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Vulnerabilities of Massive MIMO Systems
to Pilot Contamination Attacks
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Abstract— We consider a single-cell massive multiple-input
multiple-output (MIMO) system in which a base station (BS)
with a large number of antennas transmits simultaneously to
several single-antenna users. The BS acquires the channel state
information (CSI) for various receivers using uplink pilot trans-
missions. We demonstrate the vulnerability of the CSI estimation
process to pilot-contamination (PC) attacks. In our attack model,
the attacker aims at minimizing the sum rate of downlink
transmissions by contaminating the uplink pilots. We first study
these attacks for two downlink power allocation strategies under
the assumption that the attacker knows the locations of the
BS and its users. Later on, we relax this assumption and
consider the case when such knowledge is probabilistic. The
formulated problems are solved using stochastic optimization,
Lagrangian minimization, and game-theoretic methods. A closed-
form solution for a special case of the problem is obtained.
Furthermore, we analyze the achievable individual secrecy rates
under PC attacks and provide an upper bound on these rates.
We also study this scenario without a priori knowledge of user
locations at the attacker by introducing chance constraints. Qur
results indicate that such attacks can degrade the throughput of
a massive MIMO system by more than 50%.

Index Terms— Massive MIMO, pilot contamination, physical-
layer security, jamming attack, stochastic optimization.

I. INTRODUCTION
ASSIVE multiple-input multiple-output (MIMO) is one
of the key technologies in the upcoming 5G systems.
It is envisioned that a cellular 5G base station (BS) will be
equipped with a very large antenna array, e.g., hundreds of
antennas or more, boosting the spectral efficiency by orders
of magnitude compared to a conventional MIMO system.
Even though MIMO is a well-studied concept in wireless
communications, massive MIMO requires novel techniques
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to overcome new design challenges, and as such it has
received significant attention from researchers over the last
few years (see, for example, [1]-[3], and the references
therein).

Because of the large number of antennas at the BS and the
relatively short channel coherence time, the channel state infor-
mation (CSI) between the BS and individual users must be
frequently estimated using uplink pilot transmissions. Assum-
ing channel reciprocity, the BS utilizes these CSI estimates
for downlink data transmissions. Due to the limited number of
orthogonal pilot sequences (e.g., in the order of tens [4]), users
in neighboring cells may share the same pilots. Interference
among these pilots causes erroneous CSI estimates at the BS,
leading to poor system performance. This is known as pilot
contamination (PC). In addition to arising naturally due to
reusing the same pilots, PC can be also caused by adversarial
transmissions. Indeed, Zhou et al. [5] studied an attack that
targets time division duplexing (TDD) systems. The key idea
behind their attack is to contaminate uplink pilot transmissions
and cause an erroneous uplink channel estimation. Typically,
if the CSI is available, the BS would use MIMO beamforming
techniques such as maximum-ratio transmission (MRT) to
maximize the signal-to-noise-ratio (SNR) at various receivers.
However, the benefits of these techniques vanish rapidly if the
CSI estimates are erroneous. A self-contamination technique
in which the user generates a random signal and superimposes
it onto its uplink pilots was proposed in [6]. This random
signal allows the BS to detect the attacker, but it also decreases
the quality of channel estimation due to the introduced noise.
An extension of this approach was provided in [7] to allow
for the estimation of both legitimate receiver and attacker
channels at the BS, and to enable secure communications
in a single-user massive MIMO system. It is not clear how
these attack detection methods can be applied in a multiuser
scenario, as the introduced random signals from legitimate
users would degrade the channel estimation at the BS even
more. Kapetanovic ef al. [8] proposed another approach in
which the legitimate user transmits four random phase-shift
keying symbols, and the BS checks the correlation matrix of
the received signals. Based on the ratio of the two largest
eigenvalues of this matrix, the BS detects the attack. In [9],
an uncoordinated frequency shift scheme was proposed for
detecting a PC attack. According to this scheme, the user
applies random frequency shifts while transmitting the pilot
sequence. However, this scheme requires joint estimation of
the shift value and the channel between the BS and the user,
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hence incurring high computational complexity especially for
a multiuser massive MIMO system. Tugnait [10] studied
detection and mitigation of reused pilots (not necessarily due
to an adversarial attack) in massive MIMO systems. However,
their approach requires both training and information-bearing
uplink data transmissions. Because a malicious attacker does
not send uplink information messages to the BS, this method
is not applicable to PC attacks. Secure transmissions for TDD-
based massive MIMO systems was studied in [11] in the
presence of an active eavesdropper. The authors derived the
optimal power allocation for the information and artificial
noise (AN) signals at the BS such that secrecy is asymptot-
ically guaranteed as the number of BS antennas (M) tends
to infinity. Secrecy performance of massive MIMO systems
was studied in [12] and [13] in the presence of passive
eavesdroppers. Zhu et al. [12] considered employing various
linear data and AN precoding methods to secure downlink
transmission, whereas Asaad et al. [13] studied the impacts of
transmit antenna selection on the achievable ergodic secrecy
rate and secrecy outage capacity. Basciftci ef al. [14] proposed
another method to provide secrecy against PC attacks by
keeping pilot assignments hidden and using a pilot set that
scales with M. However, there are two main problems with
this scheme. First, it requires a longer pilot transmission phase,
which increases the overhead and decreases the throughput.
Second, computationally intensive cryptographic methods are
required to keep pilot assignments hidden. A two-way training-
based scheme against PC attacks was proposed in [15], which
requires both downlink and uplink channel estimation. Such
estimation can be prohibitively time-consuming to perform in
massive MIMO systems if M is large. All of the above works
consider an attacker that targets users, one at a time. Even
when a multiuser system is considered, it is often assumed
that the attacker randomly selects one user and contaminates
its pilot sequence. Given that one of the key aspects of
massive MIMO systems is to simultaneously serve tens of
users, the vulnerabilities of these systems to a multiuser PC
attack has not been investigated before.

As a side remark, Bjornson et al. [16] [16] showed that
as M — oo, massive MIMO systems can achieve unlimited
capacity even under non-adversarial PC. However, the analysis
in [16] was conducted assuming that the channel covariance
matrices of various users are already known at the BS. Such an
assumption cannot be made for the channel covariance matrix
of an adversary, which makes the results of [16] inapplicable
to our setup.

A. Motivation and Contributions

In this paper, we focus on a single-cell multiuser massive
MIMO network in the presence of an external attacker. In
general, non-adverserial PC has been extensively studied in
the context of a multi-cell massive MIMO system [4]. Various
PC mitigation schemes, including protocol-based methods and
blind CSI estimation methods, have been proposed for such
systems [3]. The main objective of these schemes is to separate
the CSI estimation processes of adjacent cells so that inter-
cell PC is mitigated. However, previously proposed schemes
are not sufficient to mitigate PC from an intra-cell attacker.
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For example, protocol-based methods require coordination
between adjacent BSs to avoid synchronized transmission of
the same pilots. This will not work in the case of a non-
cooperative adversary. On the other hand, blind CSI estimation
methods rely on the fact that the distances between the BS and
the interfering users in adjacent cells are much longer than the
ones in its own cell. However, this is not the case for an intra-
cell attacker, where the distance between the attacker and the
BS can be very short. In our work, we consider a system where
PC among multiple cells has been mitigated by employing one
of the existing schemes, and we focus on the vulnerabilities
of a single-cell massive MIMO network to an intra-cell attack.
We do that based on an attack model that targets minimizing
the sum-rate of downlink transmissions.

