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Shannon information theory provides various measures of so-called syntactic
information, which reflect the amount of statistical correlation between sys-
tems. By contrast, the concept of ‘semantic information’ refers to those
correlations which carry significance or ‘meaning’ for a given system. Semantic
information plays an important role in many fields, including biology, cogni-
tive science and philosophy, and there has been a long-standing interest in
formulating a broadly applicable and formal theory of semantic information.
In this paper, we introduce such a theory. We define semantic information as
the syntactic information that a physical system has about its environment
which is causally necessary for the system to maintain its own existence.
‘Causal necessity’ is defined in terms of counter-factual interventions which
scramble correlations between the system and its environment, while ‘main-
taining existence’ is defined in terms of the system’s ability to keep itself in a
low entropy state. We also use recent results in non-equilibrium statistical phy-
sics to analyse semantic information from a thermodynamic point of view. Our
framework is grounded in the intrinsic dynamics of a system coupled to an
environment, and is applicable to any physical system, living or otherwise.
It leads to formal definitions of several concepts that have been intuitively
understood to be related to semantic information, including ‘value of
information’, ‘semantic content” and ‘agency’.

1. Introduction

The concept of semantic information refers to information which is in some sense
meaningful for a system, rather than merely correlational. It plays an important
role in many fields, including biology [1-9], cognitive science [10-14], artificial
intelligence [15-17], information theory [18-21] and philosophy [22-24]
Given the ubiquity of this concept, an important question is whether it can be
defined in a formal and broadly applicable manner. Such a definition could be
used to analyse and clarify issues concerning semantic information in a variety
of fields, and possibly to uncover novel connections between those fields.
A second, related question is whether one can construct a formal definition of
semantic information that applies not only to living beings but also any physical
system—whether a rock, a hurricane or a cell. A formal definition which can be
applied to the full range of physical systems may provide novel insights into
how living and non-living systems are related.

The main contribution of this paper is a definition of semantic information
that positively answers both of these questions, following ideas publicly pre-
sented at the FQXi’s 5th International Conference [31] and explored by Carlo
Rovelli [32]. In a nutshell, we define semantic information as ‘the information
that a physical system has about its environment that is causally necessary for
the system to maintain its own existence over time’. Our definition is grounded
in the intrinsic dynamics of a system and its environment, and, as we will
show, it formalizes existing intuitions while leveraging ideas from informa-
tion theory and non-equilibrium statistical physics [33,34]. It also leads to a
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non-negative decomposition of information measures into
‘meaningful bits” and ‘meaning]less bits’, and provides a coher-
ent quantitative framework for expressing a constellation of
concepts related to ‘semantic information’, such as ‘value of
information’, ‘semantic content” and ‘agency’.

1.1. Background

Historically, semantic information has been contrasted with
syntactic information, which quantifies various kinds of statistical
correlation between two systems, with no consideration of
what such correlations ‘mean’. Syntactic information is usually
studied using Shannon’s well-known information theory and
its extensions [35,36], which provide measures that quantify
how much knowledge of the state of one system reduces statisti-
cal uncertainty about the state of the other system, possibly at a
different point in time. When introducing his information
theory, Shannon focused on the engineering problem of
accurately transmitting messages across a telecommunication
channel, and explicitly sidestepped questions regarding what
meaning, if any, the messages might have [35].

How should we fill in the gap that Shannon explicitly intro-
duced? One kind of approach—common in economics, game
theory and statistics—begins by assuming an idealized
system that pursues some externally assigned goal, usually for-
mulated as the optimization of an objective function, such as
utility [37-41], distortion [36] or prediction error [19,42-44].
Semantic information is then defined as information which
helps the system to achieve its goal (e.g. information about
tomorrow’s stock market prices would help a trader increase
their economic utility). Such approaches can be quite useful
and have lent themselves to important formal developments.
However, they have the major shortcoming that they specify
the goal of the system exogenously, meaning that they are not
appropriate for grounding meaning in the intrinsic properties
of a particular physical system. The semantic information
they quantify has meaning for the external scientist who
imputes goals to the system, rather than for the system itself.

Inbiology, the goal of an organism is often considered to be
evolutionary success (i.e. the maximization of fitness), which
has led to the so-called teleosemantic approach to semantic
information. Loosely speaking, teleosemantics proposes that
a biological trait carries semantic information if the presence
of the trait was ‘selected for’ because, in the evolutionary
past, the trait correlated with particular states of the environ-
ment [1-7]. To use a well-known example, when a frog sees
a small black spot in its visual field, it snaps out its tongue
and attempts to catch a fly. This stimulus—response behaviour
was selected for, since small black spots in the visual field cor-
related with the presence of flies and eating flies was good for
frog fitness. Thus, a small black spot in the visual field of a frog
has semantic information, and refers to the presence of flies.

