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Abstract—Animals search for food in their environment with a
decision strategy which keeps them fit. Optimal Foraging Theory
models this foraging behavior to determine the optimal decision
strategy followed by animals. This theory has been successfully
applied for humans as they search for information and is
termed as Information Foraging. When people visit a tourist
location, they follow a similar strategy to move from one spot to
another and collect information by capturing photographs. This
behavior has similarities with the foraging behavior of animals
which has been widely studied by researchers. In this work, we
propose to employ Optimal Foraging Theory to help tourists
explore a location and capture photographs in an optimal way.
We determine a decision strategy for tourist which provides
a list of interesting spots to visit in a tourist location along
with corresponding stay time. Finally, we solve an optimization
problem to find a path through these spots which can be followed
by tourists. Experimental results on a public dataset demonstrate
the effectiveness of the proposed method 1.

I. INTRODUCTION

A tourist location usually has multiple points of interest. We
follow some trajectory through these points of interest as we
explore and take photographs. There can be multiple ways in
which we visit these points of interest, and it depends upon
a lot of factors, such as visit time, user preference, etc. If we
are not familiar with a tourist location, then usually we use
our intuition or follow other tourists to explore these points
of interest. This strategy is not always successful, and we end
up spending a lot of time exploring the location rather than
enjoying the points of interest.

Animals face a similar problem when they search for food
and move from one food patch to another. Researchers have
extensively studied the problem of animal foraging behavior
and observed that animals follow optimal foraging behavior
for their survival. Optimal Foraging Theory (OFT) [1] is a
study which tries to model the animal behavior for foraging
which ensures their survival. Although the consumption of
food provides energy to animals, the involved search takes
both energy and time. The animal has to optimize the search by
minimizing travel time and maximizing the gain in energy by
food consumption to remain fit. OFT models this behavior and
helps in determining which food patches are most beneficial
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and involves low energy consumption. OFT also models the
optimal navigation behavior of animals from one food patch
to another.

The search for food patch by animals is analogous to the
search of photography spots by tourists. Different food patches
provide a different amount of energy to the animals, and
similarly, different photography spots may provide a different
experience to users. The animals observe loss of energy when
they move from one food patch to another, and it is analogous
to the time and energy spent by the tourists as they move from
one photography spot to another. Inspired by this analogy, we
propose a novel problem in which we attempt to identify the
optimal tourist behavior at a tourist location. More specifically,
we want to find an optimal path and the amount of time to
spend at each point of interest in the path for a given user
context at any given tourist location.

We leverage social media images captured at tourist loca-
tions and associated meta-data to understand the past tourist
behavior and the location environment. We termed the points
of interest at any tourist location as micro-poi. We employ
concepts from Optimal Foraging Theory to find an optimal
path to follow between the micro-pois and the amount of
time to spend at each of the visited micro-pois. Although a
list of micro-pois can be determined and used to construct
a recommended path using traditional methods, it would
be a general solution and will not be optimal for different
user scenarios. The micro-pois and corresponding stay times
could be different for different users. This may depend upon
their time of visit, duration of visit and also their personal
preferences. We propose to make use of the OFT which can
optimize the user experience in exploring a tourist location
considering all these factors.

The availability of a large number of geo-tagged photos
shared on the social media platform has motivated the re-
search in location recommendation. This available source of
information has been widely utilized by researchers to identify
Points-of-Interests [2–5] and recommend tourist locations to
users [6–11]. The works in [12–14] focused on photography
hot-spots and recommend points-of-interests which are good
from photography perspective. These methods do not provide
any particular order or strategy in which these locations should
be visited. To overcome this limitation, the authors in [15–18]
proposed methods to recommend travel routes which guide
users to follow a path as they visit different attractions. How-
ever, the existing methods of route recommendation generate
a path from one attraction to another and do not provide any
guidance on how each particular attraction should be explored.

In this work, we focus on the recommendation to explore a
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Fig. 1: Overview of the proposed method. The top block (A)
shows offline preprocessing and the bottom block (B) shows

real-time path recommendation process. The social media
data (A.0) is first utilized to learn a visual codebook (A.2.1)

via image processing (A.1.1) and micro-poi identification
(A.2.2) via GMM modeling (A.1.2). This information is then

utilized for topic modeling (A.3.1) and gain modeling
(A.3.2). In real-time recommendation (B) the performed

modeling on social media data is utilized to generate
real-time path recommendation (B.2) using OFT (B.1).

particular tourist attraction from the photography perspective.
We make use of social media images to learn previous patterns
in the environment and employ Optimal Foraging Theory
to determine an optimal path for exploring the attraction
and capturing photographs. The proposed method provides
a personalized recommendation, and the use of OFT helps
in determining a path and corresponding stay time which is
based on the current context of a user. It is important to note
that we have focused on the photography experience of a user
at a tourist location. However, since we are leveraging on the
sequential time-stamp of the social media images, other factors
corresponding to user experience are also integrated into the
recommendation. The overview of the proposed method is
outlined in Fig. 1. We make the following contributions in
this work,

1) We propose a novel method which dynamically gen-
erates a route to explore a tourist location from the
photography perspective. The route includes a list of
micro-pois to visit along with a recommended stay time
at each micro-poi.

2) We extended the Optimal Foraging Theory for photog-
raphy to determine the most profitable micro-pois to
visit and corresponding optimal stay time. The recom-
mendation takes into account multiple factors such as
user preference, visit time, trip duration and start/end
location.

3) We demonstrate the effectiveness of the proposed
method with extensive evaluation on a large-scale dataset
form nine different tourist locations and the proposed
method can generate recommendations in real-time.

