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Abstract

The goal of data selection is to capture the most struc-
tural information from a set of data. This paper presents
a fast and accurate data selection method, in which the se-
lected samples are optimized to span the subspace of all
data. We propose a new selection algorithm, referred to as
iterative projection and matching (IPM), with linear com-
plexity w.r.t. the number of data, and without any pa-
rameter to be tuned. In our algorithm, at each iteration,
the maximum information from the structure of the data is
captured by one selected sample, and the captured infor-
mation is neglected in the next iterations by projection on
the null-space of previously selected samples. The compu-
tational efficiency and the selection accuracy of our pro-
posed algorithm outperform those of the conventional meth-
ods. Furthermore, the superiority of the proposed algorithm
is shown on active learning for video action recognition
dataset on UCF-101; learning using representatives on Im-
ageNet; training a generative adversarial network (GAN)
to generate multi-view images from a single-view input on
CMU Multi-PIE dataset; and video summarization on UTE
Egocentric dataset.

1. Introduction

Thanks to recent advances in computing, deep learning
based systems, which employ very large numbers of inputs,
have been developed in the last decade. However, process-
ing/labeling/communication of a large number of input data
has remained challenging. Therefore, novel machine learn-
ing methods that make the best use of a significantly less
amount of data are of great interest. For example, active
learning (AL) [26] aims at addressing this problem by train-
ing a model using a small number of labeled data, testing on
the trained model, and then querying the labels of some se-
lected data, which then are used for training a new model.
In this context, preserving the underlying structure of data
by a succinct format is an essential concern.

*indicates shared first authorship.

Data selection task is not trivial and possibly implies ad-
dressing an NP-hard problem (i.e., there are (% ) possibili-
ties of choosing K distinct sample out of M available ones).
This means that an optimal solution cannot be efficiently
computed when the number of available data becomes ex-
cessively large. A convex relaxation of the original NP-hard
problem has been suggested in terms of the D-optimal and
A-optimal solutions [1, 23]. In addition to convex relax-
ation, a sub-modular cost function as the criterion of selec-
tion, allows us to employ much faster greedy optimization
methods for selection [36]. The stochastic implementation
of D-optimal solution is referred to volume sampling (VS),
which is a fast and well-studied method. VS selects each
subset of data, which are organized in the rows of a ma-
trix, with probability proportional to the determinant (vol-
ume) of the reduced matrix. Moreover, QR decomposition
with column pivoting (QRCP) and convex hull-based selec-
tion methods have been suggested for optimal data selection
[10, 9]. All the mentioned methods aim to select the most
diverse subset of data in an optimal sense. However, these
methods do not guarantee that the un-selected samples are
well-covered by the selected ones. Further, outliers are se-
lected with a high probability using such algorithms due to
their diversity, unless preprocessed by outlier detection al-
gorithms [35]. Authors in [22] address this problem via a
two-phase algorithm. There are some other efforts for out-
lier rejection in the selection procedure [34, 42]. However,
the outlier and inlier data are not well-defined and these
methods are not consistent with general data.

There is another more effective approach for subset se-
lection, which chooses data such that the selected samples
are able to approximate the rest of data accurately. This se-
lection problem is formulated using a convex optimization
problem and referred as sparse modeling representative se-
lection (SMRS) algorithm [12]. The same goal is pursued
by dissimilarity-based sparse subset selection (DS3), which
is based on simultaneous sparse recovery for finding data
representatives [11]. Representative approaches, such as
SMRS and DS3, provide more suitable subset rather than
selecting some diverse samples. However, their computa-
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tional burden is not tractable for large datasets. Moreover,
SMRS and DS3 algorithms utilize some parameters in their
implementation, which makes their fine tuning difficult.

In order to address above issues, we propose a novel
representative-based selection method, referred to as Iter-
ative Projection and Matching (IPM). In our algorithm, at
each iteration the maximum information from structure of
the data is captured by one selected sample, and the cap-
tured information is neglected in the next iterations by pro-
jection on the null-space of previously selected samples. In
summary, this paper makes the following contributions:

e The complexity of IPM is linear w.r.t. number of orig-
inal data. Hence, IPM is tractable for larger datasets.

e [PM has no parameters for fine tuning, unlike some
existing methods [11, 12]. This makes IPM dataset-
and problem-independent.

e Robustness of the proposed solution is investigated
theoretically.

e The superiority of the proposed algorithm is shown in
different computer vision applications.

