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TriboMotion: A Self-Powered Triboelectric Motion
Sensor 1n Wearable Internet of Things for Human
Activity Recognition and Energy Harvesting

Hui Huang

Abstract—Human physical activity recognition is widely used
in medical diagnosis, well-being management, and rehabilitation
treatment. In spite of various Internet of Things (IoT) designs
available in the literature, power resources often limit the life-
time of IoT. Regarding this weakness, this paper develops a new
motion sensor system in wearable IoT (WIoT) for human phys-
ical activity recognition without any signal conditioning circuits.
The triboelectricity-based physical model is explored in design-
ing the motion sensor. It enables to collect motion signals caused
by physical activities without any power supply. In addition, the
triboelectric structure can be used as an energy harvester for
motion harvesting due to its high output voltage in random low-
frequency motion and a relatively stable voltage when involving
continuous activities. Such a new design lays the foundations
for constructing the next generation self-powered WIoT systems.
Our new design has been extensively evaluated, where most com-
mon activities including sitting and standing, walking, climbing
upstairs and downstairs, and running are used. The experimental
results demonstrate that our system can achieve similar compa-
rable performance as the state of the art for physical activity
recognition at an average successful accuracy of over 80%. At
the same time, our system reduces more than 25% energy con-
sumption of the entire sensing hardware system which includes
the sensor, microcontroller, and corresponding circuits.

Index Terms—Motion energy harvesting, physical activity
recognition, triboelectric, wearable Internet of Things (WIoT).

I. INTRODUCTION

HE HIGH cost of prolonged in-hospital healthcare on
Tchronic conditions has facilitated the human-centered
out-of-hospital healthcare [1], [2]. Telemedicine and mobile
health integrated with wearable sensors and systems provide a
good solution for out-of-hospital healthcare with doctors in the
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loop to achieve efficient and effective telemedicine interven-
tions, which has been considered as one of the most significant
drivers of Internet of Things (IoT) technologies [3]. Recent
progress of IoT technologies connects real world objects to
Internet, which is rapidly emerging with an increasing num-
ber of Internet-enabled devices. Wearable sensors and devices
are capable of continuously sensing and transmitting health
related data to Internet-enabled devices for daily monitoring
and well-being management, forming the emerging wearable
IoT (WIoT) system [3].

In human-centered healthcare, an important technology with
extensive applications is human physical activity recognition.
In recent decades, it has become an active area with the excep-
tional development of wearable motion sensors. Power supply
is one of the major challenges for continuous monitoring using
these wearable motion sensors; and energy harvesting from
motion is considered as a promising solution [4].

For motion harvesting, three mechanisms are commonly
used, piezoelectricity based on piezoelectric materials, elec-
tromagnetics based on Lenz’s law, and electrostatics based
on variable capacitance [5]. Alternatively, triboelectric nano-
generators (TENGs) are a new type of mechanical energy
harvesters, which are based on triboelectric and electro-
static effects enhanced by adding nano- or micro-structure
on contacting material surfaces. First developed in 2012 [6],
TENGs have attracted great interest of researchers in recent
five years [7]-[11]. The high output voltage in broadband
frequency for converting mechanical energy to electricity
enables triboelectric energy harvesters applicable in various
practical applications [12]-[16]. Instead of adding micro- and
nano-structure, we prove the concept that macroscale surface
structure using common low-cost materials can also achieve
reasonable results.

In this paper, we first propose a novel self-powered solu-
tion for wearable motion sensing for human physical activity
recognition. The new motion sensor provides a new per-
spective for boosting the battery life of wearable sensor
nodes. The main contributions of this paper are summarized
as follows.

1) We develop the first self-powered solution from the
sensor itself for wearable motion sensing for human
physical activity recognition for the application in WIoT.

2) We develop the detailed physical model, design method,
fabrication and manufacturing process, and performance
valuation for both self-powered motion sensing and
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Fig. 1.

energy harvesting in one device. Our triboelectric motion
sensor can both achieve self-powered motion detection
for physical activity recognition and energy harvesting.

3) We prove the concept that different from the exist-
ing TENGs, using only low-cost materials and
manufacturing method without adding any nano- or
micro-structure on the contacting surfaces can also pro-
vide reasonable output for practical applications, which
may enable quick and low-cost mass production in
industry.

4) Our experimental results demonstrate that our system
can achieve similar comparable performance as the
state of the art for the recognition of common phys-
ical activities including sitting and standing, walking,
climbing upstairs and downstairs, and running with
an average successful accuracy of over 80%. In addi-
tion, this triboelectric-based sensor can directly generate
over 30-V peak-to-peak output voltage without any
external signal conditioning circuits during random low-
frequency motion (1-10 Hz), which enables energy
harvesting simultaneously and reduces more than 25%
energy consumption of the whole sensing hardware
system.