The rest of the paper is organized as follows. In section II we
will discuss the related work. We will introduce the Optimal
Foraging Theory and discuss how we adapt it for exploring
tourist attractions in section III. Section IV and V will present

the proposed method in detail and the experimental results
will be discussed in section VI. Finally, we will conclude this
paper in section VII.

II. RELATED WORK

A. POI Identification

The sharing of geo-tagged photographs by users on social
media platforms such as Flickr, FourSquare, etc. has increased
tremendously in the last decade [19]. This has motivated
researchers to exploit this data for various kinds of recom-
mendations [20–24]. Point-of-interest (POI) recommendation
to users is one such area which has recently received a lot
of attention from the community. In [25–29], the authors
employed collaborative filtering for providing personalized
location recommendation to the users. To make the recom-
mendation process more personalized, the authors of [30, 31]
presented an interactive framework where the user can provide
real-time feedback regarding his or her choices. To further
improve the relevance of recommendation, the authors of [6–
10] also take into account the geographical, temporal and
sequential influence of location and user movements. As the
semantic and contextual information also plays an important
role in users preferences, the authors of [32–35] incorporate
venue semantics and user-context for making the recommen-
dation.

Most of the methods discussed so far assume that the
POI recommended to the user are known beforehand which
may not always be true. Therefore, to overcome this problem
researchers have proposed methods to automatically identify
points of interests in a location utilizing user-contributed
photographs. In [2–5, 36] the authors proposed to use cluster-
ing based algorithms to identify the points-of-interest which
helped in detecting popular locations. Recently, researchers
have focused their interest on identifying points-of-interests
which are good from photography perspective [12–14, 37, 38].
Different from these methods our work is focused on deter-
mining an optimal stay time and a path through identified
micro-pois.

B. Route Identification

The movement of tourists from one location to another
is captured as a footprint in the geo-tags associated with
the photos shared by users. This has been exploited by the
researchers to identify various travel patterns followed by
the tourists for recommendation [39–45]. One of the major
limitations of these methods for intra-city recommendation
is that they provide generalized recommendations which are
independent of user preferences.

To overcome this limitation, the authors of [15–18, 46–
49] also incorporated user preferences for making route rec-
ommendation. Lu et al. [15] proposed a method to identify
tourist locations and then generate a personalized trip route to
travel between identified attractions. Chen et al. [17] proposed
to use people attributes (gender, age, and race) extracted
from captured photos for personalized route recommendation.
The proposed method identifies popular travel routes and
recommends the next best location to visit based on the
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current user location. Yamasaki et al. [50] proposed a Markov
model approach for route recommendation and incorporated
personalization using collaborative filtering. The authors in
[47] proposed a recommendation method which also takes into
account the waiting time at different points of interests.

The existing methods for route recommendation are mainly
focused on traveling from one attraction to another. Lu et al.
[15] proposed a method to identify popular trajectories fol-
lowed by visitors within an attraction. However, their method
determines only the most popular paths without any knowledge
of micro-pois and corresponding stay time. In this work,
we focus on personalized route recommendation within an
attraction where the routes are dynamically created based on
the user-context and provide details such as which micro-pois
to visit and corresponding stay time for taking photographs.

III. OFT FOR PHOTOGRAPHY

Optimal Foraging Theory is a model which is used to predict
the foraging behavior of animals as they search for their food
[1]. The energy gain from the food depends not only on
the acquired food item but also on the foraging behavior as
searching for food also require energy and time. Therefore,
animals want to maximize energy gain as they forage in their
environment to remain fit. OFT aims at predicting the best
foraging strategy to achieve this goal.

OFT has also been successfully applied to develop In-
formation Foraging Theory (IFT) [51] which models human
behavior as they search for information. IFT is based on the
assumption that humans use an inbuilt foraging mechanism
that evolved from animal foraging behavior as they search for
information. We observe that capturing photographs at tourist
locations and moving from one spot to another is analogous to
gathering information for capturing the experience. However,
in IFT there is no notion of travel time as a user moves from
one source of information (web pages) to another which is
different than photo capture as moving from one photo spot
to another involves time. Therefore, we have time as another
constraint in photo capture which counts towards cost during
the assessment of overall gain. This changes the formulation
of overall gain as it is not just about the choice of information
source (photography spots) but the gain it incurs and the order
in which they are visited is also important.

Modeling of animal foraging behavior requires a currency
variable, such as energy gain per unit time. The animals
are trying to maximize this variable under the constraints of
the environment. OFT aims at predicting the best foraging
strategy for a given currency and environmental constraints.
The average rate of gain (R) is the key factor that characterizes
the efficiency of a forager. It is defined as a ratio of the net
gain G and the total time spent,

R =
G

TB + TW
(1)

here TB is the between patch and TW is the within patch time.
The average rate of patch encounter is defined as,

λi =
1

tBi
(2)

where tBi is average time for finding patch of type i. For X
types of patches, the gain can be represented as,

G =
X∑
i=1

λiTBgi(tWi) (3)

where gi is the expected gain function from a patch i in terms
of stay time tWi. Similarly, the total amount of time spent
within patches is represented as,

TW =
X∑
i=1

λiTBtWi (4)

Now, after substituting equation 3 and 4 in equation 1, we get
the overall average rate of gain as,

R =
ΣXi=1λigi(tWi)

1 + ΣXi=1λitWi

(5)

This is known as Holling’s Disk Equation [52] which serves
as the basis for deriving several optimal foraging models. In
this work, we consider micro-pois as patches. The net gain
is determined in terms of visual information in the captured
photographs as a function of time spent by the users in a tourist
location. We employ Optimal Diet Selection [1] and Marginal
Value Theorem [53] from OFT to find the best strategy for
taking photographs at a tourist location (Figure 1:B.1). We
will present these two models in the following section and
discuss how they can be used to solve the proposed problem.