2. Problem Statement and Related Work

Let a1, as,...,ay € RY be M given data points of
dimension N. We define an M x N matrix, A, such that
al is the m* row of A, form = 1,2,..., M. The goal
is to reduce this matrix into a K x N matrix, A, based
on an optimality metric. In this section, we introduce some
related work on matrix subset selection and data selection.

2.1. Selection Based on Diversity

Consider a large system of equations y = Aw, which
can be interpreted as a simple linear classifier in which y is
the vector of labels, A represents the training data and w is
the classifier weights. An optimal sense for data selection
is to reduce this system of equations to a smaller system,
Yyr = ARw, such that the reduced subsystem estimates the
same classifier as the original system, i.e., the estimation
error of w is minimized [6].

A typical selection objective is to minimize E, {||lw —
w2}, where E, is expectation w.r.t. noise distribution of
w — w. This criterion is referred as A-optimal design in
the literature of optimization. It is an NP hard problem,
which can be solved via convex relaxation with computa-
tional complexity of O(M?) [23].

However, there are other criteria which have interesting
properties. For example D-optimal design optimizes the de-
terminant of a reduced matrix [23]. There are several other
efforts in this area [7, 8, 27, 13, 21]. Inspired by D-optimal
design, volume sampling (VS), which has received lots of
attention, considers a selection probability for each subset
of data, which is proportional to the determinant (volume)
of the reduced matrix [27, 32, 6]. VS theory expresses that

if T C {1,2,...,M} is any subset with cardinality K, cho-
sen with probability proportional to det(ArAL), then',

E{|A-m(A)|F} < (K+1)|A-Axllz, (D

where, 7(A) is a matrix representing projection of rows
of A on to the span of selected rows indexed by T. E in-
dicates expectation operator w.r.t. all the combinatorial se-
lection of K rows of A out of M. A is the best rank-K
approximation of A that can be obtained by singular value
decomposition and ||.||% is the Frobenius norm. VS is not
a deterministic selection algorithm, as it gives a probabil-
ity of selection for any subset of samples, and for which
only a loose upper bound for the expectation of projection
error is guaranteed. In contrast, in this paper a determinis-
tic algorithm is proposed based on direct minimization of
projection error using a new optimization mechanism.

2.2. Representative Selection

A method for sampling from a set of data is proposed by
Elhamifar et. al. based on sparse modeling representative
selection (SMRS) [12]. Their proposed cost function for
data selection is the error of projecting all the data onto the
subspace spanned by the selected data. Mathematically, the
optimization problem in [12] can be written as,

argmin|| A — mr(A)||%. (2)
T|=K

This is an NP-hard problem. Their main contribution is
solving this problem via convex relaxation. However, there
is no guarantee that convex relaxation provides the best ap-
proximation for an NP-hard problem. Furthermore, such
methods that try to solve the selection problem via convex
programming are usually too computationally intensive for
large datasets [12, 11, 31, 29]. In this paper, we propose a
new fast algorithm for solving Problem (2).

Dissimilarity-based Sparse Subset Selection (DS3) algo-
rithm selects a subset of data based on pairwise distance of
all data to some target points [11]. DS3 considers a source
dataset and its goal is to encode the target data according to
pairwise dissimilarity between each sample of source and
target datasets. This algorithm can be interpreted as the
non-linear implementation of SMRS algorithm [11].

3. Iterative Projection and Matching (IPM)

In this section, an iterative and computationally efficient
algorithm is proposed for approximating the solution to the
NP-hard selection problem (2). The proposed algorithm it-
eratively finds the best direction on the unit spherez, and
then from the available samples in dataset selects the sam-
ple with the smallest angle to the found direction.

! A7 is the selected rows of A indexed by set T.
2In unit sphere, every point corresponds to a unique direction.