The contributions of this paper can be summarized as

follows:

o In our attack model, the attacker contaminates the uplink
pilot transmissions of multiple users, i.e., PC attack.
The downlink transmission rates in the presence/absence
of the attack are derived by exploiting the channel
hardening effect of massive MIMO (effect of small-
scale fading on channel gains vanishes as M tends to
infinity).

« We investigate optimal PC attack strategies for two differ-
ent cases: when the attacker knows the locations of the BS
and its users, and when it does not have this information.
Considering a fixed power allocation strategy for down-
link data transmissions, convex problems are formulated
to determine the optimal PC powers at the attacker that
minimizes the downlink sum-rate. Unlike [17], a PC
power constraint is introduced to take the attack detection
probability into consideration. These problems are solved
via the gradient descent and Lagrangian minimization
methods.

« We obtain a closed-form solution for the optimal PC
powers at the attacker when it has perfect information
of the network. This solution represents a lower bound
on the downlink sum-rate of massive MIMO systems
under an optimal PC attack and a fixed BS transmission
power. In the case of imperfect knowledge on the user
locations, we first study the system for any arbitrary
distribution. Then, a special case where the users are
randomly and uniformly located on a ring around the
BS is further analyzed to gain more insight into the
interactions of various system parameters and to achieve
faster convergence to the solution.

o We study the scenario where the BS optimizes its own
power allocation scheme in the presence of a PC attack.
For this case, a convex-concave game is formulated
between the BS and the attacker. We present an iterative
algorithm to obtain the Nash equilibrium (NE) of this
game. This analysis provides an upper-bound on the
downlink sum-rate of massive MIMO systems under an
optimal PC attack.

o We extend our work in [17] and analyze the secrecy per-
formance of a massive MIMO system under a PC attack.
Note that although massive MIMO systems are robust
against passive eavesdropping (as the CSI at a legitimate
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receiver and an eavesdropper are near-orthogonal [8]),
they are still vulnerable to an active attacker that con-
taminates the uplink pilot transmissions. Specifically,
by using the PC attack, an attacker captures the downlink
information signals with a much higher signal power.
Here, we study a scenario where the attacker minimizes
the maximum of the achievable individual secrecy rates at
various users. The asymptotic behavior of the information
leakage rate at the attacker is derived for a large number
of antennas at the BS. Because the attacker simultane-
ously receives all information signals intended to various
users, i.e., through a multiple-access channel, interference
among these signals at the attacker leads to a non-convex
problem. By deriving an upper-bound on the maximum
interference power, we obtain a tractable problem that can
be efficiently solved by our proposed iterative approach.
Our analysis provides an upper-bound on the achievable
individual secrecy rates in a given massive MIMO system
under the PC attack. Moreover, by introducing chance
constraints, we extend our analysis to the case when
priori knowledge of user locations is not available to
the attacker. Utilizing a similar bounding approach as in
the previous case, we convert the non-convex problem
to a tractable one under these constraints and solve it
numerically. Our formulation for secrecy performance
analysis in this paper can be applied to various other
scenarios.

The rest of the paper is organized as follows. Section II
describes the system model. In Section III, we compute the
downlink transmission rates in the presence/absence of a
PC attack. Our PC attack under a fixed and optimal BS
transmission power is studied in Section IV. in Section V,
we analyze the individual secrecy rates of users under this
attack model. We provide numerical results in Section VI, and
conclude the paper in Section VII.

Throughout the paper, we adopt the following notation. E[-]
indicates the expectation of a random variable. Row vectors
and matrices are denoted by bold lower-case and upper-case
letters, respectively. (-)* and (-)” represent the complex con-
jugate transpose and transpose of a vector/matrix, respectively.
Frobenius norm and the absolute value of a real or complex
number are denoted by || - || and | - |, respectively. A € CY*N
means that A is an M x N complex matrix, and I is
an M x M identity matrix. CAN'(u, o?) denotes a complex
circularly symmetric Gaussian random variable of mean u
and variance ¢ 2. [x]* is defined as max(x, 0). For simplicity,
log, (+) is referred to as log(-).

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Link Model

Consider a massive MIMO system in which the BS (Alice)
uses M antenna elements to transmit independent data streams
to K single-antenna users (Bobs), where M > K. Because
of the large M, the channel coherence time is too short to
estimate the CSI for all M downlink channels at each user [3].
Therefore, TDD is used instead of FDD, in which the downlink
and uplink channels are estimated separately (please refer
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Fig. 1. (a) FDD massive MIMO requires M orthogonal pilots, (b) TDD
massive MIMO requires K orthogonal pilots.

to Fig. 1). In TDD, Alice estimates the CSI for uplink channels
after receiving pilot sequences transmitted by various Bobs. If
these pilot symbols are not perfectly orthogonal to each other,
their mutual interference causes erroneous channel estimates
at Alice. Assuming channel reciprocity, uplink CSI estimates
are used in setting the precoding matrices for downlink data
transmissions. There is no standardized way to ensure pilot
orthogonality in massive MIMO systems. However, Marzetta
[4] suggested assigning an orthogonal time-frequency pilot
sequence to each Bob. Orthogonal space-time block codes can
be also utilized, as in 802.11ac systems, to increase the number
of orthogonal pilot sequences. In the following, the index
k is used to refer to the kth Bob, k € {1,---,K} & K.
Let pr € C'*L be the transmitted pilot sequence by Boby
(kth Bob), where L is the number of symbols in the pilot
sequence. As these pilot sequences are orthogonal to each
other, prp; = 0 V k and [ € K, k # [. We normalize the
transmission powers of pilots such that pyp; = L Yk € K. Py
is the pilot transmission power at Boby. The received signal
at Alice during the pilot transmission phase is given by:
K
Ya= D VPhip+W (1)
i=1

where hT € CMx1 is the uplink channel vector from Boby
to Alice. The mth entry of this vector is given by h(m)
J—g(m), where 6 and g(m) ~ CN(0, 1) are the path-loss
component (large-scale fading) and small-scale effects of the
channel (Rayleigh fading), respectively. Note that 6y is roughly
the same for all antennas m, so hy can be written as hy =
/08y, where gy is a vector of all g,ﬁm), m=1,---, M. W
is the additive white Gaussian noise (AWGN) matrix, whose
entries are zero-mean, unit-variance normal random variables.

