978-1-5090-3097-2/17/$31.00 ©2017 IEEE

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

Codes Correcting Position Errors in Racetrack Memories

Yeow Meng Chee*, Han Mao Kiah*, Alexander Vardy'*, Van Khu Vu*, and Eitan Yaakobi!

* School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

f Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

1 Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel

Emails:{ymchee, hmkiah, vankhuOOl}@ntu .edu.sg.edu, avardyQucsd.edu,

Abstract—Racetrack memory is a new technology which uti-
lizes magnetic domains along a nanoscopic wire in order to ob-
tain extremely high storage density. In racetrack memory, each
magnetic domain can store a single bit of information, which
can be sensed by a reading port (head). The memory is struc-
tured like a tape which supports a shift operation that moves
the domains to be read sequentially by the head. In order to in-
crease the memory’s speed, prior work studied how to minimize
the latency of the shift operation, while the no less important
reliability of this operation has received only a little attention.

In this work we continue our recent study and design codes
which combat shift errors in racetrack memory, called position
errors. Namely, shifting the domains is not an error-free operation
and the domains may be over-shifted or are not shifted, which
can be modeled as deletions and sticky insertions. While it is pos-
sible to use conventional deletion and insertion-correcting codes,
we tackle this problem with the special structure of racetrack
memory, where the domains can be read by multiple heads. We
will show how to take advantage of this special feature of race-
track memories in order to construct codes correcting deletions
and sticky insertions.

I. INTRODUCTION

Racetrack memory, also known as domain wall memory, is
an emerging non-volatile memory which is based on spintronic
technology. It attracts significant attention due to its promising
ultra-high storage density, even comparing to other spintronic
memory technologies such as STT-RAM [13].

A racetrack memory is composed of cells, also called do-
mains, which are positioned on a tape-like stripe and are sep-
arated by domain walls. The magnetization of a domain is
programmed to store a single bit value, which can be read by
sensing its magnetization direction. The reading mechanism is
operated by a read-only port, called a head, together with a
reference domain. Since the head is fixed (i.e., cannot move),
a shift operation is required in order to read all the domains.
Shifting the cells is accomplished by applying shift current
which moves the domain walls in one direction. Thus, shift
operations move all the domains one step either to the right
or to the left. It is also possible to shift by more than a sin-
gle step by applying a stronger current. When doing so, it is
required to have more than a single head to read the domain
walls [9].

There are several approaches to enhance the shift operation
in order to reduce its time and energy consumption [10], [12].
However these mechanisms suffer from degraded reliability
and cannot ensure that domains are perfectly shifted to they
are aligned with the head. These errors, called position errors,
can be modeled as deletions and sticky insertions [13], which

yaakobi@cs.technion.ac.il

is the motivation for this work. A deletion is the event where
the domains are shifted by more than a single domain location
and thus one of the domains is not read, which results with a
deletion of the bit stored in this domain. In case the domains
were not successfully shifted, then the same domain is read
again and we experience an insertion, however of the same
bit. This kind of insertion errors is also referred as repetition
errors [3] or sticky insertions in a sticky channel [3], [7], [8].

In this work we study codes which correct position errors
in racetrack memory. At a first sight, this problem is not any
different than the well-studied problem of designing codes cor-
recting deletions and insertions [1], [4]-[6]. However, we take
here another approach to tackle the problem and leverage the
special features of racetrack memory, where it is possible to
use more than a single head in order to read the domains.
Thus, each domain is read more than once and the extra reads
can be used in order to correct the position errors during the
read process.