Projection of all the data on to the subspace spanned
by the K rows of A, indexed by T, i.e., mp(A), can be
expressed by a rank-K factorization, UV, where U &
RM*K yT ¢ REXN and VT includes the K rows of A,
indexed by T, and normalized to have unit length. There-
fore, optimization problem (2) can be restated as

argmin [|[A — UV 7| s.t. vg, € A, 3)
U,V

where, A = {a1,da,...,an}, @m = ap/|am||2, and
vy, is the k™ column of V. It should be noted that vTis
restricted to be a collection of K normalized rows of A,
while there is no constraint on U. Assume we are to select
one sample at a time, which is the best representation of
all data. Since Problem (3) involves a combinatorial search
and is not easy to tackle, let us modify (3) into two con-
secutive problems. The first sub-problem relaxes the con-
straint v, € A in (3) to a moderate constraint ||v|| = 1,
and the second sub-problem reimposes the underlying con-
straint. These sub-problems are formulated as

(w,v) =argmin ||A — uo” || s.t. |Jv] =1, (4a)
u,v
m =argmax [v7 @ |. (4b)

Here m) is the index of the first selected data point and
a,, is the selected sample. Subproblem (4a) is equiva-
lent to finding the first right singular vector of A. The con-
straint ||v|| = 1 keeps v on the unit sphere to remove scale
ambiguity between u and v. Moreover, the unit sphere is
a superset for A and keeps the modified problem close to
the recast problem (3). After solving for v (which is not
necessarily one of our data points), we find the data point
that matches v the most (makes the smallest angle with v)
in (4b).

After selecting the first data point (a,,)), we project
all data points onto the null space of the selected sample.
This forms a new matrix A(I — &ma)dﬁm), where I is an
identity matrix. We solve (4) with this new matrix to find
the second data point. This process will continue until we
select K data points. It should be noted that the null space
of selected sample(s) indicates a subspace that the selected
sample(s) cannot span. Therefore, the next selected data is
obtained by only searching in this null space.

Algorithm 1 shows the steps of the proposed iterative
projection and matching (IPM) algorithm, in which m®*)
denotes the index of the selected data at the k*" iteration.
IPM is a low-complexity algorithm with no parameters to
be tuned. These features in addition to its superior perfor-
mance (as will be shown in many scenarios in Section 4)
make IPM very desirable for a wide range of applications.

Time complexity order of computing the first singular
component of an M x N matrix is O(M N) [4]. As the pro-
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Figure 1: A toy example that illustrates the first iteration of IPM.
(Left) The most matched sample with the first right singular vector,
v, is selected. (Right) The rest of samples are projected on the null
space of the selected sample in order to continue selection in the
lower dimensional subspace.

posed algorithm only needs the first singular component for
each selection, its time complexity is O(K N M), which is
much faster than convex relaxation-based algorithms with
complexity O(M?) [23]. Moreover, IPM performs faster
than K-medoids algorithm, whose complexity is of order
O(KN(M — K)?) [41]. It is also worthwhile to mention
that the condition that needs to be satisfied for a good per-
formance is K < N < M. This ensures that the calculated
singular vector is reliable and not impacted by noise. This
condition is satisfied in subset selection scenarios, where
the dataset is large, the number of selected samples is a lot
less than the number of samples (K < M), and we have
freedom over the dimension of the samples/features (V).

Algorithm 1 Iterative Projection and Matching Algorithm

Require: A and K
Output: Ar
1: Initialization:
AW A

T ={}
fork=1,--- | K

2: v < first right singular-vector of AR by solving (4a)

3: m®) « index of the most correlated data with v (4b)

4 T+« Tum®

55 ARD A1 —a dfl(m) (null space projection)
end

3.1. A Lower Bound on Maximum Correlation

In this section, we will derive a lower bound on the max-
imum of the absolute value of the correlation coefficient
between data points ai,as,...,ay and v, when data are
normalized on the unit sphere. Figure 1 shows an intuitive
example for one iteration of the proposed algorithm. First,
the leading singular vector is computed, and then the most
correlated sample in the dataset is matched with the com-
puted singular vector. Next, all data are projected onto the
null space of the matched sample. The projected data are
ready to perform one more iteration, if needed. These iter-
ations are terminated either by reaching the desired number
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of selected samples or a given threshold of residual energy.
Next, we present a lemma that guarantees the existence of a
highly correlated sample with the first right singular vector,
illustrating the fact that the selected sample will not be too
bad.