A. Optimal Diet Model

Optimal Diet Model helps in deciding whether a predator
should consume the prey at hand or search for a more
profitable prey. If a prey item can provide an energy gain g
with a handling time of tW , then its profitability is defined as,

π =
g

tW
(6)

Based on the Optimal Diet Model, a predator should consume
a prey item only if its profitability is greater than the overall
profitability during foraging. We use this model to select
micro-pois in a tourist location. The act of photo capture is
associated with energy gain and the goal is to predict a strategy
to maximize this gain in an optimal amount of time. We utilize
the shared social media images to determine the profitability
of micro-pois and selection of micro-pois is predicted using
the Optimal Diet Model (Figure 1:A.3.2).

B. Marginal Value Theorem

Marginal Value Theorem [53] is used to determine whether
an organism searching for food should stay in the current patch
or search for a new patch. The model helps in predicting when
it is economically favorable to leave the current patch. When
the animal forages within a patch, finding food becomes more
difficult, and it experiences the law of diminishing returns.
Finding new patch also involves cost as the animal loses
foraging time as well as energy while searching.

Marginal Value Theorem optimizes the net energy gain
per unit time (Equation 3) in the foraging strategy. Figure
2 shows a plot of diminishing returns in terms of experience
gain as a user capture photographs. If net experience gain is
the currency, then it can be represented as the slope of the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 4

Fig. 2: Marginal Value Theorem adapted from [53]. The
y-axis represents cumulative experience gain in terms of
captured visual concepts in the photograph and x-axis

represents travel time. The green and red lines corresponds
to two different transit times (r1 and r2) and, s1 and s2 are

the predicted optimal stay time for r1 and r2. A longer travel
time lead to a longer stay as compared with shorter stay time.

line which starts at the search start time and intersects the
gain curve. Marginal Value Theorem states that in order to
maximize the net energy gain, one should leave the patch when
this line touches the diminishing curve. In order to determine
the optimal stay time at a micro-poi we utilize shared social
media images to compute the diminishing gain curves. The act
of photo capture measures energy gain. If a user continues to
capture photographs at the same location, then the gain from
each successive photograph will diminish due to redundancy.
Based on this assumption we model the diminishing gain curve
for each of the micros-poi and utilize it to determine the
optimal stay time (Figure 1:A.3.2).

IV. MICRO-POI MODELING

There are usually multiple hot-spots for photography at
any tourist location. In this work, we term these locations
as micro-pois (Figure 1:A.2.2). Tourists explore a location
by visiting these micro-pois in some order as they capture
photographs along their way. Therefore to generate a path for
a recommendation we first need to identify these micro-pois.

A. Micro-POI Identification

We utilize the social media images shared by users to
identify these micro-pois. We observe that each micro-poi
may not be suitable for photography throughout the day
because of the changing lighting conditions. Therefore we
also incorporate the time factor as we identify these micro-
pois. The Exif meta-data associated with the shared pho-
tographs can be used to determine the location as well as
the time of image capture. We utilized YFCC100M dataset
[54] in which the images have associated meta-data which
can be used to extract the required information. We use the
geo-coordinates and the time-stamp to develop a generative
model to determine the micro-pois at a tourist location. The
spatial distribution of location and time pair is assumed to
be a Gaussian Mixture Model (GMM). For each photograph
i we define x(i) = (latitude, longitude, time)T , where
(latitude, longitude) and time represents the geo-location

and time of capture respectively. The probabilistic distribution
of location and time pair at an attraction can be expressed as

P (x) =
N∑
i=1

wiN (x|µi,Σi) (7)

where N (x|µ,Σ) denotes a Gaussian component, N is the no.
of Gaussian components and wi indicates the prior for each
component. We make use of Bayesian information criterion
(BIC) [55] to estimate the number of Gaussian components
and the parameters (µk,Σk and wk) of GMM are estimated
using expectation-maximization (EM) algorithm [56]. The
components of the obtained generative model represent the
identified micro-pois. Each micro-poi has a geo-location and
a time-stamp associated with it. We associate each of the
captured photographs at the corresponding attraction to one
of the micro-poi.

B. Micro-POI Profiling

We compute a set of properties for each of the identified
micro-poi which we will use later for recommendation. The
total number of photographs captured at any micro-poi in-
dicates its popularity among the visitors. We denote this as
location-popularity (LPop) and it is computed as,

LPop(i) =
Ni

Nmax
(8)

where Ni is the total number of photos captured at ith

micro-poi and Nmax is the maximum number of photographs
captured at any micro-poi.

The social media images have associated social media cues
such as, likes and views, which indicates their popularity on
social media. We utilize these cues to compute the popularity
of each of the image as well as the popularity of each micro-
poi. The image popularity (qi) for an image i is computed as
proposed by [57] which assigns a score between 0-1.

q
i

= 1− e−(λv×Nviews+λl×Nlikes) (9)

where Nviews is the number of views and Nlikes is the number
of likes for an image i. λv and λl are corresponding weights
and we use λv = 0.1 and λl = 1 in our experiments. The
social media popularity (SPop) for a micro-poi i is computed
as an average of the quality score assigned to the photographs
captured at that micro-poi,

SPop(i) =
1

Ni

Ni∑
j=1

q
j (10)

where qj is the popularity of a photograph and Ni is the total
number of photographs captured at ith micro-poi.

