have a pair-wise
trivial intersection, and therefore the sum of any two such
subspaces gives the entire space since M = 2b. The code is
MDS since it is a [b × (qb + 1), 2b, qb] array code.
Up to this point we constructed codes by specifying their

generator matrix. We now turn to consider their dual codes by
reversing the roles of generator and parity-check matrices. We
first require the following simple lemma.
Lemma 6: Let C be a [b × n, M, d] array code over Fq

that is full column rank. If the size of the smallest recovery
set for a symbol of C is of size �, then the dual code, C⊥,
is a [b × n, bn − M, � + 1] array code. In particular, if the
symbol locality of every symbol of C is rs, then C⊥ is a
[b × n, bn − M, rs + 1] array code.

Proof: Let G be a generator matrix for C . The smallest
recovery set of size � together with the full column rank
property imply that the smallest set of linearly dependent
columns of G includes columns from exactly � + 1 thick
columns. Considering G as a parity-check matrix for C⊥,
we obtain that the any non-zero codeword of C⊥ has at least
� + 1 non-zero columns. The rest of the code parameters are
trivially obtained.
The dual code of the code from Construction 1 has a small

distance d = 2, and is therefore not very interesting. However,
the code from Construction 2 presents a more interesting
situation.
Lemma 7: Let C be a code from Construction 2. Then its

dual, C⊥, is a [b × [M
1

]
/
[b
1

]
, b

[M
1

]
/
[b
1

] − M, 3] array code.
Additionally, C⊥ is a perfect array code.

Proof: The minimum distance follows from Lemma 6
since the locality of all symbols in C is 2. To show that C⊥
is perfect, note that the ball of radius 1 has size

�1 � 1 +
[M
1

]

[b
1

] (qb − 1) = qM .

Hence,
∣
∣
∣C⊥

∣
∣
∣ · �1 = qb[

M
1 ]/[

b
1],

which is equal to the size of the entire space.
We note that the code of Lemma 7 has already been

described as a perfect byte-correcting code in [12] and [23].
At this point we stop to reflect back on Construction 1

and Construction 2. We contend that the two are in fact two
extremes of a more general construction using the q-analog of
Steiner systems.
Definition 5: Let Fq be a finite field. A q-analog of a Steiner

system (a q-Steiner system for short), denoted Sq [t, k, n], is a
set of subspaces, B ⊆ [

F
n
q
k

]
, such that every subspace from

[
F
n
q
t

]

is contained in exactly one element of B.
In light of Definition 5, we note that the subspaces asso-

ciated with the columns of Construction 1 form a q-Steiner
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system Sq [b, b, M]. Similarly, the subspaces associated with
the columns of Construction 2 form a q-Steiner system
Sq [1, b, M]. Both are therefore extreme (and trivial) cases of
a more general construction we now describe.

Construction 3: Fix a finite field Fq , and let B ⊆ [FM
q
b

]
be a

q-Steiner system Sq [t, b, M]. Construct an array code whose
set of columns are associated with the subspace set B, each
appearing exactly once.
The main problem with the approach of Construction 3 is

the fact that we need a q-Steiner system. Such systems are
extremely hard to find [5], [44], with the only known ones,
different S2[2, 3, 13], found by computer search [5]. But, there
is still a potential in this construction as it is believed that
infinite families of q-Steiner systems exist [5].
An alternative approach uses a structure that is “almost” a

q-Steiner system, and is more readily available – a subspace
transversal design (see [14]).
Definition 6: Let Fq be a finite field. A subspace transversal

design of group size qm = qn−k , block dimension k, and
strength t, denoted by STDq(t, k,m) is a triple (V,G,B),
where
1) V �

[
F
n
q
1

] \ V (n,k)
0 , called the points, where V(n,k)

0 is
defined to be the set of all 1-subspaces of Fn

q all of whose

vectors start with k zeros, and where |V | = [k
1

]
qm.

2) G is a partition of V into
[k
1

]
classes of size qm, called

the groups.
3) B ⊆ [

F
n
q
k

]
, called the blocks, is a collection of subspaces

that contain only points from V , with |B| = qmt .
4) Each block meets each group in exactly one point.
5) Each t-subspace of Fn

q, with points only from V , which
meets each group in at most one point, is contained in
exactly one block.

