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Abstract— We consider a single-cell massive multiple-input
multiple-output (MIMO) system in which a base station (BS)
with a large number of antennas transmits simultaneously to
several single-antenna users. The BS acquires the channel state
information (CSI) for various receivers using uplink pilot trans-
missions. We demonstrate the vulnerability of the CSI estimation
process to pilot-contamination (PC) attacks. In our attack model,
the attacker aims at minimizing the sum rate of downlink
transmissions by contaminating the uplink pilots. We first study
these attacks for two downlink power allocation strategies under
the assumption that the attacker knows the locations of the
BS and its users. Later on, we relax this assumption and
consider the case when such knowledge is probabilistic. The
formulated problems are solved using stochastic optimization,
Lagrangian minimization, and game-theoretic methods. A closed-
form solution for a special case of the problem is obtained.
Furthermore, we analyze the achievable individual secrecy rates
under PC attacks and provide an upper bound on these rates.
We also study this scenario without a priori knowledge of user
locations at the attacker by introducing chance constraints. Our
results indicate that such attacks can degrade the throughput of
a massive MIMO system by more than 50%.

Index Terms— Massive MIMO, pilot contamination, physical-
layer security, jamming attack, stochastic optimization.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is one

of the key technologies in the upcoming 5G systems.

It is envisioned that a cellular 5G base station (BS) will be

equipped with a very large antenna array, e.g., hundreds of

antennas or more, boosting the spectral efficiency by orders

of magnitude compared to a conventional MIMO system.

Even though MIMO is a well-studied concept in wireless

communications, massive MIMO requires novel techniques
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to overcome new design challenges, and as such it has

received significant attention from researchers over the last

few years (see, for example, [1]–[3], and the references

therein).

Because of the large number of antennas at the BS and the

relatively short channel coherence time, the channel state infor-

mation (CSI) between the BS and individual users must be

frequently estimated using uplink pilot transmissions. Assum-

ing channel reciprocity, the BS utilizes these CSI estimates

for downlink data transmissions. Due to the limited number of

orthogonal pilot sequences (e.g., in the order of tens [4]), users

in neighboring cells may share the same pilots. Interference

among these pilots causes erroneous CSI estimates at the BS,

leading to poor system performance. This is known as pilot

contamination (PC). In addition to arising naturally due to

reusing the same pilots, PC can be also caused by adversarial

transmissions. Indeed, Zhou et al. [5] studied an attack that

targets time division duplexing (TDD) systems. The key idea

behind their attack is to contaminate uplink pilot transmissions

and cause an erroneous uplink channel estimation. Typically,

if the CSI is available, the BS would use MIMO beamforming

techniques such as maximum-ratio transmission (MRT) to

maximize the signal-to-noise-ratio (SNR) at various receivers.

However, the benefits of these techniques vanish rapidly if the

CSI estimates are erroneous. A self-contamination technique

in which the user generates a random signal and superimposes

it onto its uplink pilots was proposed in [6]. This random

signal allows the BS to detect the attacker, but it also decreases

the quality of channel estimation due to the introduced noise.

An extension of this approach was provided in [7] to allow

for the estimation of both legitimate receiver and attacker

channels at the BS, and to enable secure communications

in a single-user massive MIMO system. It is not clear how

these attack detection methods can be applied in a multiuser

scenario, as the introduced random signals from legitimate

users would degrade the channel estimation at the BS even

more. Kapetanovic et al. [8] proposed another approach in

which the legitimate user transmits four random phase-shift

keying symbols, and the BS checks the correlation matrix of

the received signals. Based on the ratio of the two largest

eigenvalues of this matrix, the BS detects the attack. In [9],

an uncoordinated frequency shift scheme was proposed for

detecting a PC attack. According to this scheme, the user

applies random frequency shifts while transmitting the pilot

sequence. However, this scheme requires joint estimation of

the shift value and the channel between the BS and the user,
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hence incurring high computational complexity especially for

a multiuser massive MIMO system. Tugnait [10] studied

detection and mitigation of reused pilots (not necessarily due

to an adversarial attack) in massive MIMO systems. However,

their approach requires both training and information-bearing

uplink data transmissions. Because a malicious attacker does

not send uplink information messages to the BS, this method

is not applicable to PC attacks. Secure transmissions for TDD-

based massive MIMO systems was studied in [11] in the

presence of an active eavesdropper. The authors derived the

optimal power allocation for the information and artificial

noise (AN) signals at the BS such that secrecy is asymptot-

ically guaranteed as the number of BS antennas (M) tends

to infinity. Secrecy performance of massive MIMO systems

was studied in [12] and [13] in the presence of passive

eavesdroppers. Zhu et al. [12] considered employing various

linear data and AN precoding methods to secure downlink

transmission, whereas Asaad et al. [13] studied the impacts of

transmit antenna selection on the achievable ergodic secrecy

rate and secrecy outage capacity. Basciftci et al. [14] proposed

another method to provide secrecy against PC attacks by

keeping pilot assignments hidden and using a pilot set that

scales with M . However, there are two main problems with

this scheme. First, it requires a longer pilot transmission phase,

which increases the overhead and decreases the throughput.

Second, computationally intensive cryptographic methods are

required to keep pilot assignments hidden. A two-way training-

based scheme against PC attacks was proposed in [15], which

requires both downlink and uplink channel estimation. Such

estimation can be prohibitively time-consuming to perform in

massive MIMO systems if M is large. All of the above works

consider an attacker that targets users, one at a time. Even

when a multiuser system is considered, it is often assumed

that the attacker randomly selects one user and contaminates

its pilot sequence. Given that one of the key aspects of

massive MIMO systems is to simultaneously serve tens of

users, the vulnerabilities of these systems to a multiuser PC

attack has not been investigated before.

As a side remark, Björnson et al. [16] [16] showed that

as M → ∞, massive MIMO systems can achieve unlimited

capacity even under non-adversarial PC. However, the analysis

in [16] was conducted assuming that the channel covariance

matrices of various users are already known at the BS. Such an

assumption cannot be made for the channel covariance matrix

of an adversary, which makes the results of [16] inapplicable

to our setup.

A. Motivation and Contributions

In this paper, we focus on a single-cell multiuser massive

MIMO network in the presence of an external attacker. In

general, non-adverserial PC has been extensively studied in

the context of a multi-cell massive MIMO system [4]. Various

PC mitigation schemes, including protocol-based methods and

blind CSI estimation methods, have been proposed for such

systems [3]. The main objective of these schemes is to separate

the CSI estimation processes of adjacent cells so that inter-

cell PC is mitigated. However, previously proposed schemes

are not sufficient to mitigate PC from an intra-cell attacker.

For example, protocol-based methods require coordination

between adjacent BSs to avoid synchronized transmission of

the same pilots. This will not work in the case of a non-

cooperative adversary. On the other hand, blind CSI estimation

methods rely on the fact that the distances between the BS and

the interfering users in adjacent cells are much longer than the

ones in its own cell. However, this is not the case for an intra-

cell attacker, where the distance between the attacker and the

BS can be very short. In our work, we consider a system where

PC among multiple cells has been mitigated by employing one

of the existing schemes, and we focus on the vulnerabilities

of a single-cell massive MIMO network to an intra-cell attack.

We do that based on an attack model that targets minimizing

the sum-rate of downlink transmissions.

The contributions of this paper can be summarized as

follows:

• In our attack model, the attacker contaminates the uplink

pilot transmissions of multiple users, i.e., PC attack.

