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Abstract

A new probabilistic technique for establishing the existence of cer-
tain regular combinatorial structures has been recently introduced
by Kuperberg, Lovett, and Peled (STOC 2012). Using this tech-
nique, it can be shown that under certain conditions, a randomly
chosen structure has the required properties of a ¢-(n, k, A) combi-
natorial design with tiny, yet positive,probability.

Herein, we strengthen both the method and the result of Kuper-
berg, Lovett, and Peled as follows. We modify the random choice
and the analysis to show that, under the same conditions, not only
does a t-(n, k, \) design exist but, in fact, with positive probabil-
ity there exists a large set of such designs — that is, a partition
of the set of k-subsets of [n] into ¢-(n, k, \) designs. Specifically,
using the probabilistic approach derived herein, we prove that for
all sufficiently large n,large sets of ¢t-(n, k, A) designs exist when-
ever k > 9t and the necessary divisibility conditions are satisfied.
This resolves the existence conjecture for large sets of designs for
all k > 9t.

1 Introduction

Let [n] = {1,2,...,n}. A k-setis a subset of [n] of size
k. A t-(n,k,\) combinatorial design is a collection D of
distinct k-sets of [n], called blocks, such that every ¢-set of
[n] is contained in exactly A blocks. A large set of designs
of size I, denoted LS(I; t,k,n), is a set of [ disjoint ¢-
(n, k, A) designs Dy, Do, . .., D; such that D; UD;U- - -UD,
is the set of all k-sets of [n]. That is, LS(l; t,k,n) is a
partition of the set of k-sets of [n] into ¢-(n, k, A) designs,
where necessarily A = (7_})/l. The existence problem for
large sets of designs can be phrased as follows: for which
values of [ t, k,n do LS(l; t,k,n) large sets exist? The
existence conjecture for large sets, formulated for example
in [23, Conjecture 1.4], asserts that for every fixed [, ¢, k with
k> t+1,alarge set LS(l; t, k,n) exists for all sufficiently
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large n that satisfy the obvious divisibility constraints (see
Section 1.2). However, according to [23, p.564] as well as
more recent surveys, “not many results about LS(l; t, k,n)
with £ > ¢ + 1 are known.”One of our main results herein is
a proof of the foregoing existence conjecture for all k& > 9¢.

1.1 Large sets of designs Combinatorial design theory
can be traced back to the work of Euler, who introduced the
famous “36 officers problem” in 1782. Euler’s ideas were
further developed in the mid-19th century by Cayley, Kirk-
man, and Steiner. In particular, the existence problem for
large sets of designs was first considered in 1850 by Cay-
ley [1], who found two disjoint 2-(7,3,1) designs and
showed that no more exist. The first nontrivial large set,
namely LS(7; 2,3,9), was constructed by Kirkman [8] in
the same year. Following these results, the existence problem
for large sets of type LS(n—2; 2,3,n) — that is, large sets
of Steiner triple systems — attracted considerable research
attention. Nevertheless, this problem remained open until the
1980s, when it was settled by Lu [10, 11] and Teirlinck [22].
Specifically, it is shown in [10,11,22] that LS (n—2; 2,3, n)
exist for all n > 9 with n = 1,3 (mod 6). In 1987, came
the celebrated work of Teirlinck [20], who proved that non-
trivial ¢-(n, k, \) designs exist for all values of ¢. In fact,
Teirlinck’s proof of this theorem in [20] proceeds by con-
structing for all ¢ > 1, a large set LS(l; ¢,t + 1,n), where
I = (n—t)/(t+1)!**+D His results in [20,21] further im-
ply that for all fixed ¢, k with k¥ > ¢+1, nontrivial large sets
LS(l; ¢, k,n) exist for infinitely many values of n. However,
as mentioned earlier, it is unknown whether such large sets
exist for all sufficiently large values of n that satisfy the nec-
essary divisibility constraints. For much more on the history
of the problem and the current state of knowledge, see the
surveys [6,7,23] and references therein.

There are numerous applications of large sets of designs
in discrete mathematics and computer science. For example,
large sets of Steiner systems were used to construct perfect
secret-sharing schemes by Stinson and Vanstone [19], and
others [4,18]. An application of general large sets of de-
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signs to threshold secret-sharing schemes was proposed by
Chee [2]. As another example, Chee and Ling [3] showed
how large sets can be used to construct infinite families of
optimal constant weight codes. As yet another example,
large sets of 1-designs (also known as one-factorizations)
have been used extensively in various kinds of scheduling
problems — see [15, pp. 51-53] and references therein.

1.2 Divisibility constraints and our existence theorem
Consider a t-(n, k, A) design with N blocks. It is very easy
to see that every such design must satisfy certain natural di-
visibility constraints. For instance, every k-set of [n] con-
tains exactly (’;) many t-sets, and since every ¢-set is covered
exactly \ times by the N blocks, we have N (F) = A(7).
In particular, this implies that (¥) should divide \(7). Now
let us fix a positive integer s < ¢ — 1 and restrict our atten-
tion only to those N’ blocks that contain a specific s-set of
[n]. Since the fixed s-set can be extended to a t-set in (' ~7)
ways and each of these t-sets is covered \ times by the N’
blocks, a similar argument yields N’(¥~%) = A(7_?). Thus
(h~*) should divide A(}?). Altogether, this simple count-
ing argument produces ¢ divisibility constraints:

(1.1)

<k_5> | A(”_S> forall s =0,1...,¢— 1.
t—s t—s

The above leads to the following natural question. Are
these ¢ divisibility conditions also sufficient for the existence
of t-(n,k,A) designs, at least when n is large enough?
This is one of the central questions in combinatorial design
theory. In a remarkable achievement, Keevash [5] was
able to answer this question positively, thereby settling the
existence conjecture for combinatorial designs. Specifically,
Keevash proved that for any £ > ¢ > 1 and A > 1,
there is a sufficiently large ng = ng(¢, k, A) such that the
following holds: for all n > ng such that n,t, k, A satisfy
the divisibility conditions in (1.1), there exists a t-(n, k, \)
design.

