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Abstract
A new probabilistic technique for establishing the existence of cer-
tain regular combinatorial structures has been recently introduced
by Kuperberg, Lovett, and Peled (STOC 2012). Using this tech-
nique, it can be shown that under certain conditions, a randomly
chosen structure has the required properties of a t-(n, k, λ) combi-
natorial design with tiny, yet positive,probability.
Herein, we strengthen both the method and the result of Kuper-
berg, Lovett, and Peled as follows. We modify the random choice
and the analysis to show that, under the same conditions, not only
does a t-(n, k, λ) design exist but, in fact, with positive probabil-
ity there exists a large set of such designs — that is, a partition
of the set of k-subsets of [n] into t-(n, k, λ) designs. Specifically,
using the probabilistic approach derived herein, we prove that for
all sufficiently large n,large sets of t-(n, k, λ) designs exist when-
ever k > 9t and the necessary divisibility conditions are satisfied.
This resolves the existence conjecture for large sets of designs for
all k > 9t.

1 Introduction
Let [n] = {1, 2, . . . , n}. A k-set is a subset of [n] of size
k. A t-(n, k, λ) combinatorial design is a collection D of
distinct k-sets of [n], called blocks, such that every t-set of
[n] is contained in exactly λ blocks. A large set of designs
of size l, denoted LS(l; t, k, n), is a set of l disjoint t-
(n, k, λ) designsD1,D2, . . . ,Dl such thatD1∪D2∪· · ·∪Dl
is the set of all k-sets of [n]. That is, LS(l; t, k, n) is a
partition of the set of k-sets of [n] into t-(n, k, λ) designs,
where necessarily λ =

(
n−t
k−t
)
/l. The existence problem for

large sets of designs can be phrased as follows: for which
values of l, t, k, n do LS(l; t, k, n) large sets exist? The
existence conjecture for large sets, formulated for example
in [23, Conjecture 1.4], asserts that for every fixed l, t, k with
k ≥ t+ 1, a large set LS(l; t, k, n) exists for all sufficiently
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large n that satisfy the obvious divisibility constraints (see
Section 1.2). However, according to [23, p. 564] as well as
more recent surveys, “not many results about LS(l; t, k, n)
with k > t+ 1 are known.”One of our main results herein is
a proof of the foregoing existence conjecture for all k > 9t.

1.1 Large sets of designs Combinatorial design theory
can be traced back to the work of Euler, who introduced the
famous “36 officers problem” in 1782. Euler’s ideas were
further developed in the mid-19th century by Cayley, Kirk-
man, and Steiner. In particular, the existence problem for
large sets of designs was first considered in 1850 by Cay-
ley [1], who found two disjoint 2-(7, 3, 1) designs and
showed that no more exist. The first nontrivial large set,
namely LS(7; 2, 3, 9), was constructed by Kirkman [8] in
the same year. Following these results, the existence problem
for large sets of type LS(n−2; 2, 3, n) — that is, large sets
of Steiner triple systems — attracted considerable research
attention. Nevertheless, this problem remained open until the
1980s, when it was settled by Lu [10,11] and Teirlinck [22].
Specifically, it is shown in [10,11,22] that LS(n−2; 2, 3, n)
exist for all n ≥ 9 with n ≡ 1, 3 (mod 6). In 1987, came
the celebrated work of Teirlinck [20], who proved that non-
trivial t-(n, k, λ) designs exist for all values of t. In fact,
Teirlinck’s proof of this theorem in [20] proceeds by con-
structing for all t ≥ 1, a large set LS(l; t, t+ 1, n), where
l = (n− t)/(t+ 1)!(2t+1). His results in [20,21] further im-
ply that for all fixed t, k with k ≥ t+1, nontrivial large sets
LS(l; t, k, n) exist for infinitely many values of n. However,
as mentioned earlier, it is unknown whether such large sets
exist for all sufficiently large values of n that satisfy the nec-
essary divisibility constraints. For much more on the history
of the problem and the current state of knowledge, see the
surveys [6,7,23] and references therein.

There are numerous applications of large sets of designs
in discrete mathematics and computer science. For example,
large sets of Steiner systems were used to construct perfect
secret-sharing schemes by Stinson and Vanstone [19], and
others [4,18]. An application of general large sets of de-
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signs to threshold secret-sharing schemes was proposed by
Chee [2]. As another example, Chee and Ling [3] showed
how large sets can be used to construct infinite families of
optimal constant weight codes. As yet another example,
large sets of 1-designs (also known as one-factorizations)
have been used extensively in various kinds of scheduling
problems — see [15, pp. 51–53] and references therein.

1.2 Divisibility constraints and our existence theorem
Consider a t-(n, k, λ) design with N blocks. It is very easy
to see that every such design must satisfy certain natural di-
visibility constraints. For instance, every k-set of [n] con-
tains exactly

(
k
t

)
many t-sets, and since every t-set is covered

exactly λ times by the N blocks, we have N
(
k
t

)
= λ

(
n
t

)
.

In particular, this implies that
(
k
t

)
should divide λ

(
n
t

)
. Now

let us fix a positive integer s ≤ t− 1 and restrict our atten-
tion only to those N ′ blocks that contain a specific s-set of
[n]. Since the fixed s-set can be extended to a t-set in

(
n−s
t−s
)

ways and each of these t-sets is covered λ times by the N ′

blocks, a similar argument yields N ′
(
k−s
t−s
)

= λ
(
n−s
t−s
)
. Thus(

k−s
t−s
)

should divide λ
(
n−s
t−s
)
. Altogether, this simple count-

ing argument produces t divisibility constraints:
(1.1)(

k − s
t− s

) ∣∣∣∣∣ λ
(
n− s
t− s

)
for all s = 0, 1 . . . , t− 1.

The above leads to the following natural question. Are
these t divisibility conditions also sufficient for the existence
of t-(n, k, λ) designs, at least when n is large enough?
This is one of the central questions in combinatorial design
theory. In a remarkable achievement, Keevash [5] was
able to answer this question positively, thereby settling the
existence conjecture for combinatorial designs. Specifically,
Keevash proved that for any k > t ≥ 1 and λ ≥ 1,
there is a sufficiently large n0 = n0(t, k, λ) such that the
following holds: for all n ≥ n0 such that n, t, k, λ satisfy
the divisibility conditions in (1.1), there exists a t-(n, k, λ)
design.