This paper is organized as follows. Section II provides a
brief review of WIoT on human physical activity recogni-
tion. Section III presents the overall system architecture of our
proposed motion sensor in the front end of WIoT. Section IV
illustrates the detailed physical model and design of tribo-
electric motion sensor and the theoretical analysis of energy
harvesting. Section V describes the algorithms and validation
experiments of activity recognition based on the self-powered
motion sensor. Section VI describes the experimental valida-
tion of energy harvesting. A summary of the study is given in
Section VIIL

II. LITERATURE REVIEW
A. WiloT

Due to the emerging stage of WIoT, we first provide a
brief overview to illustrate the concept. WIoT is a recently
emerged concept of technological infrastructure that enables
wearable body-worn or near-body sensors to communicate
with each other and/or then connect to Internet access, which
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makes it viable for automating out-of-hospital healthcare with
doctors in the loop, including remote diagnostic monitoring,
treatments, and interoperability between customers and physi-
cians [3]. A typical WIoT generally consists of wearable body
sensor network (WBSN), interconnections with Internet for
more services such as cloud computing and services, and fur-
ther data analytics for decision support. Generally, WBSN is
used as the sensing front end from human, which collects
various data from human body directly for monitoring and
therapeutic uses, or indirectly to sense human fitness, behavior,
and rehabilitation [2].

In WIoT and its front end WBSN, a variety of vital signals
can be acquired to provide data for long-term monitoring and
disease diagnosis, especially for chronic conditions. A typical
architecture of WIoT is shown in Fig. 1. In this paper, we
focus on human activity recognition.

B. Human Physical Activity Recognition

Human physical activities are body movements related
to skeletal muscles such as sitting, walking, stair climbing,
falling, etc. The recognition of physical activities has exten-
sive applications in health management, medical diagnosis
and rehabilitation [17], [18], and has been considered as a
valid approach for preventive, proactive treatment of cardio-
vascular diseases [19], diabetes [20], and obesity [21]. In
addition, due to the increasing aging population worldwide,
monitoring and assisting the activities of elderly people during
their daily life has received considerable attention [22], [23].
Human physical activity recognition has much progress in
recent decades, which can be generally classified into two
categories, vision-based activity monitoring using single or
multiple video cameras [24], [25] and inertial measurement
units (IMUs) based on motion sensors such as accelerome-
ters, gyroscopes, etc. These video-based systems can achieve
high detection accuracy; however, they are limited to activities
in certain areas such as well as the natural lighting condi-
tions. Technical advances in recent years have made these
sensors wearable and low cost. A number of studies using
IMU-based physical activity monitoring have been proposed
with new wearable system design [26] and robust and valid
algorithms [27]-[30].
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Fig. 2. System architecture.

C. Low Power Wearable Motion Sensors

For various WIoT, power supply is one of the major
challenges for long-term monitoring, especially for
aging population. Reducing power consumption of these
wearable sensors and investigating power resources from
ambient environment are two key issues for designing self-
powered wearable devices, which has attracted much attention
in recent years. Cohn et al. [31] successfully lowered the
energy consumption of the wearables sensor down to 6.6 uW
by developing an ultralow power motion detector to wake
up the sensor node. Jafari and Lotfian [32] reduced at least
three orders of the energy consumption of regular methods by
their proposed low power architecture based on dynamic time
warping. Although lots of studies have successfully decreased
the power consumption of these IMU-based systems, the
power issue still acts as a major concern in sustainability
especially for long term monitoring. For these IMU-based
motion sensors and systems, energy harvesting from motion
is considered as a promising solution [4]. In our solution,
both of the two key issues are considered for developing the
self-powered and energy harvesting enabled wearable motion
sensor system.

III. SYSTEM ARCHITECTURE

The wearable triboelectric motion sensor system consists of
a triboelectric structure acting as both a self-powered motion
sensor and an energy harvester and two corresponding sub-
systems for the two functions. Fig. 2 shows the sensor/energy
harvester design and the overall system architecture. The left
of the figure locates the proposed motion sensor, the output of
which is connected with two subsystems. More detailed illus-
tration about the motion sensor is presented in Section IV.
The subsystem of the activity recognition consists of a wireless
node for transmitting data and the physical activity recognition
module for activity data collection and recognition. The other
subsystem of motion energy harvesting includes the rectify-
ing circuit for power conditioning and the energy harvesting
verification module. The basic idea of the system design is to
transform human motion to contact and separation sequence
of the two active tribomaterial (i.e., triboelectric sensitive) lay-
ers, resulting in motion signals for activity recognition without
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power supply and energy harvesting verification. The design
sketch of this motion sensor is shown in Fig. 3(b) and the
detailed mechanism and model is illustrated in Section IV. The
output signal of the motion sensor is captured by a 10-bit ADC
and transmitted to the laptop wirelessly via the nRF24L01+
wireless node. The original high output of the structure is also
stored by an energy storage component on board. The entire
wireless sensor node is displayed in Fig. 3(a). The motion
data are stored in the laptop for further analysis. In the phys-
ical activity recognition module, a lowpass filter is performed
on the received data. After extracting the statistics features of
the data, regular classification algorithms are developed for the
recognition of patterns among various physical activities. More
details about the procedure for the physical activity recog-
nition is presented in Section V. The experiment results in
Sections V and VI validate the feasibility of this new approach
for physical activity recognition and the possibility to harvest
energy from human motion using this kind of motion sensor.

IV. TRIBOELECTRIC MOTION SENSOR AND HARVESTER

Our new motion sensor design explores the new mecha-
nism of triboelectrification for the conversion from mechanical
motion to electricity, which enables to collect motion signals
caused by human physical activities without any power supply
as well as signal conditioning circuit. Compared to some low-
power consumption motion sensors discussed in Section II,
our sensor design lowers the energy consumption of the sensor
down to 0. In addition, the high output voltage of this motion
sensor is verified in Section VI to further perform energy har-
vesting from the motion. These advantages lead to excellent
energy saving performance of our sensor design.