The downlink transmission rates in the presence/absence

of the attack are derived by exploiting the channel

hardening effect of massive MIMO (effect of small-

scale fading on channel gains vanishes as M tends to

infinity).

• We investigate optimal PC attack strategies for two differ-

ent cases: when the attacker knows the locations of the BS

and its users, and when it does not have this information.

Considering a fixed power allocation strategy for down-

link data transmissions, convex problems are formulated

to determine the optimal PC powers at the attacker that

minimizes the downlink sum-rate. Unlike [17], a PC

power constraint is introduced to take the attack detection

probability into consideration. These problems are solved

via the gradient descent and Lagrangian minimization

methods.

• We obtain a closed-form solution for the optimal PC

powers at the attacker when it has perfect information

of the network. This solution represents a lower bound

on the downlink sum-rate of massive MIMO systems

under an optimal PC attack and a fixed BS transmission

power. In the case of imperfect knowledge on the user

locations, we first study the system for any arbitrary

distribution. Then, a special case where the users are

randomly and uniformly located on a ring around the

BS is further analyzed to gain more insight into the

interactions of various system parameters and to achieve

faster convergence to the solution.

• We study the scenario where the BS optimizes its own

power allocation scheme in the presence of a PC attack.

For this case, a convex-concave game is formulated

between the BS and the attacker. We present an iterative

algorithm to obtain the Nash equilibrium (NE) of this

game. This analysis provides an upper-bound on the

downlink sum-rate of massive MIMO systems under an

optimal PC attack.

• We extend our work in [17] and analyze the secrecy per-

formance of a massive MIMO system under a PC attack.

Note that although massive MIMO systems are robust

against passive eavesdropping (as the CSI at a legitimate
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receiver and an eavesdropper are near-orthogonal [8]),

they are still vulnerable to an active attacker that con-

taminates the uplink pilot transmissions. Specifically,

by using the PC attack, an attacker captures the downlink

information signals with a much higher signal power.

Here, we study a scenario where the attacker minimizes

the maximum of the achievable individual secrecy rates at

various users. The asymptotic behavior of the information

leakage rate at the attacker is derived for a large number

of antennas at the BS. Because the attacker simultane-

ously receives all information signals intended to various

users, i.e., through a multiple-access channel, interference

among these signals at the attacker leads to a non-convex

problem. By deriving an upper-bound on the maximum

interference power, we obtain a tractable problem that can

be efficiently solved by our proposed iterative approach.

Our analysis provides an upper-bound on the achievable

individual secrecy rates in a given massive MIMO system

under the PC attack. Moreover, by introducing chance

constraints, we extend our analysis to the case when

priori knowledge of user locations is not available to

the attacker. Utilizing a similar bounding approach as in

the previous case, we convert the non-convex problem

to a tractable one under these constraints and solve it

numerically. Our formulation for secrecy performance

analysis in this paper can be applied to various other

scenarios.

The rest of the paper is organized as follows. Section II

describes the system model. In Section III, we compute the

downlink transmission rates in the presence/absence of a

PC attack. Our PC attack under a fixed and optimal BS

transmission power is studied in Section IV. in Section V,

we analyze the individual secrecy rates of users under this

attack model. We provide numerical results in Section VI, and

conclude the paper in Section VII.

Throughout the paper, we adopt the following notation. E[·]
indicates the expectation of a random variable. Row vectors

and matrices are denoted by bold lower-case and upper-case

letters, respectively. (·)∗ and (·)T represent the complex con-

jugate transpose and transpose of a vector/matrix, respectively.

Frobenius norm and the absolute value of a real or complex

number are denoted by ‖ · ‖ and | · |, respectively. A ∈ CM×N

means that A is an M × N complex matrix, and IM is

an M × M identity matrix. CN (µ, σ 2) denotes a complex

circularly symmetric Gaussian random variable of mean µ

and variance σ 2. [x]+ is defined as max(x, 0). For simplicity,

log2(·) is referred to as log(·).

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Link Model

Consider a massive MIMO system in which the BS (Alice)

uses M antenna elements to transmit independent data streams

to K single-antenna users (Bobs), where M ≫ K . Because

of the large M , the channel coherence time is too short to

estimate the CSI for all M downlink channels at each user [3].

Therefore, TDD is used instead of FDD, in which the downlink

and uplink channels are estimated separately (please refer

Fig. 1. (a) FDD massive MIMO requires M orthogonal pilots, (b) TDD
massive MIMO requires K orthogonal pilots.

to Fig. 1). In TDD, Alice estimates the CSI for uplink channels

after receiving pilot sequences transmitted by various Bobs. If

these pilot symbols are not perfectly orthogonal to each other,

their mutual interference causes erroneous channel estimates

at Alice. Assuming channel reciprocity, uplink CSI estimates

are used in setting the precoding matrices for downlink data

transmissions. There is no standardized way to ensure pilot

orthogonality in massive MIMO systems. However, Marzetta

[4] suggested assigning an orthogonal time-frequency pilot

sequence to each Bob. Orthogonal space-time block codes can

be also utilized, as in 802.11ac systems, to increase the number

of orthogonal pilot sequences. In the following, the index

k is used to refer to the kth Bob, k ∈ {1, · · · , K } � K.

Let pk ∈ C1×L be the transmitted pilot sequence by Bobk

(kth Bob), where L is the number of symbols in the pilot

sequence. As these pilot sequences are orthogonal to each

other, pkp∗
l = 0 ∀ k and l ∈ K, k 	= l. We normalize the

transmission powers of pilots such that pkp∗
k = L ∀k ∈ K. Pk

is the pilot transmission power at Bobk . The received signal

at Alice during the pilot transmission phase is given by:

YA =
K
∑

i=1

√

PkhT
k pk + W (1)

where hT
k ∈ CM×1 is the uplink channel vector from Bobk

to Alice. The mth entry of this vector is given by h
(m)
k =√

θkg
(m)
k , where θk and g

(m)
k ∼ CN (0, 1) are the path-loss

component (large-scale fading) and small-scale effects of the

channel (Rayleigh fading), respectively. Note that θk is roughly

the same for all antennas m, so hk can be written as hk =√
θkgk , where gk is a vector of all g

(m)
k , m = 1, · · · , M . W

is the additive white Gaussian noise (AWGN) matrix, whose

entries are zero-mean, unit-variance normal random variables.

Without loss of generality, consider an arbitrary Bobi , i ∈
K. Let ĥi be Alice’s estimate of the true hi . Under a priori

knowledge of pi , Alice post-multiplies the received signal by

p∗
i and divides it by

√
Pi and L to obtain:

ĥT
i =

YAp∗
i√

Pi L
=

K
∑

k=1

√
PkhT

k pkp∗
i√

Pi L
+

Wp∗
i√

Pi L

= hT
i + w̃T

i (2)

where w̃T
i �

Wp∗
i√

Pi L
∼ CN (0, 1

Pi L
IM ).
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B. Attack Model

Before describing our attack model, we provide background

information on how synchronization between Alice and Bobs

is achieved. Massive MIMO technology is expected to be

deployed in 5G New Radio (NR) and LTE Advanced Pro

(LTE-A) systems [2], [18]. The initial access and signaling

procedures of both systems are very similar to each other. To

add a new user to the network, both systems define two types

of synchronization signals: primary synchronization signal

(PSS) and secondary synchronization signal (SSS) [19], [20].