Let us now consider the divisibility conditions for large
sets. A large set LS(l; t, k, n) is a partition of all k-sets of
[n] into t-(n, k, λ) designs. Clearly, each of these designs
consists ofN =

(
n
k

)
/l = λ

(
n
t

)
/
(
k
t

)
blocks. This can be used

to specify λ in terms of n, t, k, l as follows:

(1.2) λ =

(
n

k

)(
k

t

)
l

(
n

t

) =
1

l

(
n− t
k − t

)

With this, the divisibility constraints (1.1) for the l compo-
nent designs of a large set LS(l; t, k, n) can be re-written in
terms of n, t, k, l. Altogether, we conclude that the param-
eters of a large set LS(l; t, k, n) must satisfy the following

t+ 1 divisibility constraints:
(1.3)

l

(
k − s
t− s

) ∣∣∣∣∣
(
n− t
k − t

)(
n− s
t− s

)
for all s = 0, 1 . . . , t.

Note that the constraint for s = t simply refers to the con-
dition that l must divide

(
n−t
k−t
)
, which is clearly necessary

in view of (1.2). Once again, this leads to the following
natural question. Are these t + 1 divisibility conditions also
sufficient for the existence of LS(l; t, k, n) large sets, at
least when n is large enough?

One of our main results in this paper is a positive answer
to this question for all k > 9t, which settles the existence
conjecture for large sets for such values of k. We formulate
this result as the following theorem.

THEOREM 1.1. For any t ≥ 1, k > 9t and l ≥ 1, there is an
n0 = n0(t, k, l) such that the following holds: for all n ≥ n0

such that n, t, k, l satisfy the divisibility conditions in (1.3),
there exists an LS(l; t, k, n) large set.

In fact, Theorem 1.1 follows as a special case of a more
general statement — namely, Theorem 1.3 of Section 1.4.
Theorem 1.3 itself follows by extending and strengthening
the probabilistic argument of Kuperberg, Lovett, and
Peled [9]. We begin by describing the general framework
for this probabilistic argument below.

1.3 General framework Throughout this work, we will
use the notation of the Kuperberg, Lovett, and Peled pa-
per [9], which we shorthand as KLP. Let B,A be finite sets
and let φ : B → ZA be a vector valued function. One can
think of φ as described by a |B|×|A| matrix where the rows
correspond to the evaluation of the function φ on the ele-
ments in B. In this setting [9] gives sufficient conditions for
the existence of a small set T ⊂ B such that

(1.4)
1

|T |
∑
t∈T

φ(t) =
1

|B|
∑
b∈B

φ(b).

In the context of designs we can think of B as all the k-sets
of [n] and A as all the t-sets of [n]. φ denotes the inclusion
function, that is φ(b)a = 1a⊂b where b is a k-set of [n] and a
is a t-set of [n]. Equation (1.5) is then equivalent to T being
a t-(n, k, λ) design for an appropriate λ.

Next, we present the conditions under which KLP
showed that there is a solution for (1.5). We start with a few
useful notations. For a ∈ A we denote by φa ∈ ZB the a-
column of the matrix described by φ, namely (φa)b = φ(b)a.
Let V ⊂ QB be the vector space spanned by the columns of
this matrix {φa : a ∈ A}. Observe that (1.5) depends only
on V and not on {φa : a ∈ A}, which is a specific choice of
basis for V . We identify f ∈ V with a function f : B → Q.
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Thus, we may reformulate (1.5) as

(1.5)
1

|T |
∑
t∈T

f(t) =
1

|B|
∑
b∈B

f(b) ∀f ∈ V.

In particular, we may assume without loss of generality that
dim(V ) = |A|.

The conditions and results outlined below will depend
only on the subspace V . However, it will be easier to present
some of them with a specific choice of basis. We may assume
this to be an integer basis. Thus, we assume throughout
that φ : B → ZA is a map whose coordinate projections
φa : B → Z are a basis for V .

1.3.1 Divisibility conditions For T to be a valid set for
(1.5) with |T |= N , we must have∑

t∈T
f(t) =

N

|B|
∑
b∈B

f(b) ∀f ∈ V.

In particular there must exist γ ∈ ZB such that

(1.6)
∑
b∈B

γbf(b) =
N

|B|
∑
b∈B

f(b) ∀f ∈ V.

The set of integers N satisfying (1.6) consists of all integer
multiples of some minimal positive integer c1. This is
because ifN1 andN2 are solutions then so isN1−N2. Thus
it follows that |T | must be an integer multiple of c1. This is
the divisibility condition and c1 is the divisibility parameter
of V .

We can rephrase (1.6) as N
|B|
∑
b∈B φ(b) belongs to the

lattice spanned by {φ(b) : b ∈ B}.

DEFINITION 1. (LATTICE SPANNED BY φ) We define L(φ)
to be the lattice spanned by {φ(b) : b ∈ B}.

L(φ) =
{∑
b∈B

nb · φ(b) : nb ∈ Z
}
⊂ ZA.

Note that since we assume that dim(V ) = |A| we have
that L(φ) is a full rank lattice.

DEFINITION 2. (DIVISIBILITY PARAMETER c1) The divis-
ibility parameter of V is the minimal integer c1 ≥ 1 that
satisfies c1

|B|
∑
b∈B φ(b) ∈ L(φ). Note that it does not de-

pend on the choice of basis for V which defines φ.

1.3.2 Boundedness conditions The second condition is
about boundedness conditions for integer vectors which span
V and its orthogonal dual. We start with some general
definitions. Let 1 ≤ p <∞. The `p norm of a vector γ ∈ ZB
is ‖γ‖p= (

∑
b∈B |γb|p)1/p. Below we restrict our attention

to ‖γ‖1=
∑
b∈B |γb| and ‖γ‖∞= maxb∈B |γb|.

DEFINITION 3. (BOUNDED INTEGER BASIS) Let W ⊂
QB be a vector space. For 1 ≤ p ≤ ∞, we say that W has
a c-bounded integer basis in `p if W is spanned by integer
vectors whose `p norm is at most c. That is, if

Span({γ ∈W ∩ ZB : ‖γ‖p≤ c}) = W.

Recall that V ⊂ QB is the vector space spanned by
{φa : a ∈ A}. We denote by V ⊥ the orthogonal complement
of V in QB , that is,

V ⊥ := {g ∈ QB :
∑
b∈B

f(b)g(b) = 0 ∀f ∈ V }.

DEFINITION 4. (BOUNDEDNESS PARAMETERS c2, c3) We
impose two boundedness conditions:

• Let c2 ≥ 1 be such that V has a c2-bounded integer
basis in `∞.

• Let c3 ≥ 1 be such that V ⊥ has a c3-bounded integer
basis in `1.

1.3.3 Symmetry conditions Next we require some sym-
metry conditions from the space V . Given a permutation
π ∈ SB and a vector f ∈ QB , we denote by π(f) ∈ QB the
vector obtained by permuting the coordinates of f , namely
π(f)b = fπ(b).