Lemmal Let ai,as,...,ay € RY be M given data
points of dimension N. Let A denote an M x N matrix
with a% being its m*" row form =1,2,..., M. Let o1, u
and v denote the first singular value, the corresponding left
and right singular vectors of A, respectively. Then, there
exists at least one data point such that the absolute value

of its inner product with v is greater than or equal to ;ﬁ

Hence, max |vTa,,| > 2.
ax o a2 2

The following proposition states a lower bound on the
maximum of the absolute value of the correlation between
data points a1, as,...,an and v, when data are normal-
ized on the unit sphere. First, let us define the following
measure.

Definition 1 Rank-oneness measure (ROM) of a rank R
matrix A with singular values 01,09, ...,0R is defined as

ROM(A) = | <o = 15

r=1"r

Proposition 1 Assume the rows of A are normalized to lie
on the unit sphere. There exists at least one data point,
1, such that the correlation coefficient between a; and the
first right singular vector of A is greater than or equal to
ROM(A).

3.2. Robustness to Perturbation

Data selection algorithms are vulnerable to outlier sam-
ples. Since outlier samples are more spread in the space
of data, their span covers a wider subspace. However, the
spanned subspace by outliers may not be a proper repre-
sentative subspace. DS3 adds a penalty to the cost func-
tion in order to reject outliers [11]. Our proposed algorithm
computes the first singular vector as the leading direction
in each iteration. We show here that this direction is the
most robust spectral component against changes in the data.
First consider the autocorrelation matrix of data defined as,
C = Zﬁle anal.

Eigenvectors of this matrix are equal to right singular
vectors of A. Adding a new row in A does not change the
size of matrix C, but perturbs this matrix. The following
lemma shows the robustness of eigenvectors of C' against
perturbations.

Lemma 2 Assume square matrix C and its spectrum
[Ai, vi]. Then, the following inequality holds,

1
2 e el

J#i

[0vi]|2 <

Definition 2 The sensitivity coefficient of the i"* eigenvec-
. s 1
tor of a square matrix is defined by, s; = /> 1 D)

It is easy to show that s; < s3. Based on Lemma 2 and
this definition the following proposition suggests a condi-
tion to satisfy s; < s;, Vi > 2.

Proposition 2 Assume square matrix C and its spectrum
[Ai, vi], where the gap between consecutive eigenvalues is
decreasing. Then, s1 < s;, Vi > 2.

The proofs of Propositions and Lemmas in this section
are presented in the supplementary material. Moreover, the
results of Proposition 1 and 2 are also verified in supple-
mentary material.

4. Applications of IPM

To validate our theoretical investigation and to empiri-
cally demonstrate the behavior and effectiveness of the pro-
posed selection technique, we have performed extensive
sets of experiments considering several different scenarios.
We divide our experiments into three different subsections.
In Section 4.1, we use our algorithm in the active learning
setting and show that IPM is able to reduce the labelling
cost significantly, by selecting the most informative unla-
beled samples. Next, in Section 4.2, we show the effective-
ness of IPM in selecting the most informative representa-
tives, by training the classifier using only a few representa-
tives from each class. Lastly, in Section 4.3, the application
of IPM for video summarization is exhibited. In addition,
we investigate the robustness and other performance met-
rics, such as projection error and running time, of different
selection methods and verify our theoretical results in the
supplementary material®.

4.1. Active Learning

Active learning aims at addressing the costly data label-
ing problem by iteratively training a model using a small
number of labeled data, and then querying the labels of
some selected data, using an acquisition function.

In active learning, the model is initially trained using a
small set of labeled data (the initial training set). Then, the
acquisition function selects a few points from the pool of
unlabeled data, asks an oracle (often a human expert) for
the labels, and adds them to the training set. Next, a new
model is trained on the updated training set. By repeating
these steps, we can collect the most informative samples,
which often result in significant reductions in the labeling
cost. Now, the fundamental question in active learning is:
Given a fixed labeling budget, what are the best unlabeled
data instances to be selected for labeling for the best perfor-
mance?

