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Energy-Efficient ECG Signal Compression for User Data

Input in Cyber-Physical Systems by Leveraging Empirical

Mode Decomposition

HUI HUANG, SHIYAN HU, and YE SUN, Michigan Technological University

Human physiological data are naturalistic and objective user data inputs for a great number of cyber-physical

systems (CPS). Electrocardiogram (ECG) as a widely used physiological golden indicator for certain human

state and disease diagnosis is often used as user data input for various CPS such as medical CPS and human–

machine interaction. Wireless transmission and wearable technology enable long-term continuous ECG data

acquisition for human–CPS interaction; however, these emerging technologies bring challenges of storing

and wireless transmitting huge amounts of ECG data, leading to energy efficiency issue of wearable sensors.

ECG signal compression technique provides a promising solution for these challenges by decreasing ECG

data size. In this study, we develop the first scheme of leveraging empirical mode decomposition (EMD) on

ECG signals for sparse feature modeling and compression and further propose a new ECG signal compression

framework based on EMD constructed feature dictionary. The proposed method features in compressing ECG

signals using a very limited number of feature bases with low computation cost, which significantly improves

the compression performance and energy efficiency. Our method is validated with the ECG data from MIT-

BIH arrhythmia database and compared with existing methods. The results show that our method achieves

the compression ratio (CR) of up to 164 with the root mean square error (RMSE) of 3.48% and the average CR

of 88.08 with the RMSE of 5.66%, which is more than twice of the average CR of the state-of-the-art methods

with similar recovering error rate of around 5%. For diagnostic distortion perspective, our method achieves

high QRS detection performance with the sensitivity (SE) of 99.8% and the specificity (SP) of 99.6%, which

shows that our ECG compression method can preserve almost all the QRS features and have no impact on the

diagnosis process. In addition, the energy consumption of our method is only 30% of that of other methods

when compared under the same recovering error rate.

CCS Concepts: • Information systems → Data compression; • Applied computing → Health care

information systems; • Hardware → Digital signal processing; • Computer systems organization

→ Sensor networks;
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1 INTRODUCTION

Human interaction is ubiquitous in a variety of cyber-physical systems (CPS), in which user in-

puts need to be well considered in the design and application of these CPS. Among various human

interfaces, physiological signals provide a naturalistic and objective user data input for a great

number of CPS, such as medical CPS (Haque et al. 2014; Méndez and Ren 2012; Zhang et al. 2013b)

and assistive robotics (Schirner et al. 2013). Electrocardiogram (ECG) is one of the most widely

used physiological signals as user data input in human–CPS interaction not only for healthcare

monitoring (Natarajan et al. 2016; Prittopaul et al. 2015; Yang et al. 2016) but also for human–

machine interaction (Méndez and Ren 2012; Zhang et al. 2013b), which necessitates innovative

techniques of continuous data acquisition and analytics. With the increasing advancement of en-

abling technologies for out-of-hospital, patient-centric healthcare, the continuous ECG data acqui-

sition as user data input can be performed by Internet-of-Things (IoT) enabled wearable sensors

(Amendola et al. 2014; Pantelopoulos and Bourbakis 2010), which greatly reduces the healthcare

costs due to in-hospital care and also improves prevention and diagnosis of cardiovascular diseases

and patients’ life quality. As a result, two challenges are generally involved with these wearable

sensors for continuous ECG monitoring. One is the vast amounts of recorded ECG data, which

result in tough requirements of storage and transmission (Jalaleddine et al. 1990; Lee and Buckley

1999). However, wireless enabled wearable sensors impose a stringent constraint on energy con-

sumption due to the vast amounts of data from continuously sampling and their power-demanding

wireless transmission (Cao et al. 2009; Ma et al. 2012; Ryckaert et al. 2005). Therefore, it is desirable

to develop an effective ECG compression technique that can not only achieve excellent compres-

sion efficiency for reducing the amount of data with no impact on ECG monitoring and diagnosis

but also improve the energy efficiency for saving energy in wearable ECG sensors.

ECG signal compression techniques have gained popularity for several decades. Actually, signal

compression for biosignals has been investigated for storage and remote transmission previously

(Jalaleddine et al. 1990; Lee and Buckley 1999; Moses and Deisy 2014). However, most of the high-

efficiency compression methods require high computation costs, which are not feasible for imple-

mentation on resource-limited wearable sensors. As the emerging of IoT enabled wearable ECG

sensors, new ECG compression techniques with low computation complexity are needed. It has

become an emerging technique for low-power ECG compression to boost battery life of wearable

devices. A number of signal compression algorithms for ECG compression have been proposed

and recently reviewed in 2017 (Hooshmand et al. 2017). Generally, ECG compression schemes can

be classified into three categories. The first is the direct methods, including amplitude zone time

epoch coding (AZTEC) (Cox et al. 1968), coordinate reduction time encoding system (CORTES)

(Abenstein and Tompkins 1982), and lightweight temporal compression (LTC) (Schoellhammer

et al. 2004), which generally compress signals by discarding unnecessary samples directly and re-

construct signals using linear approximation. This type of methods is easy to be implemented and

requires less computation. However, if the compression ratio (CR) increases, then the reconstruc-

tion becomes a big challenge. The second is the transform methods that transform the original

signal into other domains and select a part of transforming parameters to reconstruct, in which

Fourier transform (Reddy and Murthy 1986), discrete cosine transform (DCT) (Lee and Buckley

1999), and discrete wavelet transform (DWT) (Rajoub 2002) are popularly used. For these prede-

fined analytical transform bases, the signal features may not be represented well and thus impact

the CR. Third, parameter extraction methods are based on the rationale that the dominant features

can be extracted from signals and used for modeling the signal morphology. Recently numerous

new compression techniques have been proposed with some new perspectives such as neural net-

works (Maglaveras et al. 1998), compressed sensing (Lin et al. 2015; Mamaghanian et al. 2011;

Zhang et al. 2013a), and online learning dictionary (Hooshmand et al. 2017). With a promising
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capability of signal compression, the parameter extraction methods are attracting more and more

investigation.