Without loss of generality, consider an arbitrary Bob;, i €
K. Let h; be Alice’s estimate of the true h;. Under a priori
knowledge of p;, Alice post-multiplies the received signal by
p; and divides it by /P; and L to obtain:

N YAP, Z kka, Wpf
! «/ P;L JPiL
= hT + W,- (2)
where w!' £ y_— CN(0, PLIM)
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B. Attack Model

Before describing our attack model, we provide background
information on how synchronization between Alice and Bobs
is achieved. Massive MIMO technology is expected to be
deployed in 5G New Radio (NR) and LTE Advanced Pro
(LTE-A) systems [2], [18]. The initial access and signaling
procedures of both systems are very similar to each other. To
add a new user to the network, both systems define two types
of synchronization signals: primary synchronization signal
(PSS) and secondary synchronization signal (SSS) [19], [20].
These signals are periodically broadcasted by the BS. A new
user that wants to establish a connection with the BS tries
to detect these signals, and uses the information embedded
in them to synchronize itself with the BS (both in time and
frequency). (There are various recently proposed methods that
improve time and frequency synchronization of users with BSs
[21], [22].) After the user and BS exchange control messages,
the user joins the network. As stated before, TDD is envisioned
to be employed in massive MIMO systems, where channel
estimation is performed through uplink pilot transmissions.
These pilots are called Sound Reference Signal (SRS), and
their configuration is provided to the user after connection
establishment via the Radio Resource Control (RRC) mes-
sages. SRSs are based on Zadoff-Chu sequences (whose cyclic
shifts are orthogonal to each other), and generally, they are
publicly known. A BS can schedule SRS transmissions from
multiple users to the same physical radio resource.

Considering the initial access and pilot transmission mecha-
nism in 5G NR and LTE-A, an attacker can contaminate uplink
pilot transmissions by imposing its own signal. In particular,
because of the periodic transmission of SRSs (pilots) and lim-
ited number of orthogonal sequences, the attacker can easily
eavesdrop on the channel and learn various pilot assignments
to various Bobs as well as their transmission time slots.
Furthermore, an attacker may be an insider device, meaning
that she can establish a legitimate connection with the BS
and acquire the information of SRS transmission resources
(as these resource are shared with multiple users). In another
instance, this insider can convey the pilot transmission time
and duration to an external colluding adversary, which can
then contaminate the pilot transmissions. Let x; € C!*L be
the signal generated by the attacker, which will be explained
shortly. After the attack, the received signal at Alice is
modified as follows:

K

Ya= VRh{pe+hix; +W 3)
k=1

where h; e CMx*1 is the channel vector from the attacker to
Alice. In the literature, x; is often designed such that only
a single arbitrarily selected user is targeted by the attacker
[5], [14]. More specifically, x; is often set to «/P;px, where
Pj is the average jamming power. In contrast, in our model
(refer to Fig. 2), we set X to:

K
x; =+/P; D" Jarp “
k=1
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Fig. 2.
system.

Pilot contamination attack model in a multi-user massive MIMO

where aj is the ratio between the power that the attacker
allocates to contaminating pilot p; and the average jamming
power. Note that Zf: 1 ok < 1. Let Ry be the downlink trans-
mission rate at Boby. The attacker’s goal can be formulated
as follows:

minimize Ry 5)
{ox VkeKC} ek

K
sit.p>=or>0Vk € K, Zakgl

k=1

where p is a given upper bound on the per-pilot jam-
ming power. In the literature, it is noted that as the PC
power increases, the attack detection probability at Alice
also increases [6], [7]. As mentioned before, previous works
studied only single-user scenarios, whereas here we consider
a multiuser massive MIMO system. While it is not straightfor-
ward to apply previously proposed attack detection schemes to
a multiuser setting, the attack detection probability certainly
increases with the PC power in this case as well. Therefore,
the attacker can try to hide herself from Alice (up to a
predefined detection probability) by limiting her PC power.
To account for this phenomenon, we introduce p.

IIT. DOWNLINK TRANSMISSION RATES

In this section, we analyze the downlink sum-rate for the
underlying massive MIMO system with/without the aforemen-
tioned PC attack.

A. Absence of PC Attack

For conventional MIMO systems, MRT gives rise to inter-
user interference. However, as M tends to infinity, the channels
between the BS and individual users become orthogonal to
each other, and inter-user interference vanishes. In this case,
MRT is the optimal precoder. For this reason, massive MIMO
systems often apply MRT precoder at the BS [1]-[3], [23].
Let s; be the downlink data transmission intended to Boby
Vk € IC, and let VkT € CMx1 pe jts normalized precoder, with
viv; = 1. The received signal at Boby is given by:

Ve = z;l{:l Pi(d)thI-TSi + w]gd) (6)
(d)

where Pk(d) and w, ’ are, respectively, the allocated power to
s at Alice and the AWGN with zero-mean and unit-variance at
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Boby. Under MRT precoding, v/ is given by v/ = (h/|[hgl).
The achievable downlink rate at Bob; becomes:

P T |2
Re =log( 1+ e L kek. ()
ek P vy 1241

Note that the precoding vectors are computed based on channel
estimates.

Next, we study the asymptotic behavior of Ry as M — oo.
Such analysis is needed later on for comparison with the case
under a PC attack. Consider the inter-user interference term
P hyvT 2 in (7). Following the results in [3], [4], and [23],
this term is scaled by M as follows:

1im LA _

M— o0 M
Vk and | € K, where kK # [. In other words, for a
finite but sufficiently large M, with M > K, the chan-
nels are near-orthogonal, and hence, inter-user interference
can be neglected. The underlying intuition behind this
result is that entries of small-scale channel components of
Bob; and Bob; are independent random variables of zero-
mean and unit-variance. Hence, limy .o g/g;/M = 0 and
limp/— 00 gIWZ/ M = 0. Similarly, after some manipulations to
the results in [23], the term in the numerator in (7) approaches:

(@) T2 () p2
lim P Thevy | _ PO,
M—o0 M O + ﬁ

0 (8)

> 0 )

Hence, the downlink rate at Boby behaves asymptotically as:

P(d)92
Ry ~log| 1+ % .
Ok + 1) 37

In Section VI, we numerically verify these results. As
explained before, 6y is the large-scale channel components
at Bobg. (10) indicates that the SINR does not depend on
the small-scale fading components, as these average out by
the large antenna array (channel hardening). The term (1/M)
in (10) comes from the AWGN w,((d) at Bobg. As M — oo,
the noise term vanishes and the SINR tends to infinity. Another
noise term arises due to the channel estimation error w;. In
particular, as the length of the pilots, L, increases, the second
term in the denominator becomes smaller. This leads to an
increase in the downlink rate. The same effect is also observed
when the power allocated for pilots increases.