3Code for IPM is available at cwnlab.eecs.ucf.edu/ipm/
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[ Mean samples/class [ 2 3 4 [ 5 [ 6 [ 7 [ 8
Random 60.1 £0.7 65.1 1.2 68.2 £ 1.7 69.9+1.4 71.7+ 0.6 73.0 £ 0.6 74.8£0.5
Spectral Clustering 62.3+1.9 66.9+ 1.1 68.1 £0.7 68.9+0.3 70.8 £ 0.9 71.0+2.2 71.6 £0.1
K-medoids 60.1 £ 2.2 65.3 £ 1.0 68.4+1.6 69.2 £0.5 72.3+0.7 73.6 £ 0.4 74.5 £ 0.6
OMP 64.2 £ 0.6 66.6 0.7 70.8+ 1.5 71.7+04 743+ 0.7 74.3£0.3 75.4+0.2
DS3[11] 64.0 £ 1.5 66.5 0.7 67.8+1.2 68.3 £0.5 69.6 £ 1.1 709+ 1.3 71.9+£0.9
Uncertainty [15] 59.5+ 0.4 66.7 1.6 69.4 + 1.7 715+ 1.5 73.9+0.3 75.5£0.7 759+ 1.1
IPM 64.6 0.7 68.7 £ 0.3 72.2+ 1.0 73.4+09 74.3+04 747+14 75.3£0.6
IPM + Uncertainty 64.3+0.4 694+08 | 728+1.0 | 713.8+09 | 76.2+1.0 | 76.3+£0.3 | 77.9+0.2

Table 1: Classification accuracy (%) for action recognition on UCF-101, at different active learning cycles. The initial training set (cycle
1) is the same for all the methods. The accuracy for cycle 1 is 54.2% and the accuracy using the full training set (9537 samples) is 82.23%.

In many active learning frameworks, new data points are
selected based on the model uncertainty. However, the ef-
fect of such selection only kicks in after the size of the train-
ing set is large enough, so we can have a reliable uncertainty
measure. In this section, we show that the proposed selec-
tion method can effectively find the best representatives of
the data and outperforms several recent uncertainty-based
and algebraic selection methods.

In particular, we study IPM for active learning of video
action recognition, using the 3D ResNet18 architecture?, as
described in [20]. The experiments are run on UCF-101
human action dataset [37], and the network is pretrained on
Kinetics-400 dataset [24]. We provide the results on split 1.

To ensure that at least one sample per class exists in the
training set, for the initial training, one sample per class is
selected randomly and the fully-connected layer of the clas-
sifier is fine tuned. Then, at each active learning cycle, one
sample per class is selected, without the knowledge of the
labels, and added to the training set. Next, using the updated
training set, the fully connected layer of the network is fine
tuned for 60 epochs, using learning rate of 10~1, weight de-
cay of 1073, and batch size of 24 on 2 GPUs. Rest of the
implementation and training settings are the same as [20].
Note that, in this experiment, fine-tuning is only performed
to train the fully connected layer, because it achieved the
best accuracy during the preliminary investigation for very
small training sets, which is the scope of this experiment.

The selection is performed on the convolutional features
extracted from the last convolutional layer of the network.
Table 1 shows the accuracy of the trained network at each
active learning cycle for different selection methods. The
high computational complexity of DS3 prevents its imple-
mentation on all the data® [11]. So, we provide the results
for DS3 only for the clustered version, meaning that one
sample per cluster is selected using DS3 (clusters are ob-
tained using spectral clustering). For spectral clustering
results, the extracted features are clustered into 101 clus-
ters, and one sample from each cluster is selected randomly.
Furthermore, OMP, which stands for Orthogonal Matching

4We use the code provided by the authors at https://github.
com/kenshohara/3D-ResNets-PyTorch

SWe use the code provided by the authors at http://www.ccs.
neu.edu/home/eelhami/codes.htm

Pursuit, selects the samples that are most correlated with
the null space of the selected samples [40, 2]. The OMP
approach is very sensitive to the outliers. Random outliers
have low correlation with the samples and therefore a high
correlation with the null space of the selected samples.