A. Sensor Design

To enable the conversion from mechanical vibration to
electricity, three mechanisms are generally used in tradi-
tional accelerometers: 1) electrostatics using chargeable capac-
itor; 2) piezoelectricity based on piezoelectric materials; and
3) electromagnetics using motion of magnetic mass [33].

For these three mechanisms, the energy harvesting perfor-
mances of them are significantly impacted by the frequency
of mechanical vibration. Typically devices based on the three
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Fig. 3. Wireless triboelectric motion sensor node. (a) Photograph of the
wireless sensor node. (b) Structure of the motion sensor.

mechanisms resonate with a high Q-factor, which means
that they have a narrow frequency bandwidth [34]. If the
frequency of the mechanical vibration is away from the reso-
nant frequency, the energy harvesting performance will drop
significantly. This is a major challenge when considering har-
vesting energy from human motions which have wide-band
and relatively low and random vibration frequency. Among the
three commonly used methods, piezoelectricity-based method
is the most widely used one. Though many existing stud-
ies [34]-[36] has significantly improved the Q-factor under
certain situations with complex design and advanced materi-
als, piezoelectricity-based methods achieve lower performance
compared to our approach when handling the low and random
frequency vibration source. In contrast, triboelectrification as
an emerging mechanism is utilized in our design of the motion
sensor to convert mechanical response to electric fluctua-
tion due to its superior performance in wide-band and low
frequency vibration. Commonly the surfaces of two materi-
als contacting or sliding on each other will result in opposite
charges on each surface. Subsequently, continuous contact-
separation sequence will generate charge fluctuation which can
be detected with electrodes.

In our design, the triboelectric motion sensor is com-
posed of the substrates to support motion conversion, two
active tribomaterial layers of size 3 x 2.5 cm? (i.e., copper
and polytetrafluoroethylene (PTFE) thick film) for triboelec-
tric generation, and two electrodes for charge collection as
shown in Fig. 3(b). The substrates are used to form a
mass-spring-damper system for dynamic motion conversion
and generate continuous tribomaterial contact and separation.
The output voltage is generated by contact-separation sequence
of the two tribomaterial layers during motion. In the origi-
nal position, the two active layers contact each other. There
are charges accumulating on both surfaces with opposite sign,
and the output voltage between the two electrodes is 0 V.
When there is acceleration caused by motion, the mass with
one tribomaterial layer will be separated due to stiffness of
the spring, resulting in output voltage fluctuating as shown in
Fig. 4(b) and (c).

Due to the fact that the distance between layers and the
thickness of each layer are relatively small comparing with the
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Fig. 4. Mechanism of the triboelectric motion sensor. (a) Motion measure-
ment modeling. Triboelectric mechanism of (b) pressing and (c) releasing.

contact area, the generated output voltage in the open circuit
condition can be expressed as

00x(2)
€0

V() =

ey

where op is the surface charge density generated from tri-
boelectricity caused by contact electrification of two active
layers, x(#) is the separation distance of copper and PTFE,
and g is the vacuum permittivity. According to our previous
experiments and other literature, the surface charge density
can be estimated empirically, which is highly correlated to the
contact materials and the contact condition, and the error of
which is negligible compared to the motion signals.

In view of real system design, it is not feasible to anchor one
part of the transducer to a fixed reference and the other to the
vibration source in most cases [37]. This is why the principle
of inertia is adopted to design the structure of the entire motion
sensor. The substrates are designed to support the dynamic
motion as shown in Fig. 3(b). The substrate of the motion
sensor is composed of a frame, a movable mass connected
with a spring, and a triboelectric generator. The dynamic
motion conversion using this triboelectric structure is modeled
as Fig. 4(a)—(c). The frame is attached to human body which
is the vibration source during motion. The relative motion of
the mass is controlled by the law of inertia. Subsequently,
the system is made vibrate by means of suspending the mov-
able mass to a spring forming a unified mass-spring-damper
system as shown in Fig. 4(a). Equation (2) is to describe the
mass-spring-damper system for motion conversion with the
consideration of triboelectric energy conversion as follows:

mx + (Cmec + Curibo)X + kx = —Mj; (2)

where x represents the motion of the mass which is the sepa-
ration distance of the two tribomaterial layers; X and x are the
second and first order derivative of x, respectively; y represents
the frame movement; m is the movable mass and M denotes
the mass of the frame; k is the coefficient of elasticity of the
spring; and ¢pec and cyipo are the damping coefficients caused
by parasitic effects and electricity conversion as some kinetic
energy of the moving mass is converted into electrical energy
whereas some is damped by parasitic effects of the mechanical
system. With different types of motion input, the generated rel-
ative distance between the upper and lower substrates can be
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Fig. 6. Equivalent circuit model of triboelectric motion energy harvester.