In this work, we propose a novel ECG compression scheme with high compression efficiency

and energy efficiency based on Empirical Mode Decomposition (EMD) constructed feature dic-

tionary. The proposed method compresses ECG signals with sparse waveform features and thus

achieves much higher CR and lower energy consumption than the state of the art with compa-

rable recovering error rates and diagnostic distortion. The main contributions of this article are

summarized as follows:

• We developed the first scheme of leveraging EMD on ECG signals for sparse feature model-

ing and compression and further proposed a new ECG signal compression framework with

high compression efficiency and energy efficiency.

• We proposed and verified that downsampling operation on feature dictionary significantly

reduces the computation costs for ECG compression as well as the memory size for feature

dictionary storage in the compressing stage with negligible recovering error rate increasing.

• We proposed to use combined compressing, which is able to compress multiple ECG frames

concurrently, and significantly increase the CRwith negligible recovering error rate increas-

ing.

• Our experimental results demonstrate that our method achieves excellent performance for

ECG signal compression from both mathematical distortion perspective and diagnostic dis-

tortion perspective. For the mathematical distortion, the CR of our method is up to 164 with

the RMSE of around 3.48% and the average CR is 88.08 with the RMSE of 5.66%. Compared

with the state of the art, which is around 40 of CR and 5.5% of RMSE, our method achieves

more than twice of the CR of other existing methods with similar recovering error rate of

around 5%. For the diagnostic distortion, our method achieves high QRS detection perfor-

mance with the SE of 99.8% and the SP of 99.6%. In addition, the total energy consumption

including both computation and wireless transmission energy consumption of our method

is only 30% of that achieved by other methods with the same RMSE of 7.5%.

This article is organized as follows: Section 2 introduces the proposed method of ECG com-

pression. Section 3 discusses the performance optimization for the ECG compression method. In

Section 4, the simulation of the ECG compression is presented, and the results are compared with

existing studies in Section 5. A summary of the work is given in Section 6.

2 PROPOSED ECG COMPRESSION FRAMEWORK

In this study, we propose to perform sparse feature modelling on ECG signals to produce a very

limited number of waveform features for developing ECG compression technique of high CR and

alleviate the high recovering error rate issue by transforming the compression process to an op-

timization problem with low computation costs. The proposed framework for ECG signal com-

pression is based on signal decomposition using EMD. As the ECG signal is quasi-periodic, re-

dundancies exist between adjacent beats (Zigel et al. 2000). The EMD algorithm is adopted for the

decomposition of one-beat ECG to extract the sparse waveform features for reducing the redun-

dancies between adjacent beats. Unlike other decomposition methods such as Fourier, wavelet,

and polynomial that use predefined analytical bases, EMD explores the self-similarities and lever-

ages the inherent property of signals for decomposition. The results of the decomposition show

the nonlinearity of the original signal, which is a reasonable choice for modeling the ECG signal

waveform features and constructing a feature dictionary. These features are stored in an online dic-

tionary for ECG compressing and recovering. ECG signals are then compressed to the coefficients

of these features that are then further transmitted via wireless communication. Thus, the proposed
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Fig. 1. System architecture of the proposed ECG signal compression framework.

Fig. 2. The architecture of ECG frame feature dictionary.

ECG signal compression framework includes three phases, feature dictionary construction, ECG

compressing, and ECG recovering after wireless transmission, as shown in Figure 1.

2.1 Feature Dictionary Construction

In ECG compression techniques, as the redundancies exist between adjacent beats in ECG signals,

the traditional ECG compression process generally extracts the quasi-periodic segments for ECG

compression, which are typically between two peaks in ECG signals. During this process, the peak

identification and searching is first performed. In addition, as the recurrent heartbeat periods are

unnecessarily the same length, additional process such as length normalization is further needed

(Hooshmand et al. 2017). These preprocessing procedures for ECG compression require extra com-

putation costs. In our study, a training ECG signal, which is typically the initial part of the ECG

signal, is scanned and extracted sample by sample with a fixed length of window as shown in

Figure 2. The length of the scan window is less than the average length between two peaks and
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greater than the length of QRS complex. The resulting equal-sized subsequent ECG frames are the

training ECG frames that contain the complete features of a typical one-beat ECG signal. There-

fore, the input ECG signals can be segmented with fixed length for compression and no prepro-

cessings such as peak detection and length normalization are needed for incoming signals, which

reduces the computation costs and energy consumption during online processing. The features of

the one-beat ECG are further extracted using EMD and stored in the feature dictionary. Although

the incoming signal is composed of quasi-periodic one-beat ECG, which means the intervals be-

tween two peaks may vary with time, any ECG segment can be matched with a similar training

ECG frame in the feature dictionary. That is, for any equal-sized frame of the input ECG signal,

there is a similar ECG frame in the feature dictionary. The features of this matched frame can

be used to represent the input ECG frame, though differences between the input ECG frame and

stored training ECG frame exist.