An STDq(t, k,m) = (V,G,B) is called resolvable if the set B
may be partitioned into sets B1, . . . ,Bs , called parallel classes,
where each point is contained in exactly one block of each
parallel class Bi .
Unlike q-Steiner systems, subspace transversal designs are

known to exist in a wide range of parameters, as shown in the
following theorem [14].
Theorem 3: For any 1 ≤ t ≤ k ≤ m, and any finite field Fq,

there exists a resolvable STDq(t, k,m) = (V,G,B), where the
block set B may be partitioned into qm(t−1) parallel classes,
each one of size qm, such that each point is contained in
exactly one block of each parallel class [14, Th. 7].
Construction 4: Fix a finite field Fq, M ≥ 2b, and let

(V,G,B) be a STDq(t, b, M − b) with parallel classes
B1,B2, . . . ,Bs . Construct the following two array codes:

• An array code Cpar whose set of columns are associated
with the subspaces in a single parallel class, Bi , each
appearing exactly once.

• An array code C whose set of columns are associated
with the subspaces in B, each appearing exactly once.

The code Cpar is in fact an auxiliary code we shall use to
prove the parameters of the code C , and is perhaps of interest
on its own.
Theorem 4: Let Cpar be the code from Construction 4. Then

Cpar is a [b × qM−b, M, qM−b − qM−2b] array code, with

2b −1 codewords of full weight qM−b, and the other non-zero
codewords of weight qM−b − qM−2b. Moreover, the symbol
locality of Cpar is rs = 2, and its node locality is

rn =
{
3 q = 2,

2 q > 2.

Proof: The size and dimension of the array code follow
from Theorem 3. The rest of the proof follows the same logic
as the proof of Theorem 2.
Denote u � qM−b. Consider an M × bu generator matrix

G for Cpar. It contains u thick columns, each made up of
b columns. Let Gi , i ∈ [u], be the M × b submatrix of G
containing the b columns of the i th thick column, i.e., G =
(G1|G2| . . . |Gu).

We now take each Gi , i ∈ [u], and construct from it an
M × (qb − 1) matrix we call Gext

i , whose columns are the
column space of Gi except for 0. We concatenate those to
obtain the M × u(qb − 1) matrix

Gext � (Gext
1 |Gext

2 | . . . |Gext
u ).

Since we used a single parallel class, the columns of Gext

contain each possible vector exactly once, except for columns
beginning with b zeros. In other words, the subspaces of
dimension b that correspond to the thick columns of G,
together with the subspace of dimension M − b of all vectors
starting with b zeros, form a partition of the non-zero vectors
of FM

q .

We now observe that a row of Gext
i is 0

T
iff it is 0

T
in Gi .

Additionally, a non-zero row of Gext
i contains exactly qb−1

occurrences of each non-zero element of Fq . It is now a matter
of simple counting, to obtain that each of the first b rows
of Gext has all of its u = qM−b thick columns non-zero,
and the remaining lower M − b rows of Gext have exactly
qM−b − qM−2b non-zero thick columns in each row.

Finally, consider a linear combination of the rows of G
that involves rows i1, i2, . . . , i�, all with non-zero coefficients,
and resulting in a row vT . As in the proof of Theorem 2, let
us replace row i� of G with vT to obtain a new generator
matrix G′. Again, the subspaces the correspond to the thick
columns of G′ induce a partition of the non-zero vectors of
F
M
q into subspaces of dimension b and a single subspace of

dimension M − b. Therefore, we conclude that the result-
ing row corresponds to an array codeword of weight either
qM−b or qM−b − qM−2b depending on whether i1, . . . , i� ∈
[b] or not. This gives us a total of qb − 1 codewords in Cpar
of weight qM−b, and the remaining non-zero codewords of
weight qM−b − qM−2b.
To complete the proof, the symbol locality is rs = 2,

since any column of G may be easily be given as a sum of
two other columns of G (which must also reside in distinct
thick columns), due to the partition of FM

q discussed above.
To prove the node locality we recall that any thick column of
G corresponds to a lifted MRD codeword, i.e., (Ib|A)T , where
A is a codeword of a linear MRD code of dimension M − b.
When q = 2, we can recover (Ib|A)T by noting that