These signals are periodically broadcasted by the BS. A new

user that wants to establish a connection with the BS tries

to detect these signals, and uses the information embedded

in them to synchronize itself with the BS (both in time and

frequency). (There are various recently proposed methods that

improve time and frequency synchronization of users with BSs

[21], [22].) After the user and BS exchange control messages,

the user joins the network. As stated before, TDD is envisioned

to be employed in massive MIMO systems, where channel

estimation is performed through uplink pilot transmissions.

These pilots are called Sound Reference Signal (SRS), and

their configuration is provided to the user after connection

establishment via the Radio Resource Control (RRC) mes-

sages. SRSs are based on Zadoff-Chu sequences (whose cyclic

shifts are orthogonal to each other), and generally, they are

publicly known. A BS can schedule SRS transmissions from

multiple users to the same physical radio resource.

Considering the initial access and pilot transmission mecha-

nism in 5G NR and LTE-A, an attacker can contaminate uplink

pilot transmissions by imposing its own signal. In particular,

because of the periodic transmission of SRSs (pilots) and lim-

ited number of orthogonal sequences, the attacker can easily

eavesdrop on the channel and learn various pilot assignments

to various Bobs as well as their transmission time slots.

Furthermore, an attacker may be an insider device, meaning

that she can establish a legitimate connection with the BS

and acquire the information of SRS transmission resources

(as these resource are shared with multiple users). In another

instance, this insider can convey the pilot transmission time

and duration to an external colluding adversary, which can

then contaminate the pilot transmissions. Let xJ ∈ C1×L be

the signal generated by the attacker, which will be explained

shortly. After the attack, the received signal at Alice is

modified as follows:

YA =
K
∑

k=1

√

PkhT
k pk + hT

J xJ + W (3)

where hT
J ∈ CM×1 is the channel vector from the attacker to

Alice. In the literature, xJ is often designed such that only

a single arbitrarily selected user is targeted by the attacker

[5], [14]. More specifically, xJ is often set to
√

PJ pk , where

PJ is the average jamming power. In contrast, in our model

(refer to Fig. 2), we set xJ to:

xJ =
√

PJ

K
∑

k=1

√
αkpk (4)

Fig. 2. Pilot contamination attack model in a multi-user massive MIMO
system.

where αk is the ratio between the power that the attacker

allocates to contaminating pilot pk and the average jamming

power. Note that
∑K

k=1 αk ≤ 1. Let Rk be the downlink trans-

mission rate at Bobk . The attacker’s goal can be formulated

as follows:

minimize
{αk ∀k∈K}

∑

k∈K
Rk (5)

s.t . ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1

where ρ is a given upper bound on the per-pilot jam-

ming power. In the literature, it is noted that as the PC

power increases, the attack detection probability at Alice

also increases [6], [7]. As mentioned before, previous works

studied only single-user scenarios, whereas here we consider

a multiuser massive MIMO system. While it is not straightfor-

ward to apply previously proposed attack detection schemes to

a multiuser setting, the attack detection probability certainly

increases with the PC power in this case as well. Therefore,

the attacker can try to hide herself from Alice (up to a

predefined detection probability) by limiting her PC power.

To account for this phenomenon, we introduce ρ.

III. DOWNLINK TRANSMISSION RATES

In this section, we analyze the downlink sum-rate for the

underlying massive MIMO system with/without the aforemen-

tioned PC attack.

A. Absence of PC Attack

For conventional MIMO systems, MRT gives rise to inter-

user interference. However, as M tends to infinity, the channels

between the BS and individual users become orthogonal to

each other, and inter-user interference vanishes. In this case,

MRT is the optimal precoder. For this reason, massive MIMO

systems often apply MRT precoder at the BS [1]–[3], [23].

Let sk be the downlink data transmission intended to Bobk

∀k ∈ K, and let vT
k ∈ CM×1 be its normalized precoder, with

vkv∗
k = 1. The received signal at Bobk is given by:

yk =
∑K

i=1

√

P
(d)
i hkvT

i si + w
(d)
k (6)

where P
(d)
k and w

(d)
k are, respectively, the allocated power to

sk at Alice and the AWGN with zero-mean and unit-variance at
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Bobk . Under MRT precoding, vT
k is given by vT

k = (ĥ∗
k/‖ĥk‖).

The achievable downlink rate at Bobk becomes:

Rk = log

(

1 +
P

(d)
k |hkvT

k |2
∑

l∈{K\k} P
(d)
l |hkvT

l |2 + 1

)

, k ∈ K. (7)

Note that the precoding vectors are computed based on channel

estimates.

Next, we study the asymptotic behavior of Rk as M → ∞.

Such analysis is needed later on for comparison with the case

under a PC attack. Consider the inter-user interference term

P
(d)
l |hkvT

l |2 in (7). Following the results in [3], [4], and [23],

this term is scaled by M as follows:

lim
M→∞

P
(d)
l |hkvT

l |2
M

= 0 (8)

∀k and l ∈ K, where k 	= l. In other words, for a

finite but sufficiently large M , with M ≫ K , the chan-

nels are near-orthogonal, and hence, inter-user interference

can be neglected. The underlying intuition behind this

result is that entries of small-scale channel components of

Bobk and Bobl are independent random variables of zero-

mean and unit-variance. Hence, limM→∞ glg
∗
k/M = 0 and

limM→∞ glw̃
∗
k/M = 0. Similarly, after some manipulations to

the results in [23], the term in the numerator in (7) approaches:

lim
M→∞

P
(d)
k |hkvT

k |2
M

=
P

(d)
k θ2

k

θk + 1
Pk L

> 0 (9)

Hence, the downlink rate at Bobk behaves asymptotically as:

Rk ∼ log

(

1 +
P

(d)
k θ2

k

(θk + 1
Pk L

) 1
M

)

. (10)

In Section VI, we numerically verify these results. As

explained before, θk is the large-scale channel components

at Bobk . (10) indicates that the SINR does not depend on

the small-scale fading components, as these average out by

the large antenna array (channel hardening). The term (1/M)

in (10) comes from the AWGN w
(d)
k at Bobk . As M → ∞,

the noise term vanishes and the SINR tends to infinity. Another

noise term arises due to the channel estimation error w̃i . In

particular, as the length of the pilots, L, increases, the second

term in the denominator becomes smaller. This leads to an

increase in the downlink rate. The same effect is also observed

when the power allocated for pilots increases.

In this paper, we consider two different power allocation

strategies for downlink transmissions: “fixed” and “optimal.”

Both strategies are subject to an average power constraint

PA . Under the fixed strategy, P
(d)
k ∀k ∈ K is assumed to be

known to the attacker. For example, based on some fairness

criterion, these values may be determined by the BS before

the pilot transmission phase and conveyed to various receivers

through a feedback channel. If the attacker eavesdrops on this

channel, it can obtain the power allocation values. In one

instance of this strategy, the BS may simply allocate powers

uniformly to information signals, i.e., P
(d)
1 = · · · = P

(d)
K =

PA/K . As for the “optimal” power allocation strategy, the BS

relies on a water-filling technique to assign powers, using

(θk + (Pk L)−1)/(Mθ2
k ) as the water levels [24].

B. Presence of PC Attack

Under the attack model in (4), the following channel esti-

mation is performed at Alice for each Bobk :

ĥk = hk + √
αkukhJ + w̃k (11)

where uk is the ratio between the average power at the attacker

and the pilot transmission power at Bobk , i.e., uk = PJ /Pk .

In the rest of the paper, we assume that uk is known to

the attacker. Recall that we previously assumed that the

attacker learns the pilot sequences by eavesdropping on uplink

transmissions. The attacker can also learn the transmission

powers of these pilots (which are typically fixed in current

cellular systems). Because Alice is not aware of the presence

of the attacker, she treats ĥk as the correct channel estimate.