For uncertainty-based selection, Bayesian active learn-
ing [15, 14] is utilized. For that, a dropout unit with pa-
rameter 0.2 is added before the fully-connected layer and
the uncertainty measure is computed by using 10 forward
iterations (following the implementation in [14]). In our ex-
periments, we use variation ratio® as the uncertainty metric,
which is shown to be the most reliable metric among sev-
eral well-known metrics [15]. Also, for a fair comparison,
the initial training set is the same for all the experiments at
each run.

It is evident that, during the first few cycles, since the
classifier is not able to generate reliable uncertainty score,
uncertainty-based selection does not lead to a performance
gain. In fact, random selection outperforms uncertainty-
based selection. On the other hand, IPM is able to select the
critical samples. In the first few active learning cycles, IPM
is constantly outperforming other methods, which translates
into significant reductions in labeling cost for applications
such as video action recognition.

As the classifier is trained with more data, it is able to
provide us with better uncertainty scores. Thus to enjoy the
benefits of both IPM and uncertainty-based selection, we
can use a compound selection criterion. For the extremely
small datasets, samples should be selected only using IPM.
However, as we collect more data, the uncertainty score
should be integrated into the decision making process. Our
proposed selection algorithm, unlike other methods, easily
lends itself to such modification. At each selection iteration,
instead of selecting the most correlated data with v (line 3
in Algorithm 1), we can select the samples based on the
following criterion:

m* = argmax o |[v” @, |+ (1 — @) ¢(an),
m

where ¢(.) is an uncertainty measure, e.g. variation ratios.
Parameter « determines the relative importance of the IPM

©Variation ratio of « is defined as 1 — max, p(y|x). which measures
lack of confidence.
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(a) The first row is obtained by K-medoids and the second and the
third row show the selection of DS3 and IPM, respectively.

[ = DS3
== K-medoids
== IPM

(b) Angles of the selected images. K-medoids selects 8 different
angles. DS3 algorithm selects from 7 angles and our proposed
IPM selects the maximum possible 10 distinguished angles.

Figure 2: Selection of 10 representatives out of 520 images of a
subject and their corresponding angles.

metric versus the uncertainty metric. To gradually increase
the impact of ¢(.), as the model becomes more reliable, we
start by setting &« = 1 and multiply it by decay rate of 0.95 at
each active learning cycle. This compound selection criteria
leads to better results for larger dataset sizes.

4.2. Learning Using Representatives

In this experiment, we consider the problem of learn-
ing using representatives. We find the best representatives
for each class and use this reduced training set for learn-
ing. Finding representatives reduces the computation and
storage requirements, and can even be used for tasks such
as clustering. In the ideal case, if we collect the samples
that contain enough information about the distribution of
the whole dataset, the learning performance would be very
close to the performance using all the data.

4.2.1 Finding Representatives for Multi-PIE Dataset

Here, we present our experimental results on CMU Multi-
PIE Face Database [17]. We use 249 subjects from the first
session with 13 poses, 20 illuminations, and two expres-
sions. Thus, there are 13 x 20 x 2 images per subject. Figure
2a shows 10 selected images from 520 images of a subject.
As it can be seen, the results of K-medoids and DS3 algo-
rithms are concentrated on side views, while our selection
provides images from more diverse angles. Figure2b high-
lights this by showing the angles of selected images of each
algorithm. IPM selects from 10 different angles, while the
selected images by DS3 and K-medoids contain repetitious
angles. Figure 3 shows the performance of different selec-
tion algorithms in terms of normalized projection error and
running time. It is evident that our proposed approach finds
a better minimizer for Problem defined in equation (2) and
is able to do so in orders of magnitude less time.

‘- = 8DS3 mem SMRS s K-medoids sessTPM

0.95 e~
E —_— - = QEJ —-———-—-—
5 g T — .~ 1
X B L LT B A o]
= =y i
2 T ==
=} g 4
<08 £ 10
5 6 7 8 9 10 1000 2000

Selected Samples (K) Data Size (M)

Figure 3: Performance of different methods for minimizing the
cost function of representative selection in equation (2). (Left)
The ratio of projection error using selection algorithms to projec-
tion error of random selection for selecting K representatives from
each subject, averaged over all the subjects. (Right) Running time
of different algorithms versus number of input samples.