In this paper, we consider two different power allocation
strategies for downlink transmissions: “fixed” and “optimal.”
Both strategies are subject to an average power constraint
P4. Under the fixed strategy, Pk(d) Vk € K is assumed to be
known to the attacker. For example, based on some fairness
criterion, these values may be determined by the BS before
the pilot transmission phase and conveyed to various receivers
through a feedback channel. If the attacker eavesdrops on this
channel, it can obtain the power allocation values. In one
instance of this strategy, the BS may simgly allocate powers
uniformly to information signals, i.e., Pl( )= = PKd) =
Pa/K. As for the “optimal” power allocation strategy, the BS
relies on a water-filling technique to assign powers, using
O + (PL)™ Y/ (M<9kz) as the water levels [24].

(10)
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B. Presence of PC Attack

Under the attack model in (4), the following channel esti-
mation is performed at Alice for each Boby:

h, = by + Jaguchy + Wy (11)

where uy is the ratio between the average power at the attacker
and the pilot transmission power at Boby, i.e., uy = Pjy/Px.
In the rest of the paper, we assume that uj; is known to
the attacker. Recall that we previously assumed that the
attacker learns the pilot sequences by eavesdropping on uplink
transmissions. The attacker can also learn the transmission
powers of these pilots (which are typically fixed in current
cellular systems). Because Alice is not aware of the presence
of the attacker, she treats ﬁk as the correct channel estimate.
Employing MRT precoding based on hy, Alice computes the
precoder vector of s; as:

o = (e + Jogughy + W)™
© Iy + aahy + Wil
Substituting vy in (7), the attacker’s optimization problem in
(5) becomes non-convex in terms of a; Yk € K. To obtain a
tractable model, we analyze the asymptotic behavior of Ry as
M — oo. Following similar steps to the case of no attacker,
the following expression can be obtained as M — oo:

P m6?
O + arurdy + ﬁ .

12)

Ry ~ log(l + (13)
As M increases, the massive MIMO system expectedly
becomes more resilient to PC attacks (in line with the conclu-
sion in [16]). However, the vulnerability of the system against
such an attack can be observed in (13), which shows that the
SINR decreases with an increase in the jamming power o k.

As in the previous section, we consider both a fixed and
an “optimal” power allocation strategy to Pk(d)’s. The fixed
strategy is performed as before, whereas the “optimal” strategy
is done as follows. Let ¢y 2 O + oguily + ﬁ. Then,
the “optimal” power allocation vector is given by:

K

[Pl(d)* o PI((d)*] = argmax
xi,VkeC k=1

K kae,f
log{ 1 + (15)
Pk

(14)

Rsum

= argmax Z
xi,YkeC k=1

subject to Z,le Pk(d) < P4 and Pk(d) > 0, Vk € K. Note
that in order to solve (14), Alice needs to be aware of the
attack, which is not always possible. However, our goal here
is to observe the effect of PC attack under the least favorable
power allocation strategy from the perspective of the attacker.
Essentially, this provides us with an upper-bound on the
downlink sum-rate under any power allocation strategy.

IV. ANALYSIS OF OPTIMAL PC ATTACK
A. Fixed Power Allocation Strategy

In this section, we study the optimal PC attack strategy
under a fixed power allocation at Alice. We incorporate (13)
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into problem (5), considering fixed power allocation for the
information signals at Alice:

P1: minimize lo
e > o1+

P M6}

O + ajurly + ﬁ
K

s.t.p>or >0Vk ek, Zak < 1.

k=1

For a given k € K, we set 6 = Az,:y, where A is a constant
that depends on the operating frequency and transmit/receive
antennas, while y and z; are the path-loss exponent and the
distance between Alice and Boby, respectively. Similarly, z;
is the distance between Alice and the attacker. For simplicity,
the antennas at Bobs and the attacker are assumed to be
identical, so the same A is considered for all of them. As
a result, the objective function in P1 is converted to the
following one:

K (d) -2

Ryum = Zlog(l + [}y MA,ZVk 1 ) (16)
k=1 okurz;" +z, ' + APL

Next, we discuss two different scenarios based on the infor-

mation available to the attacker.

1) Perfect Distance Information: Suppose that the attacker
has perfect knowledge of the distances between Alice and
individual Bobs as well as its own distance to Alice. Indeed,
this is an idealized scenario (from the attacker’s point of view),
and is studied to provide a benchmark for comparison with the
case of uncertainty in distances. P1 is a convex programming
problem. Its optimal solution is obtained as follows:

Theorem 1: P1 has the following closed-form solution:

VAT 40 — Ac —2 B\ 1T
akz[mln( K k+/ k k Vk e K
(17

where

(d) Y Y

P "MAzZ Z Z
Ag2A—L and B & =L 4
ukzky Mka MkAPkL

A is the Karush-Kuhn-Tucker (KKT) multiplier and is chosen
such that Zle or = 1. It can be easily computed by the
bisection method, given that Zle ay is a decreasing function
of 1.
Proof: See Appendix A. [ |
2) Uncertainty in Distances: Suppose that the attacker
does not have exact knowledge of various distances, but has
probabilistic information about such distances. Let Z; and
Z; be random variables (rvs) that correspond to the Alice-
Boby and Alice-attacker distances, respectively. In this case,
the attacker targets minimizing the expected value of Rgym,
given by:

E[ Ryum | = E |: Zlog(l +
K
ZE[log(l +

k=1

POmMAZ Y
akukz;y + Zk_y + #kl‘
PMAz

akMkZJ_y +Z77 + —Afl,kL ) j|
(18)
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where Z is a generic rv that has the same distribution as Zj for
all k. Let fz and fz, be the PDF’s of Z and Z, respectively,
in the range [Dmin, Dmax]- In (18), the expectation is taken
over Z and Z;. The last equality follows from the assumption
that the distributions of the distances between various Bobs
and Alice are identical.

Let O £ qqukZ,” +Z77 + ﬁ. Under the fixed power
allocation strategy, the optimal PC attack is the solution to the
following stochastic programming problem:

K POMAZ
P2: minimize » E| log{ 1 + ———
o VkeK) = Dy

K
s.t.p>or >0Vk e K, Zak < 1.
k=1

The objective function in P2 can be rewritten as:

K Drax Dmax
log(Wk(x,y)) dx d 19
;/ ~ /Dmin F2(0) fz, () log(¥i(x. ) dx dy  (19)

where

POMA

Yelx,y) 21+ .
oarury 7 +x77 4+ ﬁ

This is a convex programming problem, as the objective
function and inequality constraints are all convex functions.
Notice that f7 and f7, can be any arbitrary distribution,
as the integral operation in (19) preserves the convexity. The
integral in (19) can be approximated by Simpson’s Rule for
double integrals, and can be solved efficiently by applying
the interior-point method. We also note that P2 need only be
solved offline, so the time complexity of this solution method
is not a concern.