In contrast to substitution errors, deletions/sticky insertions
behave differentially. Namely, to successfully decode a sub-
stitution error, it is necessary to determine the location of the
error. However, for deletions/sticky insertions, the decoder can
successfully decode the correct codeword without determining
all the locations of the deletions/sticky insertions, since it could
be any bit which belongs to the run where each deletion/sticky
insertion has occurred. Assume first that the heads are adjacent
and on every cycle the domains are shifted by a single loca-
tion. Thus, if there are no position errors, the bit stored in each
domain is read twice. On the other hand, in the occurrence of
position errors, the deletions/sticky insertions in the two heads
are correlated. For example, if the ith bit is deleted in the first
head then the (¢ + 1)-st bit is deleted in the second head. In
case these two deleted bits belong to the same run, then the
noisy words from the two heads are identical and thus we did
not benefit from the extra read by the additional head. On the
other hand, if the heads are well separated and there are no
long runs in the stored information, then the heads’ outputs
will differ and under this setup we will show how it is pos-
sible to correct the position errors. Note that it is possible to
correct a fixed number of deletions and sticky insertions with
a single head while the rate of the codes approaches 1 and
the redundancy order is ©(log(n)) [1], [5]. Hence, any code
construction using multiple heads should have rate approach-
ing 1 and more than that, improve upon the redundancy result
of O(log(n)). However, this should be accomplished while
minimizing the distance between the heads.

The rest of this paper is organized as follows. In Section II,

161

978-1-5090-3097-2/17/$31.00 ©2017 |[EEE

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

we formally define the model and problems studied in the
paper, namely the reading process in racetrack memory and
codes correcting deletions and sticky insertions using multi-
ple heads. In Section III, we review previous constructions
we presented in [2]. In Section IV, we study codes correcting
sticky insertions and in Section V, we present our main re-
sult in the paper of codes correcting both deletions and sticky
insertions.

II. PRELIMINARIES AND MODEL DEFINITIONS

Let Fy denote the binary finite field and F5 = (J,—,F5
is the set of all words over [F,. For a positive integer n, the
set {1,2,...,n} is denoted by [n]. A subvector of a word u
is a vector uli1,i2] = (Uiy,Wiy+1,---,Ui,) € Fs in which
1 < 41 < 49 < n. The length of this subvector is 1 < iy —
i1 +1 < n. In case i; =iy = i, we denote a subvector i,]
of length 1 by wli] to specify the i-th element of vector u.

Let ¢ and m be two positive integers where ¢ < m. Then,
a length-m vector v € F5* which satisfies v; = v;4, for all
1 < i< m—{is said to have period ¢. For a vector u €
F%, we denote by L(u,?) the length of its longest subvector
which has period ¢. Note that by definition L(u,¢) > ¢, and
for £ =1, L(u, 1) equals the length of the longest run in w.

For a length-n word v € F% and ¢ € [n], we denote by
u(d;) the vector obtained by w after deleting its ith bit, that
is, ’U,((SZ) = (’U,l, R 7 I 1 T 7’U,n). For a set A C {51 :
i € [n]}, we denote by u(A) the vector of length n — |A|
obtained from w after deleting all the bits specified by the
locations in the set A. In case A = {d;,...,0;4+p—1} then we
denote the vector u(A) by w(d[;) to specify a burst of b
deletions starting at the :th position.

Since the heads are fixed in their locations, the memory
cells move so they can all be read by the heads. This shift-
ing operation is performed by applying a shift current which
moves all the cells on each cycle one or more steps in the same
direction. However, the shifting mechanism does not work per-
fectly and may suffer from errors, called position errors. That
is, cells may be shifted by more than a single location on each
cycle or are not shifted. These position errors can be modeled
as deletions and sticky insertions. Namely, a single deletion is
the event where the cells are shifted by two locations instead
of one and thus one of the bits is not read by the head. In case
the cells were shifted by some b+ 1 > 2 locations, then b con-
secutive cells were not read and we say that a deletion burst
of size b has occurred. On the other hand, a sticky insertion is
the event where the cells were not shifted and the same cell
is read again and if this happens b > 1 times in a row, we say
that a burst of d sticky insertions has occurred. The goal of
this work is to construct codes for racetrack memories which
aim to correct this class of position errors.