acquired by solving (2). In our experiment, there are two types
of motion scenarios, the free vibration with damped vibration
ended in a relatively longer time and the forced vibration with
periodic motion input during fast movement. The analytical
solution to the free vibration with the substrate attached to the
table for experimental validation can be expressed as

x(1) = Xoefw"’cos<,/1 — E20pt — ¢>) 3)

where x(¢) is the displacement of the mass relative to its equi-
librium position; & = (Cyibo + Cmec) /28 mk and w, = /(k/m)
are the damping ratio and the natural frequency; and ¢ is the
phase shift. When the relative distance x(7) fully follows the
continuous motion input y(f) = Yoe/®, the analytical solution
without considering the coupled term is [38]

2 .
0. 4

0 = w} — w? + 2w
During one motion cycle, the distance between the two active
tribomaterial layers is changing from full separation with
maximum distance, to close enough when finally they will
touch each other as shown in Fig. 4(b) and (c). The motion
cycle repeats with human motion and the output of the volt-
age is fluctuating with the distance change. Subsequently,
the generated voltage can be calculated via (1), (3), and (4),
which is highly correlated to human motion theoretically. The
motion sensor is then validated by applying a low-frequency,
equally controlled, periodic motion (~1 Hz), and the gen-
erated output signal is shown in Fig. 5. The reciprocating
waveform demonstrates that the motion sensor has eligible
stability and sensitivity for sensing motions and the feasibility
for designing a self-powered motion sensor. The peak-to-peak
voltage is around 20 V, which also enables energy harvest-
ing even in low frequency range. Based on the mechanism of
motion conversion and triboelectrification, the new sensor can
generate signal patterns during different activities for activity
recognition without power supply.
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B. Theoretical Analysis of Energy Harvesting

In order to further explore how to harvest motion energy
under low frequency, we then conducted the theoretical anal-
ysis of using the triboelectric motion sensor for power gener-
ation as a motion energy harvester. In this section, we discuss
the theoretical modeling and further validate it in Section VI.
As shown in Fig. 4, the two tribomaterials are forced to get
into contact and separate with each other by the mechani-
cal movement. Subsequently opposite static charges are then
distributed on the contact surfaces of the two tribomaterial lay-
ers because of triboelectrification. In one contact-separation
cycle, these induced charges are generally assumed to be
uniformly distributed on the surfaces of the dielectric tribo-
materials with the charge density of op. According to the
Gauss’s law, this charge generation will result in a surface
potential, Vi = ogdp/c0€,, with the bottom electrode connect-
ing to the ground [39], where g is the vacuum permittivity,
&, is the relative permittivity of PTFE, and dy is the thickness
of the PTFE layer. In the equivalent circuit model, this surface
potential then acts as a voltage source [40]. In addition, as the
area of the two active material layers, S, is much greater than
the distance x between them, the triboelectric structure can be
modeled as parallel plate capacitors as shown in Fig. 6.

When connecting to external loads, the charges are then
transferred and the generated electrical energy can be used by
the load or stored in an energy storage component such as a
larger capacitor. The triboelectric induced charge, g9 = 09S,
and the relative movement of the two substrates of the tri-
boelectric structure, x(#), cause charges redistribution on the
two electrodes with a current through the load. According to
Fig. 4, we propose a new equivalent circuit model as shown
in Fig. 6 shows the equivalent circuit model of the triboelec-
tric structure with a load resistor R. In one contact-separation
cycle, the physical model is actually similar to an electrostatic
harvester with precharged electret in between as charge source.
In previous models, this harvester is generally modeled as a
voltage source in series to a changeable capacitor caused by
input motion. The changeable capacitor is composed of two or
more capacitors in series due to the different dielectric mate-
rials between the electrodes. The changing distance between
the upper and lower part of the energy harvester acts as one
changing capacitor with air in between.

Actually, due to the emerging stage of triboelectric genera-
tors, the equivalent circuit model may still be debating. In this
paper, instead, we propose a new model by adding a current
source, dAgq/dt, in parallel to the changing air layer. This is
because when capacitors are connected in series, each of them
stores instantaneous charge equal to each other. However, this
may not be the case for both air layer and polymer layer.
Assuming that charge amounts through the air layer Cyj; and
the polymer layer Cprpg are gi and g, respectively, then
according to Gauss’s law, we have go = g2 + ¢g1. The trans-
ferred charge amount is then Ag = g2 — q1 = Ao (®)S. In
our proposed equivalent circuit model as Fig. 6, according to
Kirchhoff’s law with the sign marked

dq>
RE = UCy, — UCprrE %)
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where uc,, = q1(t)/Cair(x) is the voltage through the air layer
capacitor, Cair(x) = €0S/x(¢), which is changed by the rela-
tive motion of the upper and lower part, where x(#) can be
calculated by (3) and (4) in those two motion conditions;
Ucprie = q2(t)/CprEg is the voltage through the polymer
layer, Cptrg = €0&,S/dp. Replacing these terms into (5) and
replacing ¢g; with go — ¢2, we have

d d t
R _ 2 (D )4 O (©6)
dt Seo \ & £0

This result is the same as [8] which uses the analysis of elec-
tric field and Gauss’s law without establishing the equivalent
circuit model. By solving (6), we are able to solve for the
analytic solution of g, (#), which can be expressed as

t o X('L') - if(r)ﬂ(f) t z—?ﬂ(r)