DEFINITION 5. (SYMMETRY GROUP OF V ) The symmetry
group of V , denoted Sym(V ), is the set of all permutations
π ∈ SB which satisfy that π(f) ∈ V for all f ∈ V .

It is easy to verify that Sym(V ) is a subgroup of SB ,
the symmetric group of permutations on B. Note that the
condition π ∈ Sym(V ) can be equivalently case as the
existence of an invertible linear map τ : QA → QA such
that

φ(π(b)) = τ(φ(b)) ∀ b ∈ B.

DEFINITION 6. (TRANSITIVE SYMMETRY GROUP) The
symmetry group of V is said to be transitive if it acts
transitively on B. That is, for every b1, b2 ∈ B there is
π ∈ Sym(V ) such that π(b1) = b2.

1.3.4 Constant functions condition The last condition is
very simple: we require that the constant functions belong to
V .

1.3.5 Main theorem of KLP We are now at a position to
state the main theorem of KLP [9].

THEOREM 1.2. (KLP THEOREM) Let B be a finite set and
let V ⊂ QB be the subspace of functions. Assume that the
following holds for some integers c1, c2, c3 ≥ 1:

• Divisibility: c1 is the divisibility parameter of V .
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• Boundedness of V : V has a c2-bounded integer basis
in `∞.

• Boundedness of V ⊥: V ⊥ has a c3-bounded integer
basis in `1.

• Symmetry: The symmetry group of V is transitive.

• Constant functions: The constant functions belong to V.

Let N be an integer multiple of c1 satisfying

min(N, |B|−N) ≥ C · c2c23dim(V )6 log(2c3dim(V ))6,

where C > 0 is an absolute constant. Then there exists a
subset T ⊂ B of size |T |= N satisfying

1

|T |
∑
t∈T

φ(t) =
1

|B|
∑
b∈B

φ(b).

1.4 Our main theorem Our main result is an extension of
the KLP theorem (Theorem 1.2) to large sets. It will have
many of the same conditions, except that we need to update
the divisibility condition to require the size of each design to
be N = |B|/`. Thus the new divisibility condition is

1

l

∑
b∈B

φ(b) ∈ L(φ).

Note that as before, this condition depends only on V ; it does
not depend on the choice of basis for V which defines φ.

THEOREM 1.3. (MAIN THEOREM) LetB be a finite set and
let V ⊂ QB be the subspace of functions. Let also l ≥ 1 be
an integer. Assume that the following holds for some integers
c2, c3 ≥ 1:

• Divisibility: 1
l

∑
b∈B φ(b) ∈ L(φ).

• Boundedness of V : V has a c2-bounded integer basis
in `∞.

• Boundedness of V ⊥: V ⊥ has a c3-bounded integer
basis in `1.

• Symmetry: The symmetry group of V is transitive.

• Constant functions: The constant functions belong to V.

Assume furthermore that

|B|≥ C dim(V )6l6c33 log3(dim(V )c2c3l),

for some absolute constant C > 0. Then there exists a
partition of B to T1, . . . , Tl, each of size |Ti|= |B|/l such
that ∑

t∈Ti

φ(t) =
1

l

∑
b∈B

φ(b) for all i = 1, . . . , l.

Theorem 1.1 follows as a special case of Theorem 1.3.

Proof. [Proof of Theorem 1.1] To recall, in this setting we
have B the set of all k-sets of [n], A the set of all t-sets of
[n], φ : B → {0, 1}A given by inclusion φ(b)a = 1a⊂b for
a ∈ A, b ∈ B and V the subspace spanned by {φa : a ∈ A}.

KLP [9] showed (see Section 3.3 in the arxiv version)
that in this setting, the subspace V has a transitive symmetric
group, it contains the constant functions, and it has bound-
edness parameters c2 = 1, c3 ≤ (4en/t)t. Furthermore, the
condition that the vector λ̄ = (λ, . . . , λ) ∈ L(φ) is equiva-
lent to the set of conditions(

k − s
t− s

)∣∣∣∣λ(n− st− s

)
for all s = 0, . . . , t.

(see Theorem 3.7 in [9]). In particular in our case λ =(
n−t
k−t
)
/l and hence the divisibility conditions in Theorem 1.3

are equivalent to the necessary divisibility conditions given
in (1.3). To obtain the lower bound on |B|, lets fix k, t, l and
let n be large enough. Then |B|≈ nk, dim(V ) ≈ nt and
c3 ≈ nt. Then if k > 9t and n is large enough the lower
bound on B holds.

1.5 Proof overview The high level idea, similar to [9], is
to analyze the natural random process and show that with
positive (yet exponentially small) probability a desired event
occurs.

Say that a subset T ⊂ B is “uniform” if

1

|T |
∑
b∈T

φ(b) =
1

|B|
∑
b∈B

φ(b).

Equivalently, the “tests” defined by V cannot distinguish the
uniform distribution over T from the uniform distribution
over B.

Let τ : B → [l] be a uniform partition of B into l sets.
Let Ti = τ−1(i) be the induced partition for i = 1, . . . , l.
We would like to analyze the event that each part is uniform.
That is, we would like to show that

(1.7) Pr[T1, . . . , Tl are uniform] > 0.

Notice that under the same notations, the main result of [9]
can be formulated as

Pr[T1 is uniform] > 0.

The random process can be modeled as a random walk
on a lattice. For i = 1, . . . , l letXi =

∑
b∈Ti φ(b) be random

variables taking values in ZA. Let λ = E[X1] = . . . =
E[Xl] ∈ Q|A|. Note that if X1 = . . . = Xl−1 = λ then also
Xl = λ. Let X = (X1, . . . , Xl−1) ∈ Z(l−1)|A|. Thus we
can reformulate (1.7) as

(1.8) Pr[X = E[X]] > 0.
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Recall that each random variable Xi takes values in a full-
dimensional sub-lattice of ZA which we denoted L(φ). One
can show that X takes values in the lattice L(φ)⊗(l−1),
which is a full dimensional lattice in Q(l−1)|A|. In order to
study the distribution of X , we apply a local central limit
theorem. The same approach was applied in [9] in order
to analyze the individual distribution of each Xi. Here, we
extend the method to analyze their joint distribution, namely
the distribution of X . This is accomplished by a careful
analysis of the Fourier coefficients of X , which in turn relies
on “coding theoretic” properties of the space V . Given this
coding theoretic properties, we show that Pr[X = E[X]] can
be approximated by the density of a gaussian process with
the same first and second moment as X at the point E[X].
In particular, it is positive, which establishes the existence
result.