Employing MRT precoding based on ĥk , Alice computes the

precoder vector of sk as:

vT
k = (hk + √

αkukhJ + w̃k)
∗

‖hk + √
αkukhJ + w̃k‖

. (12)

Substituting vk in (7), the attacker’s optimization problem in

(5) becomes non-convex in terms of αk ∀k ∈ K. To obtain a

tractable model, we analyze the asymptotic behavior of Rk as

M → ∞. Following similar steps to the case of no attacker,

the following expression can be obtained as M → ∞:

Rk ∼ log

(

1 +
P

(d)
k Mθ2

k

θk + αkukθJ + 1
Pk L

)

. (13)

As M increases, the massive MIMO system expectedly

becomes more resilient to PC attacks (in line with the conclu-

sion in [16]). However, the vulnerability of the system against

such an attack can be observed in (13), which shows that the

SINR decreases with an increase in the jamming power αkuk .

As in the previous section, we consider both a fixed and

an “optimal” power allocation strategy to P
(d)
k ’s. The fixed

strategy is performed as before, whereas the “optimal” strategy

is done as follows. Let φk � θk + αkukθJ + 1
Pk L

. Then,

the “optimal” power allocation vector is given by:

[

P
(d)∗
1 · · · P

(d)∗
K

]

= argmax
xk ,∀k∈K

K
∑

k=1

Rsum (14)

= argmax
xk ,∀k∈K

K
∑

k=1

log

(

1 +
xk Mθ2

k

φk

)

(15)

subject to
∑K

k=1 P
(d)
k ≤ PA and P

(d)
k ≥ 0, ∀k ∈ K. Note

that in order to solve (14), Alice needs to be aware of the

attack, which is not always possible. However, our goal here

is to observe the effect of PC attack under the least favorable

power allocation strategy from the perspective of the attacker.

Essentially, this provides us with an upper-bound on the

downlink sum-rate under any power allocation strategy.

IV. ANALYSIS OF OPTIMAL PC ATTACK

A. Fixed Power Allocation Strategy

In this section, we study the optimal PC attack strategy

under a fixed power allocation at Alice. We incorporate (13)
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into problem (5), considering fixed power allocation for the

information signals at Alice:

P1 : minimize
{αk , ∀k∈K}

K
∑

k=1

log

(

1 +
P

(d)
k Mθ2

k

θk + αkukθJ + 1
Pk L

)

s.t . ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1.

For a given k ∈ K, we set θk = Az
−γ
k , where A is a constant

that depends on the operating frequency and transmit/receive

antennas, while γ and zk are the path-loss exponent and the

distance between Alice and Bobk , respectively. Similarly, z J

is the distance between Alice and the attacker. For simplicity,

the antennas at Bobs and the attacker are assumed to be

identical, so the same A is considered for all of them. As

a result, the objective function in P1 is converted to the

following one:

Rsum =
K
∑

k=1

log

(

1 +
P

(d)
k M Az

−2γ
k

αkukz
−γ
J + z

−γ
k + 1

APk L

)

(16)

Next, we discuss two different scenarios based on the infor-

mation available to the attacker.

1) Perfect Distance Information: Suppose that the attacker

has perfect knowledge of the distances between Alice and

individual Bobs as well as its own distance to Alice. Indeed,

this is an idealized scenario (from the attacker’s point of view),

and is studied to provide a benchmark for comparison with the

case of uncertainty in distances. P1 is a convex programming

problem. Its optimal solution is obtained as follows:

Theorem 1: P1 has the following closed-form solution:

αk =
[

min

(

ρ,

√
Ak(Ak + 4/λ) − Ak − 2 Bk

2

)]+
∀k ∈ K

(17)

where

Ak �
P

(d)
k M Az

γ
J

ukz
2γ
k

and Bk �
z
γ
J

ukz
γ
k

+
z
γ
J

uk APk L
.

λ is the Karush-Kuhn-Tucker (KKT) multiplier and is chosen

such that
∑K

k=1 αk = 1. It can be easily computed by the

bisection method, given that
∑K

k=1 αk is a decreasing function

of λ.

Proof: See Appendix A.

2) Uncertainty in Distances: Suppose that the attacker

does not have exact knowledge of various distances, but has

probabilistic information about such distances. Let Zk and

Z J be random variables (rvs) that correspond to the Alice-

Bobk and Alice-attacker distances, respectively. In this case,

the attacker targets minimizing the expected value of Rsum,

given by:

E[ Rsum ] = E

[

K
∑

k=1

log

(

1 +
P

(d)
k M AZ

−2γ
k

αkuk Z
−γ
J + Z

−γ
k + 1

APk L

) ]

=
K
∑

k=1

E

[

log

(

1 +
P

(d)
k M AZ−2γ

αkuk Z
−γ
J + Z−γ + 1

APk L

) ]

(18)

where Z is a generic rv that has the same distribution as Zk for

all k. Let fZ and fZ J be the PDF’s of Z and Z J , respectively,

in the range [Dmin, Dmax]. In (18), the expectation is taken

over Z and Z J . The last equality follows from the assumption

that the distributions of the distances between various Bobs

and Alice are identical.

Let 	k � αkuk Z
−γ
J + Z−γ + 1

APk L
. Under the fixed power

allocation strategy, the optimal PC attack is the solution to the

following stochastic programming problem:

P2 : minimize
{αk ∀k∈K}

K
∑

k=1

E

[

log

(

1 +
P

(d)
k M AZ−2γ

	k

) ]

s.t . ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1.

The objective function in P2 can be rewritten as:

K
∑

k=1

∫ Dmax

Dmin

∫ Dmax

Dmin

fZ (x) fZ J (y) log(
k(x, y)) dx dy (19)

where


k(x, y) � 1 +
P

(d)
k M Ax−2γ

αkuk y−γ + x−γ + 1
APk L

.

This is a convex programming problem, as the objective

function and inequality constraints are all convex functions.

Notice that fZ and fZ J can be any arbitrary distribution,

as the integral operation in (19) preserves the convexity. The

integral in (19) can be approximated by Simpson’s Rule for

double integrals, and can be solved efficiently by applying

the interior-point method. We also note that P2 need only be

solved offline, so the time complexity of this solution method

is not a concern.

To further analyze this scenario and gain more insight into

the interactions of various system parameters, we consider a

special case where Bobs are randomly and uniformly located

on a ring around Alice. Hence, the PDF of Z is given by

fZ (x) = 2x/(D2
max − D2

min), for x ∈ [Dmin, Dmax]. Because

Alice is a stationary BS, we assume that the attacker can

acquire her distance information to Alice by overhearing

messages such as already known preambles, i.e., z J is known

at the attacker. Therefore, the objective function in P2 is

converted to:

K
∑

k=1

∫ Dmax

Dmin

2 x

(D2
max − D2

min)
log(
k(x, z J )) dx (20)

The closed-form solution of this integral can be computed

for any arbitrary integer valued γ . Here, we set γ to 2, and

provide the result in (21) (at the top of the next page), where

Ck � P
(d)
k M A and Dk � αkukz−2

J + (APk L)−1. Note that the

expression in (21) is a convex and differentiable function with

respect to αk , ∀k ∈ K. Even though a closed-form solution

does not exist for P2, a numerical solution can be obtained

by applying the gradient-descent method, which leads to fast

convergence.
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K
∑

k=1

2

(D2
max − D2

min)