ALGORITHM 1: Decompose Signal x (t ) into IMFs (Huang et al. 1998)

(1) Identify all extrema of x (t );
(2) Interpolate the local maxima to form an upper envelop u (t );
(3) Interpolate the local minima to form an lower envelop l (t );
(4) Calculate the mean envelopm(t ) = (u (t ) + l (t ))/2;
(5) Extract the meanm(t ) from the signal and obtain h(t ) = x (t ) −m(t );
(6) Check whether h(t ) satisfies the IMF property. If h(t ) is an IMF, iterate all the above steps on the

residue r (t ) = x (t ) − h(t ). Otherwise, keep iteration on h(t ).

2.1.1 ECG Decomposition. In various ECG compression methods, the decomposition of ECG

signal into different bases is the essential of these ECG compressionmethods. Typical bases such as

sinusoid functions, polynomials, andwavelets are used. However, these predefined analytical bases

limit the compression performance, since the recovering of ECG signal often requires numerous

bases, which greatly impact the compression rate. In this study, we propose to leverage EMD for the

feature extraction of ECG as the bases. Unlike other decomposition methods that use predefined

analytical bases, EMD explores the self-similarities and utilize the inherent features of signals for

decomposition. In addition, the inherent features are sparse, which greatly reduces numbers of

feature bases for signal recovering. The reason for the sparsity of the features is that EMD is able

to decompose a signal into a finite number of IntrinsicMode Functions (IMF) that have the property

that the number of extrema and zero-crossings in an IMF differ at most by one (Huang et al. 1998).

By decomposing signal into finite number of IMFs, the nonlinearity of signal can be represented by

the sparse IMFs. The algorithm for decomposing a signal into IMFs is as Algorithm 1 (Huang et al.

1998). Figure 3 shows the EMD applied on different ECG frames. With these IMFs, one training

ECG frame in the dictionary can be recovered by the simple summation of all its IMFs, whereas

one input ECG frame that has matching waveform feature with the training ECG frame can be

recovered by solving

min
α

�
�
�
�
�
�

�
�
�
�
�
�

Y −
M∑
i=1

αi IMF i
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(1)

where Y is the input ECG frame, αi is the coefficient of the ith IMF from the training ECG frame,

andM is the total number of decomposed IMFs. Therefore, the input ECG frame can be represented

by

Y =
M∑
i=1

αi IMFi + R (2)
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Fig. 3. EMD on different frames of ECG signal.

where R is the residue error of the reconstruction of the input ECG frame. Figure 4(a) displays the

reconstruction of typical ECG frames with the training ECG frame that has matching waveform

features. The recovering of ECG frames shown in Figure 4(b) verifies the feasibility of IMFs as the

sparse waveform features of ECG signal.

2.1.2 Feature Dictionary Construction. The feature dictionary contains two layers as shown in

Figure 2. The first layer is the training ECG frames that are a series of subsequent N -sample-

length ECG frames extracted from scanning one heartbeat period in the training ECG signal us-

ing N -sample-length moving windows. The second layer stores the IMFs decomposed from the

training ECG frames in the first layer using EMD. Each column contains the M number of IMFs

decomposed from the corresponding training ECG frame. As mentioned previously, the length of

the scan moving window should be less than the average length between two peaks and greater

than the length of the QRS complex. For example, in Figure 4(a), the length of N = 360 samples

is selected for the moving window to cover the complete features of one-beat ECG signal. The

start point of the scan can be the center between two peaks or the peak of the QRS complex. The

moving distance of the moving window is also selected as N = 360 samples. Therefore, the feature

dictionary is constructed by extracting N (for this case N = 360) subsequent ECG frames from

the ECG time series for the first layer and further performing EMD on each ECG frame to obtain

the IMFs for the second layer. The number of IMFs, M , is empirically selected according to ECG

signals, as the EMD results in finite number of IMFs. Typically, more IMFs used for reconstruction
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Fig. 4. Recovering ECG frames with IMF features. (a) The training ECG frame and input ECG frame 1 and

2 with similar waveform feature. (b) Recovered input ECG frame 1 and 2 using IMFs from EMD on the

training ECG frame. (c) The downsampled training ECG frame and downsampled input ECG frame 1 and

2 with similar waveform feature. (d) Recovered input ECG frames by compressing via downsampled input

and feature dictionary and recovering via undownsampled feature dictionary.

will result in less error in the reconstruction and obviously more computation, memory size, and

energy consumption for wireless transmission.

2.1.3 Feature Dictionary Downsampling. As shown in Figure 2, the feature dictionary D stores

the complete features of the one-beat ECG signal, which requires relatively large memory size

for storage. However, in wearable devices, memory size is limited as well as the power supply.

To further reduce the size of the feature dictionary, downsampled feature dictionary D ′ is used in
the ECG compressing phase, while the original feature dictionary D is used in the ECG recovering

phase to avoid loss of recovering performance. Consider a signal x[n], the downsampling operation

on x[n] to obtain the downsampled xd [n] is as Equation (3):

xd [n] = x[r · n] (3)

where r is the downsampling rate. The reason of why the downsampled feature dictionary D ′ can
be used in the compressing process is that the IMF features mainly rely on the waveform features.

Signals downsampled with a proper rate will not result in the loss of main waveform features.

Figure 4(c) and (d) show the recovered ECG frames using downsampled feature dictionary for

compressing.