Random

DS3  K-medoids

Full dataset  IPM

Figure 4: Multi-view face generation results for a sample subject
in testing set using CR-GAN [39]. The network is trained on re-
duced training set (9 images per subject) using random selection
(first row), K-medoids (second row), DS3 [11] (third row), and
IPM (fourth row). The fifth row shows the results generated by

the network trained on all the data (360 images per subject). [IPM-
reduced dataset generates closest results to the complete dataset.

4.2.2 Representatives To Generate Multi-view Images
Using GAN

Next, to investigate the effectiveness of the proposed se-
lection, we use the selected samples to train a generative
adversarial network (GAN) to generate multi-view images
from a single-view input. For that, the GAN architecture
proposed in [39] is employed. Following the experiment
setup in [39], only 9 poses between ¢ and %’T are consid-
ered. Furthermore, the first 200 subjects are for training
and the rest are for testing. Thus, the total size of the train-
ing set is 72,000, 360 per subject. All the implementation
details are same as [39], unless otherwise is stated’.

We select only 9 images from each subject (1800 to-
tal), and train the network with the reduced dataset for 300
epochs using the batch size of 36. Figure 4 shows the gener-
ated images of a subject in the testing set, using the trained
network on the reduced dataset, as well as using the com-
plete dataset. The network trained on samples selected by
IPM (fourth row) is able to generate more realistic images,
with fewer artifacts, compared to other selection methods

"We use the code provided by the authors at https://github.
com/bluer555/CR-GAN

5419



Method Random | K-Medoids DS3 IPM
9 images / subject 0.5616 0.5993 0.6022 | 0.553
360 images / subject 0.5364

Table 2: Identity dissimilarities between real and generated im-
ages by network trained on reduced (using different selection
methods) and complete dataset.

[ Samples / Class [ 1 [ 2 [ 3 [ 4 [ 5 [ 6 ]
Random 546 | 647 | 69.2 | 70.5 | 729 | 74.0
K-medoids 61.0 | 67.7 | 694 | 709 | 71.7 | 72.0
OMP 51.1 | 64.6 | 70.7 | 72.8 | 73.0 | 74.5
DS3[11] 60.8 | 69.1 | 74.0 | 752 | 748 | 75.3
IPM 653 | 72.6 | 749 | 77.6 | 77.0 | 78.5

Table 3: Accuracy (%) of ResNet18 on UCF-101 dataset, trained
using only the representatives selected by different methods. The
accuracy using the full training set (9537 samples) is 82.23%.

(rows 1-3). Furthermore, compared to the results using all
the data (row 5), it is clear that IPM-reduced dataset gen-
erates the closest results to the complete dataset. This is
because, as demonstrated in Figure 2, samples selected by
IPM cover more angles of the subject, leading better train-
ing of the GAN. See supplementary material for further ex-
periments and sample outputs.

For a quantitative performance investigation, we evalu-
ate the identity similarities between the real and generated
images. For that, we feed each pair of real and generated
images to a ResNet188, trained on MS-Celeb-1M dataset
[18], and obtain 256-dimensional features. ¢5 distances of
features correspond to the face dissimilarity. Table 2 shows
the normalized ¢, distances between the real and generated
images, averaged over all the images in the testing set. Our
method outperforms other selection methods in this met-
ric as well. Thus, from Figure 4 (qualitative) and Table 2
(quantitative), we can conclude that the [PM-reduced train-
ing set contains more information about the complete set,
compared to other selection methods.

4.2.3 Finding Representatives for UCF-101 Dataset

Here, similar to Section 4.1, we use a 3D ResNet18 clas-
sifier pretrained on Kinetics-400 dataset, and the selection
algorithms are performed on feature space generated by the
output of the last convolutional layer. To find the represen-
tatives, we use the selection methods to sequentially find
the most informative representatives from each class. Af-
ter selecting the representatives, the fully connected layer
of the network is finetuned in the same manner as described
in Section 4.1. Table 3 shows the performance of different
selection methods for different numbers of representatives
per class. As more samples are collected, the performance
gap among different methods, including random, decreases.
This is expected, since finding only one representative for
each class is a much more difficult task, compared to choos-
ing many, e.g. 6, representatives.