⎛

⎝

x2 log

(

1+ Ck

Dk x4+x2

)

2
+ log

(

1+Dk x2
)

2 Dk
− log

(

Dk x4+x2+Ck

)

4 Dk
+

(4 DkCk−3) arctan

(

1+2 Dk x2
√

4 Dk Ck −1

)

2 Dk

√
4 DkCk−1

⎞

⎠

∣

∣

∣

Dmax

Dmin

(21)

3) Expected Value of Perfect Information (EVPI): Let

z � [z1, · · · , zK ] be the vector of distances from Alice

to various Bobs (known to the attacker). Let α
∗(z, z J ) �

[α∗
1(z, z J ), · · · , α∗

K (z, z J )] and α
∗ � [α∗

1 , · · · , α∗
K ] be

the optimal solutions to P1 and P2, respectively. The

objective function of P2 becomes EZ,Z J [Rsum(α∗)], and

EZ,Z J [Rsum(α∗(Z, Z J ))] becomes the expectation of the opti-

mal solution of P1 under perfect information, where Z is a

vector of i.i.d. distances Z1, · · · , Z K . The expectations are

taken over the random distances, as previously explained. The

EVPI is defined as follows:

EVPI � EZ,Z J [Rsum(α∗)] − EZ,Z J [Rsum(α∗(Z, Z J ))]. (22)

Note that EVPI is always greater than or equal to zero,

as the case with perfect information outperforms the one with

uncertainty. If EVPI is small, the attacker does not gain much

by knowing the exact distances. It can perform attacks almost

as powerful as when perfect information is available. On the

other hand, if EVPI is high, the attacker may try to acquire

distance information by estimating Bobs’ locations relative

to its own. For example, a group of colluding adversaries

may employ localization techniques (e.g., RSSI and time-of-

arrival) to estimate Alice-to-Bobs distances [25], [26]. This

requires more complex and costly systems at the attacker. In

Section VI, we study the behavior of EVPI.

B. Optimal Power Allocation

Next, we study the optimal PC attack strategy when Alice

adopts “optimal” (the least favorable from the perspective

of the attacker) power allocation strategy for downlink data

transmissions. Our goal here is to provide an upper bound

on the downlink sum-rate under ideal conditions from Alice’s

point of view. To do so, we investigate a scenario where the

attacker tries to minimize that rate, while Alice maximizes

it. This is a min-max problem, and its solution is found as

follows.

As seen from (16), Rsum is a function of P(d) �
[

P
(d)
1 · · · P

(d)
K

]

and α � [α1, · · · , αK ]. Thus, the problem can

be formulated as a convex-concave game; for a fixed P(d),

Rsum(P(d),α) is a convex function of α, and for a fixed α,

Rsum(P(d),α) is a concave function of P(d). This means that

the attacker needs to solve the following game:

P3 : minimize
α

{

maximize
P(d)

Rsum(P(d),α)

}

s.t . ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1

P
(d)
k ≥ 0 ∀k ∈ K,

K
∑

k=1

P
(d)
k ≤ PA

Let (P(d)∗,α∗) be an optimal solution of this game, or a saddle

point. That is, for any possible power allocation P(d),

Rsum(P(d),α∗) ≤ Rsum(P(d)∗,α∗) ≤ Rsum(P(d)∗,α).

This relationship shows that an upper bound on Rsum(P(d),α∗)
is obtained by solving P3, i.e., an upper bound on the downlink

sum-rate in the presence of an optimal PC attack. For instance,

when α = α
∗, P(d)∗ maximizes Rsum(P(d),α∗). This optimal

solution is obtained by a well-known water-filling technique.

Specifically,

P
(d)∗
k =

[

η −
α∗

k ukz
−γ
J + z

−γ
k + 1

APk L

M Az
−2γ
k

]+

(23)

where η is a water-filling level, chosen such that
∑K

k=1 P
(d)
k =

PA. It can be computed by the bisection method, as this

summation is an increasing function of η. Similarly, when

P(d) = P(d)∗, α
∗ minimizes Rsum(P(d)∗,α). The optimal

solution of this problem was previously given in Theorem 1.

We propose to solve this game by using an iterative Gauss-

Seidel method. To do that, we first solve Rsum(P(d),α) for

some initial values of αk , e.g., αk = 0 ∀k ∈ K (initially, there

is no PC attack). Then, the obtained P
(d)
k values are used

in Rsum(P(d)∗,α), and this problem is solved with respect

to αk ∀k ∈ K, as explained in Theorem 1. After this step,

the second iteration starts by solving Rsum(P(d),α∗) using the

new values of αk ’s. As the number of iterations increases,

a better approximation for the saddle point is obtained. We

evaluated the number of iterations required to reach the Nash

equilibrium of this game, and observed that the algorithm

almost always converges after 10 iterations.

Theorem 2: Gauss-Seidel iterations converge when used to

solve P3.

Proof: See Appendix B.

Note that the above analysis applies to the case of perfect

information where distances are known to the attacker. It can

be easily extended to the case where only the probability dis-

tribution of distances is known. The same steps in Section IV-

A.2 are applied to account for the uncertainty. In particular,

the expectation of Rsum(P(d),α) over Z J and Zk’s would be

used in the objective function of P3. The resulting problem

is still a convex-concave game that can be solved by the

Gauss-Seidel method. We skip this analysis here due to space

limitations.

V. SECRECY RATE UNDER PC ATTACK

As stated before, the channels between Bobs and Alice are

near-orthogonal as long as M ≫ K . Indeed, as M → ∞,

inter-user interference vanishes in massive MIMO systems.

The same reason also makes massive MIMO systems well-

protected against a passive eavesdropper (Eve). For example,
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channels of Eve and Bobs are near-orthogonal as well, so the

mutual information leakage at Eve is negligible. However,

we showed the vulnerability of massive MIMO systems

against an active attacker that contaminates the pilot transmis-

sions. So far, we only considered the case where the attacker’s

objective is to minimize the downlink sum-rate. A PC attack

also makes Alice transmit information signals towards the

attacker, as the precoding vectors are designed based on

erroneous channel estimates, which are linear combinations

of CSI at Bobs as well as at the attacker. As a result,

the attacker may also receive information intended to Bobs in

the data transmission phase. That is, instead of just reducing

the transmission rates of legitimate users, the attacker may

also aim at obtaining as much information as possible from

the messages intended to these users.

To study this malicious eavesdropping scenario, we consider

as a secrecy metric the individual secrecy rates of Bobs [27],

[28]. Specifically, we study a problem in which the attacker,

Eve, aims at minimizing the maximum of the “achievable

individual secrecy rates” at given Bobs by adjusting its PC

attack. By doing so, we aim at deriving an upper bound on

the achievable individual secrecy rate that can be achieved

by any Bob in a given massive MIMO system under an

optimal PC attack. Notice that as Alice is not aware of such

an attack, she may not achieve this upper bound. However,

the analysis in this section gives some insightful results

regarding how to design wiretap code to improve the secrecy

outage probability or ergodic secrecy rate in massive MIMO

systems. Considering MRT precoding at Alice and the same

attack model in Sections II and III, the received signal at the

attacker in the downlink data transmission phase is given by:

yeve =
K
∑

i=1

√

P
(d)
i hJ vT

i si + wJ (24)

where wJ is the AWGN at Eve, and vT
k = (hk + √

αkukhJ +
w̃k)

∗/‖hk +√
αkukhJ + w̃k‖ is the precoder vector of sk . The

leakage rate of sk to Eve is given by:

Re
k = log

(

1 +
P

(d)
k |hJ vT

k |2
∑

l∈{K\k} P
(d)
l |hJ vT

l |2 + 1

)

, ∀k ∈ K

(25)

Note that Re
k is obtained from the mutual information between

sk and yeve, with the all other information signals are inter-

preted as noise. We analyze the asymptotic behavior of Re
k

as M → ∞. Based on this analysis, the following limit is

obtained:

lim
M→∞

P
(d)
k |hJ vT

k |2
M

=
P

(d)
k αkukθ

2
J

θk + αkukθJ + 1
Pk L

(26)

(see Appendix C for the derivation of (26)). Therefore:

lim
M→∞

Re
k = log

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

P
(d)
k αkukθ

2
J

θk + αkukθJ + 1

Pk L

∑

l∈{K\k}
P

(d)
l αl ulθ

2
J

θl + αlulθJ + 1
Pl L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (27)

Note that limM→∞ Re
k is independent of M . In addition,

the case where αk = 0, ∀k ∈ K corresponds to a purely

passive eavesdropper scenario. In that case, Re
k asymptotically

goes to zero. This result is indeed in line with (8), where the

inter-user interference is proved to be negligible. In Section VI,

we numerically compare two scenarios, with passive and active

adversary. As we analyze the asymptotic behavior of the

system, limM→∞ Re
k is simply referred to as Re

k in the rest

of the paper.

A. Known Distances at Attacker

The achievable individual secrecy rate for Bobk is defined

by [Rk − Re
k]+ [28]. Under the fixed power allocation strategy

for the downlink transmissions and perfect distance infor-

mation at Eve, the optimal PC attack that minimizes the

maximum of individual secrecy rates is formulated as follows:

minimize
{αk , ∀k∈K}

max{R1 − Re
1, · · · , RK − Re

K , 0}

s.t . ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1.

We reformulate this problem by introducing a new decision

variable ν, such that ν ≥ max{R1 − Re
1, · · · , RK − Re

K , 0}.
This is equivalent to ν ≥ 0 and ν ≥ Rk − Re

k ∀k ∈ K. The

problem is now converted to the following one:

P4 : minimize
{ν,αk , ∀k∈K}

ν

s.t . Rk − Re
k − ν ≤ 0 ∀k ∈ K

ν ≥ 0, ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1

Note that the solution of P4 provides the tightest upper-

bound on the achievable individual secrecy rate. However,

due to the interference of the information signals at Eve,

the first constraint in P4 is not convex. This makes the problem

intractable. Let Gk � P
(d)
k θJ . Therefore, Rk and Re

k are given

as follows:

Rk = log

(

1 + Ak

αk + Bk

)

(28)

Re
k = log

⎛

⎜

⎜

⎝

1 +

Gkαk

αk + Bk

∑K
l 	=k

Glαl

αl + Bl

⎞

⎟

⎟

⎠

. (29)

Lemma 3: Let Ik �
∑K

l 	=k Glαl/(αl + Bl) where αl =
[
√

Gl Bl/ϑ − Bl ]+ ∀l ∈ K, l 	= k and ϑ is chosen such that
∑K

l 	=k αl = 1. Let

Uk � Rk − log

(

1 + Gkαk

(αk + Bk)Ik

)

. (30)

Then, Uk is an upper bound on Rk − Re
k .

Proof: An upper bound on Rk − Re
k can be obtained by

maximizing the term
∑K

l 	=k Glαl/(αl + Bl) in Re
k . This term

is a concave function with respect to αl ∀l ∈ K, l 	= k. We

also know that
∑K

l 	=k αl ≤ 1 and αl ≥ 0 ∀l ∈ K, l 	= k. By

applying the Lagrangian maximization method to solve this
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constrained optimization problem, one can easily show that

the above term is maximized when αl = [
√

Gl Bl/ϑ − Bl]+
∀l ∈ K, l 	= k. ϑ is chosen such that

∑K
l 	=k αl = 1 and

computed by the bisection method as
∑K

l 	=k αl is a decreasing

function of ϑ .

Replacing the first constraint in P4 by Uk − ν ≤ 0 ∀k ∈ K

makes the problem tractable, and its solution still provides an

upper bound on the achievable individual secrecy rate for any

Bob. Furthermore, the logarithm function can be removed by

defining ν̂ � 2ν . Then, P4 becomes:

P5 : minimize
{ν̂,αk , ∀k∈K}

ν̂

s.t .
Ik(αk + Ak + Bk)

αk(Ik + Gk) + Bk Ik

− ν̂ ≤ 0 ∀k ∈ K

ν̂ ≥ 1, ρ ≥ αk ≥ 0 ∀k ∈ K,

K
∑

k=1

αk ≤ 1

Let fk(αk) � Ik(αk + Ak +Bk)/(αk(Ik +Gk)+Bk Ik). Then, fk

is a monotonically decreasing function of αk . We propose the

following iterative method to numerically solve P5. Initially,

max{ f1(α1), · · · , fK (αK )} is found for αk = 0 ∀k ∈ K.

Without loss of generality, let f ∗
i be this maximum. Then, αi

is updated as αi ← αi + δ, where δ is a positive real number.

After that, the same process is repeated with the new values

of αk’s as long as
∑K

k=1 αk ≤ 1, ν̂ ≥ 1, and αk ≤ ρ ∀k ∈ K.

In Section VI, we numerically compare the two upper bounds

obtained by solving P4 and P5.

B. Unknown Distances at Attacker

If the exact locations of Bobs are not available to the

attacker, then it is not possible for the attacker to deterministi-

cally guarantee an upper bound on the individual secrecy rates.

Indeed, we consider an attack model in which the attacker

seeks a soft bound on secrecy rate. Specifically, we replace

the first constraint of P4 by the following chance constraint:

Pr{Rk − Re
k ≥ ν} ≤ ǫ ∀k ∈ K (31)

where ǫ ∈ [0, 1] is a given parameter. Note that the ran-

domness in (31) comes from the distances between Bobs and

Alice, Zk ∀k ∈ K. (We assume that the attacker knows her

distance to Alice, which is a stationary massive MIMO BS.)

This constraint guarantees that the probability of achieving an

individual secrecy rate that is higher than or equal to ν is less

than or equal to ǫ at Bobs. That is, only ǫ fraction of Bobs

can achieve an individual secrecy rate above ν. As (31) does

not have a closed-form expression, P4 is intractable for this

case as well. Therefore, we use a similar bounding method as

in the previous case to make the problem tractable.

Lemma 4: Let B̂l denote Bl when zl = Dmax ∀l ∈ K. Fur-

ther, let Îk �
∑K

l 	=k Glαl/(αl + B̂l) where αl = [
√

Gl B̂l/ϑ −
B̂l]+ ∀l ∈ K, l 	= k and ϑ is chosen such that

∑K
l 	=k αl = 1.

Let

Ûk � Rk − log

(

1 + Gkαk

(αk + Bk) Îk

)

. (32)

Then, Ûk is an upper-bound on Rk − Re
k .

Proof: The function Rk − Re
k is monotonically increasing

with respect to both αl and zl ∀l ∈ K, l 	= k. Therefore,

an upper-bound of this function is obtained when zl = Dmax

∀l ∈ K, l 	= k. Also, by applying the Lagrangian maximization

method as in Lemma 3, the term
∑K

l 	=k Glαl/(αl+B̂l) is upper-

bounded when αl = [
√

Gl B̂l/ϑ − B̂l]+ ∀l ∈ K, l 	= k and ϑ

is chosen such that
∑K

l 	=k αl = 1.