2.2 ECG Compressing

In the ECG compressing phase, the incoming input ECG signal is first cut out to obtain K input

ECG frames that are further downsampled for producing the downsampled input ECG frames, Yj ,
1 ≤ j ≤ K , where K is the total number of frames cut out from the input ECG signal, with down-

sampling rate r used in the feature dictionary downsampling. The downsampled input ECG frame

Yj and feature dictionaryD
′ are used for compressing the jth input ECG frame to coefficients of the

IMFs, which represent the compressed ECG signal and will be used for original signal recovering

in the third phase. The detailed procedure is described in the following steps.

2.2.1 ECG Frame Matching. With the downsampled input ECG frame Yj , finding the matching

training ECG frame in the first layer of the downsampled feature dictionary D ′ is the first step.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 40. Publication date: August 2019.
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Fig. 5. ECG compressing using combined compressing. (a) The input ECG signal is cut out to three input

ECG frames. (b) Recovered ECG signal using combined compressing.

Suppose Ij is the index of the matching training ECG frame, this Ij th training ECG frame will

have the most similar waveform with Yj among all the training ECG frames. The similarity can

be represented by the Pearson correlation coefficient, whereby two waveforms with the highest

Pearson correlation are considered similar. Therefore, the ECG frame matching process is to calcu-

late the Pearson correlation coefficients between the input ECG frame Yj and all the training ECG
frames in the dictionary and then find the matching frame with index Ij , which has the maximum

correlation coefficient with Yj , so that the corresponding IMF features can be used to represent Yj .

2.2.2 ECG Compressing. The compressing process is to represent the downsampled input ECG

frame Yj by the IMF features found in the previous process according to Equation (1). By solving

Equation (1), the coefficients of IMFs, α , can be determined and Yj is compressed to those coeffi-

cients. Equation (1) is a typical underdetermined system, which can be solved using least squares

method. The coefficients α are obtained according to Equation (4):

α = (IMFT IMF )−1IMFTYj (4)

whereα is the vector of coefficients of each IMF andα = {α1,α2, . . . ,αM }, IMF = {IMF1, IMF2, . . . ,
IMFM }. The inverse matrix of (IMFT IMF ) can be the pseudoinverse matrix in case it is non-

invertible. With Equation (4), the compressing process can be easily implemented compared with

other compression methods that require a more complicated process for signal compression. Also

the computation can be well controlled to optimize the overall energy consumption. However, the

data to be transmitted only include the coefficients α and the index Ij of the matching training

ECG frame. The compressed ECG frame only containsM + 1 numbers.

2.2.3 Combined Compressing. According to the compressing process described previously, in

one compression cycle only one input ECG frame can be compressed. To increase the compression

rate, there are basically two options. One is to decrease the number of IMF features,M ; the other is

to increase the length of each input ECG frame, N . However, as the IMF features greatly impact the

recovering performance and a lower M brings more errors in the recovering process, decreasing

M may not be a good option. Since the length of the training ECG frame in the feature dictionary

is equal to that of the input ECG frame (i.e., both have N samples), directly increasing the length of

both results in more computation and energy consumption and bigger memory size for the feature

dictionary.

In our study, combined compressing is used for increasing the compression rate. The basic idea is

to compress J number of input ECG frames in one compression cycle. For example, J = 3 input ECG

frames are cut out from the input ECG signal as shown in Figure 5 and downsampled to the down-

sampled input ECG framesY1,Y2,Y3. Correspondingly, the indexes I1, I2, I3 of thematching training

ECG frames are obtained as well as the three groups of IMF features denoted by IMF1, IMF2, IMF3.
When J single input frames are cut out, J groups of IMF features will be generated, each of which
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is denoted as IMFj , where IMFj = {IMFj1, IMFj2, . . . , IMFjM }, j = 1, 2, . . . , J . The next step is to

concatenate the three input ECG frames Y1,Y2,Y3 to a long ECG frame Y . The three groups of IMF

features are also concatenated to a group of long features IMF , in which each feature denoted by

IMFm is created by concatenating IMF1m , IMF2m , IMF3m ,m = 1, 2, . . . ,M . Subsequently, the long

input ECG frame Y can be represented by the newly created IMF and compressed to the coeffi-

cients of IMFm by solving Equation (1). In total, the compressed signal includes the three index

number Ij and the coefficients αm , the number of which is M + 3. However, the length of each

input ECG frame is three times longer. Therefore, with combined compressing, the compression

rate is increased significantly.

2.3 ECG Reconstruction

In the last phase, the compressed ECG data will be decompressed to obtain the recovered ECG

signal. According to the previous discussion, the original feature dictionary D is used for the re-

covering process. First, the matching ECG frames Ij as well as the corresponding groups of IMFs

are identified according to the indexes in the compressed ECG data. These groups of IMF fea-

tures are concatenated to a group of long features IMF ′ using the same way in the combined

compressing process. Note that the long features IMF ′ are exactly the concatenated IMF without

downsampling. Therefore, the recovered ECG frame Y ′ is also without downsampling, which can

be generated by the linear combination of the elements of IMF ′ with the respective coefficients

αm as Equation (5):

Y ′ =
M∑
m

αmIMF ′m (5)

where M is the number of decomposed IMFs, IMF ′m is the element in IMF ′. Figure 4 shows the

recovered ECG with one input ECG frame. Figure 5 is the recovered ECG from three input ECG

frames using combined compressing. Consequently, the continuous ECG signal can be compressed

and recovered frames by frames with acceptable error.