Let us now consider the divisibility conditions for large
sets. A large set LS(I; t, k,n) is a partition of all k-sets of
[n] into ¢-(n, k, A) designs. Clearly, each of these designs
consists of N = (})/l = )\(’t’)/(f) blocks. This can be used
to specify A in terms of n, ¢, k, [ as follows:

(1.2) )\—<Z)(]:>_ l(n—t)

<n) AV

l

t

With this, the divisibility constraints (1.1) for the ! compo-
nent designs of a large set LS(l; ¢, k, n) can be re-written in

terms of n,t, k,[. Altogether, we conclude that the param-
eters of a large set LS(I; ¢, k,n) must satisfy the following

t + 1 divisibility constraints:
(1.3)

(ks noty(nes forall s =0,1...,t.
t—s k—t)\t—s

Note that the constraint for s = ¢ simply refers to the con-
dition that [ must divide (Z:E), which is clearly necessary
in view of (1.2). Once again, this leads to the following
natural question. Are these ¢ + 1 divisibility conditions also
sufficient for the existence of LS(l; t,k,n) large sets, at
least when n is large enough?

One of our main results in this paper is a positive answer
to this question for all £ > 9¢, which settles the existence
conjecture for large sets for such values of k. We formulate
this result as the following theorem.

THEOREM 1.1. Foranyt > 1,k > 9tandl > 1, there is an
ng = no(t, k, 1) such that the following holds: for all n. > ng
such that n, t, k, [ satisfy the divisibility conditions in (1.3),
there exists an LS(l; t, k,n) large set.

In fact, Theorem 1.1 follows as a special case of a more
general statement — namely, Theorem 1.3 of Section 1.4.
Theorem 1.3 itself follows by extending and strengthening
the probabilistic argument of Kuperberg, Lovett, and
Peled [9]. We begin by describing the general framework
for this probabilistic argument below.

1.3 General framework Throughout this work, we will
use the notation of the Kuperberg, Lovett, and Peled pa-
per [9], which we shorthand as KLP. Let B, A be finite sets
and let ¢ : B — Z* be a vector valued function. One can
think of ¢ as described by a | B| x| A| matrix where the rows
correspond to the evaluation of the function ¢ on the ele-
ments in B. In this setting [9] gives sufficient conditions for
the existence of a small set " C B such that

1 1
(14) WZW) = 13 > o(b).

teT beB

In the context of designs we can think of B as all the k-sets
of [n] and A as all the ¢-sets of [n]. ¢ denotes the inclusion
function, that is ¢(b), = 1,cp Where b is a k-set of [n] and a
is a t-set of [n]. Equation (1.5) is then equivalent to 7" being
at-(n, k, ) design for an appropriate \.

Next, we present the conditions under which KLP
showed that there is a solution for (1.5). We start with a few
useful notations. For a € A we denote by ¢, € Z* the a-
column of the matrix described by ¢, namely (¢)p = ¢(b)q.
Let V C QP be the vector space spanned by the columns of
this matrix {¢, : a € A}. Observe that (1.5) depends only
on V and not on {¢, : a € A}, which is a specific choice of
basis for V. We identify f € V' with a function f : B — Q.
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Thus, we may reformulate (1.5) as

1 1
as  m > f) = B Y fb) VieV.

teT beB

In particular, we may assume without loss of generality that
dim(V') = |A|.

The conditions and results outlined below will depend
only on the subspace V. However, it will be easier to present
some of them with a specific choice of basis. We may assume
this to be an integer basis. Thus, we assume throughout
that ¢ : B — Z“ is a map whose coordinate projections
¢q : B — Z are a basis for V.

1.3.1 Divisibility conditions For T to be a valid set for
(1.5) with |T'|= N, we must have

10 = 7 S A0 VreV.

teT beB

In particular there must exist v € Z” such that

16) D wfb) = |,]§| > fb) VieV.

beB beB

The set of integers N satisfying (1.6) consists of all integer
multiples of some minimal positive integer c;. This is
because if N7 and N5 are solutions then so is N7 — INo. Thus
it follows that |7'| must be an integer multiple of ¢;. This is
the divisibility condition and c; is the divisibility parameter
of V.

We can rephrase (1.6) as % > pe ¢(b) belongs to the

lattice spanned by {¢(b) : b € B}.

DEFINITION 1. (LATTICE SPANNED BY ¢) We define L(¢)
to be the lattice spanned by {¢(b) : b € B}.

E(gb)z{an-gb(b):nbEZ} c 74,

beB

Note that since we assume that dim (V') = |A| we have
that £(¢) is a full rank lattice.

DEFINITION 2. (DIVISIBILITY PARAMETER ¢1) The divis-
ibility parameter of V is the minimal integer ¢y > 1 that
satisfies {51 >y p @(b) € L(§). Note that it does not de-
pend on the choice of basis for V which defines ¢.

