
Codes Correcting Position Errors in Racetrack Memories
Yeow Meng Chee∗, Han Mao Kiah∗, Alexander Vardy†∗, Van Khu Vu∗, and Eitan Yaakobi‡

∗ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
† Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

‡ Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel

Emails:{ymchee,hmkiah,vankhu001}@ntu.edu.sg.edu, avardy@ucsd.edu, yaakobi@cs.technion.ac.il

Abstract—Racetrack memory is a new technology which uti-
lizes magnetic domains along a nanoscopic wire in order to ob-
tain extremely high storage density. In racetrack memory, each
magnetic domain can store a single bit of information, which
can be sensed by a reading port (head). The memory is struc-
tured like a tape which supports a shift operation that moves
the domains to be read sequentially by the head. In order to in-
crease the memory’s speed, prior work studied how to minimize
the latency of the shift operation, while the no less important
reliability of this operation has received only a little attention.

In this work we continue our recent study and design codes
which combat shift errors in racetrack memory, called position
errors. Namely, shifting the domains is not an error-free operation
and the domains may be over-shifted or are not shifted, which
can be modeled as deletions and sticky insertions. While it is pos-
sible to use conventional deletion and insertion-correcting codes,
we tackle this problem with the special structure of racetrack
memory, where the domains can be read by multiple heads. We
will show how to take advantage of this special feature of race-
track memories in order to construct codes correcting deletions
and sticky insertions.

I. INTRODUCTION

Racetrack memory, also known as domain wall memory, is

an emerging non-volatile memory which is based on spintronic

technology. It attracts significant attention due to its promising

ultra-high storage density, even comparing to other spintronic

memory technologies such as STT-RAM [13].

A racetrack memory is composed of cells, also called do-
mains, which are positioned on a tape-like stripe and are sep-

arated by domain walls. The magnetization of a domain is

programmed to store a single bit value, which can be read by

sensing its magnetization direction. The reading mechanism is

operated by a read-only port, called a head, together with a

reference domain. Since the head is fixed (i.e., cannot move),

a shift operation is required in order to read all the domains.

Shifting the cells is accomplished by applying shift current

which moves the domain walls in one direction. Thus, shift

operations move all the domains one step either to the right

or to the left. It is also possible to shift by more than a sin-

gle step by applying a stronger current. When doing so, it is

required to have more than a single head to read the domain

walls [9].

There are several approaches to enhance the shift operation

in order to reduce its time and energy consumption [10], [12].

However these mechanisms suffer from degraded reliability

and cannot ensure that domains are perfectly shifted to they

are aligned with the head. These errors, called position errors,

can be modeled as deletions and sticky insertions [13], which

is the motivation for this work. A deletion is the event where

the domains are shifted by more than a single domain location

and thus one of the domains is not read, which results with a

deletion of the bit stored in this domain. In case the domains

were not successfully shifted, then the same domain is read

again and we experience an insertion, however of the same

bit. This kind of insertion errors is also referred as repetition
errors [3] or sticky insertions in a sticky channel [3], [7], [8].

In this work we study codes which correct position errors

in racetrack memory. At a first sight, this problem is not any

different than the well-studied problem of designing codes cor-

recting deletions and insertions [1], [4]–[6]. However, we take

here another approach to tackle the problem and leverage the

special features of racetrack memory, where it is possible to

use more than a single head in order to read the domains.

Thus, each domain is read more than once and the extra reads

can be used in order to correct the position errors during the

read process.