@ (1) = / W b "5 dr b mR g (1)
0o Reo

Therefore, the expression of the output voltage through the

load resistor is

]
¢ 4x()
0 RS gt

oox(t) i—? +x(0) _
ugr(t) = — e
£0 Seo

d
5—9 +x(2)

t T
x / 90X i s e, )
0

Reg

According to (7) and (8), the parameters such as triboelec-
tric charge surface density, area of the contact surface, and the
velocity of electrode can be determined empirically according
to experimental condition, and the output voltage can then be
calculated using (7) and (8). Then the generated power can be
estimated by

2
ug(1)
Pou(®) = == ©)
The average power can be estimated by
1 j
Pog = —— [ Poutiar (10)
J N

In the experiment, we validate this model by comparing the
experimentally measured voltage and theoretically calculated
voltage of different load resistors, which has not been con-
ducted in the current literature yet. This equivalent circuit
model for triboelectric energy harvesters may provide a new
solution for fundamental circuit modeling with triboelectric
energy harvester.

C. Energy Saving Performance

For a typical accelerometer-based wearable motion sensor
system, the power consumption of the accelerometer is normally
around 1 mW, and the commonly used microcontroller consumes
nearly 3 mW (e.g., MSP430 consumes about 3 mW in active
mode) with the circuitry about 9 u'W [32]. Therefore, the total
power consumption for the sensing hardware is 4.009 mW. With
our proposed self-powered motion sensor except for the energy
savings fromits energy harvesting function, the sensing hardware
power consumption will be lowered to 4.009 — 1 = 3.009 mW,
which saves almost 25% of the total power consumption for the
sensing hardware. Table I compares the sensing hardware power
consumption of the IMU-based low power wearable sensors
with that of our proposed sensor.
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TABLE I
SENSING HARDWARE POWER CONSUMPTION

Methods [41] [42]
Power consumption (mW) 18 5.2

[32] Proposed
425 3

V. EXPERIMENTAL RESULTS ON ACTIVITY RECOGNITION

Human physical activity recognition has become a highly
attractive task for many applications, not only in the field of
human-centered healthcare but also in developing advanced
human-machine interfaces because of the valuable information
including various biomechanical and physiological parameters
of human physical activities. In human-centered healthcare,
human physical activity plays an important role in the ther-
apy of mobility reducing disorders such as chronic pulmonary
disease, obesity, stroke, and so on [17]. For example, in
chronic pulmonary disease, pulmonary rehabilitation requires
general exercise to improve physical functioning and quality
of life, which is typically performed with in-hospital pro-
grams for improvements in the ability to carry out daily
physical activity such as periods of extended walking. With
the wearable physical activity recognition technology such
as the one proposed in this paper, the pulmonary reha-
bilitation can be achieved through low-cost out-of-hospital
healthcare, and the life quality of the patients can be greatly
improved. In the field of human-machine interface, human
physical activity is able to provide the useful source of
contextual knowledge for developing more complex and
abundant human-machine interactions [28]. For example, in
some movement supporting systems for motor-impaired peo-
ple and elderly, physical interaction can be designed for the
smart recognition of human physical activities as well as
detecting fall.

In this paper, the wireless triboelectric motion sensor is
placed on the upper part of the calf to collect the motion
data generated by different activities. Experiments are con-
ducted to collect specific motion data for walking, sitting and
standing, climbing stairs, and running. The patterns of the data
originated from these different activities are recognized by
classification algorithms.

A. Experiment

In the experiments, the application for human physical activ-
ity recognition is validated. For the recognition objective, we
choose the common activities including sitting and standing,
walking, climbing upstairs, downstairs, and running for activ-
ity recognition. To demonstrate the functionality of physical
activity recognition, a classic classification problem will be
solved in the following parts. The most popular classification
methods, namely support vector machine (SVM) and logistic
regression (LR), are used to illustrate the effectiveness of our
sensor design. Although other classification methods such as
k-nearest neighbors, neural network can also be used, accord-
ing to our experience, the performances of these methods are
similar.

B. Activity Recognition

In the experiment, people wear the wireless sensor
node as Fig. 7 shows, and perform actions as instructed.
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Fig. 7. Sensor position in the experiment.

TABLE I
RECOGNITION ACCURACY USING SVM

Activities Description of activities Duration
a Sitting and standing 5 times
b Walking 10 steps
c Climbing stair up 6 steps
d Climbing stair down 6 steps
e Running 10 steps

Continuous activities including the above

f Random

activities

A time-synchronized video recording is used for calibration.
Five groups of tests consist of the dataset and three subjects
are involved in each group of the test. For each subject, after
the sensor node is placed properly, the subject is required to
perform the group of activities in Table II.

After data acquisition, a necessary procedure is used to
determine the training data for the recognition algorithm. As
the great difference of the subjects motion patterns, such as
different walking or running speed, each subject should be
considered individually. First, the patterns of different activi-
ties are extracted manually for each subject to be used as the
training data for recognition from activities a—e in Table II.
Intuitively the element of these activities is one step, so the
waveforms of one-step of these actions are extracted manu-
ally for training samples. For the sitting and standing action,
one sitting and standing action counts an element. Take walk-
ing as an example. According to the video, the waveform of
each step can be located by the time period that each step
lasts. For a simple implementation of the further recognition
algorithm, the time period of one-step of walking is con-
stant, which is the mean time periods of one-step of walking.
Fig. 8 shows the waveform of one-step of different actions and
Fig. 9 shows the typical waveform of walking and running
as examples. It has been discussed that the statistical metric
is popularly used in physical activity recognition with small
computational cost and minimal memory requirements [43].
The statistic parameters are used as the features of training
data including the mean, variance, max, min value and root
mean square (RMS) of the training sample. For example, one-
step of walking is extracted as the training dataset. The mean
M, variance V, max value Max, min value Min, and RMS of
the one-step walking are chosen to be its features. In order to
demonstrate the performance of this sensor in physical activ-
ity recognition, two standard classification algorithms are used
for the physical activity pattern recognition in this experiment.

one step walking one step running
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Fig. 8.  Waveforms of one step of walking and running sample.
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Fig. 9. Waveforms of walking and running.
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Fig. 10. LR model for activity classification.