1.3.2 Boundedness conditions The second condition is
about boundedness conditions for integer vectors which span
V and its orthogonal dual. We start with some general
definitions. Let 1 < p < co. The £, norm of a vector y € Z%
is ||v|[,= (ZbGBhb\”)l/p. Below we restrict our attention

to [[vll1= > pe gl and [|7]|co= maxpe 5 lyp|-

DEFINITION 3. (BOUNDED INTEGER BASIS) Let W C
QP be a vector space. For 1 < p < oo, we say that W has
a c-bounded integer basis in £, if W is spanned by integer
vectors whose £, norm is at most c. That is, if

Span({y € WNZ" : |y|,< c}) = W.

Recall that V' C QP is the vector space spanned by
{¢a : a € A}. We denote by V' the orthogonal complement
of V in QZ, that is,

Vii={geQ”: ) fb)gb)=0 VfeV}

beB

DEFINITION 4. (BOUNDEDNESS PARAMETERS cs, c3) We
impose two boundedness conditions:

e Let co > 1 be such that V' has a co-bounded integer
basis in { .

e Let c5 > 1 be such that V* has a cs-bounded integer
basis in ;.

1.3.3 Symmetry conditions Next we require some sym-
metry conditions from the space V. Given a permutation
7 € Sp and a vector f € QF, we denote by 7(f) € QF the
vector obtained by permuting the coordinates of f, namely

T(f)o = frep)-

DEFINITION 5. (SYMMETRY GROUP OF V') The symmetry
group of V, denoted Sym(V'), is the set of all permutations
m € Sp which satisfy that w(f) € V forall f € V.

It is easy to verify that Sym(V) is a subgroup of Sp,
the symmetric group of permutations on B. Note that the
condition 7 € Sym(V) can be equivalently case as the
existence of an invertible linear map 7 : Q4 — Q4 such
that

¢(n(b)) =T(6(b)) VbeB.

DEFINITION 6. (TRANSITIVE SYMMETRY GROUP) The
symmetry group of V is said to be transitive if it acts
transitively on B. That is, for every by,by € B there is
7w € Sym(V') such that w(by) = ba.

1.3.4 Constant functions condition The last condition is
very simple: we require that the constant functions belong to
V.

1.3.5 Main theorem of KLP We are now at a position to
state the main theorem of KLP [9].

THEOREM 1.2. (KLP THEOREM) Let B be a finite set and
let V. C QP be the subspace of functions. Assume that the
following holds for some integers cy,ca,c3 > 1:

o Divisibility: cy is the divisibility parameter of V.
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Boundedness of V: V has a ca-bounded integer basis
infs.

Boundedness of V+: V= has a cs3-bounded integer
basis in 1.

o Symmetry: The symmetry group of V is transitive.
e Constant functions: The constant functions belong to V.

Let N be an integer multiple of ci satisfying
min(N, |B|=N) > C - cocidim (V)% log(2c3dim(V))°,

where C' > 0 is an absolute constant. Then there exists a
subset T C B of size |T|= N satisfying

}|2¢<t> - I; 0]

teT beB

1.4 Our main theorem Our main result is an extension of
the KLP theorem (Theorem 1.2) to large sets. It will have
many of the same conditions, except that we need to update
the divisibility condition to require the size of each design to
be N = | B|/{. Thus the new divisibility condition is

T3 6(b) € £(6).

beB

Note that as before, this condition depends only on V; it does
not depend on the choice of basis for V' which defines ¢.

THEOREM 1.3. (MAIN THEOREM) Let B be a finite set and
let V.C QPF be the subspace of functions. Let also | > 1 be
an integer. Assume that the following holds for some integers
Co,C3 Z 1:

e Divisibility: +3,c 5 0(b) € L(9).

e Boundedness of V: V has a ca-bounded integer basis
infs.
e Boundedness of V*: V= has a cs3-bounded integer

basis in {1.
o Symmetry: The symmetry group of V' is transitive.
o Constant functions: The constant functions belong to V.
Assume furthermore that
|B|> C dim(V)%1¢3 log® (dim(V )egesl),

for some absolute constant C' > 0. Then there exists a
partition of B to Ty, ..., Ty, each of size |T;|= |B|/l such
that

> (t) :%Z(b(b) forall i=1,...,1.

teT; beB

Theorem 1.1 follows as a special case of Theorem 1.3.

Proof. [Proof of Theorem 1.1] To recall, in this setting we
have B the set of all k-sets of [n], A the set of all ¢-sets of
[n], ¢ : B — {0,1}4 given by inclusion ¢(b), = 1,c; for
a € A,b € BandV the subspace spanned by {¢, : a € A}.

KLP [9] showed (see Section 3.3 in the arxiv version)
that in this setting, the subspace V' has a transitive symmetric
group, it contains the constant functions, and it has bound-
edness parameters ca = 1,c3 < (4en/t)!. Furthermore, the
condition that the vector A = (\,...,\) € L(¢) is equiva-
lent to the set of conditions

<k—s>‘)\<n—s> forall s=0,...,t.
t—s t—s

(see Theorem 3.7 in [9]). In particular in our case A =
(Z::) /1 and hence the divisibility conditions in Theorem 1.3
are equivalent to the necessary divisibility conditions given
in (1.3). To obtain the lower bound on | B|, lets fix &, ¢,/ and
let n be large enough. Then |B|~ n*, dim(V) ~ n' and
c3 ~ n'. Then if k > 9¢ and n is large enough the lower
bound on B holds.