1.6 Broader perspective The current work falls into the
regime of “rare events” in probabilistic analysis. It is very
common that the probabilistic method, when applied to show
that certain combinatorial objects exist (such as expander
graphs, error correcting codes, etc) shows that a random
sample succeeds with high probability. The challenge then
shifts to obtaining explicit constructions of such objects,
with efficient algorithmic procedures whenever relevant (e.g.
efficient decoding algorithms for codes).

However, there are several scenarios where the “vanilla”
probabilistic method fails, and one is forced to develop
much more fine tuned techniques to prove existence of the
desired combinatorial objects. The current work falls into
the regime where the random process is the natural one,
but the analysis is much more delicate. Other examples of
similar instances are the constructive proof of the Lovász
local lemma (see e.g. [16,17]), the works on interlacing
families of polynomials (see e.g. [13,14]), and the entire field
of discrepancy theory (see e.g. the book [12]). In each such
instance, new methods were developed to prove existence
of the relevant objects, that go beyond simple probabilistic
analysis.

There are several families of problems in combinatorics,
for which the only known constructions are explicit and of
algebraic or combinatorial nature. For example, this is the
case for all types of local codes (such as locally testable,
decodable, or correctable codes; PIR schemes; batch codes,
and so on). It is also the case for Zarenkiewicz-type Ramsey
problems in graph theory, about maximal bipartite graphs
without certain induced subgraphs. Another well known
example is the existence of Hadamard matrices. The lack
of a probabilistic model for a solution may be seen as the
reason why the existential results known for these problems
are very sparse and ad-hoc.

In the current work, we show that for the problem of
existence of large sets, one can move beyond explicit ad-

hoc constructions, such as the one of Teirlinck [22], to
a more rigorous understanding of when existence of large
sets is possible. Of course, the next step in this line of
research, after existence has been established, is to find
explicit constructions. We leave this question for future
research. Another question is whether the existence result
can be established to the full spectrum of parameters, namely
k ≥ t + 1 and any ` ≥ 1 (recall that our result requires that
k > 9t). This seems to be possible by replacing the gaussian
estimate by an estimate which uses higher moments of the
distribution of the random variable being analyzed. We leave
this also for future research.

2 Preliminaries
Recall that φ : B → ZA is a map, whose coordinate
projections are φa : B → Z. We defined V to be the
subspace of QB spanned by {φa : a ∈ A}. We may assume
that that these form a basis for V , and hence dim(V ) = |A|.

Let τ : B → [l] be a mapping that partitions B into l
bins. Let Ti := {b ∈ B : τ(b) = i} for i ∈ [`] be the
induced partition of B. In order to prove Theorem 1.3 we
are looking for a τ for which

(2.9)
∑
b∈Ti

φ(b) =
1

l

∑
b∈B

φ(b) for all i = 1, . . . , l.

Note that it suffices to require that (2.9) holds for i =
1, . . . , l − 1, as then it automatically also holds for i = l.
So from now on we only require that (2.9) holds for the first
l − 1 bins. We will choose a uniformly random mapping τ ,
and show that (2.9) holds with a positive probability.

We start with some definitions. Let Φ : B × [l] →
Z(l−1)|A| be defined as follows. Φ(b, i) = (x1, . . . , xl−1),
where x1, . . . , xl−1 ∈ ZA are given by xj = φ(b) · 1i=j .
Note that in particular Φ(b, l) = 0. Next, define a random
variable X ∈ Z(l−1)|A| as

X :=
∑
b∈B

Φ(b, τ(b)).

The mean of X is

E[X] =

(
1

l

∑
b∈B

φ(b), ...,
1

l

∑
b∈B

φ(b)

)
∈ Q(l−1)|A|.

Thus, proving Theorem 1.3 is equivalent to showing that

(2.10) Pr
τ

[X = E[X]] > 0.

We start by computing the covariance matrix of X .

CLAIM 7. The covariance matrix ofX is the (l−1)|A|×(l−
1)|A| matrix

Σ[X] = R⊗M
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where R is the |A|×|A| matrix

Ra,a′ =
∑
b∈B

φ(b)aφ(b)a′

and M is the (l − 1)× (l − 1) matrix

M =
1

l2


(l − 1) −1 . . . −1
−1 (l − 1) . . . −1

...
...

. . .
...

−1 −1 . . . (l − 1)

 .
Proof. The random variables {Φ(b, τ(b)) : b ∈ B} are
independent, thus their contribution to the covariance matrix
of X is additive. Fix b ∈ B. We compute the contribution of
Φ(b, τ(b)) to the (a, i), (a′, i′) entry of Σ[X], where a, a′ ∈
A and i, i′ ∈ [l − 1]. The second moment is

Eτ [Φ(b, τ(b))a,i · Φ(b, τ(b))a′,i′ ] =
1

l
φ(b)aφ(b)a′ · 1i=i′ .

The expectation product is

Eτ [Φ(b, τ(b))a,i] · Eτ [Φ(b, τ(b))a′,i′ ] =
1

l2
φ(b)aφ(b)a′ .

Thus

Σ[X](a,i),(a′,i′) =
∑
b∈B

φ(b)aφ(b)a′

(
1

l
· 1i=i′ −

1

l2

)
= Ra,a′ ·Mi,i′ = (R⊗M)(a,i),(a′,i′).

Similar to the proof in KLP we would be interested in
the lattice in which X resides. Recall that L(φ) is the lattice
in Z|A| spanned by the image of φ. We similarly define
L(Φ).

DEFINITION 8. (LATTICE SPANNED BY Φ) We define
L(Φ) to be the lattice spanned by {Φ(b, i) : b ∈ B, i ∈ [l]}.
Namely,

L(Φ) :=
{( ∑

b1∈B

nb1 · φ(b1), ..,
∑
bj∈B

nbj · φ(bj), ..,

∑
bl−1∈B

nbl−1
· φ(bl−1)

)
: nbj ∈ Z, j ∈ [l − 1]

}
.

(2.11)

Note that since dim(V ) = |A| then L(φ) is a full rank lattice
in Z|A|. Hence L(Φ) = L(φ)⊗(l−1) is a full rank lattice in
Z(l−1)|A|.

Similar to KLP we use Fourier analysis to study the
distribution ofX . The Fourier transform ofX is the function
X̂ : R(l−1)|A| → C defined by

X̂(Θ) = EX [e2πi〈X,Θ〉].

Note that X̂ is periodic. Concretely, let L(Φ) denote the dual
lattice to L(Φ),

L(Φ) :=
{

Θ ∈ R(l−1)|A| : 〈Λ,Θ〉 ∈ Z ∀Λ ∈ L(Φ)
}
.