8We use the naive ResNet18 architecture as described in [3].

(a)




Method

[ F-measure [ Recall ]

Selection Methods (Unsupervised)
Random 26.30 23.73
Uniform 28.68 25.76
K-medoids 30.11 27.30
DS3 30.13 27.34
IPM 31.53 29.09
Supervised Summarization Methods
SeqDPP [16] 28.87 26.83
Submod-V [19] 29.35 27.43
Submod-V+ [33] 34.15 31.59

Table 5: F-measure and recall scores using ROUGE-SU metric
for UT Egocentric video summarization task. Results are reported
for several supervised and unsupervised methods.

age classification task. For that, first, we extract features
from images in an unsupervised manner, using the method
proposed in [43]. We then perform selection in the learned
128-dimensional space and perform k-nearest neighbors (k-
NN) using the learned similarity metric, following the ex-
periments in [43]°. Here, we show that we can learn the
feature space and the similarity metric in an unsupervised
manner, as there is no shortage of unlabeled data, and use
only a few labeled representatives to classify the data.

Due to the volume of this dataset, selection methods
based on convex-relaxation, such as DS3 [11] and SMRS
[12], fail to select class representatives in a tractable time
(as discussed before and shown in Figure 3 for Multi-PIE
dataset). Table 4 shows the top-1 classification accuracy for
the testing set using k-NN. Using less than 1% of the labels,
we can achieve an accuracy of more than 25%, showing the
potential benefits of the proposed approach for dataset re-
duction. Classification accuracy of k-NN, using the learned
similarity metric, reflects the representativeness of the se-
lected samples, thus highlighting the fact that IPM-selected
samples preserve the structure of the data fairly well.

4.3. Video Summarization

In this section, we evaluate the performance of the pro-
posed selection algorithm on the video summarization task.
The goal is to select key frames/clips and create a video
summary, such that it contains the most essential contents
of the video. We evaluate our approach on UT Egocentric
(UTE) dataset [45, 30]. It contains 4 first-person videos of
3-5 hours of daily activities, recorded in an uncontrolled
environment. Authors in [44] have provided text annota-
tions for each 5-second segment of the video, as well as
human-provided reference text summaries for each video.
Following [33, 19, 44], the performance is evaluated in text
domain. For that, a text summary is created by concatenat-
ing the text annotations associated with the selected clips.
The generated summaries are compared with the reference

9We use the feature space generated by the ResNet50 backbone,
as provided in https://github.com/zhirongw/lemniscate.
pytorch

summaries using the ROUGE metric [28]. As in prior work,
we report f-measure and recall using the ROUGE-SU score
with the same parameters as in [33, 19, 44].

Table 5 provides the results for two-minute-long sum-
maries (24 5-second samples), generated by different meth-
ods. To generate results using K-medoids, DS3, and IPM,
we use 1024-dimensional feature vectors extracted using
GoogleNet [38], as described in [46]. Then, the features
are clustered into 24 clusters using K-means and one sam-
ple is selected from each cluster using different selection
techniques. The results are the mean results over all the 4
videos and over 100 runs. Furthermore, for the supervised
methods, the results are as reported in [33]. The proposed
unsupervised selection method, IPM, is the closest competi-
tor to the state-of-art supervised method proposed in [33],
outperforming other unsupervised methods and some of the
supervised methods. These supervised methods split the
dataset into training, and testing sets and use reference text
or video summaries of the training set to learn to summarize
the videos from the test set. This experiment demonstrates
the strength of IPM and the potential benefits of employing
it in more advanced unsupervised or supervised schemes.

5. Conclusions

A novel data selection algorithm, referred to as Iterative
Projection and Matching (IPM) is presented, that selects the
most informative data points in an iterative and greedy man-
ner. Interestingly, we show that our greedy approach, with
linear complexity wrt the dataset size, is able to outperform
state-of-the-art methods, which are based on convex relax-
ation, in several performance metrics such as projection er-
ror and running time. Furthermore, the effectiveness and
compatibility of our approach are demonstrated in a wide
array of applications such as active learning, video summa-
rization, and learning from representatives. This motivates
us to further investigate the potential benefits and applica-
tions of IPM in other computer vision problems.
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