To determine a visual representation of micro-pois, we
utilize the pixel information from the images captured at
that micro-poi (Figure 1:A.1.1). First, we build a dictionary
of visual words for a tourist location based on the captured
images. We perform segmentation [58] on images and collect
all the visual patches. Each patch is represented using a
visual feature extracted using AlexNet Convolutional Neural
Network (CNN) [59]. A network trained on the ImageNet
dataset is used and visual features are extracted from the
fully-connected layer (fc7), prior to the prediction layer, in the
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AlexNet network. Then, we employ clustering on these patches
to build a dictionary of visual words. We employ the k-means
algorithm with a dictionary size of 1000. Each photograph
can be represented as a feature vector using this dictionary to
indicate the presence of visual words.

The micro-pois can be categorized into different groups
based on the presence of visual words in the photos captured at
any micro-poi. We perform topic modeling with Latent Dirich-
let Allocation (LDA) [60] to determine the latent categories of
the micro-poi. Each micro-poi is represented as a document,
where the captured photos are considered as sentences and
the visual words correspond to the words in the sentence.
The topic model determines a set of latent topics for the
tourist location along with the association of each topic with
the identified micro-pois. The utilized parameters for LDA
modeling are discussed in the experiment section. This work
relies on images for micro-poi profiling. We can also make
use of other sources such as videos, text [28], and sound [61],
for micro-poi profiling.

C. Modeling Information Gain
Modeling and automatic quantification of the information

gain as a tourist move from one micro-poi to another is a
very difficult task. However, taking photographs as we explore
a tourist location is a common practice followed by most of
us. Therefore, we associate information gain with the pho-
tographs captured by the users along the exploration (Figure
1:A.3.2). As discussed in section IV-B, each photograph can
be represented as a set of visual words. A micro-poi location
will be associated with a subset of these visual words which
is based on the photos which are captured at this micro-poi.

Now, as a user takes a photo, there will be a gain associated
with it which will depend on the visual words present in
the photograph. With each consecutive photograph captured
at any micro-poi, this gain will follow a diminishing curve
as some of the visual words might already be captured in
previous photographs. Finally, the gain will saturate at a certain
level when the user has captured all the visual words. The
cumulative information gain as a user captured ith photograph
is computed as,

G
i

=
T∑
j=1

max(v
i
j , g

i−1
j ) (11)

where T is the total number of visual words in the dictionary,
vij ∈ (0, 1) indicates the presence of the visual word j in
the ith photo and gi−1

j is gain from the visual word j in
the previous photo which is computed as max(vi−1

j , gi−2
j ).

The gain corresponding to each of the visual words before
capturing any photograph is initialized to 0.

This information gain will be different for different users
based on their photo-taking behavior. We perform a regression
analysis on the gain observe for earlier captured photos to
determine the gain pattern for each micro-poi. We utilize a
logarithmic diminishing gain function as proposed by [1] for
modeling information gain,

G(t) = αln(t+ β) + γ (12)

where G(t) is the information gain after time t, α and γ are
constants which are determined using regression analysis, and

ALGORITHM 1: OPT PATH
Input: Graph G(V, E), start(ms), end(me), trip duration (td)
Output: Recommended path {ms,m1, ...,me} and stay time {ss, s1, ..., se}
tt := 0.0 // current trip time
P := {ms,me} // initialize path
Π := sort(Π) // sort the profitability in decreasing order
for πi in Π do

P.append(mi) // add the node corresponding to πi to path
P := TSP (P ) // find shortest path through these
micro-pois
S := {} // initialize stay time
for mi in P do

si := MV T (mi, P ) // update stay time
S.append(si) // maintain a list

end
tt := update trip time(P, S) // update trip time
if tt > td then

break
end

end

beta indicates the amount of time before capturing the first
photograph. We set this to 60 secs for our experiments. The
constants for equation 12 can be determined using least-square
linear regression analysis. We also compute average gain (Ga)
and average stay time (Ta) for each micro-poi which will be
used to compute profitability.

D. User Profiling

The previous photographs captured by a user can be used
to determine the preference corresponding to the semantic
visual categories. To quantify the user interest, we represented
each user as a document, and the personal image collection
corresponds to sentences with the detected visual patches as
words in each sentence. The trained LDA model as described
in section IV-B is used to determine the preference of a user
for the identified categories.

E. Graph Modeling

We represent a location as a graph (V, E) in 3-D space to
determine the optimal path for a user (Figure 1:A.2.2). Here,
V represents a set of nodes in the graph which corresponds
to the identified micro-poi in the location, and E is the set of
edges corresponding to the path connecting these micro-pois.
The three dimensions refer to the latitude, longitude and time.

The photos captured at a location are first utilized to identify
the tours which people have followed in the past. A tour
is defined as a set of photographs which are captured in a
sequence within a day. Each photograph in the sequence has
associated geo-location and time-stamp. Each tour will pass
through a set of micro-pois and we can determine the stay time
as well as transit time between different micro-pois from each
tour. Stay time at each micro-poi is computed as a difference
between the time-stamp of the first captured photograph and
the last captured photograph in that micro-poi. The transit time
is computed as the difference between the time-stamp of the
first captured photograph at a micro-poi and the last captured
photograph at the previous micro-poi in the sequence. Finally,
an average stay time for each micro-poi and average transit
time between two micro-pois is computed using all the tours
traveled in the past.
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V. PATH PREDICTION

The 3-dimensional graph of a tourist location is used to
find an optimal path for a given user-context (Figure 1:B.1).
The user-context indicates the current location, visit time, trip
duration and final location, and are used to determine the start
and last node in the path from the graph. The location and
time information is used to identify the graph node closest
to the user. The trip duration is added to the current time to
identify the last node in the path. If the user does not provide
destination location, a round trip is computed.