To further analyze this scenario and gain more insight into
the interactions of various system parameters, we consider a
special case where Bobs are randomly and uniformly located
on a ring around Alice. Hence, the PDF of Z is given by
fz(x) = 2x/(Dmax mln) for x € [Dmin, Dmax]. Because
Alice is a stationary BS, we assume that the attacker can
acquire her distance information to Alice by overhearing
messages such as already known preambles, i.e., z; is known
at the attacker. Therefore, the objective function in P2 is
converted to:

z / Dinax

_n2
Drin max D mm)

log(Wk(x,zy)) dx (20)

The closed-form solution of this integral can be computed
for any arbitrary integer valued y. Here, we set y to 2, and
provide the result in (21) (at the top of the next page), where
Cr 2 Pk(d)MA and Dy £ akukzjz +(AP¢L)~". Note that the
expression in (21) is a convex and differentiable function with
respect to ax, Vk € K. Even though a closed-form solution
does not exist for P2, a numerical solution can be obtained
by applying the gradient-descent method, which leads to fast
convergence.
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2 G _ 142 Dyx?
z 2 * 1Og(lJerx“-f—;ﬂ) n log(1+Dgx2)  log(Dgx*+x2+Cy) @ DiCi=3) arCtan(4/4 D Cr—1 Drmax @1
(D2 _ D2 ) 2 2 Dy 4 Dy 2 Dp/4 DiCr—1 Dmin

k=1 max min

3) Expected Value of Perfect Information (EVPI): Let
z £ [z1,---,zk] be the vector of distances from Alice
to various Bobs (known to the attacker). Let a*(z,z;) =
la}(z,27), ok (z,2y)] and a* = [af,---,a%] be
the optimal solutions to P1 and P2, respectively. The
objective function of P2 becomes Ez z,[Rsm(a*)], and
Ez, 7, [Rsum(a*(Z, Z1))] becomes the expectation of the opti-
mal solution of P1 under perfect information, where Z is a
vector of i.i.d. distances Zi,---, Zg. The expectations are
taken over the random distances, as previously explained. The
EVPI is defined as follows:

EVPI £ Ez,z, [Rsum(“*)] —Ez,z, [Roum (e (Z, Z). (22)

Note that EVPI is always greater than or equal to zero,
as the case with perfect information outperforms the one with
uncertainty. If EVPI is small, the attacker does not gain much
by knowing the exact distances. It can perform attacks almost
as powerful as when perfect information is available. On the
other hand, if EVPI is high, the attacker may try to acquire
distance information by estimating Bobs’ locations relative
to its own. For example, a group of colluding adversaries
may employ localization techniques (e.g., RSSI and time-of-
arrival) to estimate Alice-to-Bobs distances [25], [26]. This
requires more complex and costly systems at the attacker. In
Section VI, we study the behavior of EVPL

B. Optimal Power Allocation

Next, we study the optimal PC attack strategy when Alice
adopts “optimal” (the least favorable from the perspective
of the attacker) power allocation strategy for downlink data
transmissions. Our goal here is to provide an upper bound
on the downlink sum-rate under ideal conditions from Alice’s
point of view. To do so, we investigate a scenario where the
attacker tries to minimize that rate, while Alice maximizes
it. This is a min-max problem, and its solution is found as
follows.

As seen from (16), Rem is a function of P@ £
[Pl(d) e PI((d)] and @ = [a1, - - , ag]. Thus, the problem can

be formulated as a convex-concave game; for a fixed P(d),
Rsum(P(d), o) is a convex function of «, and for a fixed e,
Rsum(P(d), o) is a concave function of P, This means that
the attacker needs to solve the following game:

P3 : minimize [maximize Rsum(P(d), oc)]
o pld)
K
sit.p>=or>0Vk e K, Zakfl

k=1

K
PP >0vkek, D PP <Py
k=1

Let (P()*, &*) be an optimal solution of this game, or a saddle
point. That is, for any possible power allocation P,

Raum(PD, ¢*) < Rym(PD*, 0*) < Ryym(PD*, ).

This relationship shows that an upper bound on Rgum(P@, o*)
is obtained by solving P3, i.e., an upper bound on the downlink
sum-rate in the presence of an optimal PC attack. For instance,
when a = a*, P@* maximizes Rgum(P@, a™). This optimal
solution is obtained by a well-known water-filling technique.
Specifically,

d

where 7 is a water-filling level, chosen such that Z,le Pk(d) =
Pa. Tt can be computed by the bisection method, as this
summation is an increasing function of #. Similarly, when
P@ = P@D* g* minimizes Reum(P@*, o). The optimal
solution of this problem was previously given in Theorem 1.
We propose to solve this game by using an iterative Gauss-
Seidel method. To do that, we first solve Rgum(P@, &) for
some initial values of ay, e.g., ay = 0 Vk € K (initially, there
is no PC attack). Then, the obtained Pk(d) values are used
in Rsum(P(d)*,oc), and this problem is solved with respect
to ax Yk € K, as explained in Theorem 1. After this step,
the second iteration starts by solving Rsum(P?@, o*) using the
new values of aj’s. As the number of iterations increases,
a better approximation for the saddle point is obtained. We
evaluated the number of iterations required to reach the Nash
equilibrium of this game, and observed that the algorithm
almost always converges after 10 iterations.

Theorem 2: Gauss-Seidel iterations converge when used to
solve P3.

Proof: See Appendix B. |
Note that the above analysis applies to the case of perfect
information where distances are known to the attacker. It can
be easily extended to the case where only the probability dis-
tribution of distances is known. The same steps in Section I'V-
A.2 are applied to account for the uncertainty. In particular,
the expectation of Rsum(P(d), o) over Z; and Z;’s would be
used in the objective function of P3. The resulting problem
is still a convex-concave game that can be solved by the
Gauss-Seidel method. We skip this analysis here due to space
limitations.

—7 -7 1 9t

apuz;” + 3" + AR 23

- —27 ( )
MAgz,

V. SECRECY RATE UNDER PC ATTACK

As stated before, the channels between Bobs and Alice are
near-orthogonal as long as M > K. Indeed, as M — oo,
inter-user interference vanishes in massive MIMO systems.
The same reason also makes massive MIMO systems well-
protected against a passive eavesdropper (Eve). For example,
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channels of Eve and Bobs are near-orthogonal as well, so the
mutual information leakage at Eve is negligible. However,
we showed the vulnerability of massive MIMO systems
against an active attacker that contaminates the pilot transmis-
sions. So far, we only considered the case where the attacker’s
objective is to minimize the downlink sum-rate. A PC attack
also makes Alice transmit information signals towards the
attacker, as the precoding vectors are designed based on
erroneous channel estimates, which are linear combinations
of CSI at Bobs as well as at the attacker. As a result,
the attacker may also receive information intended to Bobs in
the data transmission phase. That is, instead of just reducing
the transmission rates of legitimate users, the attacker may
also aim at obtaining as much information as possible from
the messages intended to these users.