In contrast to substitution errors, deletions/sticky insertions

behave differentially. Namely, to successfully decode a sub-

stitution error, it is necessary to determine the location of the

error. However, for deletions/sticky insertions, the decoder can

successfully decode the correct codeword without determining

all the locations of the deletions/sticky insertions, since it could

be any bit which belongs to the run where each deletion/sticky

insertion has occurred. Assume first that the heads are adjacent

and on every cycle the domains are shifted by a single loca-

tion. Thus, if there are no position errors, the bit stored in each

domain is read twice. On the other hand, in the occurrence of

position errors, the deletions/sticky insertions in the two heads

are correlated. For example, if the ith bit is deleted in the first

head then the (i + 1)-st bit is deleted in the second head. In

case these two deleted bits belong to the same run, then the

noisy words from the two heads are identical and thus we did

not benefit from the extra read by the additional head. On the

other hand, if the heads are well separated and there are no

long runs in the stored information, then the heads’ outputs

will differ and under this setup we will show how it is pos-

sible to correct the position errors. Note that it is possible to

correct a fixed number of deletions and sticky insertions with

a single head while the rate of the codes approaches 1 and

the redundancy order is Θ(log(n)) [1], [5]. Hence, any code

construction using multiple heads should have rate approach-

ing 1 and more than that, improve upon the redundancy result

of Θ(log(n)). However, this should be accomplished while

minimizing the distance between the heads.

The rest of this paper is organized as follows. In Section II,

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 161

we formally define the model and problems studied in the

paper, namely the reading process in racetrack memory and

codes correcting deletions and sticky insertions using multi-

ple heads. In Section III, we review previous constructions

we presented in [2]. In Section IV, we study codes correcting

sticky insertions and in Section V, we present our main re-

sult in the paper of codes correcting both deletions and sticky

insertions.

II. PRELIMINARIES AND MODEL DEFINITIONS

Let F2 denote the binary finite field and F
∗
2 =

⋃∞
n=0 F

n
2

is the set of all words over F2. For a positive integer n, the

set {1, 2, . . . , n} is denoted by [n]. A subvector of a word u
is a vector u[i1, i2] = (ui1 , ui1+1, . . . , ui2) ∈ F

∗
2 in which

1 � i1 � i2 � n. The length of this subvector is 1 � i2 −
i1 +1 � n. In case i1 = i2 = i, we denote a subvector u[i, i]
of length 1 by u[i] to specify the i-th element of vector u.

Let � and m be two positive integers where � � m. Then,

a length-m vector v ∈ F
m
2 which satisfies vi = vi+� for all

1 � i � m − � is said to have period �. For a vector u ∈
F
n
2 , we denote by L(u, �) the length of its longest subvector

which has period �. Note that by definition L(u, �) � �, and

for � = 1, L(u, 1) equals the length of the longest run in u.

For a length-n word u ∈ F
n
2 and i ∈ [n], we denote by

u(δi) the vector obtained by u after deleting its ith bit, that

is, u(δi) = (u1, . . . , ui−1, ui+1, . . . , un). For a set Δ ⊆ {δi :
i ∈ [n]}, we denote by u(Δ) the vector of length n − |Δ|
obtained from u after deleting all the bits specified by the

locations in the set Δ. In case Δ = {δi, . . . , δi+b−1} then we

denote the vector u(Δ) by u(δ[i,b]) to specify a burst of b
deletions starting at the ith position.

Since the heads are fixed in their locations, the memory

cells move so they can all be read by the heads. This shift-
ing operation is performed by applying a shift current which

moves all the cells on each cycle one or more steps in the same

direction. However, the shifting mechanism does not work per-

fectly and may suffer from errors, called position errors. That

is, cells may be shifted by more than a single location on each

cycle or are not shifted. These position errors can be modeled

as deletions and sticky insertions. Namely, a single deletion is

the event where the cells are shifted by two locations instead

of one and thus one of the bits is not read by the head. In case

the cells were shifted by some b+1 > 2 locations, then b con-

secutive cells were not read and we say that a deletion burst
of size b has occurred. On the other hand, a sticky insertion is

the event where the cells were not shifted and the same cell

is read again and if this happens b > 1 times in a row, we say

that a burst of d sticky insertions has occurred. The goal of

this work is to construct codes for racetrack memories which

aim to correct this class of position errors.