1.5 Proof overview The high level idea, similar to [9], is
to analyze the natural random process and show that with
positive (yet exponentially small) probability a desired event
occurs.

Say that a subset T' C B is “uniform” if

1 1
mz¢(b) = E Z¢(b)-

beT beB

Equivalently, the “tests” defined by V' cannot distinguish the
uniform distribution over 7' from the uniform distribution
over B.

Let 7 : B — [I] be a uniform partition of B into [ sets.
Let T; = 71(i) be the induced partition for i = 1,...,1.
We would like to analyze the event that each part is uniform.
That is, we would like to show that

(1.7) Pr[T1,...,T; are uniform] > 0.

Notice that under the same notations, the main result of [9]
can be formulated as

Pr[T} is uniform] > 0.

The random process can be modeled as a random walk
onalattice. Fori =1,...,llet X; = >, 1. ¢(b) be random
variables taking values in Z4. Let A = E[X{] = ... =
E[X;] € Q4. Note that if X; = ... = X;_; = A then also
X, =\ Let X = (Xy,...,X;_1) € ZU=DIAL Thus we
can reformulate (1.7) as

(1.8) Pr[X = E[X]] > 0.
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Recall that each random variable X; takes values in a full-
dimensional sub-lattice of Z* which we denoted £(¢). One
can show that X takes values in the lattice £(¢)®(—1),
which is a full dimensional lattice in QU VI4l. In order to
study the distribution of X, we apply a local central limit
theorem. The same approach was applied in [9] in order
to analyze the individual distribution of each X;. Here, we
extend the method to analyze their joint distribution, namely
the distribution of X. This is accomplished by a careful
analysis of the Fourier coefficients of X, which in turn relies
on “coding theoretic” properties of the space V. Given this
coding theoretic properties, we show that Pr[X = E[X]] can
be approximated by the density of a gaussian process with
the same first and second moment as X at the point E[X].
In particular, it is positive, which establishes the existence
result.

1.6 Broader perspective The current work falls into the
regime of “rare events” in probabilistic analysis. It is very
common that the probabilistic method, when applied to show
that certain combinatorial objects exist (such as expander
graphs, error correcting codes, etc) shows that a random
sample succeeds with high probability. The challenge then
shifts to obtaining explicit constructions of such objects,
with efficient algorithmic procedures whenever relevant (e.g.
efficient decoding algorithms for codes).

However, there are several scenarios where the “vanilla”
probabilistic method fails, and one is forced to develop
much more fine tuned techniques to prove existence of the
desired combinatorial objects. The current work falls into
the regime where the random process is the natural one,
but the analysis is much more delicate. Other examples of
similar instances are the constructive proof of the Lovasz
local lemma (see e.g. [16,17]), the works on interlacing
families of polynomials (see e.g. [13, 14]), and the entire field
of discrepancy theory (see e.g. the book [12]). In each such
instance, new methods were developed to prove existence
of the relevant objects, that go beyond simple probabilistic
analysis.

There are several families of problems in combinatorics,
for which the only known constructions are explicit and of
algebraic or combinatorial nature. For example, this is the
case for all types of local codes (such as locally testable,
decodable, or correctable codes; PIR schemes; batch codes,
and so on). It is also the case for Zarenkiewicz-type Ramsey
problems in graph theory, about maximal bipartite graphs
without certain induced subgraphs. Another well known
example is the existence of Hadamard matrices. The lack
of a probabilistic model for a solution may be seen as the
reason why the existential results known for these problems
are very sparse and ad-hoc.

In the current work, we show that for the problem of
existence of large sets, one can move beyond explicit ad-

hoc constructions, such as the one of Teirlinck [22], to
a more rigorous understanding of when existence of large
sets is possible. Of course, the next step in this line of
research, after existence has been established, is to find
explicit constructions. We leave this question for future
research. Another question is whether the existence result
can be established to the full spectrum of parameters, namely
k >t+1andany ¢ > 1 (recall that our result requires that
k > 9t). This seems to be possible by replacing the gaussian
estimate by an estimate which uses higher moments of the
distribution of the random variable being analyzed. We leave
this also for future research.

2 Preliminaries

Recall that ¢ : B — Z“ is a map, whose coordinate
projections are ¢, : B — 7Z. We defined V to be the
subspace of QF spanned by {¢, : a € A}. We may assume
that that these form a basis for V, and hence dim(V') = |A|.

Let 7 : B — [l] be a mapping that partitions B into [
bins. Let 7; := {b € B : 7(b) = i} for i € [{] be the
induced partition of B. In order to prove Theorem 1.3 we
are looking for a 7 for which

(2.9) Z¢(b):%2¢(b) forall i=1,...,1

beT; beB

Note that it suffices to require that (2.9) holds for i =
1,...,1 — 1, as then it automatically also holds for ¢ = .
So from now on we only require that (2.9) holds for the first
I — 1 bins. We will choose a uniformly random mapping 7,
and show that (2.9) holds with a positive probability.

We start with some definitions. Let ® : B x [[] —
Z(=DIAl be defined as follows. ®(b,i) = (z1,...,2;_1),
where z1,...,7,-1 € Z* are given by z; = ¢(b) - 1,—;.
Note that in particular ®(b,!) = 0. Next, define a random
variable X € Z(=DI4l a5

X =) (b,7(b)).

beB
The mean of X is
E[X] = (} Z o(b), ..., % Z ¢(b)> e QU-DIAl
beB beB

Thus, proving Theorem 1.3 is equivalent to showing that

(2.10) Pr[X = E[X]] > 0.