While in-depth discussion of teleosemantics is beyond the
scope of this paper, we note that some of its central features
make it deficient for our purposes. First, it is only applicable
to physical systems that undergo natural selection. Thus, it is
not clear how to apply it to entities like non-living systems,
protocells or synthetically designed organisms. Moreover,
teleosemantics is ‘etiological” [45,46], meaning that it defines
semantic information in terms of the past history of a system.
Our goal is to develop a theory of semantic information that
is based purely on the intrinsic dynamics of a system in a

given environment, irrespective of the system’s origin and
past history.

Finally, another approach to semantic information comes
from literature on so-called autonomous agents [11,12,14,45-49].
An autonomous agent is a far-from-equilibrium system
which actively maintains its own existence within some
environment [11-14,25,50-54]. A prototypical example of an
autonomous agent is an organism, but in principle, the
notion can also be applied to robots [55,56] and other
non-living systems [57,58]. For an autonomous agent, self-
maintenance is a fundamentally intrinsic goal, which is neither
assigned by an external scientist analysing the system, nor
based on past evolutionary history.

In order to maintain themselves, autonomous agents must
typically observe (i.e. acquire information about) their environ-
ment, and then respond in different and ‘appropriate” ways.
For instance, a chemotactic bacterium senses the direction of
chemical gradients in its particular environment and then
moves in the direction of those gradients, thereby locating
food and maintaining its own existence. In this sense,
autonomous agents can be distinguished from ‘passive’ self-
maintaining structures that emerge whenever appropriate
boundary conditions are provided, such as Bénard cells [59]
and some other well-known non-equilibrium systems.

Research on autonomous agents suggests that information
about the environment that is used by an autonomous agent
for self-maintenance is intrinsically meaningful [10-14,25,
26,48,49,60]. However, until now, such ideas have remained
largely informal. In particular, there has been no formal propo-
sal in the autonomous agents literature for quantifying the
amount of semantic information possessed by any given phys-
ical system, nor for identifying the meaning (i.e. the semantic
content) of particular system states.

1.2. Our contribution

We propose a formal, intrinsic definition of semantic infor-
mation, applicable to any physical system coupled to an
external environment, whether a rock, a hurricane, a bacterium,
or a sample from an alien planet.?

We assume the following set-up: there is a physical world
which can be decomposed into two subsystems, which we
refer to as ‘the system A’ and ‘the environment ), respect-
ively. We suppose that at some initial time t = 0, the system
and environment are jointly distributed according to some
initial distribution p(xg, yo). They then undergo coupled
(possibly stochastic) dynamics until time 7, where 7 is some
timescale of interest.

Our goal is to define the semantic information that
the system has about the environment. To do so, we make
use of a viability function, a real-valued function which quan-
tifies the system’s ‘degree of existence’ at a given time. While
there are several possible ways to define a viability function,
in this paper we take inspiration from statistical physics
[61-63] and define the viability function as the negative
Shannon entropy of the distribution over the states of system A".
This choice is motivated by the fact that Shannon entropy pro-
vides an upper bound on the probability that the system
occupies any small set of “viable’ states [64—67]. We are also
motivated by the connection between Shannon entropy and
thermodynamics [33,34,68-71], which allows us to connect
our framework to results in non-equilibrium statistical physics.
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Figure 1. Schematic illustration of our approach to semantic information. (a) The trajectory of the actual distribution (within the space of distribution over joint system—
environment states) is in blue. The trajectory of the intervened distribution, where some syntactic information between the system and environment is scrambled, is in
dashed red. (b) The viability function computed for both the actual and intervened trajectories. AV indicates the viability difference between actual and intervened
trajectories, at some time 7. (c) Different ways of scrambling the syntactic information lead to different values of remaining syntactic information and different viability
values. The maximum achievable viability at time 7 at each level of remaining syntactic information specifies the information/viability curve. The viability value of
information, Al is the total viability cost of scrambling all syntactic information. The amount of semantic information, S, is the minimum level of syntactic
information at which no viability is lost. /,, is the total amount of syntactic information between system and environment. (Online version in colour.)

Further discussion of this viability function, as well as other
possible viability functions, is found in §4.

