
Binary Linear Codes with Optimal Scaling:
Polar Codes with Large Kernels

Arman Fazeli
UC San Diego

afazelic@ucsd.edu

Hamed Hassani
University of Pennsylvania
hassani@seas.upenn.edu

Marco Mondelli
Stanford University

mondelli@stanford.edu

Alexander Vardy
UC San Diego

avardy@ucsd.edu

Abstract—We prove that, at least for the binary erasure
channel, the polar-coding paradigm gives rise to codes
that not only approach the Shannon limit but, in fact,
do so under the best possible scaling of their block length
as a function of the gap to capacity. This result exhibits
the first known family of binary codes that attain both
optimal scaling and quasi-linear complexity of encoding
and decoding. Specifically, for any fixed δ > 0, we exhibit
binary linear codes that ensure reliable communication
at rates within ε > 0 of capacity with block length
n = O(1/ε2+δ), construction complexity Θ(n), and
encoding/decoding complexity Θ(n log n).

Index Terms—Non-asymptotic information theory, finite
blocklength, polar codes, large kernels, scaling exponent.

I. INTRODUCTION

Shannon’s coding theorem implies that for every binary-
input memoryless symmetric (BMS) channel W , there
is a capacity I(W ) such that the following holds: for all
ε > 0 and Pe > 0, there exists a binary code of rate
at least I(W ) − ε which enables communication over
W with probability of error at most Pe. Ever since the
publication of Shannon’s famous paper [28], the holy
grail of coding theory was to find explicit codes that
achieve Shannon capacity with polynomial-time com-
plexity of construction and decoding. Today, several such
families of codes are known, and the principal remaining
challenge is to characterize how fast we can approach
capacity as a function of the code block length n. Specif-
ically, we now have explicit binary codes (which can be
constructed and decoded in polynomial time) of length n
and rate R, such that the gap to capacity ε = I(W )−R
required to achieve any fixed error probability Pe > 0
vanishes as a function of n. The fundamental theoretical
problem is to characterize how fast this happens. Equiva-
lently, we can fix ε = I(W )−R and ask how large does
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the block length n need to be as a function of ε. That
is, we are interested in the scaling between the block
length and the gap to capacity, under the constraint of
polynomial-time construction and decoding.

It is known that the optimal scaling is of the form
n = O(1/εµ), where the constant µ is referred to
as the scaling exponent. It is furthermore known that
the best possible scaling exponent is µ = 2, and it is
achieved by random linear codes — although, of course,
random codes do not admit efficient decoding. In this
paper, we present the first family of binary codes that
attain both optimal scaling and quasi-linear complexity
on the binary erasure channel (BEC). Specifically, for
any fixed δ > 0, we exhibit codes that ensure reliable
communication on the BEC at rates within ε > 0 of the
Shannon capacity, with block length n = O(1/ε2+δ),
construction complexity Θ(n), and encoding/decoding
complexity Θ(n log n).

To establish this result, we use polar coding, invented
by Arıkan [2] in 2009. However, while Arıkan’s polar
codes are based upon a specific 2 × 2 kernel, we use
`×` binary polarization kernels, where ` is a sufficiently
large constant. The main technical challenge is to prove
that this construction works. To this end, we choose the
polarization kernel uniformly at random from the set of
all `×` nonsingular binary matrices, and show that with
probability at least 1 − O(1/`), the resulting scaling
exponent is at most 2 + δ. Since ` is a constant that
depends only on δ, the choice of a polarization kernel can
be, in principle, de-randomized using brute-force search
whose complexity is independent of the block length.
A. Background and context

A sequence of papers, starting with [6,29] in 1960s
and culminating with [16,26], shows that for any discrete
memoryless channel W and any code of length n and
rate R that achieves error-probability Pe on W , we have

I(W )−R >
const(Pe,W )√

n
− O

(
log n

n

)
, (1)

where the constant (which is given explicitly in [26])
depends on W and Pe, but not on n. This immediately



implies that if n = O (1/εµ), where ε = I(W ) − R is
the gap to capacity, then µ > 2.