T

We start by computing the covariance matrix of X.
CLAIM 7. The covariance matrix of X is the (1—1)|A|x (I—

1)|A| matrix
S[X]=R® M

Copyright © 2018 by SIAM

1549 Unauthorized reproduction of this article is prohibited



Downloaded 08/27/19 to 132.239.19.245. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

where R is the |A| x| A| matrix

Raa =Y ¢(b)ad(b)

beB

and M is the (I — 1) x (I — 1) matrix

(-1 -1 ... -1
1l -1 -1 ... =1

IR (zi1)

Proof. The random variables {®(b,7(b)) : b € B} are
independent, thus their contribution to the covariance matrix
of X is additive. Fix b € B. We compute the contribution of
O (b, 7(b)) to the (a, i), (a’,i") entry of X[X], where a,a’ €
Aandi,i € [l — 1]. The second moment is

Er [®(b,7(b))a

o BB ] = 7O0)db)  Licr

The expectation product is

B, 206, 7(0))a,] - B [8(0, 7(8)) ] = 356(0)a(B)ar

Thus

1 1
E[ (a,i),(a’,i’ Z‘b ( '1i—i’_l2>
beB

—Raa' zz/—(R®M)(a2)(a RN

Similar to the proof in KLP we would be interested in
the lattice in which X resides. Recall that £(¢) is the lattice
in Z4! spanned by the image of ¢. We similarly define
L(D).

DEFINITION 8. (LATTICE SPANNED BY ®) We define
L(D) to be the lattice spanned by {®(b,i) : b € B,i € [l]}.
Namely,

Q. 11)

= {( Z np, - P(b1), -, Z ny, - $(b;)

b1€B bjEB

3 o, ~¢(bl_1)> ‘ny, €Z,§ € [1— 1]}.

bi_1€B

Note that since dim(V') = | A| then L(¢) is a full rank lattice
in Z41. Hence £L(®) = L(¢)®"~1) is a full rank lattice in
7,U=DIA[

Similar to KLP we use Fourier analysis to study the
distribution of X. The Fourier transform of X is the function
X :RU-DIAl 5 C defined by

X(0) = Ex[e?™(X:9)),

Note that X is periodic. Concretely, let L(®) denote the dual
lattice to L(P),

L(®) := {@ eRU-DMI (A B)eZ VA€ £(<I>)}.

Note that if © € L(®) then X(© +0') = X(©) for all
O € RU-DIA and X(©) = 1iff © € L(®). As L(D)
is a full rank lattice it follows that L(®) is also a full rank
lattice and det(£(®))det(L(®)) = 1. Thus studying X
on any fundamental domain of L(®) would be sufficient to
study the behavior of X on R(=DI4l Similar to KLP we
work with a natural fundamental domain defined by a norm
related to the covariance matrix of X.

DEFINITION 9. (R-NORM) For ©=(0y,...,6;_1)eR(-DA

we define the norm ||-|| g as

1/2
_ t
IOl := max (|B|93R9>

1/2
e u(lB%@ ) '

We define two related notions. Balls around zero in the
R-norm are defined as

Br(e) = {0 e RV 0| p< e},

The Voronoi cell of 0 in the R-norm, with respect to the dual
lattice L(®), is
D:= {@ e R-DA: |0||p< |0—alr Vae L((I))\{O}}.

Observe that D is a fundamental domain of L(®) up to a set
of measure zero (its boundary), which we can ignore in our
calculations. Then we have the following Fourier inversion
formula over lattices: for every I' € £(®) it holds that

1

% —2mi(T",0)
vol(D)/DX(@)e de

= det(£(®)) /D X(©)e2miTO) g,

(2.12) Pr[X =T]=

Note that this formula holds true for any fundamental region
of L(®) but we chose it to be the Voronoi cell D arising from
the norm |||z because it would help in the computations
later on. In order to prove (2.10), we specialize (2.12) to
I' = E[X] and obtain

(2.13)

Pr[X = E[X]] = det(L / X(©)e 2 EX]O) g,

In the next section, we approximate this by a Gaussian
estimate.
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3 Gaussian estimate

In order to estimate (2.13), let Y be a Gaussian random
variable in RU—DIAl with the same mean and covariance as
X. The density fy of Y is given by
(3.14)
exp(—3(z — E[X])'S[X] ! (z — E[X]))
fy(z) = :

(=DIA|

(2m) =z y/det(X[X])

The Fourier transform of Y equals

(3.15) ?(@) — ]E[ezm<y,@>] _ eQwi(E[X],®>72ﬂ2@tE[X}6.

The inverse Fourier transform applied to Y yields
(3.16)

fy(z) = Y (0)e 201 ge vz e RU-DA,
ROI-1A
We show that Pr[X = E[X]] can be approximated by an
appropriate scaling of fy (E[X]). By (2.13) we have

Pr[X = E[X]]

CIN =itz (@)

— fr (E[X]) =

/ X(@)G—ZﬂNE[X],@)d@_/ }/}(@)6_2m<E[X]’®>d@.
D RG-1)A

Note that by plugging = E[X] in (3.14) we obtain that

1
(.18)  fr(E[X]) = (2m) S Jdet X))

We will show that | 207250 — fy (B[X))|< fy (E[X)).