To study this malicious eavesdropping scenario, we consider
as a secrecy metric the individual secrecy rates of Bobs [27],
[28]. Specifically, we study a problem in which the attacker,
Eve, aims at minimizing the maximum of the ‘“achievable
individual secrecy rates” at given Bobs by adjusting its PC
attack. By doing so, we aim at deriving an upper bound on
the achievable individual secrecy rate that can be achieved
by any Bob in a given massive MIMO system under an
optimal PC attack. Notice that as Alice is not aware of such
an attack, she may not achieve this upper bound. However,
the analysis in this section gives some insightful results
regarding how to design wiretap code to improve the secrecy
outage probability or ergodic secrecy rate in massive MIMO
systems. Considering MRT precoding at Alice and the same
attack model in Sections II and III, the received signal at the
attacker in the downlink data transmission phase is given by:

K
d
Yeve = Z P,'( )hJViTSi +wy
i=1
where wy is the AWGN at Eve, and va = (h; + Joruichy +
wi)*/lhg + Jarurhy 4+ W || is the precoder vector of sx. The
leakage rate of s; to Eve is given by:

P(d)lh VTIZ
=log| 1+ T Vk e K

(25)
Note that R} is obtained from the mutual information between
Sk and yeve, With the all other information signals are inter-
preted as noise. We analyze the asymptotic behavior of R{
as M — oo. Based on this analysis, the following limit is
obtained:

(24)

(d) T2 (d) 2
P hyv P ajuid
TR S oA/ a7 MY
M=o0 M Ok + axurby + 51
(see Appendix C for the derivation of (26)). Therefore:
Pk(d)akuk@;
1
O + opurly + ﬁ

lim R =log| 1+ 27

M—o00

z Pl(d a1u16’2
1e{IC\k} (9] +

aufy + p/
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Note that limp— o R is independent of M. In addition,
the case where ay = 0, Vk € K corresponds to a purely
passive eavesdropper scenario. In that case, R} asymptotically
goes to zero. This result is indeed in line with (8), where the
inter-user interference is proved to be negligible. In Section VI,
we numerically compare two scenarios, with passive and active
adversary. As we analyze the asymptotic behavior of the
system, limp; o R{ is simply referred to as R} in the rest
of the paper.

A. Known Distances at Attacker

The achievable individual secrecy rate for Boby is defined
by [Rr — R,i]+ [28]. Under the fixed power allocation strategy
for the downlink transmissions and perfect distance infor-
mation at Eve, the optimal PC attack that minimizes the
maximum of individual secrecy rates is formulated as follows:

minimize max{R; — R{,---, Rx — R%,0
{ax, VkeK) (Ri = K k = R 0)
K
sit.p>=or>0Vk € K, Zakg 1.
k=1

We reformulate this problem by introducing a new decision
variable v, such that v > max{R; — R{,---, Rk — R%,0}.
This is equivalent to v > 0 and v > Ry — R,ﬁ Vk € K. The
problem is now converted to the following one:
P4: minimize v
{v,ox, VkeC}
st. Ry — R, —v <0Vk ek
K
V>0, p>or>0Vkek, Zakfl
k=1
Note that the solution of P4 provides the tightest upper-
bound on the achievable individual secrecy rate. However,
due to the interference of the information signals at Eve,
the first constraint 1n P4 is not convex. This makes the problem
intractable. Let G £ P(d)H 7. Therefore, R and Re are given

as follows:
R =1 (1 P ) (28)
= 10 _—
g g ok + Bx
Grag
e _ _ okt Be
R =log| 1+ Gl (29)

ZI;&k o) + By

Lemma 3: Let Ik £ Zl[;k Gioy/(a; + B;) where o) =
«/GIBZ/ TVl eK,l #kandd is chosen such that

Ur £ R, — log (1 + (30)

Grak )
(o + Bk )
Then, Uy is an upper bound on Ry — Ry.

Proof: An upper bound on Ry — R; can be obtained by
maximizing the term z;;ék Gyoq/(aq + By) in Rf. This term
is a concave function with respect to o; VI € IC, [ # k. We
also know that Z{;k o <land o >0Vl € K, # k. By
applying the Lagrangian maximization method to solve this
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constrained optimization problem, one can easily show that
the above term is maximized when o; = [/G;B;/9 — B;]"
VI € K, 1 # k. ¥ is chosen such that Zl[;k oy = 1 and
computed by the bisection method as Zl[;k oy is a decreasing
function of 9. u
Replacing the first constraint in P4 by Uy —v < 0 Vk € K
makes the problem tractable, and its solution still provides an
upper bound on the achievable individual secrecy rate for any
Bob. Furthermore, the logarithm function can be removed by
defining D £ 2V. Then, P4 becomes:
P5: minimize »
{0, ax, VkeK)
Ir(ox + Ak + Bi)

. — vV <0Vkek
ai(Ix + Gi) + Bl
K
D=1, p=ouu =0V ek, D ax=<l
k=1

Let fi(ox) 2 Ir(ak +Ax+ Br)/ (o (Ik+Gi) + BiIk). Then, fi
is a monotonically decreasing function of ax. We propose the
following iterative method to numerically solve PS. Initially,
max{ fi(a1), -+, fx(akg)} is found for ay = 0 Vk € K.
Without loss of generality, let f;* be this maximum. Then, a;
is updated as a; < a; + J, where ¢ is a positive real number.
After that, the same process is repeated with the new values
of ay’s as long as Zle ar <1,0>1,and ax < p Vk € K.
In Section VI, we numerically compare the two upper bounds
obtained by solving P4 and PS.

B. Unknown Distances at Attacker

If the exact locations of Bobs are not available to the
attacker, then it is not possible for the attacker to deterministi-
cally guarantee an upper bound on the individual secrecy rates.
Indeed, we consider an attack model in which the attacker
seeks a soft bound on secrecy rate. Specifically, we replace
the first constraint of P4 by the following chance constraint:

Pr{Ry — R} >v} <eVkeK (31)

where ¢ € [0, 1] is a given parameter. Note that the ran-
domness in (31) comes from the distances between Bobs and
Alice, Z; Vk € K. (We assume that the attacker knows her
distance to Alice, which is a stationary massive MIMO BS.)
This constraint guarantees that the probability of achieving an
individual secrecy rate that is higher than or equal to v is less
than or equal to € at Bobs. That is, only € fraction of Bobs
can achieve an individual secrecy rate above v. As (31) does
not have a closed-form expression, P4 is intractable for this
case as well. Therefore, we use a similar bounding method as
in the previous case to make the problem tractable.