We employ Optimal Diet Algorithm to determine the micro-
pois which should be included in the path. The location
popularity (LPop), social media popularity (SPop), average
gain (Ga) and average stay time Ta is utilized to compute
profitability for Optimal Diet Algorithm. The profitability of
a micro-poi i (Πi) is computed as,

Πi = δ ∗
Gia
T ia

+ κ ∗ SPopi + θ ∗ LPopi (13)

where Gia is the average information gain, T ia is the average
stay time, SPopi is the social media popularity, LPopi is
the location popularity and δ, κ and θ are constants to assign
weights to these parameters. The stay time at each micro-poi in
the path is predicted using Marginal Value Theorem (MVT).
MVT maximize the net-gain to determine the optimal stay
time (Figure 2). The goal is to determine the tangent from the
start of transit point to the gain curve which will maximize
the net-gain. This is equivalent to maximizing the slope of
the line from start of transit point to (ts, G(ts)) which can be
computed as G(ts)

tr+ts
, where ts is the stay time to be optimized,

G(ts) is the estimated gain at time ts and tr is the estimated
reach time. We want to maximize this with ts as an argument
which will provide us the optimal stay time,

topt = argmax
ts

G(ts)

tr + ts
(14)

where topt is the predicted stay time. Finally, an optimal path
is constructed through the selected micro-pois by solving a
Traveling Salesman Problem. A path through the micro-pois
is constructed to minimize the total travel time,

ttotal = min

Nmpoi∑
i=1

(t
i
opt + t

i
r) (15)

where Nmpoi is the total number of micro-pois in the path,
tiopt is the predicted stay time for ith micro-poi and tir
is the estimated reach time for ith micro-poi. We employ
Simulated Annealing to determine the path in real-time. The
path prediction process is presented in Algorithm 1.

A. Personalization

Personalization in route recommendation can be incorpo-
rated by taking into account the user preference for the visual
content of each micro-poi. As discussed in section IV-D, we
determine the user preference based on the past captured
photographs using the trained LDA model for visual topics. We
find the preference of a user for each micro-poi by computing
a cosine similarity measure between the topics present in
the user preference with the topics present at micro-poi. The

TABLE I: Details of the dataset along with the average R2 scores for the linear
regression modeling of gain curves at each of the tourist location. A-total images,
B-unique users, C-average photos per user, D-total trips, E-identified micro-pois,

F-average trip time in seconds.

Location A B C D E F R2 score
BG 3914 229 17 305 69 3291 0.64
CP 127858 6269 20 10631 265 2267 0.59
ET 41303 4716 8 4678 90 2172 0.57
FC 3481 317 10 278 82 2384 0.68
GC 20310 1155 17 1491 160 3085 0.61
LP 6854 681 10 594 128 2416 0.65
SL 6974 1222 5 663 116 1897 0.66
TM 6152 487 12 406 87 3649 0.64
WM 113931 3917 29 7746 271 2716 0.55

similarity between user preference (TDu) and ith micro-poi’s
topic distribution (TDi) is computed as,

Sim(u, i) =

K∑
j=1

TDju ∗ TD
j
i

||TDu|| · ||TDi||
(16)

where TDu is the topic distribution for user, TDi is the
topic distribution for ith micro-poi and K is the total number
of topics present in the LDA model. Now, for personalized
recommendation, the profitability equation is updated as,

Πi = δ ∗
Gia
T ia

+ κ ∗ SPopi + θ ∗ LPopi + η ∗ Sim(u, i) (17)

where η is the weight given to personal preference.

VI. EXPERIMENTS AND RESULTS

In this section, we will discuss the evaluation of the pro-
posed method in terms of route recommendation.

A. Dataset

We use Flickr YFCC100M [54] to create a dataset of
around 330K images from 9 tourist locations around the
world including Botanical Gardens, Singapore (BG), Central
Park, New York, USA (CP), Eiffel Tower, Paris, France (ET),
Forbidden City, Beijing, China (FC), Grand Canyon, Arizona,
USA (GC), Leaning Tower of Pisa, Pisa, Italy (LP), Statue of
Liberty, New York, USA (SL). Taj Mahal, Agra, India (TM),
Washington Monument, DC, USA (WM). The details of the
dataset are provided in table I.

B. Micro POI Identification

We employ generative model (GMM) to identify the micro-
pois present in each location. The BIC score was measured
to determine the number of micro-pois and we tested it for
a range of 10-400 components. Table I presents the number
of micro-poi identified at each of the locations in the dataset.
The dictionary of visual words was created using k-means
clustering algorithm where we set the dictionary size to 1000.
A topic modeling using LDA was performed to determine
the visual content distribution of the micro-pois. We set the
number of topics to 50, prior of document topic distribution
to 0.02 and prior of word topic distribution to 0.02 for topic
distribution learning. Table I also shows the total number of
trips for each tourist location. A trajectory is considered a trip
only if it passes through at least 2 micro-pois.
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(a) Average gain curves

Fig. 3: Average gain curve for all the locations.

C. Modeling Experience Gain

The gain curve for each micro-poi is determined using
equation 11. Equation 11 is converted to a linear equation by
setting the value of β and taking log of the time (t) dimension.
We employ Linear Regression to identify the parameters of
the gain curve. Table I shows the average Coefficient of
Determination (R2 score) for each of the micro-poi for this
regression analysis. The gain curves are further utilized to
determine the optimal stay time at each of micro-poi as we
predict a tour for exploring a tourist location.

In figure 3 we have shown an average of all the gain
curves corresponding to different micro-pois at each location
for all tourist locations in our dataset. The variation in average
gain curves corresponding to different tourist location shows
different photography behavior of people at these locations.