Note that if Θ ∈ L(Φ) then X̂(Θ + Θ′) = X̂(Θ′) for all
Θ′ ∈ R(l−1)|A|, and X̂(Θ) = 1 iff Θ ∈ L(Φ). As L(Φ)
is a full rank lattice it follows that L(Φ) is also a full rank
lattice and det(L(Φ)) det(L(Φ)) = 1. Thus studying X̂
on any fundamental domain of L(Φ) would be sufficient to
study the behavior of X̂ on R(l−1)|A|. Similar to KLP we
work with a natural fundamental domain defined by a norm
related to the covariance matrix of X .

DEFINITION 9. (R-NORM) For Θ=(θ1, ..., θl−1)∈R(l−1)A

we define the norm ‖·‖R as

‖Θ‖R := max
j∈[l−1]

(
1

|B|
θtjRθj

)1/2

= max
j∈[l−1]

(
1

|B|
∑
b∈B

〈φ(b), θj〉2
)1/2

.

We define two related notions. Balls around zero in the
R-norm are defined as

BR(ε) := {Θ ∈ R(l−1)|A| : ‖Θ‖R≤ ε}.

The Voronoi cell of 0 in the R-norm, with respect to the dual
lattice L(Φ), is

D :=
{

Θ ∈ R(l−1)A : ‖Θ‖R< ‖Θ−α‖R ∀α ∈ L(Φ)\{0}
}
.

Observe that D is a fundamental domain of L(Φ) up to a set
of measure zero (its boundary), which we can ignore in our
calculations. Then we have the following Fourier inversion
formula over lattices: for every Γ ∈ L(Φ) it holds that

Pr[X = Γ] =
1

vol(D)

∫
D

X̂(Θ)e−2πi〈Γ,Θ〉dΘ(2.12)

= det(L(Φ))

∫
D

X̂(Θ)e−2πi〈Γ,Θ〉dΘ.

Note that this formula holds true for any fundamental region
of L(Φ) but we chose it to be the Voronoi cellD arising from
the norm ‖·‖R because it would help in the computations
later on. In order to prove (2.10), we specialize (2.12) to
Γ = E[X] and obtain
(2.13)

Pr[X = E[X]] = det(L(Φ))

∫
D

X̂(Θ)e−2πi〈E[X],Θ〉dΘ.

In the next section, we approximate this by a Gaussian
estimate.
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3 Gaussian estimate
In order to estimate (2.13), let Y be a Gaussian random
variable in R(l−1)|A| with the same mean and covariance as
X . The density fY of Y is given by
(3.14)

fY (x) =
exp(− 1

2 (x− E[X])tΣ[X]−1(x− E[X]))

(2π)
(l−1)|A|

2

√
det(Σ[X])

.

The Fourier transform of Y equals

(3.15) Ŷ (Θ) := E[e2πi〈Y,Θ〉] = e2πi〈E[X],Θ〉−2π2ΘtΣ[X]Θ.

The inverse Fourier transform applied to Y yields
(3.16)

fY (x) =

∫
R(l−1)A

Ŷ (Θ)e−2πi〈x,Θ〉dΘ ∀x ∈ R(l−1)A.

We show that Pr[X = E[X]] can be approximated by an
appropriate scaling of fY (E[X]). By (2.13) we have

(3.17)
Pr[X = E[X]]

det(L(Φ))
− fY (E[X]) =∫

D

X̂(Θ)e−2πi〈E[X],Θ〉dΘ−
∫
R(l−1)A

Ŷ (Θ)e−2πi〈E[X],Θ〉dΘ.

Note that by plugging x = E[X] in (3.14) we obtain that

(3.18) fY (E[X]) =
1

(2π)
(l−1)|A|

2

√
det(Σ[X])

.

We will show that |Pr[X=E[X]]
det(L(Φ)) − fY (E[X])|� fY (E[X]).

For ε > 0 to be chosen later, we will bound it by

(3.19)∣∣∣∣Pr[X=E[X]]

det(L(Φ))
−fY (E[X])

∣∣∣∣≤ ∫
BR(ε)

|X̂(Θ)−Ŷ (Θ)|dΘ︸ ︷︷ ︸
=I1

+

∫
D\BR(ε)

|X̂(Θ)|dΘ︸ ︷︷ ︸
=I2

+

∫
R(l−1)A\BR(ε)

|Ŷ (Θ)|dΘ︸ ︷︷ ︸
=I3

.

At a high level, the upper bound is obtained by comparing
X̂(Θ) and Ŷ (Θ) in a small enough ball; and upper bounding
their absolute value outside this ball. Observe that we need
ε to be small enough so that BR(ε) ⊂ D.

3.1 Norms on R|A| induced by φ The following key
technical lemmas from [9] are very useful in bounding the
integrals. We begin with defining few norms which are all
functions of φ.

DEFINITION 10. (NORMS ON R|A| INDUCED BY φ) For
θ ∈ R|A| define the following norms:

• ||θ||φ,∞ = maxb∈B |〈φ(b), θ〉|.

• ||θ||φ,2 =
(

1
|B|
∑
b∈B |〈φ(b), θ〉|2

)1/2

.

Furthermore, for b ∈ B let 〈φ(b), θ〉 = nb+rb where nb ∈ Z
and rb ∈ [−1/2, 1/2). Define

• |||θ|||φ,∞ = maxb∈B |rb|.

• |||θ|||φ,2 =
(

1
|B|
∑
b∈B |rb|2

)1/2

.

Note that if θ′ ∈ L(φ) then 〈φ(b), θ+θ′〉−〈φ(b), θ〉 ∈ Z
for all b ∈ B. In particular, |||θ + θ′|||φ,∞ = |||θ|||φ,∞ and
|||θ + θ′|||φ,2 = |||θ|||φ,2. The following lemmas from [9]
relates the above norms.

LEMMA 3.1. (LEMMA 4.4 IN [9]) For every θ ∈ RA it
holds that

||θ||φ,∞ ≤M ||θ||φ,2
and

|||θ|||φ,∞ ≤M |||θ|||φ,2.

Here, M := C (|A|log(2c2|A|))3/2 for some absolute con-
stant C > 0.

LEMMA 3.2. (CLAIM 4.12 IN [9]) Assume that for θ ∈
RA it holds that

|||θ|||φ,∞ ≤
1

c3
.

Then there exists θ′ ∈ L(φ) such that 〈θ − θ′, φ(b)〉 ∈
[−1/2, 1/2] for all b ∈ B. In particular

||θ − θ′||φ,2 = |||θ|||φ,2.

3.2 Norms on R(l−1)|A| induced by Φ We extend the
previous definitions to norms on R(l−1)|A| induced by Φ, and
prove related lemmas relating the different norms.