It is well known [16,26] that the lower bound µ = 2 is
achieved by random linear codes. Unfortunately, random
linear codes cannot be decoded efficiently. On general
BMS channels, this task is NP-hard [4]. On the BEC,
decoding a general binary linear code takes time O(nω),
where ω is the exponent of matrix multiplication. This
leads to the following natural question: what is the lowest
possible scaling exponent for binary codes that can be
constructed, encoded, and decoded efficiently? For the
BEC, we take efficiently to mean linear or quasi-linear
complexity. Here is a brief survey of the current state of
knowledge on this question.

Forney’s concatenated codes [9] are a classical exam-
ple of a capacity-achieving family of codes. However,
their construction and decoding complexity are expo-
nential in the inverse gap to capacity 1/ε (see [11] for
more details), so they are definitely not efficient. In
recent years, three new families of capacity-achieving
codes have been discovered; let us review what is known
regarding their scaling exponents.
Polar codes: Achieve the capacity of any BMS channel
under a successive-cancellation decoding algorithm [2]
that runs in time O(n log n). It was shown in [11] that
the block length, construction complexity, and decoding
complexity are all bounded by a polynomial in 1/ε,
which implies that the scaling exponent µ is finite. A
sequence of papers [10,13,17,24] have provided rigor-
ous upper and lower bounds on µ. The specific value of
µ depends on the channel W . It is known that µ = 3.63
on the BEC. The best-known bounds valid for any BMS
channel W are given by 3.579 6 µ 6 4.714.

One possible approach is to improve the
successive-cancellation decoding algorithm. In
particular, the successive cancellation list decoder
proposed in [31] empirically provides a significant
improvement in performance. However, [23] establishes
a negative result for list decoders: the introduction of
any finite-size list cannot improve the scaling exponent
under MAP decoding for transmission over any BMS
channel. Another approach is to consider polarization
kernels of size larger than Arıkan’s 2 × 2 matrix (3).
Indeed, it is already known that such kernels have the
potential to improve the scaling behavior of polar codes.
For the error-exponent regime, Korada, Şaşoğlu, and
Urbanke proved in [18] that for ` sufficiently large, there
exist `× ` binary kernels such that the error probability
of the resulting polar codes scales roughly as 2−n,
rather than 2−

√
n. For the scaling-exponent regime,

Fazeli and Vardy [8] observed that the value of µ on
the BEC can be reduced from µ = 3.627 for the matrix

in (3) to µ(K8) = 3.577 and µ(K16) = 3.356, where
K8 and K16 are specific binary kernels constructed
in [8]. Pfister and Urbanke [25] recently proved that, in
the case of transmission over the q-ary erasure channel,
the optimal scaling-exponent value of µ = 2 can be
approached as both the size of the kernel ` and the size
of the alphabet q grow without bound. Furthermore,
Hassani [12] gives evidence supporting the conjecture
that, in order to approach µ = 2 on the erasure channel,
it suffices to consider large kernels over the binary
alphabet. Herein, we finally settle this conjecture.
Spatially-coupled LDPC codes: Achieve the capacity
of any BMS channel under a belief-propagation decoding
algorithm [20] that runs in linear time. A simple heuris-
tic argument yields that the scaling exponent of these
codes is roughly 3 (see [21, Section VI-D]). However,
a rigorous proof of this statement remains elusive and
appears to be technically challenging.
Reed-Muller codes: Achieve capacity of the BEC under
maximum-likelihood decoding [19] that runs in time
O(nω). While there has been empirical and analytical
evidence that the performance of Reed-Muller codes on
the BEC is close to that of random codes [14,22], no
bounds on the scaling exponent of RM codes are known.

B. Our main result: Binary linear codes with optimal
scaling and quasi-linear complexity

Our main result provides the first family of binary
codes for transmission over the BEC that achieves op-
timal scaling between the gap to capacity ε and the
block length n, and that can be constructed, encoded,
and decoded in quasi-linear time.

Theorem 1: Consider transmission over a binary era-
sure channel W with capacity I(W ). Fix Pe ∈(0, 1) and
an arbitrary δ > 0. Then, for all R < I(W ), there
exists a sequence of binary linear codes of rate R that
guarantee error probability at most Pe on the channel W ,
and whose block length n satisfies

n 6
β(

I(W )−R
)µ with µ 6 2 + δ, (2)

where β =
(
1 + 2P−0.01e

)3
is a universal constant.