We further analyze the variation in the gain pattern for
different tourist locations. The plot of average gain curves
along with corresponding standard deviation is shown in
Figure 4. We observe that the variation in the gain pattern
varies from one location to another. This indicates the variation
in the information gain among different micro-pois within a
location. We observe a higher variation in the gain pattern at
Grand Canyon (GC) in comparison with Eiffel Tower (ET).
This shows that some micro-pois in GC location are much
better than others. On the other hand, a less variation at ET
location shows that most of the locations are equally important
from information gain perspective. Apart from this, we also
observe that there is some consistency between gain curves
from different locations which demonstrate the robustness
of the proposed method across different locations. We will
discuss the correlation between gain and visual diversity in
section VI-E4 to get more insights in information gain pattern.

D. Path Recommendation

A tour recommendation is generated based on user visit
time and trip duration. The tour includes a list of micro-pois,
which should be visited in order, and corresponding stay time
at each micro-poi included in the path. Equation 13 is utilized
to determine the list of micro-pois to include in the tour and
corresponding stay time for each micro-poi is computed using
Marginal Value Theorem (section III-B).

Fig. 6 shows the recommended tours for different visit time
and trip duration at Taj Mahal. We can observe how the trip

(a) BG (b) CP (c) ET

(d) FC (e) GC (f) LP

(g) SL (h) TM (i) WM

Fig. 4: Plots of average gain curves along with standard
deviation for each of the location. The average gain pattern
and standard deviation is varying among different locations.

path changes with a change in visit time and also a larger trip
with more number of micro-pois is recommended for longer
trip durations. In Fig. 5, we have shown the recommended tour
along with sample images captured at each of the micro-poi
present in the tour (Fig 6b) for TM.

In Fig. 7 and 8, we have shown recommended tours for
Forbidden City and Leaning Tower of Pisa. For Forbidden
City, we have predicted recommendations for different visit
time with variation in trip durations. We can observe how
the recommended path changes with a change in both the
parameters. Similarly, Figure 8 shows a recommended path for
two different visiting times and same trip duration. We observe
that some of the predicted micro-pois are different for these
two recommendations. We also observe that the average stay
time at each micro-pois is around 4 minutes for Leaning Tower
of Pisa which is relatively lower as compare to Forbidden City
and Taj Mahal where the average stay time at each micro-pois
location is around 13 minutes and 12 minutes respectively.
This information can be useful for tourists in making their
selection for visiting tourist locations.

E. Quantitative Evaluation

Quantitative evaluation of the recommended tours is a
challenging task due to the unavailability of ground truth. In
addition, obtaining ground truth for varying user context (visit
time and trip duration) is a non-trivial task. To overcome this
difficulty, we make use of social media cues to determine the
tours which are popular on social media.

We extract user trips at a tourist location which are popular
on social media and meet certain criteria to establish ground
truth trips. The criteria include minimum trip duration, which
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Fig. 5: Visualization of a recommended tour showing sample images captured at each of the micro-poi locations in the path
for Taj Mahal.

(a) 1pm,1.5hrs (b) 10am,3hrs (c) 10am,4hrs (d) 1pm,4hrs

Fig. 6: Sample tour recommendations at Taj Mahal. The star
marks are micro-pois in the predicted tour and the number

indicates a recommended stay time in minutes.

(a) 1pm, 1.5hrs (b) 1pm, 1hrs (c) 10am, 1hrs (d) 10am, 3hrs

Fig. 7: Sample recommendations at Forbidden City. The first
two paths shows recommendation at 1pm for two different

time durations and similarly, the next two paths shows
recommendation at 10am for two different time duration.

(a) 10am, 2hrs (b) 4pm, 2hrs

Fig. 8: Sample tour recommendations at Leaning Tower of
Pisa. The two paths shows path recommendations for two

different visiting time for the same trip duration.

was set to 1 hour, and a minimum number of micro-pois in
the tour, which was set to 8. To determine the popularity of a
trip, a quality score is computed for each of the photographs in
the trip. Then, an average score is computed for the complete

trip using corresponding photographs and trips with a score of
>0.6 are considered popular. The photographs in these ground
truth trips are kept for testing and excluded from the training
dataset.

The proposed method is used to predict tour recommenda-
tions corresponding to the extracted ground truth trips. The
user context of the ground truth trip is utilized to generate
the recommended tour. The generated tour is evaluated based
on its similarity to the ground truth trip. We propose three
different metrics, micro-poi similarity, edge similarity and path
similarity, for the evaluation.

Micro-poi similarity is measured based on the number of
overlapping micro-pois in the ground truth trip and recom-
mended trip. It is computed as,

mpoi sim =
ncommon

Nmpoi
(18)

where ncommon is the number of common micro-pois in
ground truth and recommended trips and Nmpoi is the total
number of micro-pois in the recommended trip. Edge similar-
ity between the two trips is computed as,

edge sim =
ecommon

Empoi
(19)

where ecommon is the number of common edges in ground
truth and recommended trips and Empoi is the total number
of edges in the recommended trip. An edge is defined as the
path from one micro-poi to another in the trip. We compute
the coefficient of determination (R2 score) to measure path
similarity. For each micro-poi (poii) in the recommended
trip, its closest micro-poi (poigi ) from the ground truth trip
is determined. Then, the path similarity is computed as,

path sim = 1−

Nmpoi∑
i

(poigi − poii)
2

Nmpoi∑
i

(poigi − poi
g
)2

(20)

where (poigi − poii) represents the distance between corre-
sponding micro-pois in the 3-D space of latitude, longitude
and time and (poi

g
) is the mean position of the identified

micro-pois in the ground truth. Finally, the average of these
three similarity measures is computed for evaluation.