C. Physical Activity Recognition Algorithm

1) Logistic Regression: LR is a statistic regression method
for classification based on probability, which is able to map a
set of explanatory variables x;, that can be discrete and/or con-
tinuous, to binary response variable y; € {0, 1}, as illustrated
in Fig. 10. This is performed by estimating the probability
using the function of the form [44]

P(y=1[X) = hg(X) = (1)

11 e

where y is the binary response variable, X is the explanatory
variable, and 6 is the coefficient vector determined from train-
ing process. In the training process, the classifier is constructed
by determining the value of 6 to make that the probability
P(y = 1|x) = hp(x) is large when x belongs to the class of
y = 1 and small when x belongs to the class of y = 0. For a
given set of training sample with binary labels, the value of
0 can be calculated by solving the optimization problem of
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Fig. 11.  SVM for activity classification.

minimizing the following equation [44]:
J(O) = - Z(yilog(he(xi)) + (1 —yplog(l — ko (x))).  (12)

After the determination for 6, the classification can be
performed by checking whether the classifier

1
ho (x) = I

13)

2) SVM Algorithm: The method of SVM is widely involved
in many research areas and proved to be an effective way
to perform classification used to recognize the pattern of
activities [45]. The SVM separates data using linear decision
hyperplanes. If the data cannot be separated linearly, SVM
utilizes a kernel function to transform the data into a new
vector space so that the data can be linearly separated. The
SVM approach constructs a hyperplane or set of hyperplanes
in this new high- or infinite-dimensional space, which can be
used for classification, regression, or other tasks. Intuitively,
a good separation is achieved by the hyperplane that has the
largest distance to the nearest training-data point of any class
(so-called functional margin), since in general the larger the
margin the lower the generalization error of the classifier.

Here one step walking sample is used as the positive train-
ing data [p;, 1], in which 1 represents the walking group, and
other activities including sitting up and down, running and
climbing stair are used as negative training data [n;, 1], O rep-
resents the nonwalking group. Thus, the training data can be
expressed by

T = {lpi 11. [}, 0]},

The next step is to map these training data to a higher
dimension space so that we can find a maximum-margin hyper-
plane that divides the walking group and other activities group,
which is called the SVM classifier. In this paper, a quadratic
kernel function is selected to transform the data to a new vec-
tor space. Finally, new test samples, z;, can be classified by
the hyperplane as shown in Fig. 11.

The procedure of implementing the two algorithms for phys-
ical activity recognition is similar. Take walking for example,
the main steps are performed as follows.

1) Preprocess the Original Signal: Using the low-pass fil-

ter to remove the high frequency components, as the
walking frequency is generally lower than 10 Hz.

i=1,2,....5j=12....N. (14
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TABLE III
RECOGNITION ACCURACY USING LR

Continuous Recog.

activities sitting Rei;(')g. Recog, d Recotg.. Recqg.
No. standing walking  upstair ownstair  running
#1 95.4% 87.0% 86.0% 76.7% 97.7%
#2 71.2% 83.6% 77.5% 69.3% 85.1%
#3 81.8% 74.4% 90.9% 78.1% 89.1%
#4 83.3% 75.9% 88.8% 77.7% 89.7%
#5 62.7% 75.4% 38.6% 43.2% 83.7%

Average 81.4% 80.2% 72.5% 65.5% 84.6%

TABLE IV
RECOGNITION ACCURACY USING SVM
Continuous Recog.

activides  sitting GRS mstair rumnin
No. standing g P 2
#1 91.7% 75.0% 54.8% 66.7% 95.2%
#2 76.2% 78.6% 69.0% 71.4% 92.8%
#3 88.2% 87.3% 92.7% 85.5% 90.9%
#4 85.4% 80.3% 72.2% 74.5% 93.0%
#5 62.7% 83.6% 76.5% 74.1% 93.1%

Average 80.8% 81.0% 73.0% 74.4% 93.0%

2) Extract the One Step of Actions As Training Data
Manually and Compute the Five Features: Mean,
variance, max, min, and RMS. According to the
methods described above, a formula of the classi-
fier is constructed. Then search in the sample data,
S(x1,x2, ..., x,) by scanning with a window of the same
length of the training data and computing the features.

3) Calculate (11) and the hyperplane for the test samples
to determine if the sample is a walking action.