In this work we assume that there are several heads and

each head reads all the cells. In case there is only a single

head, then the only approach to correct the position errors is

by using a code which is capable of correcting deletions and

sticky insertions. However, in case there are several heads, the

cells are read multiple times by each head and thus we study

how this inherent redundancy can be used to design better

codes. The output of the heads depend on their locations. For

example, assume that there are three heads which are used

to read the stored word u. Assume also that the distance be-

tween the first two heads is t1 and the distance between the

last two heads is t2. Then, if a deletion occurs at position i in

the first head then a deletion also occurs at position i+ t1 in

the second head and another deletion at position i+ t1+ t2 in

the third head. Therefore, the output of the first, second, third

head is the vector u(δi),u(δi+t1),u(δi+t1+t2), respectively.

A specific scenario of this setup is given in the next example.

Example 1. Let u = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈ F
9
2 be the word

stored in the memory, and assume that there are three heads

which are positioned with t1 = 1 positions between the first

and second heads and t2 = 2 positions between the second

and third heads. Assume that a deletion occurs at position 3

in the first head, then a deletion also occurs at position 4 in

the second head and at position 6 in the third head. Hence,

the outputs from the three heads are:

Head 1: u(δ3) = (0, 0, 1, 0, 1, 0, 1, 1)

Head 2: u(δ4) = (0, 0, 1, 0, 1, 0, 1, 1)

Head 3: u(δ6) = (0, 0, 1, 1, 0, 0, 1, 1).

�

As illustrated in Example 1, different heads may have the same

output if the distance between their locations is small and the

stored word has a long run. However, if the heads are well

separated then their outputs is more likely to be different.

We say that a code is an m-head b-position-error-
correcting code if it can correct b position errors using

m heads. Similarly, we also define m-head b-deletion-
correcting codes, m-head b-sticky-insertion-correcting codes,

m-head b-burst-deletion-correcting codes, and m-head
b-burst-sticky-insertion-correcting codes.

III. PREVIOUS RESULTS

In our previous work [2], several code constructions were

given which correct a single or multiple deletions. We briefly

review these constructions here as they will be used for the

codes we study in this paper.

Construction 1. For all t � n, let C1(n, 1, t) be a code of

length n such that the length of the longest run of every code-

word is at most t. That is, C1(n, 1, t) = {c ∈ F
n
2 |L(c, 1) � t}.

Construction 2. Let C2(n, b, t) be a code of length n such that

the length of the longest subvector which has period b of every

codeword c ∈ C2(n, b, t) is at most t. That is, C2(n, b, t) =
{c ∈ F

n
2 | L(c, b) � t}.

Construction 3. Let C3(n,� b, t) be a code of length n which

is the intersection of the codes C2(n, �, t) for 1 � � � b. That

is,

C3(n,� b, t) = ∩b
�=1C2(n, �, t)

= {c ∈ F
n
2 | L(c, �) � t, for all � � b}.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 162

The following results for these constructions were proved

in [2].

Theorem 4.
1) The code C1(n, 1, t) is a two-head single-deletion-

correcting code when the heads are positioned t locations

apart.

2) The code C2(n, b, t) is a two-head b-burst-deletion-

correcting code when the heads are positioned t locations

apart.

3) The code C3(n,� b, t) can correct up to b consecutive

deletions using two heads at distance t.
4) The code C3(n,� 2, t1) is a three-head double-deletion-

correcting code when the distance between adjacent heads

is at least t = 2(t1 − 1).

IV. CODES CORRECTING MULTIPLE BURSTS OF STICKY

INSERTIONS

In this section, we consider the case that there are only

sticky insertions and construct codes correcting multiple sticky

insertions using multiple heads. Recall that a sticky insertion

occurs when the domain is not shifted and the same bit is

read again by the head. Furthermore, if the domain does not

move on several consecutive shift operations, then the same

bit might be read multiple times in a row by the head and thus

a burst of sticky insertions occurs.