In this work we assume that there are several heads and
each head reads all the cells. In case there is only a single
head, then the only approach to correct the position errors is
by using a code which is capable of correcting deletions and
sticky insertions. However, in case there are several heads, the
cells are read multiple times by each head and thus we study
how this inherent redundancy can be used to design better

codes. The output of the heads depend on their locations. For
example, assume that there are three heads which are used
to read the stored word u. Assume also that the distance be-
tween the first two heads is ¢; and the distance between the
last two heads is ¢5. Then, if a deletion occurs at position ¢ in
the first head then a deletion also occurs at position ¢ + ¢; in
the second head and another deletion at position ¢ +t1 4 t2 in
the third head. Therefore, the output of the first, second, third
head is the vector w(d;), w(ditt,), W(ditt,+t,), TESPECtively.
A specific scenario of this setup is given in the next example.

Example 1. Let u = (0,0,1,1,0,1,0,1,1) € FJ be the word
stored in the memory, and assume that there are three heads
which are positioned with ¢; = 1 positions between the first
and second heads and o = 2 positions between the second
and third heads. Assume that a deletion occurs at position 3
in the first head, then a deletion also occurs at position 4 in
the second head and at position 6 in the third head. Hence,
the outputs from the three heads are:

Head 1: u(d3) = (0,0,1,0,1,0,1,1)
Head 2: u(d,) = (0,0,1,0,1,0,1,1)
Head 3: u(5g) = (0,0,1,1,0,0,1,1).

As illustrated in Example 1, different heads may have the same
output if the distance between their locations is small and the
stored word has a long run. However, if the heads are well
separated then their outputs is more likely to be different.
We say that a code is an m-head b-position-error-
correcting code if it can correct b position errors using
m heads. Similarly, we also define m-head b-deletion-
correcting codes, m-head b-sticky-insertion-correcting codes,
m-head b-burst-deletion-correcting codes, and m-head
b-burst-sticky-insertion-correcting codes.

III. PREVIOUS RESULTS

In our previous work [2], several code constructions were
given which correct a single or multiple deletions. We briefly
review these constructions here as they will be used for the
codes we study in this paper.

Construction 1. For all t < n, let C1(n,1,t) be a code of
length n such that the length of the longest run of every code-
word is at most t. Thatis, C1(n,1,t) = {c € F} | L(¢, 1) < t}.

Construction 2. Let C3(n, b, t) be a code of length n such that
the length of the longest subvector which has period b of every
codeword ¢ € Ca(n,b,t) is at most t. That is, Co(n,b,t) =
{c € F} | L(e,b) < t}.

Construction 3. Let C5(n, < b, t) be a code of length n which
is the intersection of the codes Ca(n, ¢, t) for 1 < ¢ < b. That
is,
Cs(n, < b,t) = NY_,Co(n, £, 1)
={ceFy | L(c,¢) <t, forall{ < b}.

162

978-1-5090-3097-2/17/$31.00 ©2017 |IEEE

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

The following results for these constructions were proved
in [2].

Theorem 4.

1) The code Ci(n,1,t) is a two-head single-deletion-
correcting code when the heads are positioned t locations
apart.

2) The code Cy(n,b,t) is a two-head b-burst-deletion-
correcting code when the heads are positioned t locations
apart.

3) The code Cs(n,< b,t) can correct up to b consecutive
deletions using two heads at distance t.

4) The code C3(n, < 2,1y) is a three-head double-deletion-
correcting code when the distance between adjacent heads
is at leastt = 2(t; — 1).

IV. CODES CORRECTING MULTIPLE BURSTS OF STICKY
INSERTIONS

In this section, we consider the case that there are only
sticky insertions and construct codes correcting multiple sticky
insertions using multiple heads. Recall that a sticky insertion
occurs when the domain is not shifted and the same bit is
read again by the head. Furthermore, if the domain does not
move on several consecutive shift operations, then the same
bit might be read multiple times in a row by the head and thus
a burst of sticky insertions occurs.