DEFINITION 11. (GENERALIZING THE NORMS TO R(l−1)|A|)
For Θ = (θ1, . . . , θl−1) ∈ R(l−1)|A| define the following
norms:

• ||Θ||Φ,∞ = maxj∈[l−1] ||θj ||φ,∞

• ||Θ||Φ,2 = maxj∈[l−1] ||θj ||φ,2

• |||Θ|||Φ,∞ = maxj∈[l−1] |||θj |||φ,∞

• |||Θ|||Φ,2 = maxj∈[l−1] |||θj |||φ,2

Observe that ‖·‖Φ,2 is the same as the R-norm ‖·‖R
we defined before. Similar to before, if Θ′ ∈ L(Φ) then
|||Θ + Θ′|||Φ,∞ = |||Θ|||Φ,∞ and |||Θ + Θ′|||Φ,2 = |||Θ|||Φ,2.

The following extends Lemma 3.1 and Lemma 3.2 to
the norms induced by Φ.
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LEMMA 3.3. For the same M defined in Lemma 3.1, for
every Θ ∈ R(l−1)|A| it holds that

||Θ||Φ,∞ ≤M ||Θ||Φ,2

and
|||Θ|||Φ,∞ ≤M |||Θ|||Φ,2.

Proof. Let Θ = (θ1, . . . , θl−1). Then using Lemma 3.1 we
have

||Θ||Φ,∞= max
j∈[l−1]

||θj ||φ,∞ ≤ max
j∈[l−1]

M ||θj ||φ,2 = M ||Θ||Φ,2

and

|||Θ|||Φ,∞= max
j∈[l−1]

|||θj |||φ,∞≤ max
j∈[l−1]

M |||θj |||φ,2=M |||Θ|||Φ,2.

LEMMA 3.4. Assume that for Θ ∈ R(l−1)A it holds that

|||Θ|||Φ,∞ ≤
1

c3
.

Then there exists Θ′ ∈ L(Φ) such that 〈Θ − Θ′,Φ(b, j)〉 ∈
[−1/2, 1/2] for all b ∈ B, j ∈ [l − 1]. In particular

||Θ−Θ′||Φ,2 = |||Θ|||Φ,2.

Proof. Let Θ = (θ1, . . . , θl−1). We have |||θj |||φ,∞ ≤
1
c3

for
all j ∈ [l− 1]. Then using Lemma 3.2 we get that there exist
θ′1, . . . , θ

′
l−1 ∈ L(φ) such that 〈θj− θ′j , φ(b)〉 ∈ [−1/2, 1/2]

for all b ∈ B. The lemma follows for Θ′ = (θ′1, . . . , θ
′
l−1) ∈

L(Φ).

3.3 Estimates for balls in the Voronoi cell To recall, we
need ε > 0 to be small enough so that BR(ε) is contained
in the Voronoi cell D. The following Lemma utilizes
Lemma 3.3 to achieve that.

LEMMA 3.5. If ε < 1
2M then BR(ε) ⊂ D.

Proof. Let Θ = (θ1, . . . , θl−1) ∈ L(Φ) \ {0}. By definition
〈φ(b), θj〉 ∈ Z for all b ∈ B, j ∈ [l − 1]. Since L(φ) is of
full rank and Θ 6= 0, there exists some b ∈ B, j ∈ [l− 1] for
which |〈φ(b), θj〉|≥ 1. Thus

||Θ||Φ,∞ ≥ 1.

By Lemma 3.3 if follows that

‖Θ‖R= ‖Θ‖Φ,2≥ 1/M.

Thus, if Θ′ ∈ BR(ε) for ε < 1/2M then

‖Θ−Θ′‖R≥ ‖Θ‖R−‖Θ′‖R≥ 1/M−ε > 1/2M ≥ ‖Θ′‖R.

Hence BR(ε) ⊂ D for any ε < 1
2M .

Let Θ ∈ D \ BR(ε). Clearly, its ||·||Φ,2 norm is
noticeable (at least ε). We show that also its |||·|||Φ,2 norm
is noticeable. This will later be useful in bounding X̂(Θ) in
D \ BR(ε).

LEMMA 3.6. Assume that c3 ≥ 2 and ε < 1/c3M . Let
Θ ∈ D \ BR(ε). Then |||Θ|||Φ,2 > ε.

Proof. Note that the conditions of Lemma 3.5 hold, and so
BR(ε) ⊂ D. Assume towards contradiction that |||Θ|||Φ,2 ≤
ε. Applying Lemma 3.3 gives |||Θ|||Φ,∞ ≤ εM ≤ 1

c3
.

Applying Lemma 3.4, this implies that there exists Θ′ ∈
L(Φ) for which ||Θ−Θ′||Φ,2 = |||Θ|||Φ,2 ≤ ε. However,
as Θ ∈ D we have ||Θ||Φ,2 ≤ ||Θ−Θ′||Φ,2 ≤ ε, which gives
that Θ ∈ BR(ε), a contradiction.

3.4 Bounding the integrals The following lemmas pro-
vide the necessary bounds on the integrals I1, I2, I3, as de-
fined in (3.19). The proofs are deferred to Section 4.

LEMMA 3.7. Assume that ε ≤ (CM |B|)−1/3. Then

I1 ≤
Cl3M |A|3/2

|B|1/2
· fY (E[X]).

Here C > 0 is some large enough absolute constant.

LEMMA 3.8. Assume that c3 ≥ 2 and ε ≤ 1/c3M . Then

I2 ≤
1

det(L(Φ))
exp

(
−|B|ε

2

l2

)
LEMMA 3.9. For any ε > 0 it holds that

I3 ≤ fY (E[X]) · (l − 1)2|A|/2 exp

(
−π

2|B|ε2

l2

)
.

3.5 Putting it all together Let C1, C2, . . . be unspecified
absolute constants below. By choosing an appropriate basis
for V which is c2-bounded in `∞, we may assume that
φ : B → ZA where |φ(b)|a≤ c2 for all a ∈ A, b ∈ B.

Set ε = (C1M |B|)−1/3 so that we may apply
Lemma 3.7, and assume that ε ≤ 1/c3M so that we may
apply Lemma 3.8. We thus have

Pr[X = E[X]] = det(L(Φ))fY (E[X])(1 + α1 + α3) + α2,

where

|α1|=
C1l

3M |A|3/2

|B|1/2
,

|α2|= exp

(
−|B|ε

2

l2

)
= exp

(
−C2

|B|1/3

l2M2/3

)
,

|α3|= (l − 1)2|A|/2 exp

(
−π

2|B|ε2

l2

)
≤ l2|A| exp

(
−C3

|B|1/3

l2M2/3

)
.
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We would like that |α1|, |α3|≤ 1/4, which requires that

|B|≥ C4|A|3M2l6c33

Thus

Pr[X = E[X]] ≥ 1

2
det(L(Φ))fY (E[X]) + α2.