1) Baseline: We propose three baseline methods to com-
pare the generated recommendation results. The first method
(BL1) performs a random selection of micro-pois for path
generation. In the second baseline (BL2), the social media
popularity score SPop is used for micro-poi selection and
finally, in the third baseline (BL3), the micro-pois are selected
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TABLE II: Quantitative comparison of the results for proposed and baseline methods.
BL1, BL2 and BL3 are described in section VI-E1. [15] is the method proposed by Lu

et al. for internal path discovery. PR-A1 is the proposed method which used only
social popularity and average stay time and similarly PR-A2 used only location

popularity and average stay time. PR1 is the proposed method without using social and
location popularity, PR2 is the proposed method which also make use of social and

location popularity and PR3 is the proposed personalized recommendation. (MS:
micro-pois similarity, ES: edge similarity, PS: path similarity, SS: Similarity score, ST
ratio is the stay time and travel time ratio, and time is the average computation time in

seconds to generate the recommendation.)

Method MS ES PS SS net-gain ST ratio time
BL1 0.12 0.01 0.09 0.07 0.02 0.31 0.93
BL2 0.26 0.04 0.23 0.18 0.04 0.43 1.18
BL3 0.21 0.03 0.17 0.14 0.05 3.42 1.07
[15] 0.30 0.05 0.25 0.19 0.05 0.45 0.34

PR-A1 0.42 0.07 0.24 0.25 0.04 0.52 1.14
PR-A2 0.27 0.04 0.18 0.16 0.05 2.94 1.15

PR1 0.34 0.06 0.22 0.21 0.12 0.64 2.24
PR2 0.39 0.09 0.29 0.26 0.12 0.69 2.53
PR3 0.43 0.09 0.30 0.27 0.13 0.70 2.86

based on the location-popularity score (LPop). In addition,
we also compare the proposed method with the internal paths
discovered using [15]. For all the baselines and [15], average
stay time of each micro-pois is considered as a predicted stay
time and TSP is utilized to determine the predicted path.

2) Comparison: The comparison results for the proposed
and baseline methods is shown in table II. We generate four
different types of recommendation for the evaluation. The first
method (PR-A1) is based on social media popularity for micro-
poi selection with δ = 0, κ = 1 and θ = 0 in equation 13
and the second method (PR-A2) uses location popularity for
micro-poi selection with δ = 0, κ = 0 and θ = 1 in equation
13. Both PR-A1 and PR-A2 use average stay time instead of
MVT. The third method (PR1) is based only on the gain of
micro-pois and uses the parameter settings of (δ = 1, κ = 0
and θ = 0) for selecting micro-pois in equation 13. The fourth
method (PR2) is based on gain, social media popularity and
location popularity with a parameter setting of (δ = 1, κ =
1 and θ = 1). We observe that the method based on social
media popularity PR-A1 performs better than PR1 in terms of
path similarity. However, it has low ST-ratio. The low ST-ratio
means shorter stay times, and it allows inclusion of a large
number of micro-pois which leads to a high path similarity.
However, after integrating the social and location popularity
(PR2) we observe a higher similarity score.

To further investigate the quality of the recommended path,
we compute net-gain for each of the predicted trips and com-
pare with the baseline methods. We observe that the proposed
methods (PR1 and PR2) outperform the other baselines in
terms of net-gain. In addition, we also measure the ratio of
stay time and travel time. Although this ratio will be location
dependent, a more favorable tour should have a balanced travel
and stay time for a user to enjoy the trip better. The results
are shown in column 6 and 7 of Table II.

In addition, we also observe that the method based on
location popularity have a higher ST ratio as compared to
other methods. The location popularity is computed based on
the number of photographs captured at any micro-poi and
hence the corresponding micro-poi may have a longer stay
time. To validate this, we compute Spearman’s rank correlation
between stay time and location popularity and found a weak
positive correlation of 0.37 between the stay time and location

popularity. However, a longer stay time is not always desirable
as it indicates spending too much time at any point of interest.
The average ST-ratio of the ground truth trips at all the
locations was found to be 0.81.

3) Personalization: We generate personalized recom-
mended trips for each of the ground truth trips to evaluate
personalized recommendation which employs equation 17 for
selecting micro-poi locations. The personal preference of a
user is determined by considering the photographs captured
by the user as discussed in section IV-D and section V-A. The
evaluation results are shown in table II (PR3). We can observe
that adding personalization improves the performance in terms
of path similarity with the ground truth trips while maintaining
a higher net-gain and stay/travel ratio.

4) Gain and Stay Time Analysis: To validate the experience
gain modeling at each of the micro-poi, we compare the actual
gain observed in ground truth trips with the gain predicted
using the models learned from social media images. We use
the trained model to predict estimated gain at each micro-
poi location in a ground truth trip based on the observed stay
time. The quality of prediction is validated by computing a
Mean Squared Error (MSE) using the actual net-gain (total-
gain/trip-time) and predicted net-gain. We observe an average
MSE score of 0.002 for the predicted net-gain as compared to
the actual net-gain in the ground truth trips of all the locations.

(a)

Fig. 9: Advantage of using OFT. Comparison of net-gain
(y-axis) observed using proposed method (PR2) with the

mean values (ME) for different locations (x-axis)

We further analyze the recommended stay time at each
of the micro-poi location included in the predicted path. An
optimal stay time is predicted for each of the micro-poi in the
ground truth trips using the proposed method (PR2). Then, a
net-gain is computed for the trip based on predicted stay time
at each of the micro-poi location. We also computed a net-
gain estimation when average stay time is used and observe
that the net-gain estimated using the proposed method (PR2)
is better as compared with the estimation where mean stay
time is utilized. The comparison is shown in Figure 9a for all
the nine locations.