3 PERFORMANCE OPTIMIZATION

As described in Section 2, the proposed method contains several variable parameters that affect

the ECG compression performance, since the waveform features of ECG signals vary with dif-

ferent people, sensing devices, and measuring method. The proposed method is able to flexibly

manipulate the waveform features for reducing the redundancy of ECG signals and compression

computation cost and thus improve the compression performance. These parameters include ECG

frame length N , downsampling rate r , number of selected IMF M , and number of combined ECG

frame J . These four parameters can be determined according to specific ECG compression ob-

jective with acceptable reconstruction fidelity. The optimization process can be performed in the

data receiver or data center as the initialization parts of the ECG compression. Typically, the ob-

jectives include minimizing the memory size for dictionary storage, reducing computation costs,

minimizing signal recovering error rate, and maximizing the CR. For example, for minimizing the

memory size, the involved parameters are the downsampling rate r , frame length N , and number

of IMFM . Since the three parameters are independent, the optimization process can be performed

on the three parameters separately. For the complicated cases of achieving multiple objectives, the

tradeoff can be determined from the tradeoff curves of the above parameters. An example case is

presented for the detailed optimization and tradeoff process in the following context.

For the objective of minimizing the computation cost and maximizing the CR with acceptable

error rate, we use the ECG record 117 from the MIT-BIH arrhythmia database, which is explained
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Fig. 6. Original and reconstructed ECG signal of record 117. (a) Part of the original and recovered ECG signal

from record 117. The QRS complex of the ECG signal can be recovered well by our method. (b) The complete

original and recovered ECG signal of record 117. The complete ECG signal can be recovered with acceptable

errors by our method.

in Section 4 as an example to explain the process. For this ECG signal, the parameters of N = 400,

r = 5, M = 6, and J = 3 are selected. Figure 6 shows the recovered ECG signal, which presents

well-recovered waveform features of the ECG signal. In Figure 6(a), in addition to the ECG QRS

complexes, the baselinewandering in the signal can also be recovered. For Figure 6(b), the complete

ECG signal contains motion artifacts that are recovered as well. To explore how the parameters

above impact the performance of the proposed method, each parameter is discussed for evaluating

the ECG compression performance in the following sections. Since the computation cost has a sim-

ple monotonically increasing relationship with other parameters, the tradeoff curves are obtained

by only varying the parameters with the RMSE and CR as shown in Figure 7.

3.1 ECG Frame Length N

The length of the ECG frame N is related to the CR asCR = N /(M + J ) when the other parameters

are considered as constant. Figure 7(a) shows how the RMSE and CR vary with the frame length

N when changing the ECG frame length N from 360 to 460. It shows that the RMSE decreases

first and then increases as the ECG frame length N becomes greater. The reason of why the RMSE

will decrease first is that a longer frame length N is able to include more waveform features of

the one-beat ECG signal. However, if the frame length N is too long, then the adjacent one-beat

ECG signal will also contribute to the waveform features, which impacts the waveform feature

extraction of one-beat ECG and further increases the errors when recovering the ECG frames.

Therefore, number of samples of N = 400 is chosen for this case.

3.2 Downsampling Rate r

The downsampling process for the input ECG frames as well as the feature dictionary not only

lowers the memory size for storing the feature dictionary on sensor nodes but also significantly

reduces the computation complexity for the ECG compression and the computation energy con-

sumption. Figure 7(b) shows the tradeoff curve of the RMSE with variable downsampling rate r .
The value of the RMSE ranges from 5.2% to 6.5%, which means that even the input ECG frames
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Fig. 7. Tradeoff curves of the four parameters, frame length N , downsampling rate r , number of IMF M ,

and number of combined ECG frame J . These parameters enable the capability of our method for flexibly

adapting to different ECG signal compression objectives. (a) Frame length N versus RMSE and CR with

J = 3, M = 6. (b) Downsampling rate r versus RMSE with N = 400, J = 3, and M = 6 .(c) Number of IMF M
versus RMSE with N = 400, r = 5, and J = 3. (d) Number of combined ECG frame J versus RMSE and CR

with N = 400, r = 5, andM = 6.

and feature dictionary are downsampled with r = 10, the RMSE of the ECG recovering only in-

creases by 1%. Onemight wonder that the loss of data by downsampling can still be recovered. This

is because the downsampling process does not lose the waveform features of the one-beat ECG

signal significantly. Although the input ECG frames are downsampled, the waveform features rep-

resented by the IMFs are also downsampled. The coefficients of the IMFs for representing the input

ECG frame will have negligible variation as shown in Figure 4(b) and (d). With the downsampling

process, the computation, the memory size as well as the computation energy consumption of the

ECG signal compression will be significantly reduced with negligible recovering performance loss.

Based on the above discussion, the downsampling rate r = 5 is selected in our experiments.

3.3 Number of IMF Features M

The number of IMFs is determined by the EMD algorithm. Typically, the EMD algorithm will

decompose the ECG signal to finite number of IMFs, in which the main waveform features of

the ECG signal are included within the first several IMFs from the decomposition. As shown in

Figure 7(c), increasing the number of IMF featuresM will result in better recovering performance.

However, more IMF features mean more computation for ECG compression, more coefficients of

the compressed ECG signal with smaller CR and more memory size for the feature dictionary. To

obtain an acceptable RMSE,M = 6 is a good choice for the tradeoff in this case.
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3.4 Number of Combined ECG Frames J

As illustrated in Section 2, the combined compressing method significantly improves the CR for

ECG compression. Figure 7(d) shows how CR changes with increasing J . However, the recover-

ing performance will also be reduced accordingly, as shown in Figure 7(d), since the combined

compressing method only concatenates the combined ECG frames and IMF features. And this op-

eration may lose some of the waveform features located at the junctions of the combined ECG

frames. Although concatenating the IMF features can include most of the waveform features of

the concatenated input ECG frame, some feature loss is inevitable and will be worse if more ECG

frames are combined. In our experiment, the number of J = 3 is selected to obtain an acceptable

RMSE of around 5%.