For a length-n word u € F% and i € [n], we denote by
u(7};,5)) the vector obtained by w after repeating its ith bit b
times, that is,

w(Yip)) = (Ury ooy Uim1, Ui, - s Up).

oy Uy Uiy 1y -
b+1 times

In case b = 1, we simply use the notation u(7;) instead of
w(7};,1))- For a set I' C {vy};,) : 4 € [n],b; > 1}, we denote
by u(T") the vector obtained from w after repeating its ith bit
b; times for all ¢, b; such that v};,,) € T

Example 2. Let u = (0,0,1,1,0,1,1) € F}, then w(y,3) =
(0707171717151507171)' For T’ = {7[1,1]57[4,2]} then
u(T) =(0,0,0,1,1,1,1,0,1,1). m

Recall again that in a racetrack memory, we use multiple
heads in fixed positions to read the information so each bit is
read multiple times. Therefore, if a sticky insertion occurs at
the ¢-th position in the first head then in the second head it
appears in the (i -+ t)-th position. That is, if w is the stored
codeword and the output from the first head is w(7};3)), then
the output from the second head is w(y[i1+¢])-

Although codes correcting a single sticky insertion are well-
studied and asymptotically optimal codes exist, the redundancy
of such codes is at least log(n)—1 bits [3], [8]. The main result
in this section shows that using multiple heads, it is possible
to correct multiple bursts of sticky insertions with at most a
single bit of redundancy.

We observe that correcting a sticky insertion is an easier
task than correcting a deletion. In fact, the code Cy(n,1,t),

which is a two-head single-deletion-correcting code when the
distance between the heads is at least ¢, is capable of correct-
ing a single sticky insertion under the same setup. However,
the next theorem shows that this code is actually capable of
correcting a burst of sticky insertions of length at most ¢ — 1.

Theorem 5. The code Cy(n,1,t) is a two-head b-burst-sticky-
insertion-correcting code for b < t — 1 using two heads of
distance t. In particular, there exists a two-head b-burst-sticky-
insertion-correcting code forb < t—1, wheret = [log(n)]+1,
when the distance between the heads is t. The redundancy of
the code is approximately 0.36 bits.

V. CODES CORRECTING COMBINATION OF DELETIONS
AND STICKY INSERTIONS

In this section, we tackle the more difficult problem of con-
structing m-head d-position-error-correcting codes in which
position errors can be deletions or sticky insertions. If both
deletions and sticky insertions occur, we can determine the
difference between the number of deletions and number of
sticky insertions. Thus, if there exists only a single position
error, we can determine whether that position error is a dele-
tion or sticky insertion. Moreover, we already proved that the
code Cy(n,1,t) is a two-head single-deletion-correcting code
if the distance between two heads is at least ¢, and under this
setup from Theorem 5, the code C;(n, 1,¢) is also a two-head
single-sticky-insertion-correcting code since it can correct a
burst of sticky insertions. Therefore, we obtain the following
result.

Theorem 6. The code C;(n, 1,t) is a two-head single-position-
error-correcting code if the distance between two heads is at
least t.

Our next step is to construct a three-head two-position-
error-correcting code.

Theorem 7. The code C3(n,< 2,t;) is a three-head two-
position-error-correcting code if the distance between adjacent
heads is at leastt = 3t — 2.

Proof: Let d; be the number of deletions and ds be the
number of sticky insertions. Since there are at most 2 posi-
tion errors which can be deletions or sticky insertions, we ob-
tain (dy,ds) € {(0,0),(0,1),(1,0),(0,2),(2,0),(1,1)}. Re-
call that we always know what the different between d; and d»
is. Since most of the cases have already been proved in previ-
ous sections, it is enough to consider the case that d; —dy = 0,
that is, (dy,dz) can be (0,0) or (1,1).

Let ¢ = (c¢1,...,¢n) € Cs(n,< 2,t) be the stored code-
word, and let ¢, ¢g, c3 € {0,1}™ be the output from the first,
second, third head, respectively. In case the ¢;-th bit is deleted
and the io-th bit is repeated at the first head we get that
c1 = ¢(3iy,Viy), €2 = €(iy 145 Vig+t), €3 = €(0iy 4205 Vip+2t)s
in which ¢(d;,;) is a vector obtained from ¢ by deleting
c¢; and repeating c¢;. Note that we did not assume here that
11 < 19.