We also study the effect of estimated stay time on observed
information gain from a recommended trip. We monitor the
information gain as we vary the stay time for each of the
micro-poi in the recommended trip. The stay time estimated
using MVT for each of the micro-poi in the recommended
tour is varied as follows,

st
∗

= st0 × (1−
Λ

100
) (21)
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(a) CP (b) SL

(c) TM (d) WM

Fig. 10: Variation of information gain (y-axis) from the
recommended trip, as we change the estimated stay time

(x-axis, % of variation) at micro-pois in the trip,
corresponding to sample ground truth trips for different

locations.

where st0 is the estimated stay time using MVT, st∗ is the
updated stay time and ∆ is varied from -90 to +90. We
observe that the information gain goes down as we move
away from the estimated stay time for each of the micro-pois
in the recommended trip. Figure 10 shows the variation of
estimated net-gain with a change in stay time for some of
the recommended trips from four different locations. We also
observe that the gain consistently reduces to zero for all the
trips when the stay time approaches close to zero. This is the
scenario when the user will have to move from one micro-poi
to another without any stay and all the time will be spent in
traveling.

We observed varying gain patterns at different micro-pois.
Since each micro-poi has different visual topic distribution,
it can be one of the reasons for this variation. Therefore, we
investigate the relationship between gain and diversity of topic
distribution at a micro-poi to understand the variation in gain
patterns across different micro-pois in a location. To quantify
the diversity of topic distribution at a micro-poi, we employ
Shanon’s diversity index which is computed as,

H = −
Nt∑
i

piln(pi) (22)

where Ni is the number of topics in the model (50 in our
experiments) and pi is the distribution of ith topic at a micro-
poi. We compute Spearman’s rank correlation coefficient to
find the correlation between gain and diversity of a micro-
poi. We observe a weak positive correlation of 0.37 between
the gain and diversity which indicates that visual diversity of
a location has some impact on the observed gain. We also
observe a moderate positive correlation of 0.56 between the
stay time and observed gain which was expected as the gain
at a location increases as we increase the stay time.

(a) (b)

Fig. 11: Running time analysis of the proposed method. The
plot shows variation of average running time with number of

micro-poi in the path. (a) Exponential running time when
TSP is invoked with every step, (b) Optimized running time.

F. Running-time Analysis

The experiments for the proposed system were performed
on an 8 core Intel processor running at 3.40 GHz and 8
GB of RAM using python code. Solving TSP is the most
time-consuming step in the recommendation process. The time
required to determine an optimal path also depends on the total
number of micro-pois in the path. The average computation
time to generate a recommendation for the Leaning Tower
of Pisa was much higher in comparison with other locations.
This was mainly due to the smaller stay time at each of the
micro-poi for this location which leads to a large number of
micro-pois in the path.

We further analyze the computational complexity of the pro-
posed method to understand the effect of the number of micro-
poi in computation time. We use our method to generate trip
recommendations corresponding to the ground truth trips. For
each ground truth trip, we generate multiple recommendations
by varying the trip time. We use the minimum and maximum
trip time from the same location and increment the target trip
time with 15 minutes. The variation of running time with a
different number of micro-pois in the trip is shown in Figure 11
(a). We observe that the computation time increases with the
increase in the number of micro-pois. The exponential increase
in computational cost is due to the repetitive invocation of TSP
in each iteration of the proposed algorithm. The algorithm
tries to find the shortest path after determining the next most
profitable micro-poi in each step. However, estimation of the
shortest path after each step is not required.

We modified the proposed algorithm to reduce the compu-
tational cost incurred due to the repetitive invocation of TSP.
In the modified version, the TSP is invoked only when the
total trip time is close (90%) to the expected total trip time.
We use the average reach time for each micro-poi instead
of the estimated reach time. This does not affect the final
recommendation as estimated reach time will be available for
the step which performs TSP. This significantly reduces the
computation time for the trips with a large number of micro-
pois. We observe that the average running-time was improved
to almost linear with this optimization (Figure 11 (b)). The
modified algorithm takes on an average around 1-3 seconds to
generate a trip recommendation in the full test set.

A comparison of running-time with different variations of
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the proposed method is shown in Table II. We observe that
the average computation time for small locations, such as
Forbidden City, was much lower (0.56 seconds) as compared
to large locations, such as Central Park (3.53 seconds). The
computation time for the baselines (BL1, BL2, and BL3), PR-
A1 and PR-A2 are almost similar as they all require TSP
to find the shortest path. The computation time increases for
PR1 and PR2 as they also need to optimize the stay time.
The running time for PR3 increases further as it requires
the computation of personal preference in addition to stay-
time. However, we observe that the computation time reduces
significantly with the modified algorithm.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a trip recommendation method
for photography and exploration of tourist locations based
on OFT. The recommended trip includes a list of micro-
poi locations a user should visit and corresponding stay time
to spend at each micro-poi for capturing photographs. The
recommendation can also be personalized based on the past
photography behavior of a user. We evaluated the proposed
method on a dataset drawn from YFCC100M [54] for nine dif-
ferent tourist locations. The experimental results demonstrated
the effectiveness of the proposed method. The current work
focuses on providing a recommendation based on optimal
foraging behavior. However, different users may have different
behavior for photography and understanding individual user
behavior is also important. Therefore, understanding the pho-
tography behavior of users and employing it for personalized
recommendations can be a future research direction.
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