For a length-n word u ∈ F
n
2 and i ∈ [n], we denote by

u(γ[i,b]) the vector obtained by u after repeating its ith bit b
times, that is,

u(γ[i,b]) = (u1, . . . , ui−1, ui, . . . , ui︸ ︷︷ ︸
b+1 times

, ui+1, . . . , un).

In case b = 1, we simply use the notation u(γi) instead of

u(γ[i,1]). For a set Γ ⊆ {γ[i,bi] : i ∈ [n], bi � 1}, we denote

by u(Γ) the vector obtained from u after repeating its ith bit

bi times for all i, bi such that γ[i,bi] ∈ Γ.

Example 2. Let u = (0, 0, 1, 1, 0, 1, 1) ∈ F
7
2, then u(γ[4,3]) =

(0, 0, 1, 1, 1, 1, 1, 0, 1, 1). For Γ = {γ[1,1], γ[4,2]} then

u(Γ) = (0, 0, 0, 1, 1, 1, 1, 0, 1, 1). �

Recall again that in a racetrack memory, we use multiple

heads in fixed positions to read the information so each bit is

read multiple times. Therefore, if a sticky insertion occurs at

the i-th position in the first head then in the second head it

appears in the (i + t)-th position. That is, if u is the stored

codeword and the output from the first head is u(γ[i,b]), then

the output from the second head is u(γ[i+t,b]).
Although codes correcting a single sticky insertion are well-

studied and asymptotically optimal codes exist, the redundancy

of such codes is at least log(n)−1 bits [3], [8]. The main result

in this section shows that using multiple heads, it is possible

to correct multiple bursts of sticky insertions with at most a

single bit of redundancy.

We observe that correcting a sticky insertion is an easier

task than correcting a deletion. In fact, the code C1(n, 1, t),

which is a two-head single-deletion-correcting code when the

distance between the heads is at least t, is capable of correct-

ing a single sticky insertion under the same setup. However,

the next theorem shows that this code is actually capable of

correcting a burst of sticky insertions of length at most t− 1.

Theorem 5. The code C1(n, 1, t) is a two-head b-burst-sticky-

insertion-correcting code for b � t − 1 using two heads of

distance t. In particular, there exists a two-head b-burst-sticky-

insertion-correcting code for b � t−1, where t = �log(n)�+1,

when the distance between the heads is t. The redundancy of

the code is approximately 0.36 bits.

V. CODES CORRECTING COMBINATION OF DELETIONS

AND STICKY INSERTIONS

In this section, we tackle the more difficult problem of con-

structing m-head d-position-error-correcting codes in which

position errors can be deletions or sticky insertions. If both

deletions and sticky insertions occur, we can determine the

difference between the number of deletions and number of

sticky insertions. Thus, if there exists only a single position

error, we can determine whether that position error is a dele-

tion or sticky insertion. Moreover, we already proved that the

code C1(n, 1, t) is a two-head single-deletion-correcting code

if the distance between two heads is at least t, and under this

setup from Theorem 5, the code C1(n, 1, t) is also a two-head

single-sticky-insertion-correcting code since it can correct a

burst of sticky insertions. Therefore, we obtain the following

result.

Theorem 6. The code C1(n, 1, t) is a two-head single-position-

error-correcting code if the distance between two heads is at

least t.

Our next step is to construct a three-head two-position-

error-correcting code.

Theorem 7. The code C3(n,� 2, t1) is a three-head two-

position-error-correcting code if the distance between adjacent

heads is at least t = 3t1 − 2.