(Ib|A)T = (Ib|A′)T + (Ib|A + A′)T + (Ib|0)T ,
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where A′ is a codeword of the lifted MRD code, A′ �= A,
and where we use the fact that M − b ≥ 2. When q > 2, let
α ∈ Fq , α �= 0, 1. Then we can recover (Ib|A)T ) by noting
that

(Ib|A)T = α−1(Ib|αA) + (α − 1)α−1(Ib|0)T ,

thus proving rn = 2 for q > 2.
Corollary 3: When M = 2b, the code Cpar from Construc-

tion 4 is an MDS array code with rn = rs = 2.
Proof: The node and symbol locality are trivial since

the subspaces associated with thick columns have a pair-wise
trivial intersection, and therefore the sum of any two such
subspaces gives the entire space since M = 2b. The code is
MDS since it is a [b × qb, 2b, qb − 1] array code.
Corollary 4: Let Cpar be the code from Construction 4.

Then its dual code, C⊥
par is a [b×qM−b, bqM−b−M, 3] array

code that is asymptotically perfect.
Proof: The parameters of the code follow from Lemma 6

and from the proof of Theorem 4. Note that the size of a ball
of radius 1 is equal to

�1 � 1 + qM−b(qb − 1).

The size of the entire space is qbq
M−b

. Then
∣
∣
∣C⊥

par

∣
∣
∣ · |�1|

qbqM−b = qbq
M−b−M (1 + qM−b(qb − 1))

qbqM−b

= 1 + qM − qM−b

qM
= 1 + q−M − q−b,

and this ratio tends to 1 when b, M → ∞, implying the code
family is asymptotically perfect.

Example 4: Let b = 3, M = 6, q = 2. A generator
matrix G for the [3 × 8, 6, 7] MDS array code Cpar from
Construction 4 is given by

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

100 100 100 100 100 100 100 100
010 010 010 010 010 010 010 010
001 001 001 001 001 001 001 001
000 100 001 010 101 011 111 110
000 010 101 011 111 110 100 001
000 001 010 101 011 111 110 100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We now move on to examine the second code of Construc-
tion 4. To avoid degenerate cases, we consider only t ≥ 2.
Theorem 5: Let C be the code from Construction 4, with

t ≥ 2. Then C is a [b × q(M−b)t , M, d] array code

d = q(M−b)(t−1)(qM−b − qM−2b).

The symbol and node locality of the code satisfy rs = 1, and
rn ≥ 2. Its symbol availability is ts = q(M−b)(t−1) − 1.

Proof: The codeword size, as well as the minimum dis-
tance follow immediately by noting that there are q(M−b)(t−1)

parallel classes, and a generator matrix for C is simply the
concatenation of generators for Cpar (for each of the parallel
classes). The minimum distance then follows from Theorem 4.
Additionally, each point (i.e., a column of G) is contained

exactly once in each of the q(M−b)(t−1) parallel classes in a
single subspace (i.e., the column span of a thick column of G).
Thus, as long as t ≥ 2, the symbol locality is rs = 1, and the

availability is ts = q(M−b)(t−1)−1. Trivially, by the properties
of the subspace transversal design, no subspace associated with
a thick column appears twice, and hence rn ≥ 2.

IV. CONCLUSION

We have suggested the usage of codes based on subspaces
for the purpose of locality and availability in distributed
storage codes. We introduced the concepts of symbol locality
and symbol availability in addition to the known node locality
and node availability. We constructed generalized simplex
codes and Hamming codes from subspaces and subspace
designs (including q-Steiner systems, and subspace transversal
designs). We have found some of their locality and availability
parameters, or bounded them. In addition to the unsolved
questions in this paper, this topic has many more directions
for future research, e.g.:

1) Find new codes and designs, based on subspaces, with
good locality and availability properties.

2) Find upper bounds on the symbol locality and availabil-
ity for codes based on subspaces and find codes which
attain these bounds.

3) Develop the theory of PIR codes based on subspaces
and find such good codes which outperform the known
codes.
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