163

978-1-5090-3097-2/17/$31.00 ©2017 |IEEE

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

We prove the theorem by explicitly showing how to decode
the stored codeword c. This will be done in the following three
steps:

Step 1: Determining whether ¢; = c.

Step 2: Determining whether the first error in the first head
is a deletion or sticky insertion.

Step 3: Correcting two position errors to recover the stored
codeword.

We start with the first step.

Step 1: In the next claim we present a necessary and sufficient
condition to determine whether ¢; = ¢. We omit the proof due
to the lack of space.

Claim 8. ¢ = ¢, if and only if one of the following two condi-
tions holds:
1) C1 = Ca, Or
2) ¢1 # ¢o and ¢1[j1]) = e3[j1] # c2[j1], where j1 is the
leftmost index that ¢; and cs differ.

If one of the two conditions in Claim 8 holds, then ¢ =

c1, and so we can recover the stored codeword by just taking
the first vector ¢;. Otherwise, there are one deletion and one
sticky insertion in the first head. However, we do not know
which error occurs first.
Step 2: When reaching this step we know that ¢; # ¢ and
as a result of Claim 8 ¢; # c2 and ¢;, and ¢;, are not in the
same run of c. Let j; be the leftmost index that ¢; and cs
differ and let ¢} be the vector obtained by inserting ¢3[j1] into
the j;-th location of ¢;. We next present a condition which
determines whether the first error occurred is a deletion or a
sticky insertion.

Claim 9. The first position error is determined to be a deletion
or a sticky insertion according to the following two decision
rules:
1) Ifci[1,71 + 2t1 — 2] = e2]1, j1 + 2t; — 2] then the first
error in the first head is a deletion.
2) If ci[1, 1 + 2t1 — 2] # ¢o[1, j1 + 2t1 — 2] then let ¢ be
the vector obtained by deleting the jo-th bit in ¢} in which
Jo is the leftmost index that ¢} and ¢, differ.
. IfClll[l,jl + 2t1 — 2] = Cg[l,jl + Qtl — 2] then the
original vector ¢ = ¢/
. IfC/ll[l,jl + 2t1 — 2] 7é CQ[].,jl —+ 2t1 - 2] then the
first error in the first head is a sticky insertion.

Proof: We first describe the possible outcomes in case
the first position error is a deletion or a sticky insertion. Based
on these observations, we will then verify the correctness of
the conditions in the claim.

1) Case 1: The first error is a deletion, that is, 71 < 72, SO

the outputs from the first two heads are:
012(61,.. .,CiQ,CiQ,Ciz_;,_l...,Cn),

co = (e, ..

.y Cil—la Ci1+17 ..
L) ci1+t—1a ci1+t+l7 .o 7Ci2+t7 cig-‘rt-‘rl) s
Then c] is the vector obtained after correcting the first
deletion in the first head, that is,

/
Cc) = (Ch <5 Cii—1,Ciy 5 Cig 415 -+ 5 Cigs Cigy Cin 1 - - - 7077,)-

1Cn).

Note that since j; is the left most index that ¢; and co
differ, we have that

(1)

and so inserting the bit ¢5[j1], which is the bit ¢;,, in the
J1-th position of ¢; is equivalent to inserting the bit ¢;, in
the 71-th position of ¢;. According to (1), the subvector
cli1, j1] is a run and thus j; < i; + ¢1. Therefore, we
have that j; + 2t; — 2 < i1 + 3t; — 2 = i1 + t. Thus,
ca[l, 1 + 2t1 — 2] = ¢[l,41 + 2t; — 2] since the first
error happens in the second head at position i; + ¢ >
jl + 2t1 — 2.

o If ci[l,j1+2t1 —2] = co[1, j1 +2t1 — 2] = ¢[1, 1 +
2t1 — 2] then we know that in the first j; 4+ 2t — 2
bits in the first head, i.e. in ¢y, there is only a single
deletion which is corrected in ¢}. In this case, the
second error is at least 2¢; — 2 positions apart from
the first error. That is, i9 — 41 > 2t; — 2.

o If C/l[].,jl +2t1 —2] 7é Cg[l,jl +2t1 —2] = C[].,jl +
2t1 —2] then we know that the position of the second
error in the first head, which is a sticky insertion, is
within the first j; + 2t — 2 bits, i.e., 15 < j1 +2t1 —
2. Therefore, ¢/ is the vector obtained by correcting
both of the errors. In this case

c’il = Ci1+1 == lef]. = cj1

L, j1+2t1 =2 =co[l,j1 +2t1 — 2] (2)

and furthermore, ¢; provides us with the original
codeword c.