We assume that φ : B → ZA, so L(Φ) is an integer lattice
and hence det(L(Φ)) ≥ 1. We next lower bound fY (E[X]).
We have by (3.18) that

fY (E[X]) =
1

(2π)
(l−1)|A|

2

√
det(Σ[X])

.

We assume that φ is spanned by integer vectors of maximum
entry c2, so we can bound each entry of Σ[X] by

|Σ[X](a,i),(a′,i′)|≤
∑
b∈B

|φ(b)aφ(b)a′ |≤ |B|c22.

Thus
det(Σ[X]) ≤ (|A||B|c22)|A|.

In order to require α2 ≤ (1/4)fY (E[X]), say, we need to
require that

|B|≥ C5|A|3M2l6 log(|A|Ml).

Putting it all together, and plugging in the value of M from
Lemma 3.1, as long as

|B|≥ C|A|6l6c33 log3(|A|c2c3l),

we have that

Pr[X = E[X]] ≥ 1

4
det(L(Φ))fY (E[X]) > 0.

4 Bounding the integrals
4.1 Bounding I1 Recall that I1 =

∫
BR(ε)

|X̂(Θ) −
Ŷ (Θ)|dΘ. We will bound it by bounding pointwise the dif-
ference |X̂(Θ)− Ŷ (Θ)| and integrating it.

We first compute an exact formula for X̂(Θ). Recall that
X =

∑
b∈B Φ(b, τ(b)) where τ(b) ∈ [l] are independently

chosen. Thus
(4.20)

X̂(Θ)=EX
[
e2πi〈X,Θ〉

]
=
∏
b∈B

1

l

1 +

l−1∑
j=1

e2πi〈φ(b),θj〉

 .
Fix Θ = (θ1, . . . , θl−1). To simplify notations, let

xb,j = 2π〈φ(b), θj〉 and xb = (xb,1 . . . xb,l−1) ∈ Rl−1.
Define the function f : Rl−1 → C given by f(x) =
1
l

(
1 +

∑l−1
j=1 e

ixj
)

. Then we can simplify (4.20) as

(4.21) X̂(Θ) =
∏
b∈B

f(xb).

We next approximate log f(x). We use the shorthand
O(z) to denote a (possible complex) value, whose absolute
value is bounded by Cz for some unspecified absolute
constant C > 0. For x = (x1, . . . , xl−1) we denote
|x|= maxj |xj |.

CLAIM 12. Let x = (x1, . . . , xl−1) ∈ Rl−1 with |x|≤ 1.
Then

f(x) = exp
(
i
1

l

∑
j

xj −
1

2l

(
1− 1

l

)∑
j

x2
j+

1

2l2

∑
j 6=j′

xjxj′ +O
(
|x|3

))
.

Proof. Let y = 1
l

∑l−1
j=1(eixj − 1) so that f(x) = 1 + y.

The condition |x|≤ 1 guarantees that |y|< 1, so the Taylor
expansion for log(1 + y) converges and gives

log(f(x)) = log(1 + y) = y − y2

2
+O(|y|3).

One can verify that |y|≤ O(|x|), that

y = i
1

l

∑
j

xj −
1

2l

∑
j

x2
j +O

(
|x|3

)
.

and that

y2 = − 1

l2

∑
j

xj

2

+O
(
|x|3

)
.

Combining these gives the required result.

Applying Claim 12 to (4.21) allows us to approximate
X̂(Θ) as

X̂(Θ) = exp
(2πi

l

∑
b∈B

j∈[l−1]

〈φ(b), θj〉 −
2π2

l
(1− 1

l
)
∑
b∈B

j∈[l−1]

〈φ(b), θj〉2

+
2π2

l2

∑
b∈B
j 6=j′

〈φ(b), θj〉〈φ(b), θj′〉+ δ(Θ)
)
,

which can be rephrased as
(4.22)
X̂(θ) = exp

(
2πi〈E[X],Θ〉 − 2π2ΘtΣ[X]Θ + δ(Θ)

)
.

The error term δ(Θ) is bounded by

δ(Θ) ≤ O

(∑
b∈B

|xb|3
)

= O

(∑
b∈B

max
j∈[l−1]

|〈φ(b), θj〉|3
)

≤
(

max
b∈B,j∈[l−1]

|〈φ(b), θj〉|
)(∑

b∈B

max
j∈[l−1]

|〈φ(b), θj〉|2
)

= ‖Θ‖Φ,∞·|B|‖Θ‖2Φ,2.
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By Lemma 3.3 we have ‖Θ‖Φ,∞≤ M‖Θ‖Φ,2, and hence as
‖Θ‖Φ,2= ‖Θ‖R we conclude that

(4.23) δ(Θ) ≤ C1M |B|‖Θ‖3R,

where C1 > 0 is some absolute constant.
Next, we apply these estimates to bound the integral I1.

Recall that by (3.15) we have

Ŷ (Θ) := exp(2πi〈E[X],Θ〉 − 2π2ΘtΣ[X]Θ).

Thus we can bound I1 by

I1 =

∫
BR(ε)

|X̂(Θ)− Ŷ (Θ)|dΘ

≤
∫
BR(ε)

e−2π2ΘtΣ[X]Θ|eδ(Θ) − 1|dΘ.

We assume that ε > 0 is small enough so that C1M |B|ε3 ≤
1, so that for all for Θ ∈ BR(ε) we have

|eδ(Θ) − 1|≤ 2δ(Θ) ≤ 2C1M |B|‖Θ‖3R.

Thus

I1 ≤ 2C1M |B|
∫
BR(ε)

e−2π2ΘtΣ[X]Θ‖Θ‖3RdΘ

≤ 2C1M |B|
∫
R(l−1)A

e−2π2ΘtΣ[X]Θ‖Θ‖3RdΘ.

Next, we evaluate the integral on the right. Let Z be a
Gaussian random variable in R(l−1)|A| with mean zero and
covariance matrix 1

4π2 Σ[X]−1. Then the density of Z is

fZ(Θ) = (2π)
(l−1)|A|

2

√
det(Σ)e−2π2ΘtΣ[X]Θ

=
1

fY (E[X])
e−2π2ΘtΣ[X]Θ,

where we have used (3.18). Hence∫
R(l−1)A

e−2π2ΘtΣ[X]Θ‖Θ‖3RdΘ = fY (E[X]) · E[‖Z‖3R].