4 SIMULATION

In this section, we validate our method and optimization using real ECG data simulation. Simu-

lations and performance metrics are described in this section to evaluate the performance of the

proposed ECG compression method from three aspects that are mathematical distortion metric,

diagnostic distortion metric, and energy saving. The performance is then compared with the state

of the art in Section 5.

4.1 Simulation Database

The proposed method is validated using a widely used ECG database, MIT-BIH arrhythmia data-

base (Saeed et al. 2011), which is popularly used by other ECG compression studies (Craven et al.

2017; Hooshmand et al. 2017; Jalaleddine et al. 1990; Lee and Buckley 1999; Lee et al. 2014; Ma et al.

2015; Wang et al. 2016). It contains various arrhythmia ECG records sampled at 360Hz with 11-bit

resolution. For example, typical ECG signals, arrhythmia, as well as ECG signals with baseline

wander, electrode motion, and muscle artifacts are all provided in this database. Therefore, the

above ECG database brings an excellent diversity of realistic ECG signals to evaluate the effective-

ness and performance of our proposed method under various scenarios. Further, as the duration of

one ECG records in the database is long, for easy comparison and visual examination, the duration

of 10–20 minutes of the ECG records is selected from each record.

4.2 Mathematical Distortion Metrics

For the evaluation of compression efficiency and recovering fidelity, we use CR and RMSE to show

quantitative results of the proposed method.

4.2.1 Compression Efficiency. The compression efficiency can be quantified by the ratio of the

total number of bits that are required for the original signal and the compressed bits required for

transmission and recovering as Equation (6),

CR =
No

Nc
(6)

where No is the total number of original signal bits and Nc denotes the number of compressed

signal bits. A larger CR means higher compression efficiency.

4.2.2 Recovering Fidelity. Generally, the signal recovering performance is measured by com-

paring the original signal with the recovered signal. Various mathematical criteria can be used for

evaluating the recovering performance. In our work, since the compressing and recovering process

are based on the waveform feature extraction, the performance of which may be masked by some

standard metric such as percentage root mean square difference (PRD). As pointed out in Blanco-

Velasco et al. (2005), to avoid the performance masking issue of PRD, another metrics of RMSE is
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selected for measuring the recovering performance and can be calculated using (Hooshmand et al.

2017):

RMSE =
1

p2p

√∑L
i=1 (yi − y ′i )2

L
× 100% (7)

where p2p is the average peak-to-peak amplitude of ECG signal, yi and y
′
i are the ith samples in

original ECG signal and reconstructed ECG signal, respectively, and L is the length of ECG signal.

A higher value of RMSE represents a worse recovering fidelity.

4.3 Diagnostic Distortion Metrics

From the point of view of diagnosis, the mathematical distortion metric may not be directly rel-

evant to the diagnostic fidelity of the reconstructed ECG signal. As the essential task of the ECG

diagnosis, the QRS detection from ECG signals plays a vital role in human cardiac health diag-

nosis (Deepu and Lian 2015; Khamis et al. 2016; Kyrkos et al. 1988; Lin and Chang 1989; Pan and

Tompkins 1985). Therefore, the QRS detection performance of ECG signal is selected for evaluating

the diagnostic distortion of the proposed ECG compression method.

The QRS detection performance is based on a popularly used QRS detector (Pan and Tompkins

1985), which can evaluate accuracy of QRS complex monitoring and extraction capabilities in ECG

detection systems. The QRS detector is performed on both the original ECG signal and the recov-

ered ECG signal from compression to get the number of QRS complexes detected. The diagnostic

distortion performance can be evaluated by the following metrics:

Sensitivity (SE) : SE =
TP

TP + FN
× 100% (8)

Speci f icity (SP ) : SP =
TP

TP + FP
× 100% (9)

where TP means true positive, which is the number of QRS complexes correctly detected, FN

stands for false negative, which is the number of QRS complexes not detected, and FP denotes

false positive, which is the number of QRS complexes incorrectly detected. For the meaning of the

two metrics, the SE is the percentage of correctly detected QRS complexes in the recovered ECG

signal of all the QRS complexes in the original ECG signal, which indicates the ability for detecting

QRS complexes correctly. The SP is the percentage of the correctly detected QRS complexes out

of all the detected QRS complexes from the recovered ECG signal, which measures the ability for

identifying non-QRS complexes.

4.4 Energy Consumption Evaluation

To evaluate the energy consumption performance of the proposed ECG compression method, two

kinds of energy consumption are computed. The first is the energy consumption due to the com-

putation of the execution of the algorithm, which can be evaluated by the number of operations

performed in microcontrollers. The other is the energy consumption during wireless transmission.

4.4.1 Computation and Energy Consumption. The amount of the computation can be estimated

from the number of additions, multiplications, divisions, and comparisons, which are further con-

verted to the corresponding number of clock cycles and the energy consumption per cycle con-

sidering ARM Cortex M4 processor (Karakus et al. 2013). The proposed ECG compression frame-

work utilizes an online feature dictionary stored in sensor nodes. Although the computation for

constructing the feature dictionary is high, this part of computation is not included within the

total computation of ECG compression as the feature dictionary constructing is offline and will

be updated according to the health condition of subjects in a certain time period. The on-board
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Table 1. Number of Operations for Compressing an ECG Frame from Record 117

with Length of 1,200 Samples and Parameters of N = 400, R = 5, M = 6, and J = 3

ECG frame matching ECG compressing Total

Additions 1,440 18,936 20,376

Multiplications 960 18,936 19,896

Comparisons 240 0 240

Shifts 0 1,440 1,440

Readings 9,600 1,400 11,040

Writings 0 9 9

Divisions 9 0 9

computation of ECG compression is to find thematching training ECG frames in the feature dictio-

nary and the corresponding coefficients of the IMF features for recovering the input ECG frames.