All the activity recognition follows the above steps. Fig. 12
shows the sitting, walking and running period recognized dur-
ing a period of continuous activities of two subjects. The ratio
between correct recognition periods and real activity periods
is selected to indicate the recognition accuracy. The correct
recognition periods include the correct target activity and non-
target activity periods. They are also called true positive and
true negative. On the contrary, the false detection can be
defined as the ratio between false recognition periods and the
real activity periods. The false recognition periods including
the false target activity and nontarget activity periods as false
positive and false negative. The final results of both algorithms
are listed in Tables III and IV. From Tables III and IV, the
recognition accuracy of over 80% can be achieved for walking,
sitting, and standing. However, that of climbing upstairs and
downstairs is relatively low, which needs further investigation.

To improve the recognition accuracy, the proper training
samples of activities according to the features should be
selected carefully. As the objective is to recognize the time
period of activities, the length of training sample can be opti-
mized to maximize the recognition accuracy. According to our
experiment, the length of activity affects the feature to the
extent that a longer training sample has better performance in
the recognition. Fig. 13 shows the different training samples
of walking. Though the one step of walking sample is quite
similar, there are still some strayed waveforms that diversify
the one step of walking samples. Considering the three step
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Fig. 12.
shows the recognized walking in red, the same as other two figures.
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Fig. 13. Waveforms of walking samples.

training sample, it seems that the difference of single step
waveform makes it better capability of fault tolerance. To ver-
ify the idea, different length of training samples are chosen for
the recognition. Fig. 14 presents the result of different length
of training samples. There are three parts of the whole activ-
ity. The first part contains five sitting up and down actions,
and the second part is ten steps of continuous walking, and
the third part is ten steps of continuous running. It can be
shown that one step training sample has lower recognition
accuracy, and the three and five step training samples have
a close recognition accuracy. In this way, the proper training
sample can be obtained to maximize the recognition accuracy.
On the other hand, this training sample can hardly recognize
one or two steps of walking, which means the recognition
precision is lower. This tradeoff depends on the objective of
specific recognition tasks which is out of the scope of this
paper.

For human physical activity recognition, the recognition
accuracy is still a big challenge, especially in some rehabilita-
tion therapy program which requires strict activity recognition,
as some activities may have similar patterns of motion sig-
nals such as climbing upstair and downstair. The above
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Fig. 14. Red part is recognized walking using (a) one step walking sample,
(b) three step walking sample, and (c) five step walking sample.

discussion is one of the options for improving the activ-
ity recognition accuracy. In fact, there still exists many
options to work out. For example, more advanced feature
may be extracted from the motion signal of the activi-
ties as well as well-designed algorithms can be performed
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vesting. (a) Theoretically calculated voltage curve of different resistors.
(b) Experimental results of voltage curve of one time motion.

to better classify different activities. These can be our
future works.

VI. EXPERIMENTAL RESULTS ON ENERGY HARVESTING

Our motion sensor can achieve high output voltage under
low and random frequency based on triboelectrification,
demonstrating the feasibility to work as an energy harvester.
Thus, we also investigate the energy harvesting performance
of this ultralow-cost triboelectric structure with simulation and
experiment.

A. Sensor Output Simulation and Experiment

The simulation is based on the theoretical analysis in
Section IV for the voltage between the two electrodes with
and without load resistors. An experiment for evaluating the
performance of energy harvesting was also conducted to val-
idate our theoretical analysis. For the theoretical analysis,
the voltage curve of one cycle, which is the process starts
from contact to separate until the distance between electrodes
arrives xmax, 1S calculated by estimation of constant param-
eters. According to (8), the voltage curve can be plotted as
Fig. 15(a) by specifying the parameters estimated below.

1) Maximum separation distance: 0.003 m.

2) Thickness of PTFE: 200 pm.

3) Area size of the contact surface: 7.5 cm?.

4) Triboelectric charge surface density: 10 £C/m?.

5) Average velocity, v: 0.1 m/s.

Different resistors are used to investigate how the voltage
varies when the two layers contact and separate. Fig. 15(a)
shows the simulation results, from which it can be noticed
that the maximum voltage it can achieve goes up when the
value of load resistors goes up. The time of the process of the
voltage variance is at the millisecond level which appears as
a sharp peak from the normal voltage curve. In addition, the
time interval of one cycle of the process will increase with
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Fig. 16. Energy harvesting subsystem testing architecture. (a) Connecting
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Fig. 17.  Voltage of the load resistor during motion-induced contact and
separation.

the value of the resistor increases. In the experiment, the sen-
sor is controlled to make the two layers contact and separate
at a certain speed so that the signals can maintain a rela-
tively stable frequency at 5 Hz. Different values of resistors
are tested by connecting individually between the two elec-
trodes of the triboelectric structure as shown in Fig. 16(a). The
voltage of the resistor is measured by a digital oscilloscope.
Fig. 17 shows the instantaneous voltage waveform generated
by contact-separation sequence of the two tribomaterial layers
in the triboelectric structure without load resistor or capacitor.
Fig. 15(b) indicates the different load curves of a one-time
motion. The average power calculated in a one-time motion
can be up to 3 uW.