Moreover, the codes in this sequence have construc-
tion complexity Θ(n) and encoding/decoding complexity
Θ(n log n).

A couple of remarks regarding Theorem 1 are in order.
First, in the definition of the constant β, the term Pe
is raised to the power of −0.01. We point out that we
could have similarly chosen any other negative constant
as the exponent of Pe. Second, the error probability
in Theorem 1 is upper-bounded by a fixed constant Pe.
However, a somewhat stronger claim is possible. It
can be shown that Theorem 1 still holds if the error



probability is required to decay polynomially fast with
the block length n.

To prove Theorem 1, we will show that there exist `×`
binary kernels, with quasi-linear encoding and decoding
complexity, such that polar codes constructed from these
kernels achieve capacity with a scaling exponent µ(`)
that tends to the optimal value of 2 as ` grows. The
claim regarding the construction and encoding/decoding
complexities immediately follows from known results on
polar codes [2,27,30], we refer to [7] for specific details.

C. A primer on polar codes

Polarization is induced via a simple linear transforma-
tion consisting of many Kronecker products of a binary
matrix K, called the polarization kernel, with itself.
Conventional polar codes, introduced by Arıkan in [2],
correspond to

K =

[
1 0
1 1

]
. (3)

However, it was shown in [18] that we can construct
polar codes from any kernel K that is an `×` nonsingular
binary matrix, which cannot be transformed into an
upper triangular matrix under any column permutations.

Let W : {0, 1} → Y be a BMS channel, charac-
terized in terms of its transition probabilities W (y|x),
for all y ∈Y and x∈{0, 1}. Further, let U =
(U1, U2, . . . , Un) be a block of n = `m bits chosen
uniformly at random from {0, 1}n. We encode U as
X = UK⊗m and transmit X through n independent
copies of W , as shown below:
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U1

U2

Un

Y1

Y2

Yn

X1

X2

Xn

W

W

W

K⊗m

(4)

To understand what polarization means in this context,
we consider a number of channels associated with this
transformation (see also Chapter 5 of [27] and Chapter
2.4 of [12]). Let Wn: {0, 1}n → Y n be the channel
that corresponds to n independent uses of W , and let
W ∗: {0, 1}n→ Y n be the channel with transition prob-
abilities given by W ∗(y|u) = Wn

(
y
∣∣uK⊗m). Finally,

for all i ∈ [n], let Wi : {0, 1}→ Y n×{0, 1}i−1 be the
channel that is “seen” by the bit Ui, defined as

Wi

(
y, v|ui) def

=
1

2n−1

∑
u′∈{0,1}n−i

W ∗
(

y
∣∣(v, ui, u′)

)
=

1

2n−1

∑
u′∈{0,1}n−i

Wn
(

y
∣∣(v, ui, u′)K⊗m

)
,

(5)

where (·, ·) stands for concatenation. We say that
Wi is the i-th bit-channel. It is easy to see that
Wi

(
y, v|ui) is indeed the probability of the event that

(Y1, Y2, . . . , Yn) = y and (U1, U2, . . . , Ui−1) = v given
that Ui = ui.

The key observation of [2] is that, as n grows, the
n bit-channels Wi defined in (5) start polarizing: they
approach either a noiseless channel or a useless channel.
Formally, given a BMS channel W , its capacity I(W )
and Bhattacharyya parameter Z(W ) are defined by

I(W )
def
=

1

2

∑
y∈Y

∑
x∈{0,1}

W (y|x) log2

W (y|x)
1
2W (y|0) + 1

2W (y|1)
,

Z(W )
def
=
∑
y∈Y

√
W (y|0)W (y|1). (6)

Given δ ∈ (0, 1), let us say that a bit-channel Wi is δ-
bad if Z(Wi) > 1 − δ and δ-good if Z(Wi) 6 δ.
Then the polarization theorem of Arıkan [2, Theorem 1]
can be informally stated as follows. For every δ ∈ (0, 1),
almost all bit-channels become either δ-good or δ-bad
as n → ∞. In fact, as n → ∞, the fraction of δ-good
bit-channels approaches the capacity I(W ) of the un-
derlying channel W , while the fraction of δ-bad bit-
channels approaches 1− I(W ). An (n, k) polar code is
constructed by selecting a set A of k good bit-channels
to carry the information bits, while the input to all the
other bit-channels is frozen to zeros.