In the step of ECG frame matching, calculating the Pearson correlation coefficients requires 6N /r
additions, 4N /r multiplications, three divisions as well as N · N /r reading operations. Finding the
maximum coefficients requires N /r comparisons. Therefore, the energy consumption can be cal-

culated according to the following equation:

E1 = N · N
r
εrd +

6N

r
εadd +

4N

r
εmulti

+
N

r
εcomp + 3εdiv (10)

where εrd , εadd , εmulti , εdiv , and εcomp are the energy consumption for read, addition, multipli-

cation, division, and comparison operations per byte in the processor, respectively. In combined

compressing, J number of indexes are obtained for the matching ECG frames and the correspond-

ing energy consumption is J · E1. After concatenating the IMFs from the obtained indexes, the

concatenated IMF features are loaded for compressing the combined input ECG frame. In the

step of compressing, according to Equation (4), the calculation for α requires M · J (N /r ) shifts,
J (N /r ) ·M2 +M3 + J (N /r ) ·M2 +M · J (N /r ) additions and multiplications plusM · J (N /r ) read-
ing andM writing operations. Therefore, the energy consumption for compressing is as Equation

(11):

E2 = J
N

r
·M (εshift + εrd )

+

(
2J

N

r
·M2 +M3 +M · J N

r

)
(εadd + εmulti )

+(M + J )εwrt (11)

where εshift and εwrt are the energy consumption for shifting and writing operation per byte, re-

spectively. Table 1 summarizes the number of operations for the ECG compressing complexity of

record 117 with length of 1,200 samples and parameters of N = 400, r = 5,M = 6, and J = 3.

4.4.2 Wireless Transmission Energy Consumption. For evaluating the energy consumption dur-

ing wireless transmission, a popular wireless transmission platform of Texas Instruments CC2540

low-energy Bluetooth system-on-chip is selected. Although the energy consumption by wireless

transmission varies with different kinds of factors such as distance, the average energy required

for transmitting 1 byte of data can still be estimated (Siekkinen et al. 2012). Therefore, the wireless

transmission energy consumption can be evaluated by the transmitted number of bytes, which is

denoted by εtran, and the total transmission energy consumption is (M + J )εtran.
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Table 2. Results of ECG Compressing Performance

Methods ECG record No. CR RMSE

#101 86.4 6.62%

#102 104.5 5.89%

#103 159.43 4.12%

#105 98.4 5.72%

#107 51.33 6.58%

#113 64.73 5.72%

#115 80.5 4.71%

#117 133.3 5.58%

Proposed #201 62.92 4.91%

#205 104.55 5.16%

#210 60.3 5.82%

#212 70.0 4.79%

#214 68.45 6.94%

#220 164 3.48%

#221 45.3 6.40%

#230 81.3 6.84%

#234 61.91 6.87%

Proposed Average 88.08 5.66%

(Hooshmand et al. 2017) Average 39.50 6.60%

(Lee et al. 2014) Average 13.79 4.20%

(Lee and Buckley 1999) Average 12.0 7.00%

(Wang et al. 2016) Average 23.50 6.80%

(Schoellhammer et al. 2004) Average 32.0 6.50%

(Ma et al. 2015) Average 25.64 5.50%

5 RESULTS

In this section, the results are presented from the corresponding three aspects described in

Section 4 for the performance evaluation of the proposed method. The first one is the compression

efficiency with recovering fidelity bymathematical distortionmetrics. The second is the diagnostic

distortion with the SE and SP for QRS detection; and the third one is the energy consumption for

ECG signal compression with a comparable recovering error rate. Since not all the ECG signals in

the MIT-BIH arrhythmia database are useful, because some ECG signals may have long useless pe-

riods due to disconnection of the ECG sensor or high motion artifacts, the following ECG records

in the database are considered for the experiments: 101, 102, 103, 105, 107, 113, 115, 117, 201, 205,

210, 212, 214, 220, 221, 230, and 234.

5.1 Compression Efficiency and Recovering Fidelity

Table 2 compares the compression performance of the proposedmethodwith other ECG compress-

ing methods. According to Table 2, our proposed method can achieve the CR of up to 164 with the

RMSE of 3.48% and the average CR of 88.08 with the RMSE of 5.66%. The average CR is more than

twice of the othermethods with comparable recovering error rate. Compared to our previous study

(Huang et al. 2018), the compressing performance is improved more than 100% with negligible in-

creasing of the recovering error rate. The results show that the compression performance of our

method significantly transcends the performance achieved by other ECG compression methods.
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Fig. 8. QRS detection on part of ECG record 212. (a) The detected QRS on the original ECG signal. (b) The

detected QRS on corresponding recovered ECG signal. The QRS detected on the recovered ECG signal is

exactly the same as on the original ECG signal, which demonstrates the excellent ability for keeping the

QRS features in ECG signal of our method.