2) Case 2: The first error is a sticky insertion, that is, o <
i1. Then, the outputs from the first two heads are:

5 Cn),

<3 Ciy =14t Cig 414ty - - -

¢ = (e, ..

co = (cq,..

+3CigyCigy v o3 Cii—1,Ci1 41, - -

~7ci2+t7c’£2+t7" Jc’n)'

Here we have that (c;,,ciy+1,...,¢j,—1) is a run and
therefore 77 < 49 + t1 < 49 + t, so there are no er-
rors in the first j; bits of cy. Hence, ¢[1,71 + 1] =
(Cl,.. .,le_g,le,le_l). Note that j; < 41
since ¢;, and ¢;, are not in the same run in c. Due to the
lack of space and since this part repeats the ideas for the
deletion case we omit this part of the proof.

-5 Cigy Cigy - -

Now we are ready to prove the correctness of the two deci-
sion rules. If a sticky insertion occurs then ¢} [1, j1+2t1 —2] #
c2[1, j1 +2t1 —2]. Therefore, in case there is equality between
these two subvectors then the first position error is necessarily
a deletion. As for the second decision rule, we first assume that
ci[1, j1 +2t1 — 2] # e[l j1 + 2t1 — 2]. For the deletion case,
according to (2), we see that if ¢/ [1, j1 +2t1 —2] = e2[1, 51 +
2t1 — 2] then we successfully correct the original codeword ¢
by the vector ¢”. Similarly for the sticky insertion case, it is
possible to verify that if ¢/ [1, j; +2t1 —2] = eo[1, j1+2t; —2],
again we successfully correct the original codeword ¢ to be
¢”. Lastly, we assume that ¢{[1, /1 + 2t1 — 2] = e2[1,51 +
2t — 2]. Here, we showed in (2) that if a deletion occured
and c{[1, 71 + 2t1 — 2] # ¢2[1, j1 + 2t1 — 2] then necessarily
1,41 + 2t1 — 2] = ea[1, 51 + 2t — 2], which verifies this
condition. []

164

978-1-5090-3097-2/17/$31.00 ©2017 |[EEE

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

After step 2, we are either able to recover the original vec-

tor or are able to determine whether a deletion or a sticky
insertion occurs first.
Step 3: Now, we are ready to recover the original vector, in
case it was not done in Step 2, where we know whether the
first error is a deletion or a sticky insertion. We first consider
the deletion case. According to Claim 9, in this case ¢} [1, j1+
2t1 — 2] = e3[1, 41 + 2t; — 2]. Thus, we know that the second
error is at least 2¢; — 2 positions apart from the first error, and
this holds also for the second head. In this case we apply the
same procedure for the second and third heads to obtain the
vector ¢, after correcting the first deletion in c¢,. Lastly, all
we need is to correct a single sticky insertion in ¢} and ¢,
which can be done by using Theorem 5.

The case of stick insertion is proved in a similar way. First
we remove the ji-th bit from ¢; to obtain the vector ¢}. We
apply the same rule on the second and third heads to obtain
the vector ¢, that corrects the first sticky insertion in ¢y, and
we complete the decoding task by correcting a single deletion
in ¢} and ¢}, which can be done by using Theorem 4. |

We observe that the proof of Theorem 7 also provides an
efficient decoding algorithm to recover the stored codeword
in Cs3(n,< 2,t;) using three heads. The following example
demonstrates this decoding procedure.