Proof: Let d1 be the number of deletions and d2 be the

number of sticky insertions. Since there are at most 2 posi-

tion errors which can be deletions or sticky insertions, we ob-

tain (d1, d2) ∈ {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (1, 1)}. Re-

call that we always know what the different between d1 and d2
is. Since most of the cases have already been proved in previ-

ous sections, it is enough to consider the case that d1−d2 = 0,

that is, (d1, d2) can be (0, 0) or (1, 1).
Let c = (c1, . . . , cn) ∈ C3(n,� 2, t) be the stored code-

word, and let c1, c2, c3 ∈ {0, 1}n be the output from the first,

second, third head, respectively. In case the i1-th bit is deleted

and the i2-th bit is repeated at the first head we get that

c1 = c(δi1 , γi2), c2 = c(δi1+t, γi2+t), c3 = c(δi1+2t, γi2+2t),
in which c(δi, γj) is a vector obtained from c by deleting

ci and repeating cj . Note that we did not assume here that

i1 < i2.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 163

We prove the theorem by explicitly showing how to decode

the stored codeword c. This will be done in the following three

steps:

Step 1: Determining whether c1 = c.

Step 2: Determining whether the first error in the first head

is a deletion or sticky insertion.

Step 3: Correcting two position errors to recover the stored

codeword.

We start with the first step.

Step 1: In the next claim we present a necessary and sufficient

condition to determine whether c1 = c. We omit the proof due

to the lack of space.

Claim 8. c = c1 if and only if one of the following two condi-

tions holds:

1) c1 = c2, or

2) c1 �= c2 and c1[j1] = c3[j1] �= c2[j1], where j1 is the

leftmost index that c1 and c2 differ.

If one of the two conditions in Claim 8 holds, then c =
c1, and so we can recover the stored codeword by just taking

the first vector c1. Otherwise, there are one deletion and one

sticky insertion in the first head. However, we do not know

which error occurs first.

Step 2: When reaching this step we know that c1 �= c and

as a result of Claim 8 c1 �= c2 and ci1 and ci2 are not in the

same run of c. Let j1 be the leftmost index that c1 and c2
differ and let c′1 be the vector obtained by inserting c2[j1] into

the j1-th location of c1. We next present a condition which

determines whether the first error occurred is a deletion or a

sticky insertion.

Claim 9. The first position error is determined to be a deletion

or a sticky insertion according to the following two decision

rules:

1) If c′1[1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2] then the first

error in the first head is a deletion.

2) If c′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] then let c′′1 be

the vector obtained by deleting the j2-th bit in c′1 in which

j2 is the leftmost index that c′1 and c2 differ.

• If c′′1 [1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2] then the

original vector c = c′′1 .
• If c′′1 [1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] then the

first error in the first head is a sticky insertion.

Proof: We first describe the possible outcomes in case

the first position error is a deletion or a sticky insertion. Based

on these observations, we will then verify the correctness of

the conditions in the claim.

1) Case 1: The first error is a deletion, that is, i1 < i2, so

the outputs from the first two heads are:

c1 = (c1, . . . , ci1−1, ci1+1, . . . , ci2 , ci2 , ci2+1 . . . , cn),

c2 = (c1, . . . , ci1+t−1, ci1+t+1, . . . , ci2+t, ci2+t+1, . . . , cn).

Then c′1 is the vector obtained after correcting the first

deletion in the first head, that is,

c′1 = (c1, . . . , ci1−1, ci1 , ci1+1, . . . , ci2 , ci2 , ci2+1 . . . , cn).

Note that since j1 is the left most index that c1 and c2
differ, we have that

ci1 = ci1+1 = · · · = cj1−1 = cj1 (1)

and so inserting the bit c2[j1], which is the bit cj1 , in the

j1-th position of c1 is equivalent to inserting the bit ci1 in

the i1-th position of c1. According to (1), the subvector

c[i1, j1] is a run and thus j1 < i1 + t1. Therefore, we

have that j1 + 2t1 − 2 < i1 + 3t1 − 2 = i1 + t. Thus,

c2[1, j1 + 2t1 − 2] = c[1, j1 + 2t1 − 2] since the first

error happens in the second head at position i1 + t >
j1 + 2t1 − 2.