Table 3. Results of Diagnostic Performance for ECG Compressing

ECG record No. QRS in original ECG QRS in recovered ECG TP FP FN SE (%) SP (%)

#101 1,008 1,012 1,008 4 0 100 99.6

#102 1,547 1,546 1,546 0 1 99.9 100

#103 1,083 1,083 1,083 0 0 100 100

#105 1,138 1,133 1,133 0 5 99.6 100

#107 905 914 905 9 0 100 99

#113 968 986 968 18 0 100 98.1

#115 956 966 956 10 0 100 99

#117 1,130 1,116 1,116 0 14 98.9 100

#201 807 826 807 19 0 100 97.7

#205 1,558 1,550 1,550 0 8 99.5 100

#210 976 974 974 0 2 99.8 100

#212 1,092 1,094 1,092 2 0 100 99.8

#214 1,051 1,055 1,051 4 0 100 99.6

#220 1,090 1,076 1,076 0 14 98.7 100

#221 689 707 689 8 0 100 98.8

#230 1,077 1,077 1,077 0 0 100 100

#234 1,161 1,162 1,161 1 0 100 99.9

Total 18,236 18,277 18,192 75 44 99.8 99.6

5.2 Diagnostic Performance

For the proposed ECG signal compression method, the performance from the point of view of di-

agnosis is the ability to keep the QRS features after the ECG compressing and recovering. Figure 8

shows the QRS detection for the original ECG signal and the corresponding recovered ECG signal

in part of the ECG record 212 in the database. Table 3 shows the number of QRS complexes de-

tected from the original ECG signal and the corresponding recovered ECG signal. The diagnostic

performance of the proposed method is evaluated through the SE and SP for the QRS detection

according to Equations (8) and (9). According to Table 2 and Table 3, the proposed method achieves

high QRS detection performance with the SE of 99.8% and the SP of 99.6% with the RMSE of 5.66%.

With the excellent diagnostic performance, the proposed ECG compression method can preserve

almost all the QRS features and have no impact in the diagnosis process.

5.3 Energy Consumption

To compare the energy consumption of the proposed method with other methods, both the com-

putation and the wireless transmission energy consumption are included in the total energy
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Table 4. Energy Consumption Values for Operations per Byte Performed in Processor

Operations
Add.
εadd

Multi.
εmulti

Comp.
εcomp

Div.
εdiv

Readings
εrd

Writings
εwrt

Shifts
εshift

Transmission
per byte εcomp

Energy
consumption (nJ)

3.30 9.90 3.30 9.90 0.26 4.30 3.30 672

Table 5. Average Number of Operations and Energy Consumptions for

Compressing a ECG Segment of 1,200 Samples with RMSE of 7.5%

(Proposed Method of N = 400, R = 5,M = 6, and J = 3)

LTC DCT DWT OD Proposed

Additions 5,035 53,852 31,239 168,822 20,376

Multiplications 0 36,359 27,534 165,636 19,896

Comparisons 4,924 121 30,892 3,948 240

Shifts 0 0 0 0 1,440

Readings 1,200 1,200 1,200 1,200 11,040

Writings 38 100 51 31 9

Divisions 2,536 0 1,292 3760 9

Transmission bytes 38 100 51 31 9

Computation energy (μJ) 1.48 2.96 3.52 23.8 2.72

Transmission energy (μJ) 25.54 67.2 34.27 20.83 6.05

Total energy (μJ) 27.02 70.16 37.79 44.63 8.77

consumption. According to the study in Karakus et al. (2013), the number of computational opera-

tions andwireless transmission energy consumption of several existing ECG compressionmethods

are investigated at the RMSE of 7.5%. Although the ECG compression methods are performed on

different hardware platforms such as different microprocessors, the amount of computation and

compressed ECG signal bits are the same. Therefore, they can be compared with the proposed

method, which evaluates the energy consumption in the same way. In our experiments, the com-

putation platform is the ARM Cortex M4 and the wireless transmission is based on Texas Instru-

ments CC2540. The energy consumptions of unit of operation and transmitted byte are shown in

Table 4 according to Karakus et al. (2013) and Craven et al. (2017). The results from Hooshmand

et al. (2017) are scaled to that of the ECG segment length of 1,200 samples. Table 5 is the compar-

ison of the total energy consumption between the proposed method and other existing methods.

From Table 5, the computation energy consumption of the proposed method has no big difference

from other ECG compression methods presented here, which is mainly due to the downsampling

process and the simple solution for the feature coefficients. In addition, the transmission energy

consumption of the proposed method is much lower than the other existing methods, which is

only 30% of the lowest energy consumption achieved by the LTC method. This is because of the

high CR achieved by using combined compressing. Although combined compressing may increase

the ECG recovering error rate to some acceptable extent, the high CR it achieves can significantly

reduce the total energy consumption for ECG compression for wearable ECG sensing.

6 CONCLUSION

In this article, we develop the first scheme of leveraging EMD on ECG signals for sparse fea-

ture modeling and compression and further propose a new ECG signal compression framework

with excellent compression efficiency and energy efficiency based on EMD constructed feature
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dictionary. Both the compression performance and energy consumption are evaluated using the

popularly used ECG records from MIT-BIH database. The experimental results show that the pro-

posed method can achieve the CR of up to 164 with the RMSE of 3.48% and the average CR of 88.08

with the RMSE of 5.66%. In addition, it achieves high QRS detection performance with the SE of

99.8% and the SP of 99.6%. The energy consumption of the proposed method for compressing ECG

signals is only 30% of that achieved by other methods with the same recovering error rate. The

proposed method is found to have excellent compression performance and low energy consump-

tion comparing to the state of the art, which shows high feasibility for wearable IoT appications

in the long run.
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