Henceforth, let us focus on the binary erasure
channel with erasure probability z, which we denote
as BEC(z). It is well known that for W = BEC(z), we
have Z(W ) = z and I(W ) = 1 − z. It is furthermore
known (see, for example, [12, Section 3.4] and [8]) that
if W = BEC(z), then for all i ∈ [n], the i-th bit-channel
Wi is also a binary erasure channel BEC

(
pi(z)

)
, whose

erasure probability pi(z) is a polynomial of degree at
most n in z.

A proof of the polarization theorem for the BEC
follows by studying the evolution of these n erasure
probabilities pi(z) as n = `m grows. For a fixed
kernel K, this evolution is completely determined by the
erasure probabilities of the ` bit-channels obtained after a
single step of polarization. These ` erasure probabilities
are a central object of study in this paper. Let W =
BEC(z) and let K be a fixed ` × ` binary polarization
kernel. For each i ∈ [`], we let fK,i(z) denote the erasure
probability of the bit-channel Wi given by (5) with n = `
and W ∗(y|u) = W `

(
y
∣∣uK). We refer to the set of

` polynomials
{
fK,1(z), fK,2(z), . . . , fK,`(z)

}
as the

polarization behavior of the kernel K.
Indeed, we shall see later in this paper that fK,i(z)
is a polynomial of degree at most ` in z, for all i.
For example, in the special case of the 2× 2 kernel (3),



the polarization behavior is given by fK,1(z) = 2z− z2
and fK,2(z) = z2. With this notation, it is advantageous
to view the n = `m erasure probabilities pi(z) as the
values taken by a random variable Zm induced by the
uniform distribution on the `m bit-channels. We can
then study the evolution of this random variable Zm
as m grows. More formally, the recursive construction
of K⊗m makes it possible to introduce the martingale
{Zm}m∈N defined as follows:

Zm+1 = fK,Bm
(Zm), for Bm ∼ Uniform[`], (7)

with the initial condition Z0 = z. One can view (7)
as a stochastic process on an infinite binary tree, where
in each step we take one of the ` available branches
with uniform probability. The polarization theorem then
follows from the martingale convergence theorem, which
in this case implies that

lim
m→∞

Zm(1− Zm) = 0.

This shows that the erasure probabilities pi(z) of the
`m bit-channels polarize to either 0 or 1 as m → ∞.
Furthermore, since the matrix K⊗m is nonsigular, it is
easy to see that the polar transform in (4) preserves
capacity. Hence, the fraction of bit-channels that polarize
to 0 approaches I(W ). The speed with which this polar-
ization phenomenon takes place is the determining factor
in the decay rate of the gap to capacity as a function of
the block length n = `m. We elaborate on this in the
next subsection.

II. OUTLINE OF THE PROOF

The proof of our main result consists of several major
steps. The technical part of the proof is, on occasion,
quite intricate. To help the reader, we briefly discuss the
main ideas behind each of the steps in this section.

Step 1: Characterization of the polarization process.
In order to understand the finite-length scaling of polar
codes, we need to understand how fast the random
process Zm defined in (7) polarizes. In other words,
given a small ε > 0, how fast does the quantity
P{Zm ∈ [ε, 1 − ε]} vanish with m? To answer this
question, we first relate the decay rate of Zm with
another quantity that can be directly computed from the
kernel matrix K.