• If c′1[1, j1+2t1−2] = c2[1, j1+2t1−2] = c[1, j1+
2t1 − 2] then we know that in the first j1 + 2t1 − 2
bits in the first head, i.e. in c1, there is only a single

deletion which is corrected in c′1. In this case, the

second error is at least 2t1 − 2 positions apart from

the first error. That is, i2 − i1 > 2t1 − 2.

• If c′1[1, j1+2t1−2] �= c2[1, j1+2t1−2] = c[1, j1+
2t1−2] then we know that the position of the second

error in the first head, which is a sticky insertion, is

within the first j1+2t1−2 bits, i.e., i2 � j1+2t1−
2. Therefore, c′′1 is the vector obtained by correcting

both of the errors. In this case

c′′1 [1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2] (2)

and furthermore, c′′1 provides us with the original

codeword c.

2) Case 2: The first error is a sticky insertion, that is, i2 <
i1. Then, the outputs from the first two heads are:

c1 = (c1, . . . , ci2 , ci2 , . . . , ci1−1, ci1+1, . . . , cn),

c2 = (c1, . . . , ci2+t, ci2+t, . . . , ci1−1+t, ci1+1+t, . . . , cn).

Here we have that (ci2 , ci2+1, . . . , cj1−1) is a run and

therefore j1 � i2 + t1 < i2 + t, so there are no er-

rors in the first j1 bits of c2. Hence, c′1[1, j1 + 1] =
(c1, . . . , ci2 , ci2 , . . . , cj1−2, cj1 , cj1−1). Note that j1 � i1
since ci1 and ci2 are not in the same run in c. Due to the

lack of space and since this part repeats the ideas for the

deletion case we omit this part of the proof.

Now we are ready to prove the correctness of the two deci-

sion rules. If a sticky insertion occurs then c′1[1, j1+2t1−2] �=
c2[1, j1+2t1−2]. Therefore, in case there is equality between

these two subvectors then the first position error is necessarily

a deletion. As for the second decision rule, we first assume that

c′1[1, j1+2t1− 2] �= c2[1, j1+2t1− 2]. For the deletion case,

according to (2), we see that if c′′1 [1, j1+2t1−2] = c2[1, j1+
2t1 − 2] then we successfully correct the original codeword c
by the vector c′′. Similarly for the sticky insertion case, it is

possible to verify that if c′′1 [1, j1+2t1−2] = c2[1, j1+2t1−2],
again we successfully correct the original codeword c to be

c′′. Lastly, we assume that c′1[1, j1 + 2t1 − 2] = c2[1, j1 +
2t1 − 2]. Here, we showed in (2) that if a deletion occured

and c′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] then necessarily

c′′1 [1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2], which verifies this

condition.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 164

After step 2, we are either able to recover the original vec-

tor or are able to determine whether a deletion or a sticky

insertion occurs first.

Step 3: Now, we are ready to recover the original vector, in

case it was not done in Step 2, where we know whether the

first error is a deletion or a sticky insertion. We first consider

the deletion case. According to Claim 9, in this case c′1[1, j1+
2t1 − 2] = c2[1, j1 +2t1 − 2]. Thus, we know that the second

error is at least 2t1−2 positions apart from the first error, and

this holds also for the second head. In this case we apply the

same procedure for the second and third heads to obtain the

vector c′2 after correcting the first deletion in c2. Lastly, all

we need is to correct a single sticky insertion in c′1 and c′2,

which can be done by using Theorem 5.

The case of stick insertion is proved in a similar way. First

we remove the j1-th bit from c1 to obtain the vector c′1. We

apply the same rule on the second and third heads to obtain

the vector c′2 that corrects the first sticky insertion in c2, and

we complete the decoding task by correcting a single deletion

in c′1 and c′2, which can be done by using Theorem 4.

We observe that the proof of Theorem 7 also provides an

efficient decoding algorithm to recover the stored codeword

in C3(n,� 2, t1) using three heads. The following example

demonstrates this decoding procedure.