Example 3. Let n = 20,¢; = 3,¢t =7 and
c=(1,0,1,1,0,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0)

is a stored codeword in Cgz(n, < 2,t1). Assume that the out-
puts from the three heads are:

Head 1: ¢; = c¢(72,05)
=(1,0,0,1,1,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0)

Head 2: co = c¢(79,012)
=(1,0,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,1,0)

Head 3: c3 = c¢(716,019)
=(1,0,1,1,0,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0)

In Step 1, we see that the condition in Claim 9 does not hold
since ¢1[3] # c2[3] = c3[3], and therefore we conclude that
¢ # c;. In Step 2, we determine whether the first error is a
deletion or a sticky insertion. It is easy to see that j; = 3 and
thus we construct the vector

c; =(1,0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0).

Since j1 + 2t; — 2 = 7 and ¢}[1,7] # c2[1,7], we find the
leftmost index that ¢} and ¢, differ, which is jo = 4. Hence,
we construct the vector

e/ =(1,0,1,1,1,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0).

Since ¢/[1,7] # ¢2[1,7], we deduce that the first posi-
tion error in the first head is a sticky insertion. In Step
3, we use first two vectors ¢; and c¢o to correct the
first sticky insertion in the first head to obtain the vec-
tor ¢(d5) = (1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0).
Then, we use last two vectors co and c3 to correct the

first sticky insertion in the second head to obtain the vec-
tor ¢(é2) = (1,0,1,1,0,0,0,1,1,0,1,1,0,1,1,0,0,1,0).
Lastly, we correct the last deletion to recover the stored code-
word ¢ = (1,0,1,1,0,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0). O

According to the cardinality results for the code Cs(n, <
2,t1) in [2], we conclude with the following corollary.

Corollary 10. There exists a three-head two-position-error-
correcting code with approximately log(e)/4 ~ 0.36 bits of
redundancy when the distance between adjacent heads is at
leastt = 3([log(n)] + 2) — 2.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and A. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” arxiv:1507.06175v1, Jul. 2015.

[2] Y.M.Chee, H.M. Kiah, A. Vardy, V.K. Vu, and E. Yaakobi, “Coding for
racetrack memories,” Proc. IEEE Int. Symp. Inf. Theory, Aachen, Ger-
many, Jun. 2017.

[3] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Ex-
plicit constructions and prefixing methods,” SIAM Journal on Discrete
Mathematics, vol. 23, no. 4, pp. 2120-2146, Jan. 2010.

[4] A.S.J. Helberg and Hendrik C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans. Inf. Theory, vol.48, no. 1, pp.305-308,
Jan. 2002.

[5] V.I. Levenshtein, “Binary codes capable of correcting insertions, dele-
tions and reversals”, Dokl. Akad. Nauk SSSR, vol. 163, no. 4, pp. 845-
848, 1965. English translation: Sov. Phys. Dokl., vol. 10, no.8, pp. 707—
710. 1966.

[6] V.I. Levenshtein, “ On perfect codes in deletion and insertion metric,”
Discr. Math., vol. 3, no. 1, pp. 3-20, 1991. English translation: Discr.
Math. Appl., vol. 2, no.3, pp. 241-258, 1992.

[71 M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1-33, 2009.

[8] H.Mahdavifar and A. Vardy, “Nearly optimal sticky-insertion correcting
codes with efficient encoding and decoding,” Proc. IEEE Int. Symp. Inf.
Theory, Aachen, Germany, Jun. 2017.

[9] S.S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall race-
track memory,” Science, vol. 320, no. 5873, pp. 190-194, 2008.

[10] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for ul-
tra high density and low power consumption,” Design Automation Con-
ference (DAC), pp. 1-6, May 2013.

[11] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288-292, 1965.

[12] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K.
Roy, and A. Raghunathan, “Tapecache: A high density, energy efficient
cache based on domain wall memory,” Proc. of the 2012 ACM/IEEE
Int. Symp. on Low Power Electronics and Design (ISLPED), New York,
NY, pp. 185-190, 2012.

[13] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-fi playback: Tolerating position errors
in shift operations of racetrack memory,” 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), pp. 694—
706, Ju. 2015.

165