Let G ∈ R(l−1)|A| be standard multivariate Gaussian
with mean zero and identity covariance matrix. Recall that
by Claim 7 we have Σ[X] = R ⊗M . In particular, Σ[X]
is positive definite, so its root exists. So we may take
Z = 1

2πΣ[X]−1/2G. We have

Σ[X] = R⊗M = R⊗ (U tDU)

where D is a diagonal matrix with diagonal
(1/l2, 1/l, . . . , 1/l) and U is an orthogonal matrix.
Thus

Σ[X]−1/2 = R−1/2 ⊗ (U tD−1/2U).

Note that D−1/2 is a diagonal matrix with diagonal
(l,
√
l, . . . ,

√
l).

Let G = (G1, . . . , Gl−1) with Gi ∈ R|A| and similarly
Z = (Z1, . . . , Zl−1) with Zi ∈ R|A|. We can express
Z1, . . . , Zl−1 as

Z1 =
l

2π
R−1/2

l−1∑
k=1

U1,kGk

Zj =

√
l

2π
R−1/2

l−1∑
k=1

Uj,kGk j = 2, . . . , l − 1.

Let Gj =
∑l−1
k=1 Uj,kGk. Since U is an orthogonal matrix,

we have that (G1, . . . , Gl−1) is also a standard multivariate
Gaussian R(l−1)|A| with mean zero and identity covarince
matrix. Thus we have

Z1 =
l

2π
R−1/2G1

Zj =

√
l

2π
R−1/2Gj j = 2, . . . , l − 1.

That is, Z1, . . . , Zl−1 are independent Gaussian random
variables with mean zero, where Z1 has covariance matrix
l2

4π2R
−1 and for j = 2, . . . , l − 1 we have that Zj has

covariance matrix l
4π2R

−1. We may thus bound

EZ
[
‖Z‖3R

]
= EZ

[
max
j

(
1

|B|
ZtjRZj

)3/2
]

≤EZ

∑
j

(
1

|B|
ZtjRZj

)3/2


=
∑
j

EZ

[(
1

|B|
ZtjRZj

)3/2
]

=

((
l2

4π2|B|

) 3
2

+ (l − 2)

(
l

4π2|B|

) 3
2

)
E
[
‖G′‖32

]
≤ 2l3

(4π2)3/2|B|3/2
E
[
‖G′‖32

]
where G′ is a standard multivariate Gaussian random vector
in RA with mean zero and identity covariance matrix. Note
that by Jensen’s inequality E[‖G′‖32] ≤ E[‖G′‖42]3/4 ≤
43/4|A|3/2. Thus we can summarize that

I1 ≤ O
(
l3M |A|3/2

|B|1/2

)
· fY (E[X]).

4.2 Bounding I2 Recall that I2 =
∫
D\BR(ε)

|X̂(Θ)|dΘ.

We upper bound I2 by proving an upper bound on |X̂(Θ)| in
D \ BR(ε).
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Fix Θ = (θ1, . . . , θl−1) ∈ D where we assume
||Θ||Φ,2 = ||Θ||R ≥ ε. Our goal is to upper bound X̂(Θ).
Let 〈φ(b), θj〉 = nb,j + rb,j where nb,j ∈ Z and rb ∈
[−1/2, 1/2). By (4.21) we have

X̂(Θ) =
∏
b∈B

1

l

1 +

l−1∑
j=1

e2πi〈θj ,φ(b)〉


=
∏
b∈B

1

l

1 +

l−1∑
j=1

e2πi·rb,j

 =
∏
b∈B

f(2π · rb),

where f(x) = 1
l

(
1 +

∑l−1
j=1 e

ixj
)

and rb =

(rb,1, . . . , rb,l−1). Recall that |x|= max|xj |.

CLAIM 13. Let x ∈ Rl−1 be with |x|≤ π. Then |f(x)|≤
exp(−|x|2/8l).

Proof. Let xj = |x|. Then |f(x)|≤ l−2
l + 2

l |
1+eixj

2 |.
If z ∈ [−π, π] then | 1+eiz

2 |≤ e−z2/8. One can verify that

log|f(x)|≤ log

(
1− 2

l

(
e−|x|

2/8 − 1
))
≤ −|x|

2

8l
.

Thus we have

log|X̂(Θ)| ≤ −4π2

8l

∑
b∈B

|rb|2

≤ − 1

l2

∑
b∈B,j∈[l−1]

r2
b,j = −|B|

l2
|||Θ|||2Φ,2.

Next, assume that ε ≤ 1/c3M . By Lemma 3.6 we have that
|||Θ|||Φ,2 ≥ ε. Thus

|X̂(Θ)|≤ exp(−|B|ε2/l2).

Thus we may bound

I2 ≤ vol(D) exp(−|B|ε2/l2) =
1

det(L(Φ))
exp(−|B|ε2/l2).

4.3 Bounding I3 Recall that

I3=

∫
R(l−1)A\BR(ε)

|Ŷ (Θ)|dΘ=

∫
R(l−1)A\BR(ε)

e−2π2ΘtΣ[X]ΘdΘ.

As in the calculation of the bound for I1, let Z ∈ R(l−1)|A|

be Gaussian random variable with mean zero and covariance
matrix 1

4π2 Σ[X]−1. Then

I3=fY (E[X]) · Pr [‖Z‖R> ε] .

Recall that we showed that if we set Z=(Z1, . . . , Zl−1),
then Z1, . . . , Zl−1 ∈ RA are independent Gaussian random

variables in with mean zero, where Z1 has covariance matrix
l2

4π2R
−1 and Zj has covariance matrix l

4π2R
−1 for j =

2, . . . , l − 1. We may thus bound

Pr [‖Z‖R> ε] = Pr
Z

[
max
j

(
1

|B|
ZtjRZj

)
> ε2

]
≤
∑
j

Pr
Zj

[(
1

|B|
ZtjRZj

)
> ε2

]

= Pr
G′

[
‖G′‖22>

4π2|B|ε2

l2

]
+(l−2) Pr

G′

[
‖G′‖22>

4π2|B|ε2

l

]
≤ (l − 1) Pr

G′

[
‖G′‖22>

4π2|B|ε2

l2

]
,

where G′ ∈ RA is a Gaussian random variable with mean
zero and identity covariance matrix.

In order to bound PrG′
[
‖G′‖22> ρ

]
we note that for any

t < 1/2, it holds that E
[
et‖G

′‖22
]

= (1 − 2t)−|A|/2. Fixing
t = 1/4 and apply the Markov inequality gives

Pr
G′

[
‖G′‖22> ρ

]
≤

E
[
e‖G

′‖22/4
]

eρ/4
= 2|A|/2e−ρ/4.

So
I3 ≤ fY (E[X]) · (l − 1)2|A|/2e−

π2|B|ε2

l2 .
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