Example 3. Let n = 20, t1 = 3, t = 7 and

c = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0)

is a stored codeword in C3(n,� 2, t1). Assume that the out-

puts from the three heads are:

Head 1: c1 = c(γ2, δ5)

= (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0)

Head 2: c2 = c(γ9, δ12)

= (1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0)

Head 3: c3 = c(γ16, δ19)

= (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0)

In Step 1, we see that the condition in Claim 9 does not hold

since c1[3] �= c2[3] = c3[3], and therefore we conclude that

c �= c1. In Step 2, we determine whether the first error is a

deletion or a sticky insertion. It is easy to see that j1 = 3 and

thus we construct the vector

c′1 = (1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).

Since j1 + 2t1 − 2 = 7 and c′1[1, 7] �= c2[1, 7], we find the

leftmost index that c′1 and c2 differ, which is j2 = 4. Hence,

we construct the vector

c′′1 = (1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).

Since c′′1 [1, 7] �= c2[1, 7], we deduce that the first posi-

tion error in the first head is a sticky insertion. In Step

3, we use first two vectors c1 and c2 to correct the

first sticky insertion in the first head to obtain the vec-

tor c(δ5) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).
Then, we use last two vectors c2 and c3 to correct the

first sticky insertion in the second head to obtain the vec-

tor c(δ12) = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0).
Lastly, we correct the last deletion to recover the stored code-

word c = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0). �

According to the cardinality results for the code C3(n,�
2, t1) in [2], we conclude with the following corollary.

Corollary 10. There exists a three-head two-position-error-

correcting code with approximately log(e)/4 ≈ 0.36 bits of

redundancy when the distance between adjacent heads is at

least t = 3(�log(n)�+ 2)− 2.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and A. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” arxiv:1507.06175v1, Jul. 2015.

[2] Y.M. Chee, H.M. Kiah, A. Vardy, V.K. Vu, and E. Yaakobi, “Coding for
racetrack memories,” Proc. IEEE Int. Symp. Inf. Theory, Aachen, Ger-
many, Jun. 2017.

[3] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Ex-
plicit constructions and prefixing methods,” SIAM Journal on Discrete
Mathematics, vol. 23, no. 4, pp. 2120–2146, Jan. 2010.

[4] A.S.J. Helberg and Hendrik C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans. Inf. Theory, vol. 48, no. 1, pp. 305–308,
Jan. 2002.

[5] V.I. Levenshtein, “Binary codes capable of correcting insertions, dele-
tions and reversals”, Dokl. Akad. Nauk SSSR, vol. 163, no. 4, pp. 845–
848, 1965. English translation: Sov. Phys. Dokl., vol. 10, no.8, pp. 707–
710. 1966.

[6] V.I. Levenshtein, “ On perfect codes in deletion and insertion metric,”
Discr. Math., vol. 3, no. 1, pp. 3–20, 1991. English translation: Discr.
Math. Appl., vol. 2, no.3, pp. 241–258, 1992.

[7] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

[8] H. Mahdavifar and A. Vardy, “Nearly optimal sticky-insertion correcting
codes with efficient encoding and decoding,” Proc. IEEE Int. Symp. Inf.
Theory, Aachen, Germany, Jun. 2017.

[9] S.S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall race-
track memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.

[10] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for ul-
tra high density and low power consumption,” Design Automation Con-
ference (DAC), pp. 1–6, May 2013.

[11] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288–292, 1965.

[12] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K.
Roy, and A. Raghunathan, “Tapecache: A high density, energy efficient
cache based on domain wall memory,” Proc. of the 2012 ACM/IEEE
Int. Symp. on Low Power Electronics and Design (ISLPED), New York,
NY, pp. 185–190, 2012.

[13] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-fi playback: Tolerating position errors
in shift operations of racetrack memory,” 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), pp. 694–
706, Ju. 2015.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 165