Using Lemma 4, we have:

Pr{Rk − Re
k ≥ ν} ≤ Pr{Ûk ≥ ν} (33)

= Pr{P
(d)
k M AÎk Z

−2γ
k − (ν̂ − 1) Îk Z

−γ
k

≥ ν̂P
(d)
k αkuk Az

−2γ
J + (ν̂ − 1) Îk(αkukz

−γ
J + (APk L)−1)}

(34)

≤ Pr{P
(d)
k M AÎk Z

−2γ
k − (ν̂ − 1) Îk Z

−2γ
k

≥ ν̂P
(d)
k αkuk Az

−2γ
J + (ν̂ − 1) Îk(αkukz

−γ
J + (APk L)−1)}

(35)

= Pr

⎧

⎨

⎩

Zk ≤ 2γ

√

P
(d)
k M AÎk − (ν̂ − 1) Îk

Jk

⎫

⎬

⎭

(36)

where Jk � ν̂P
(d)
k αkuk Az

−2γ
J + (ν̂ − 1) Îk(αkukz

−γ
J +

(APk L)−1). To further analyze this chance constraint,

we exploit (36), which is the CDF of Zk . Assume that Bobs

are randomly and uniformly located in a circular ring around

Alice. Hence, the PDF of Z is given by fZ (x) = 2x/(D2
max −

D2
min), for x ∈ [Dmin, Dmax]. The chance constraint (31) is

converted to:

P
(d)
k M AÎk − (ν̂ − 1) Îk

Jk

≤ (ǫ(D2
max − D2

min) + D2
min)

γ

(37)

∀k ∈ K. This is equivalent to:

Îk(P
(d)
k M A + 1 + Q(αkukz

−γ
J + (APk L)−1))

Îk + Q(P
(d)
k αkuk Az

−2γ
J + Îk(αkukz

−γ
J + (APk L)−1))

≤ ν̂

(38)

∀k ∈ K where Q = (ǫ(D2
max − D2

min) + D2
min)

γ . To find the

minimum ν̂ for a given ǫ, the same problem as P5 is consid-

ered at the attacker after replacing the first constraint by (38).

Note that the constraint function in (38) is a monotonically

decreasing function with respect to αk . Therefore, the method

that we propose for solving P5 in the previous subsection can

be used here as well.

In this paper, we study the scenario where the attacker

aims at minimizing the maximum of individual secrecy rates.

The problem in which the attacker tries to minimize the

sum of the individual secrecy rates could be also solved

by following similar steps. Particularly, the problem would

be similarly reformulated, and the new problem would be a

convex optimization problem as well. Due to space limitations,

we omit the details here.

VI. NUMERICAL RESULTS AND DISCUSSION

We model the channel gain from each transmit antenna

to each receive antenna as h = g
√

Ad−3.522, where g ∼



1260 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 5, MAY 2019

Fig. 3. (a) Downlink sum-rate vs. M under uniform power allocation at both Alice and the attacker, (b) downlink sum-rate vs. Dmax,J, (c) Jain’s fairness
index vs. Dmax,J , (d) downlink sum-rate vs. number of pilot symbols, (e) maximum of individual secrecy rates vs. Dmax,J , (f) CDF vs. downlink transmission
rate, (g) CDF vs. individual secrecy rate, (h) maximum of individual secrecy rates vs. ǫ.

CN (0, 1) and A = 3.0682 × 10−5. The path-loss is modeled

using the COST-Hata Model with center frequency is 2 GHz

[29]. The average transmit powers at Alice, Bobk , and the

attacker are 46, 20, and 30 dBm, respectively. The durations

of the pilot and data transmission phases are set to be equal [4].

We consider a 20 MHz channel with noise floor of −101 dBm.

Bobs and the attacker are uniformly and randomly distributed

within a circular ring whose center is Alice and whose outer

radius is Dmax and Dmax,J, respectively. We set Dmax to

750 meters and Dmin to 10 meters. Our results are averaged

over 105 different network realizations. As the purpose of this

paper is to show the vulnerabilities of massive MIMO systems

to PC attacks, we omit ρ in the numerical results. Also note

that none of the previous works studied the PC attack detection

for a scenario where the attacker aims at multiple Bobs.

We set the number of users K = 10. In Fig. 3(a),

we consider uniform power allocation for both the information

signals at Alice and the jamming signals at the attacker. The

figure depicts the downlink sum-rate vs. M . It shows that (10)

and (13) are good approximations for the downlink rates in (7).

Note that the approximation-based sum-rate is slightly higher

than the exact values, as the inter-user interference does not

perfectly vanish at a finite M . In our subsequent results, we set

M to 1000.

We observe the effect of the maximum distance between

Alice and the attacker (Dmax,J) in Figs. 3(b) and 3(c). In

the case of a single-user PC attack, only one randomly

selected Bob is targeted by the attacker. This attack can

also be interpreted as an unintentional interference from a

user in an adjacent cell. It does not have a big impact on

the sum-rate. PC with uncertainty (PC-unc) and PC with

perfect information (PC-pi) were explained in Section IV-A,

and optimal PC-pi was studied in Section IV-B. Note that

optimal PC-pi gives an upper-bound on the sum-rate of a

massive MIMO system under an optimal PC attack. As the

attacker moves farther from Alice, the sum-rate increases in

all attack schemes. In Fig. 3(b), EVPI is around 20 Mbps.

This says that when the attacker knows the distribution of
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Bobs, it can launch attacks that are almost as powerful as

when the attacker has complete CSI. We also observe that the

downlink sum-rate without an attack (no PC attack case) is less

than the one with the optimal PC-pi if Dmax,J is higher than

700 meters. The reason is that Alice uniformly allocates down-

link transmission powers in no PC attack scheme, whereas

she employs optimal power allocation in the optimal PC-pi. In

Fig. 3(c), we depict Jain’s fairness index for different schemes.

Jain’s fairness index ranges from 1/K to 1 for the worst and

best cases, respectively (if all users have the same downlink

rate, the fairness index is 1). The figure shows that fairness

among Bobs is significantly reduced when PC attacks take

place. PC-unc decreases the fairness more than PC-pi. The

reason behind this phenomena is that when the attacker is close

to Alice and knows the distances, Bobs with higher downlink

rates are targeted. Therefore, Bobs are forced to have closer

downlink rates, which increases the fairness index. Note that

even though PC-pi makes the fairness higher compared to PC-

unc, the sum-rate is lower in PC-pi.

In Fig 3(d), we set Dmax,J to 250 meters, and study the

effect of the number of pilot symbols L. As L increases,

the sum-rate increases as well in no PC, single-user PC,

and optimal PC-pi attacks. The reason is that the error in

MRT precoding vectors due to erroneous channel estimates

decreases, and the signal strength at Bobs increases. On the

other hand, the sum-rate does not increase under the PC-

unc and PC-pi attacks. Note that in these cases, a fixed

power is allocated for the information signals at Alice, and

she does not exploit the decrease in channel estimation

errors.