B. Energy Harvesting Experimental Validation

The experimental results show that the generated output
voltage align with the envelope of calculated results in which
the voltage of the load resistor, ug, shows a damped sinu-
soid waveform. This waveform does not change much with
load resistance, whereas it is dominated by the input motion
frequency, which aligns with our proposed model. The damp-
ing of the sinusoid waveform is theoretically caused by the
damping resulting from mechanical parasite effects and energy
conversion as illustrated in (2) and the damping of surface
charge density caused by triboelectricity. In the simulation,
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TABLE V
PARAMETERS WHEN CHARGING CAPACITORS

Capacitors Max Time for charging Max
l() F) voltage to max voltage peak power
i V) (sec) (W)
2.2 0.53 16.5 9.4
4.7 0.43 29.7 7.1
10 0.41 51.2 7.0

we did not consider the damping of surface charge density.
The difference can come from the following reasons.

1) In the theoretical analysis, the surface charge density
is assumed to be a constant. This is because of the
relatively stability of PTFE. However, as we use cop-
per as another active tribomaterial, the generated surface
charge density, oy, is probably follows o (1) = e /7).
In the real experiment, the generated charge distribution
may further be influenced by surface condition, envi-
ronment, and external load, which could be small and
changeable.

2) In the real movement, the distance between the two
tribomaterial layers x(7) is not ideal as the theoretical
calculation, as the spring constant in the experiment
can be higher than the experimentally measured one
during random motion. Therefore, the nature frequency
of the motion structure which finally dominates the
frequency of the voltage of the load resistor is actu-
ally higher in the experiment, which will cause signal
envelop mismatching.

3) Due to our sensor design for activity recognition, the
maximum separation distance is not high which also
cause lower output voltage.

In order to harvest the motion induced energy, we add a
power conditioning circuit which is based on a bridge rec-
tifier circuit and an energy storage component which are
different capacitors for calibration. Three capacitors of 2.2,
4.7, and 10 uF were selected to investigate the harvesting
performance. Fig. 16(b) shows the energy harvesting test-
ing architecture. The oscilloscope is to measure the capacitor
voltage which indicates the harvested energy. Also, the input
motion is controlled at approximately 5 Hz. The triboelectric
structure is forced to vibrate under 5 Hz to charge the capaci-
tor. Fig. 18 presents the results of charging different capacitors.
The 2.2-uF capacitor can be charged fast until reaching the
maximum voltage which is 0.53 V in 16.5 s. Then the input
motion stopped the capacitor to discharge. The maximum peak
power can be achieved is up to 9.4 uW for the 2.2-uF capac-
itor; however, the discharging is also fast. Table V shows the
results of the energy harvesting performance when charging
capacitors. It can be noticed that the sensor can provide con-
tinuous voltage for the capacitor when the motion continues,
which means it is able to harvest energy from the motions.
The amount of the harvested energy can be up to the same
amount of consumed energy by the circuitry of the sensing
hardware as mentioned in Section IV.

One might wonder whether the performance can be further
improved. There are two possible ways that can be considered.
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Fig. 18. Voltage of charging different capacitors.

The first is to increase the contact surface area by decorat-
ing the contact surfaces with structures such as pectination.
The second way is to change the contact materials to other
more triboelectric sensitive materials. Both of the two meth-
ods can increase the generated voltage level by the triboelectric
structure which can be our future work. In addition, energy
saving performance can also be improved via other methods.
As wireless transmission is one of the basic aspects of the
WIoT technology, which consumes most of the energy supply
of wireless wearable devices, reducing the amount of signal
transmission is also considered as a promising method. This
is also our future work.

VII. CONCLUSION

In this paper, we develop the first self-powered solution of
wearable sensor system for physical activity recognition based
on triboelectrification other than the traditional motion sen-
sors. We demonstrate the dual functionality of the proposed
wireless system of physical activity recognition and energy
harvesting using the same triboelectric structure. For activ-
ity recognition, the signal conditioning circuit of the analog
signal is not needed for this new design. Regular methods
including SVM and LR are used for pattern recognition. The
successful accuracy can reach up to 90% for certain activ-
ity, which showed the similar comparable performance to the
state of the art. The energy harvesting performance was vali-
dated by charging different load resistors and capacitors under
low frequency motion. The power consumption of the sensing
hardware is estimated and compared with similar IMU-based
low power wearable sensor systems, which saves at least 25%
of the power of regular sensing hardware. This system demon-
strates the feasibility of providing new solutions considering
energy consumption and enable physical activity monitoring
using WIoT in daily life at very low cost.

Further, theoretical and practical contributions can be sum-
marized. For the theoretical contribution, we design the first
triboelectric structure coupling with a damping system for
sensing and recognizing human motion and harvesting energy
from human motion at the same time using triboelectrification
mechanism. We theoretically analyze and verify how human
motion is detected and transferred to output signals. In addi-
tion, we develop the equivalent circuit model for understanding
how mechanical energy in human motion can be harvested
by using our design. For the practical contribution, according
to our theoretical analysis, we develop the first self-powered
solution of wearable sensor system for human physical activ-
ity recognition. The recognition rate of the physical activity



4452

of our system is comparable to the state of the art, while the
energy saving functionality saves at least 25% of the power
of regular sensing hardware. Our newly proposed method not
only develops a feasible application for performing task of
human physical activity recognition using WIoT technology
with self-powered motion sensor devices, but also provides a
new perspective for solving the problem of the power limit of
WIoT in future studies. As WIoT is playing an increasingly
important role on various human-centered applications, this
new perspective will bring in a promising foundation for con-
structing the next generation self-powered WIoT by facilitating
various wearable applications.
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