For € > 0 to be chosen later, we will bound it by

(3.19)
Pi{X=E[X] o
‘(EWE@n>‘ﬁ*MXDkaéMJX«»—y«nu@

=1
" /D\BR(E) K (O)ae+ /]R(ll)A\BR(E) YOO
=1, ~

At a high level, the upper bound is obtained by comparing
X(©) and Y (O) in a small enough ball; and upper bounding
their absolute value outside this ball. Observe that we need
¢ to be small enough so that Br(e) C D.

3.1 Norms on R!4l induced by ¢ The following key
technical lemmas from [9] are very useful in bounding the
integrals. We begin with defining few norms which are all
functions of ¢.

DEFINITION 10. (NORMS ON RI4l INDUCED BY ¢) For
0 € RIA! define the following norms:

* [0ll4,00 = maxpep|(H(b),0)].

o 16l = (b Doeslio).002) "

Furthermore, for b € B let (¢(b),0) = ny+r, where ny, € Z
and ry, € [—1/2,1/2). Define

® (16l 4,00 = maxpes|ry.

1/2
o W0ll52 = (P Toeslrol?) -

Note thatif 0" € L(¢) then (¢(b),0+6")—(4(b),0) € Z
for all b € B. In particular, [[0 + 6|, ., = [l¢[l,; ., and
0+ &ll,o = llOll, o The following lemmas from [9]
relates the above norms.

LEMMA 3.1. (LEMMA 4.4 IN [9]) For every § € R4 it
holds that
1911400 < M6l 5

and
00l 00 < MIIEMll 5 o-

Here, M := C (\A|log(202|A|))3/2 for some absolute con-
stant C > 0.

LEMMA 3.2. (CLAIM 4.12 IN [9]) Assume that for 0 €

R4 it holds that 1

0 < —.
191l < -

Then there exists 0' € L(¢) such that (0 — ¢',¢(b)) €
[—1/2,1/2] for all b € B. In particular

16 = 0"llg.2 = 101l

3.2 Norms on RU=DIAl induced by ® We extend the
previous definitions to norms on R4l induced by ®, and
prove related lemmas relating the different norms.

DEFINITION 11. (GENERALIZING THE NORMS TO R(~DI4l)
For © = (61,...,0,_1) € RUEDIAl define the following

norms.
* [Olg,00 =maxjep—1y 105l o
* [|O]lp o = maxjep_y) H9j\|¢,2
* [IOllg 00 = maxjep—1y 1054 o
* [IOllg, = maxjep—1 164 o

Observe that ||-||¢,2 is the same as the R-norm ||| g
we defined before. Similar to before, if ©' € L(®) then
18+ &Il oo = 16l . a0t | + O[], = 1]l

The following extends Lemma 3.1 and Lemma 3.2 to
the norms induced by ®.
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LEMMA 3.3. For the same M defined in Lemma 3.1, for
every © € RU=DIAL it holds that

1Bl < MOl

and
1Olll3,00 < MOl o

Proof. Let © = (61,...,0,_1). Then using Lemma 3.1 we
have

S = 0, < M]||6; = M|©
O 0= mas 03], < mas MY, , = MO,

and

() = 0; <
16llg, o= mas 116, < m

LEMMA 3.4. Assume that for © € RU=D4 it holds that

1
C) < —.
I€llg,0e <

Then there exists ©' € L(®) such that (© — @', ®(b, j)) €
[—1/2,1/2] forallb € B,j € [l — 1]. In particular

© - @]

b2 |||@H|<1>,2‘

Proof. Let© = (01,...,0,—1). We have [|0,][, ., < é for
all j € [l — 1]. Then using Lemma 3.2 we get that there exist

15,011 € L(¢) such that (0; — 0%, ¢(b)) € [-1/2,1/2]
for all b € B. The lemma follows for ©" = (07,...,0]_,) €
L(®).

3.3 Estimates for balls in the Voronoi cell To recall, we
need € > 0 to be small enough so that Br(e) is contained
in the Voronoi cell D. The following Lemma utilizes
Lemma 3.3 to achieve that.

LEMMA 3.5. Ife < 537 then Br(e) C D.
Proof. Let © = (0y,...,0,_1) € L(®) \ {0}. By definition
(¢(b),0;) € Zforallb € B,j € [l —1]. Since L(¢) is of
full rank and © # 0, there exists some b € B, j € [l — 1] for
which |(¢(b),0;)|> 1. Thus
19,00 = 1.

By Lemma 3.3 if follows that

[€llr= [©]le 22> 1/M.
Thus, if ©" € Bg(e) fore < 1/2M then
1©0—0||r= 1O r—[0'|r= 1/M—e > 1/2M > ||©'| 5.

Hence Bgr(e) C D forany e < 51-.

max M165lll 5 .=M 1]l o-

Let © € D \ Bg(e). Clearly, its [|5, norm is
noticeable (at least £). We show that also its [|-[|4 , norm

is noticeable. This will later be useful in bounding X (©) in

D \ 83(8).

LEMMA 3.6. Assume that cg > 2 and ¢ < 1/cgM. Let
© € D\ Br(e). Then [|O]|g 5 > €.

Proof. Note that the conditions of Lemma 3.5 hold, and so
Br(e) C D. Assume towards contradiction that [|O]]4 , <
e. Applying Lemma 3.3 gives [[O|5 , < eM < é
Applying Lemma 3.4, this implies that there exists ©' €
L(®) for which |© — O[5, = [|O]p 5 < €. However,
as © € D we have [[©]4 , < [|© — ©[, < &. which gives

that © € Bg(e), a contradiction.