We evaluate the effect of PC attack on individual secrecy

rates in Fig. 3(e). Specifically, we compare the schemes where

there is no PC attack and PC attacks whose objective is to

minimize the maximum of the individual secrecy rates (PC-

Sec). PC-Sec-P4 and PC-Sec-P5 denote the results of the

problems P4 and P5, respectively, with known distances. Note

that even though P4 is not a tractable problem, we obtain its

results with a brute force method. For each scheme, we show

the results of both individual secrecy rates and transmission

rates between Alice and Bobs. It is observed that the mas-

sive MIMO systems are resilient to passive eavesdroppers,

as the maximum of transmission/secrecy rates are almost the

same without a PC attack. On the other hand, PC attack

decreases the maximum of individual secrecy rates from nearly

110 Mbps to 55 Mbps when Dmax,J is 325 meters. Moreover,

we observe that when the attacker moves farther from Alice,

PC attack still reduces the maximum of individual secrecy

rates by almost 30%. It is also noted that the solution of P5 is

very close to the solution of P4, which provides the tightest

upper-bound.

The empirical CDF of downlink transmission rate and

individual secrecy rate under various schemes are shown

in Figs. 3(f) and 3(g), respectively. 90% of Bobs achieve

a transmission rate less than 40 Mbps under PC-pi. In the

absence of a PC attack, nearly 33% of Bobs achieve a trans-

mission rate higher than 40 Mbps. In Fig. 3(g), we observe that

13% of Bobs have a zero individual secrecy rate under PC-

Sec, whereas only 7% fraction of Bobs have a zero individual

secrecy rate when there is no PC attack. Moreover, only 5%

of Bobs have a secrecy rate above 75 Mbps.

In Fig. 3(h), we evaluate our secrecy analysis with unknown

distances at the attacker. We observe the effect of the designed

parameter ǫ on the maximum of individual secrecy rates for

both cases where K = 10 and K = 20. Based on our analysis,

0.1 fraction of Bobs may achieve an individual secrecy rate

higher than 83 Mbps. When K = 10, the maximum of

individual secrecy rates is just below this threshold value on

average. On the other hand, when K = 20, this threshold

value is exceeded almost always as expected. Note that when

ǫ = 0.6, the attacker guarantees that at least 0.4 fraction of

Bobs have zero individual secrecy rate, which emphasizes the

vulnerability of a massive MIMO system against a PC attack.

VII. CONCLUSION AND FUTURE DIRECTIONS

We considered a single-cell massive MIMO system with

several mobile users, and demonstrated vulnerabilities of

uplink pilot transmissions to jamming attacks. Specifically,

the attacker generates pilot sequences similar to those of users

and contaminates the pilot transmissions to distort channel

estimation at the BS. This PC attack reduces the downlink

transmission rates, as the beamforming techniques utilized

by the BS heavily depend on accurate CSI estimates. We

formulated an optimization problem from the standpoint of the

attacker to minimize the downlink sum-rate. Both cases when

the attacker knows or does not know the distances between the

BS and users were considered. Using (stochastic) optimization

and game theory, we derived the optimal attacking strategies

when the BS employs either fixed or optimal power allocation

for downlink transmissions. We also analyzed the secrecy

rates of the users in massive MIMO systems. In particular,

we showed that even though such systems are robust against

a passive eavesdropper, the PC attack significantly reduces

the maximum of the individual secrecy rates. Our numerical

results showed that the downlink sum-rate decreases signif-

icantly under a PC attack. Particularly, when the attacker is

close to the BS, the downlink sum-rate of all users is reduced

by more than 50%. Another important result of our work is that

an attacker without perfect information about user locations is

almost as devastating as one with perfect information. This

fact emphasizes the vulnerability of massive MIMO systems

to PC attacks. Further, we observed that even if the attacker

moves farther from the BS, the maximum per-user secrecy rate

is reduced by almost 30%.

We assumed that the attacker operates during a single trans-

mission resource (e.g., frequency-time block). If she realizes

that there is no transmission over that resource, she can switch

to another one. Analysis of an attack model that includes

multiple frequencies and time slots is left as future work.

Furthermore, we considered single-antenna users throughout

this paper for tractability. Our results can be easily extended

to multi-antenna user scenarios under various setups. In one

of these setups, each user may send a single pilot from all

of its antennas, as the number of pilots is limited in massive

MIMO systems. The BS estimates only the effective channels

to users, so the system model reduces to multi-user multiple-

input single-input (MISO) as we considered in this paper. In
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another setup, multiplexing gain may be desired at users. In

that case, users can transmit a different orthogonal pilot from

each antenna so that the BS can estimate CSI to each one of

them. To analyze the PC attack for this setup, the downlink

transmission rates given in Section III need to be modified

accordingly.

APPENDIX A

PROOF OF THEOREM 2

Let us define

Ak =
P

(d)
k M Az

γ
J

ukz
2γ
k

and Bk =
z
γ
J

ukz
γ
k

+
z
γ
J

uk APk L

∀k ∈ K. Therefore, the objective of P1 can be written by

Rsum =
K
∑

k=1

log

(

1 + Ak

αk + Bk

)

(39)

Hence, the Lagrangian function of this problem is given by

L(α) =
K
∑

k=1

log(1 + Ak

αk + Bk

) + λ(

K
∑

k=1

αk − 1). (40)

Its first derivative with respect to αk becomes

∂L(α)

∂αk

= −Ak

(αk + Bk)(αk + Ak + Bk)
+ λ. (41)

Let α∗
k ∀k ∈ K be the optimal value that minimizes the

objective function of P1. These values are also the roots of the

polynomial functions where the equation (41) is equal to zero.

Also, note that α∗
k ∀k ∈ K is a nonnegative number, and their

summation is equal to 1 due to the complementary slackness.

Therefore,

α∗
k =

[√
Ak(Ak + 4/λ) − Ak − 2Bk

2

]+
(42)

where λ is chosen such that
∑K

k=1 α∗
k = 1.

APPENDIX B

PROOF OF THEOREM 3

The players of the game described in P3 are Alice and

the attacker. In this game, the utility function of Alice is

Rsum(P(d),α), and her strategy is to choose the optimal

power allocation for the downlink transmissions. Similarly,

−Rsum(P(d),α) is the attacker’s utility, and her strategy is

to find the optimal α to maximize this utility. The strategy

sets of both players are non-empty, compact, and convex

subsets of real numbers (the constraints in P3 are linear

functions). Furthermore, their utility functions are continuous

and diagonally strictly concave. As a result, the existence and

uniqueness of NE is proved for this game, and Gauss-Seidel

method converges to this point [30].

APPENDIX C

PROOF OF EQUATION (26)

lim
M→∞

P
(d)
k |hJ vT

k |2
M

= lim
M→∞

P
(d)
k |

hJ ĥ∗
k

M
|2

‖ĥk‖2

M

(43)

Let us evaluate the limit of the numerator and denominator

separately. The limit of the denominator is given by:

lim
M→∞

‖ĥk‖2

M
= θk + αkukθJ + 1

Pk L
(44)

The equality is due to the fact that given a vector x ∈ C1×M

with a distribution CN (0, cI), limM→∞ xx∗/M = c [23,

Lemma 1]. We analyze the limit of the numerator as follows:

lim
M→∞

hJ ĥ∗
k

M
= lim

M→∞
hJ (hk + √

αkukhJ + w̃k)
∗

M

= lim
M→∞

√
αkuk‖hJ ‖2

M
= √

αkukθk . (45)

gk , gJ , and w̃k are independent vectors, and the result follows

from [23, Lemma 1]. The expression in the numerator of (43)

is a continuous function of hJ ĥ∗
k/M . Therefore, using the

Continuous Mapping Theorem, we conclude that:

lim
M→∞

P
(d)
k |hJ vT

k |2
M

=
P

(d)
k αkukθ

2
J

θk + αkukθJ + 1
Pk L

. (46)

It proves the equation (26).
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