Lemma 4: Let é; denote B; when z; = Dpax VI € K. Fur-

ther, let I 2 Z{;k Gay/(og + l§1) where a; = [/ Glél/ﬁ —

BT VI € K, 1 # k and ¥ is chosen such that Z{;k a; = 1.
Let

Ur 2 Ry — log (1 + (32)

Grog )
(o + Bi) Ik

Then, Uy is an upper-bound on R; — Ry.
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Proof: The function Ry — R{ is monotonically increasing
with respect to both o; and z; VI € K, | # k. Therefore,
an upper-bound of this function is obtained when z; = Dpax
Vl € K, 1 # k. Also, by applying the Lagrangian maximization
method as in Lemma 3, the term Z{;k Gjo;/(oy+ By) is upper-
bounded when a; = [/ G;B;/9 — Bi1™ V¥l € K, | # k and ¥
is chosen such that Z{;k a = 1. u
Using Lemma 4, we have:

Pr(Ry — Rf > v} < Pr{U; > v}
PP MARZ Y — O — )iz,
\A}Pk(d)akukAzyzy +@0- 1)1Ak(akukzyy + (APkL)fl)}
(34)

(33)

v

PP OMALZ Y — b — )iy z, ™

P Dapur Az> + O — Dig(agurz,” + (APL) ™))
(35)

IA

v

(36)

plz < 2\}/Pk(d)MA1k — = Dk

Jk
s spld) -2y o 7 -
where Jp = VP ogurAz;T 4+ (O — Dilg(akurz;” +
(AP,L)~"). To further analyze this chance constraint,
we exploit (36), which is the CDF of Z;. Assume that Bobs
are randomly and uniformly located in a circular ring around
Alice. Hence, the PDF of Z is given by fz(x) = 2x/(Dr2nax —
Dﬁlin), for x € [Dmin, Dmax]- The chance constraint (31) is
converted to:

POMAL — (b — D

< (e(Dh — D) + DEin)’

7 max
(37)
Vk € K. This is equivalent to:
W(PYOMA + 14 Qaurz,” + (APL)™) —
I + Q(Pk(d)akukAZ;ZV + I(oxurz,” + (APL)™Y) —
(38)

Vk € K where Q = (e(D2,, — D2..) + D2. ). To find the
minimum v for a given €, the same problem as P5 is consid-
ered at the attacker after replacing the first constraint by (38).
Note that the constraint function in (38) is a monotonically
decreasing function with respect to aj. Therefore, the method
that we propose for solving PS5 in the previous subsection can
be used here as well.

In this paper, we study the scenario where the attacker
aims at minimizing the maximum of individual secrecy rates.
The problem in which the attacker tries to minimize the
sum of the individual secrecy rates could be also solved
by following similar steps. Particularly, the problem would
be similarly reformulated, and the new problem would be a
convex optimization problem as well. Due to space limitations,
we omit the details here.

VI. NUMERICAL RESULTS AND DISCUSSION

We model the channel gain from each transmit antenna
to each receive antenna as h = gvAd—3-922, where g ~
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Fig. 3. (a) Downlink sum-rate vs. M under uniform power allocation at both Alice and the attacker, (b) downlink sum-rate vs. Dpyax j, (€) Jain’s fairness

index vs. Dpay,j, (d) downlink sum-rate vs. number of pilot symbols, (¢) maximum of individual secrecy rates vs. Dpyax, j, (f) CDF vs. downlink transmission
rate, (g) CDF vs. individual secrecy rate, (h) maximum of individual secrecy rates vs. €.

CN(0,1) and A = 3.0682 x 107>, The path-loss is modeled
using the COST-Hata Model with center frequency is 2 GHz
[29]. The average transmit powers at Alice, Boby, and the
attacker are 46, 20, and 30 dBm, respectively. The durations
of the pilot and data transmission phases are set to be equal [4].
We consider a 20 MHz channel with noise floor of —101 dBm.
Bobs and the attacker are uniformly and randomly distributed
within a circular ring whose center is Alice and whose outer
radius is Dmax and Dmax,j, respectively. We set Dpmax to
750 meters and Dy to 10 meters. Our results are averaged
over 10° different network realizations. As the purpose of this
paper is to show the vulnerabilities of massive MIMO systems
to PC attacks, we omit p in the numerical results. Also note
that none of the previous works studied the PC attack detection
for a scenario where the attacker aims at multiple Bobs.

We set the number of users K 10. In Fig. 3(a),
we consider uniform power allocation for both the information
signals at Alice and the jamming signals at the attacker. The
figure depicts the downlink sum-rate vs. M. It shows that (10)

and (13) are good approximations for the downlink rates in (7).
Note that the approximation-based sum-rate is slightly higher
than the exact values, as the inter-user interference does not
perfectly vanish at a finite M. In our subsequent results, we set
M to 1000.

We observe the effect of the maximum distance between
Alice and the attacker (Dmax,j) in Figs. 3(b) and 3(c). In
the case of a single-user PC attack, only one randomly
selected Bob is targeted by the attacker. This attack can
also be interpreted as an unintentional interference from a
user in an adjacent cell. It does not have a big impact on
the sum-rate. PC with uncertainty (PC-unc) and PC with
perfect information (PC-pi) were explained in Section IV-A,
and optimal PC-pi was studied in Section IV-B. Note that
optimal PC-pi gives an upper-bound on the sum-rate of a
massive MIMO system under an optimal PC attack. As the
attacker moves farther from Alice, the sum-rate increases in
all attack schemes. In Fig. 3(b), EVPI is around 20 Mbps.
This says that when the attacker knows the distribution of
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Bobs, it can launch attacks that are almost as powerful as
when the attacker has complete CSI. We also observe that the
downlink sum-rate without an attack (no PC attack case) is less
than the one with the optimal PC-pi if Dpmax j is higher than
700 meters. The reason is that Alice uniformly allocates down-
link transmission powers in no PC attack scheme, whereas
she employs optimal power allocation in the optimal PC-pi. In
Fig. 3(c), we depict Jain’s fairness index for different schemes.
Jain’s fairness index ranges from 1/K to 1 for the worst and
best cases, respectively (if all users have the same downlink
rate, the fairness index is 1). The figure shows that fairness
among Bobs is significantly reduced when PC attacks take
place. PC-unc decreases the fairness more than PC-pi. The
reason behind this phenomena is that when the attacker is close
to Alice and knows the distances, Bobs with higher downlink
rates are targeted. Therefore, Bobs are forced to have closer
downlink rates, which increases the fairness index. Note that
even though PC-pi makes the fairness higher compared to PC-
unc, the sum-rate is lower in PC-pi.

In Fig 3(d), we set Dmax,j to 250 meters, and study the
effect of the number of pilot symbols L. As L increases,
the sum-rate increases as well in no PC, single-user PC,
and optimal PC-pi attacks. The reason is that the error in
MRT precoding vectors due to erroneous channel estimates
decreases, and the signal strength at Bobs increases. On the
other hand, the sum-rate does not increase under the PC-
unc and PC-pi attacks. Note that in these cases, a fixed
power is allocated for the information signals at Alice, and
she does not exploit the decrease in channel estimation
errors.