3.4 Bounding the integrals The following lemmas pro-
vide the necessary bounds on the integrals I, I, I3, as de-
fined in (3.19). The proofs are deferred to Section 4.

LEMMA 3.7. Assume that ¢ < (CM|B|)~'/3. Then

CIPM|A|?/?
<=

< S Ee— W (EX),

Here C' > 0 is some large enough absolute constant.

LEMMA 3.8. Assume that c3 > 2 and e < 1/c3M. Then

LEMMA 3.9. Forany € > 0 it holds that

I < fy(E[X]) - (I — 1)2141/2 exp (—”23|52> |

l2

3.5 Putting it all together Let C,C5, ... be unspecified
absolute constants below. By choosing an appropriate basis
for V' which is cz-bounded in /,,, we may assume that
¢ : B — 7" where |¢(b)|,< ¢y foralla € A,b € B.

Set ¢ = (C1M|B|)~'/3 so that we may apply
Lemma 3.7, and assume that ¢ < 1/c3M so that we may
apply Lemma 3.8. We thus have

Pr[X = E[X]] = det(£(®)) fy (E[X])(1 + a1 +as) + as,
where

C1I3M|A|?/?
|B|1/2 ’

2 1/3
|az|= exp <— 1Ble > = €xp (—C2|B> )
2 12)M2/3

7T2‘B|62 |B|1/3

o=
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We would like that |a |, |as|< 1/4, which requires that
|B|> Cy4|APM?1%c;
Thus

Pr[X = E[X]| > J det(£(2)) fy (E[X]) + .

We assume that ¢ : B — Z4, so £(®) is an integer lattice
and hence det(L(®)) > 1. We next lower bound fy (E[X]).
We have by (3.18) that

1

frEXD = (2m) = /et (B[X])

We assume that ¢ is spanned by integer vectors of maximum
entry cz, S0 we can bound each entry of 3[X] by

| [ (a,i),(a’ i’ |< Z|¢ a’|< |B‘62
beB
Thus
det(2[X]) < (|A|Ble3)! .

In order to require az < (1/4)fy (E[X]), say, we need to
require that

|B|> C5|A]P M1 log(|A| M1).

Putting it all together, and plugging in the value of M from
Lemma 3.1, as long as

|B|> C|A|6ZGC§ log3(|A]02031),
we have that

Pr[X = E[X]] > idet(ﬁ(@))fy(]E[X]) > 0.

4 Bounding the integrals
4.1 Bounding I; Recall that I; = fB © |X ©) —

Y (© )|d©. We will bound it by bounding pointwise the dif-
ference | X (©) — Y (©)| and integrating it.

We first compute an exact formula for X (©). Recall that

X =3 e ®(b,7(b)) where 7(b) € [I] are independently
chosen. Thus
(4.20)

-1
X(@):Ex |:e27ri(X,@>:| - H % 1+ 262m:<¢(b),9j>
j=1

beB

Fix © = (01,...,6,_1). To simplify notations, let
Ty = 27T<¢(b),t9j> and x;, = (xb,l ---xb,l—l) S R
Define the function f @ RIZ1 — C given by f(x) =

(1 + Z] L€ ) Then we can simplify (4.20) as

4.21) X(©) =[] fx)

beB

We next approximate log f(x). We use the shorthand
O(z) to denote a (possible complex) value, whose absolute
value is bounded by Cz for some unspecified absolute
constant C > 0. For x = (x1,...,2;_1) we denote
x| = mas, o, .

CLAIM 12. Let x = (21,...,21-1) € R with |[x|< 1.

Then
fx —exp( ij 21(1—7)Zx+
ﬁ Z T+ O<|x|3>).
i#5

Proof. Lety = %Zé;ll(e”f — 1) so that f(x) = 1+ y.
The condition |x|< 1 guarantees that |y|< 1, so the Taylor
expansion for log(1 + y) converges and gives

2

—log(1+y) =y — = + O(yP).

log(/(x)) g

One can verify that |y|< O(|x|), that
1 1 2 3
y—zl;wj—gl;%-k()(ﬂ )

and that

ij +0 (x*).

Combining these gives the required result.

__Applying Claim 12 to (4.21) allows us to approximate
X(©) as

2@ = (70X 60,6 (- 7) S (90).6,)°
s s
00, 6:)00),610) + 5(6)),
beB
i#3’

which can be rephrased as
(4.22)

X(0) = exp <27rz'<IE[X], 0) — 2720'T[X]0 + 5(@)).

The error term §(0) is bounded by

®)§O<lebl3> (Z max [(6(h j>|3>

beB bGB
< b), 0, 0,)?
< ( gmx 000071 ) (l;jg[llaﬁ]K ).6,) )
= 6]l BIIO1.-
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By Lemma 3.3 we have ||©||¢,0c< M||O||s,2, and hence as
I1O]|s,2= [|©| r we conclude that

(4.23) 8(8) < C1M|B|||0 |4,

where C'y > 0 is some absolute constant.
Next, we apply these estimates to bound the integral I;.
Recall that by (3.15) we have

Y (0) := exp(2mi(E[X], 0) — 2720'2[X]0O).