As the first step along these lines, we consider the be-
havior of another random process Ym = gα(Zm), where
gα(z) = zα(1− z)α and α > 0 is a parameter to be de-
termined later. Note that Zm∈ [ε, 1−ε] if and only if Ym
is lower-bounded by εα(1− ε)α. Therefore, by Markov
inequality, we have

P
{
Zm ∈ [ε, 1− ε]

}
6

E[gα(Zm)]

εα(1− ε)α (8)

In order to derive an upper bound on E[gα(Zm)], we
write:

gα(Zm) =
(
fK,Bm(Zm−1)

(
1− fK,Bm(Zm−1)

))α
=Zαm−1(1− Zm−1)α

(
fK,Bm

(Zm)
(
1− fK,Bm(Zm)

)
Zm−1(1− Zm−1)

)α

= gα(Zm−1)

(
fK,Bm

(Zm)
(
1− fK,Bm

(Zm)
)

Zm−1(1− Zm−1)

)α
.

Proceeding along these lines, we eventually conclude
that

E[gα(Zm)] 6
(
λ∗α,K

)m
, (9)

where

λ∗α,K , sup
z∈(0,1)

1

`

∑̀
i=1

(
fK,i(z)

(
1− fK,i(z)

))α
(
z(1− z)

)α . (10)

Step 2: Sharp transitions in the polarization behavior.
We show that with probability at least 1−O(1/`) over
the random choice of a nonsingular `× ` binary kernel
K, we have

λ∗α,K 6 `−
1/2+5α . (11)

To do so, we prove that, as ` grows, the polarization-
behavior polynomials fK,i(z) will “look like” step func-
tions for most nonsingular kernels. First note that fK,i(z)
is an increasing polynomial with fK,i(0) = 0 and
fK,i(1) = 1, for any i and any K. As ` increases,
we show that fK,i(z) is likely to have a sharp transi-
tion threshold around the point z = i/`. More precisely,
we prove that

fK,i(z) 6 `−(2+log `), for z 6
i

`
− 5`−1/2 log `,

fK,i(z) > 1− `−(2+log `), for z >
i

`
+ 5`−1/2 log `,

(12)

with probability at least 1 − O(1/`) over the random
choice of K.

Let us now go back to (10) and try to use this
“sharpness” property of the polarization behavior in
order to upper-bound λ∗α,K . In fact, let us only evaluate
the term on the RHS of (10) at the single point z = 1/2,
rather than taking the supremum over all z ∈ (0, 1).
Using the “sharpness” property in (12), it is not difficult
to see that for z = 1/2, this term will be of order

`−
1/2 log `+ `−α(2+log `) 6 `−

1/2+5α, (13)

for all sufficiently large `. With some more effort, we
will establish in [7] that, in fact, the upper bound in
(13) is valid for all z ∈ (0, 1) rather than at the single
point z = 1/2.



Step 3: Finite-length scaling law. We can derive the
finite-length scaling law for polar codes using the results
of the previous two steps. From (8), (9), and (11), we
conclude that

P
{
Zm ∈ [ε, 1− ε]

}
= O

(
ε−α

(
`−1/2+5α

)m)
. (14)

Denote the desired error probability by Pe, and set ε =
Pe/n = Pe`

−m in (14). Then we have

P
{
Zm ∈ [Pe`

−m, 1− Pe`−m]
}

= O
(
`−m/(2+δ)

)
,

(15)
where δ can be made arbitrarily small by choosing a
small enough α (and sufficiently large `). The foregoing
is an upper bound on the fraction of bit-channels that
are not yet sufficiently polarized after m polarization
steps. Later, we will also provide a simple bound on the
fraction P{Zm > 1 − Pe`−m} of bit-channels that are
polarized to the useless state. Note that if we transmit
information only on those bit-channels whose erasure
probability is at most Pe/n, then a straightforward
union-bound argument shows that the overall probability
of error under successive-cancellation decoding is at
most Pe. In essence, the bound in (15) implies that
the fraction of such “good” bit-channels is at least
I(W )−O

(
`−m/(2+δ)

)
. Since the block length n is `m,

this means that the gap to capacity scales roughly as
n−1/(2+δ), which is the desired scaling law.
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[18] S.B. KORADA, E. ŞAŞOĞLU, and R.L. URBANKE, Polar codes:
Characterization of exponent, bounds, and constructions, IEEE
Trans. Inform. Theory, vol. 56, no. 12, pp. 6253-6264, 2010.

[19] S. KUDEKAR, S. KUMAR, M. MONDELLI, H. D. PFISTER,
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