We evaluate the effect of PC attack on individual secrecy
rates in Fig. 3(e). Specifically, we compare the schemes where
there is no PC attack and PC attacks whose objective is to
minimize the maximum of the individual secrecy rates (PC-
Sec). PC-Sec-P4 and PC-Sec-P5 denote the results of the
problems P4 and PS5, respectively, with known distances. Note
that even though P4 is not a tractable problem, we obtain its
results with a brute force method. For each scheme, we show
the results of both individual secrecy rates and transmission
rates between Alice and Bobs. It is observed that the mas-
sive MIMO systems are resilient to passive eavesdroppers,
as the maximum of transmission/secrecy rates are almost the
same without a PC attack. On the other hand, PC attack
decreases the maximum of individual secrecy rates from nearly
110 Mbps to 55 Mbps when Dpax,y is 325 meters. Moreover,
we observe that when the attacker moves farther from Alice,
PC attack still reduces the maximum of individual secrecy
rates by almost 30%. It is also noted that the solution of PS5 is
very close to the solution of P4, which provides the tightest
upper-bound.

The empirical CDF of downlink transmission rate and
individual secrecy rate under various schemes are shown
in Figs. 3(f) and 3(g), respectively. 90% of Bobs achieve
a transmission rate less than 40 Mbps under PC-pi. In the
absence of a PC attack, nearly 33% of Bobs achieve a trans-
mission rate higher than 40 Mbps. In Fig. 3(g), we observe that
13% of Bobs have a zero individual secrecy rate under PC-
Sec, whereas only 7% fraction of Bobs have a zero individual
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secrecy rate when there is no PC attack. Moreover, only 5%
of Bobs have a secrecy rate above 75 Mbps.

In Fig. 3(h), we evaluate our secrecy analysis with unknown
distances at the attacker. We observe the effect of the designed
parameter € on the maximum of individual secrecy rates for
both cases where K = 10 and K = 20. Based on our analysis,
0.1 fraction of Bobs may achieve an individual secrecy rate
higher than 83 Mbps. When K = 10, the maximum of
individual secrecy rates is just below this threshold value on
average. On the other hand, when K = 20, this threshold
value is exceeded almost always as expected. Note that when
€ = 0.6, the attacker guarantees that at least 0.4 fraction of
Bobs have zero individual secrecy rate, which emphasizes the
vulnerability of a massive MIMO system against a PC attack.

VII. CONCLUSION AND FUTURE DIRECTIONS

We considered a single-cell massive MIMO system with
several mobile users, and demonstrated vulnerabilities of
uplink pilot transmissions to jamming attacks. Specifically,
the attacker generates pilot sequences similar to those of users
and contaminates the pilot transmissions to distort channel
estimation at the BS. This PC attack reduces the downlink
transmission rates, as the beamforming techniques utilized
by the BS heavily depend on accurate CSI estimates. We
formulated an optimization problem from the standpoint of the
attacker to minimize the downlink sum-rate. Both cases when
the attacker knows or does not know the distances between the
BS and users were considered. Using (stochastic) optimization
and game theory, we derived the optimal attacking strategies
when the BS employs either fixed or optimal power allocation
for downlink transmissions. We also analyzed the secrecy
rates of the users in massive MIMO systems. In particular,
we showed that even though such systems are robust against
a passive eavesdropper, the PC attack significantly reduces
the maximum of the individual secrecy rates. Our numerical
results showed that the downlink sum-rate decreases signif-
icantly under a PC attack. Particularly, when the attacker is
close to the BS, the downlink sum-rate of all users is reduced
by more than 50%. Another important result of our work is that
an attacker without perfect information about user locations is
almost as devastating as one with perfect information. This
fact emphasizes the vulnerability of massive MIMO systems
to PC attacks. Further, we observed that even if the attacker
moves farther from the BS, the maximum per-user secrecy rate
is reduced by almost 30%.

We assumed that the attacker operates during a single trans-
mission resource (e.g., frequency-time block). If she realizes
that there is no transmission over that resource, she can switch
to another one. Analysis of an attack model that includes
multiple frequencies and time slots is left as future work.
Furthermore, we considered single-antenna users throughout
this paper for tractability. Our results can be easily extended
to multi-antenna user scenarios under various setups. In one
of these setups, each user may send a single pilot from all
of its antennas, as the number of pilots is limited in massive
MIMO systems. The BS estimates only the effective channels
to users, so the system model reduces to multi-user multiple-
input single-input (MISO) as we considered in this paper. In
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another setup, multiplexing gain may be desired at users. In
that case, users can transmit a different orthogonal pilot from
each antenna so that the BS can estimate CSI to each one of
them. To analyze the PC attack for this setup, the downlink
transmission rates given in Section III need to be modified
accordingly.

APPENDIX A
PROOF OF THEOREM 2

Let us define

(d) Y Y Y

_ B MAz; _ %y 2y
e e and By = —+ —F
ukzk Mka MkAPkL

Vk € K. Therefore, the objective of P1 can be written by

K AL
Ram = 2. oe (1+ 22,

k=1

(39)

Hence, the Lagrangian function of this problem is given by

L(a) = ng(l )+ i(z ax —1).  (40)
k=1
Its first derivative with respect to ax becomes
oL —A
@ _ k s (41)
dar  (ax + B)(ax + Ax + By)

Let af Vk € K be the optimal value that minimizes the
objective function of P1. These values are also the roots of the
polynomial functions where the equation (41) is equal to zero.
Also, note that a,f Vk € K is a nonnegative number, and their
summation is equal to 1 due to the complementary slackness.
Therefore,

¥ [vAk(Ak+4//1 —Ak—ZBkT @2)

ak: 2

where / is chosen such that Zle af = 1.

APPENDIX B
PROOF OF THEOREM 3

The players of the game described in P3 are Alice and
the attacker. In this game, the utility function of Alice is
Reum(P@ . ), and her strategy is to choose the optimal
power allocation for the downlink transmissions. Similarly,
—Reum(P@, &) is the attacker’s utility, and her strategy is
to find the optimal & to maximize this utility. The strategy
sets of both players are non-empty, compact, and convex
subsets of real numbers (the constraints in P3 are linear
functions). Furthermore, their utility functions are continuous
and diagonally strictly concave. As a result, the existence and
uniqueness of NE is proved for this game, and Gauss-Seidel
method converges to this point [30].
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APPENDIX C
PROOF OF EQUATION (26)

h/h}
(@) 2% 2
Pk(d)|hJV]Z'|2 Pk | |

lim & TR oy M (43)
Moo M T
M

Let us evaluate the limit of the numerator and denominator
separately. The limit of the denominator is given by:

Iy |2

1
_9 0 -
k + Okuk J+PkL

lim

M—o00

(44)

The equality is due to the fact that given a vector x € C'*M
with a distribution CN(0, cI), limy oo xx*/M = ¢ [23,
Lemma 1]. We analyze the limit of the numerator as follows:

h,h} hy (h hy + wi)*
im R 7 (g + Jaguihy 4+ W)
M— o0 M M—o00 M

Ja hy|?
= lim W:Jakukek.

M —o00

(45)

gk, g7, and Wi are independent vectors, and the result follows
from [23, Lemma 1]. The expression in the numerator of (43)
is a continuous function of h ]h /M. Therefore, using the
Continuous Mapping Theorem, we conclude that:

P v 2 PP a0

lim % = L—. 40
M= 00 M O + axury + 51

It proves the equation (26).
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