Thus we can bound /; by
h:/ 1X(0) — V(0)]d0
BR(E)

< / ¢~2720"2(X]0|5(0) _ 1)g@
Br(e)
We assume that € > 0 is small enough so that C; M |B|e® <
1, so that for all for © € Bg(e) we have
€)1/ 25(6) < 201 MBI 6]

Thus

I, <2C, M|B| e~2mO"NIX10| 9|3, 40
Br(e)

6727r2@t2[X
RU-1A

< 201M|B| ©lo|Rde.

Next, we evaluate the integral on the right. Let Z be a
Gaussian random variable in R(~114! with mean zero and
covariance matrix =5 $[X]~*. Then the density of Z is

= \A\

det(z)efmrz@tE[X]@

1 —27?0's[X]0
€ )

~ v (E[X])

where we have used (3.18). Hence

fz(©) = (2m)

_ﬂzt
Aamezexm%@ﬂau4wmmwmwmy

Let G € RU-DIAl be standard multivariate Gaussian
with mean zero and identity covariance matrix. Recall that
by Claim 7 we have X[X] = R ® M. In particular, ¥[X]
is positive definite, so its root exists. So we may take
Z = L 3[X]7Y/2G. We have

Y[X]=R®M =R (U'DU)

where D is a diagonal matrix with diagonal
(1/12,1/1,...,1/1) and U 1is an orthogonal matrix.
Thus

E[X] 1/2 _ R—1/2 (UtD_1/2U).

Note that D~'/2 is a diagonal matrix with diagonal

L,V VD).

Let G = (G1,...,G;_1) with G; € R4 and similarly
Z = (Z1,...,Z;—1) with Z; € R4 We can express
Zl,...,Zl_l as

-1

Z1 = %Rfl/g ; Uy,kGh

\/l - -1
Zj = %R 1/2 Z UJ,ka

Let G7 = S24_! U; .Gy Since U is an orthogonal matrix,
we have that (G, ..., G!~1) is also a standard multivariate
Gaussian R(l_l)‘A‘ with mean zero and identity covarince
matrix. Thus we have

foe L g
21

l .
Z; = ;R‘l/QGJ j=2,...,1—1.

Thatis, Z1, ..., Z;_; are independent Gaussian random
vazriables with mean zero, where Z; has covariance matrix
+zR~! and for j = 2,...,l — 1 we have that Z; has
covariance matrix J?R_l. We may thus bound

3/2
z[12)%] =Ez lmax <|B|ZtRZ) ]
1 3/2
<Ez Z( ZtRZ)
|B]
3/2
=Y E ZtRZ)
§:Z<m 1

_ <<4Z|B) ci-2) (433')) S

203 3
= (472)3/2‘B|3/2]E [||G/||2]

where G’ is a standard multivariate Gaussian random vector
in R“ with mean zero and identity covariance matrix. Note
that by Jensen’s inequality E[||G’|3] < E[|G'||3]*/* <
43/4| A]3/2. Thus we can summarize that

BM|A]3/?
n=o (S0 ) e @D,

42 Bounding I, Recall that I = [}, ;5. /| X(©)|dO.
We upper bound I, by proving an upper bound on | X (©)| in
D \ BR(E).
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Fix © = (01,...,0,_1) € D where we assume
1©llg , = O]z > €. Our goal is to upper bound X(O).
Let (¢(b),0;) = np; + rp; where ny; € Z and 1, €
[-1/2,1/2). By (4.21) we have

i -1
. 1 .
X =T |7 (143 e
i=1

-1
= H % 1 +262”'”*’ = H f2m 1),

beB | j=1 beB
where f(x) = (1 + ZJ 16”3') and r, =
(Ppy s Thi—1)- Recall that |x|= max|xz;|.

CLAIM 13. Let x € R'=! be with |x|< m. Then |f(x)|<
exp(—|x|?/8l).

Proof. Let z; = |x|. Then | f(x) Lg 22 4 214
If z € [—m, 7] then | 24— |< e~# /8. One can verify that

2 2 |x|2
_z IxI"/8 _ _7
log| f (x)|< log (1 l (e 1)) <-5r

Thus we have

logl (0)] < 7 3y ?
g = 3l b

beB

1 IB\
< 2 Z 7’13,3‘ = m®|||<1> ,2°

beB,jeli—1]

Next, assume that ¢ < 1/c3M. By Lemma 3.6 we have that
I©]lgp,> > €. Thus

1X(0)|< exp(—|B|e?/12).
Thus we may bound

I < vol(D) exp(—|Ble* /I?) = det(lll(@))

4.3 Bounding /3 Recall that

eXp(—|B|52/l2).

variables in with mean zero, where Z; has covariance matrix
2 .
LR~ and Z; has covariance matrix ;5 R~! for j =

42
2,...,1—1. We may thus bound

Pr(|Z]p> <] = Bx [max <|B|ztRz ) ]

< ;Pr [(BIZtRZ ) ]

472%| Ble? 472\ B|e?
=Pr IIG’II§>7|2 | +(-2) Pr r|[|GlI5> A7 |Ble”
G l l
472 |B|€
< _ AP A bl A

where G’ € R is a Gaussian random variable with mean
zero and identity covariance matrix.
In order to bound Pr¢ [||G'[|3> p| we note that for any

t < 1/2, it holds that E [et”G,Hg} = (1 — 2t)~141/2, Fixing
t = 1/4 and apply the Markov inequality gives

E [eHG’Hﬁ/ﬂ
Pr{IG 3> p] < —— -t = 22,
So
Tl'2 B 52
I; < fy(E[X])- (I — 1)2|A|/26_%
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