Information theory provides many measures of the
syntactic information shared between the system and its
environment. For any particular measure of syntactic infor-
mation, we define semantic information to be that syntactic
information between the system and the environment that causally
contributes to the continued existence of the system, i.e. to maintain-
ing the value of the viability function. To quantify the causal
contribution, we define counter-factual intervened distri-
butions in which some of the syntactic information between
the system and its environment is scrambled. This approach
is inspired by the framework of causal interventions [72,73],
in which causal effects are measured by counter-factually
intervening on one part of a system and then measuring the
resulting changes in other parts of the system.

The trajectories of the actual and intervened distributions
are schematically illustrated in figure 1a. We define the (viabi-
lity) value of information as the difference between the
system’s viability after time 7 under the actual distribution,
versus the system’s viability after time 7 under the intervened
distribution (figure 1b). A positive difference means that at
least some of the syntactic information between the system
and environment plays a causal role in maintaining the system’s
existence. The difference can also be negative, which means that
the syntactic information decreases the system’s ability to exist.
This occurs if the system behaves “pathologically’, i.e. it takes
the wrong actions given available information (e.g. consider a
mutant ‘anti-chemotactic’ bacterium, which senses the direction
of food and then swims away from: it).

To make things more concrete, we illustrate our approach
using a few examples:

(1) Consider a distribution over rocks (the system) and fields
(the environment) over a timescale of 7=1 year. Rocks
tend to stay in a low entropy state for long periods of
time due to their very slow dynamics. If we ‘scramble
the information” between rocks and their environments
by swapping rocks between different fields, this will not
significantly change the propensity of rocks to disintegrate
into (high entropy) dust after 1 year. Since the viability

does not change significantly due to the intervention, the
viability value of information is very low for a rock.

(2) Consider a distribution over hurricanes (the system) and
the summertime Caribbean ocean and atmosphere (the
environment), over a timescale of 7= 1h. Unlike a rock, a
hurricane is a genuinely non-equilibrium system which is
driven by free energy fluxing from the warm ocean to the
cold atmosphere. Nonetheless, if we ‘scramble the infor-
mation” by placing hurricanes in new surroundings that
still correspond to warm oceans and cool atmospheres,
after 1 h the intervened hurricanes’ viability will be similar
to that of the non-intervened hurricanes. Thus, like rocks,
hurricanes have a low viability value of information.

(8) Consider a distribution over food-caching birds (the
system) in the forest (the environment), over a timescale
of 7=1 year. Assume that at t = 0 the birds have cached
their food and stored the location of the caches in some
type of neural memory. If we ‘scramble the information’
by placing birds in random environments, they will not
be able to locate their food and be more likely to die,
thus decreasing their viability. Thus, a food-caching bird
exhibits a high value of information.

So far, we have spoken of interventions in a rather informal
manner. In order to make things rigorous, we require a formal
definition of how to transform an actual distribution into an
intervened distribution. While we do not claim that there is a
single best choice for defining interventions, we propose to
use information-theoretic ‘coarse-graining” methods to scram-
ble the channel between the system and environment
[74-79]. Importantly, such methods allow us to choose
different coarse-grainings, which lets us vary the syntactic
information that is preserved under different interventions,
and the resulting viability of the system at time 7. By consider-
ing different interventions, we define a trade-off between the
amount of preserved syntactic information versus the resulting
viability of the system at time 7. This trade-off is formally
represented by an information/viability curve (figure 1c),
which is loosely analogous to the rate-distortion curves in
information theory [36].

Note that some intervened distributions may achieve
the same viability as the actual distribution but have less
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syntactic information. We call the (viability-) optimal inter-
vention that intervened distribution which achieves the
same viability as the actual distribution while preserving
the smallest amount of syntactic information. Using the
optimal intervention, we define a number of interesting
measures. First, by definition, any further scrambling of
the optimal intervention leads to a change in viability
of the system, relative to its actual (non-intervened) viability.
We interpret this to mean that all syntactic information in the
optimal intervention is semantic information. Thus, we define
the amount of semantic information possessed by the
system as the amount of syntactic information preserved by
the optimal intervention. We show that the amount of seman-
tic information is upper bounded by the amount of syntactic
information under the actual distribution, meaning that
having non-zero syntactic information is a necessary, but
not sufficient, condition for having non-zero semantic infor-
mation. Moreover, we can decompose the total amount of
syntactic information into ‘meaningful bits’ (the semantic
information) and the ‘meaningless bits’ (the rest), and
define the semantic efficiency of the system as the ratio of
the semantic information to the syntactic information. Seman-
tic efficiency falls between 0 and 1, and quantifies how much
the system is ‘tuned’ to only possess syntactic information
which is relevant for maintaining its existence (see also [80]).

Because all syntactic information in the optimal interven-
tion is semantic information, we use the optimal intervention
to define the ‘content’” of the semantic information. The
semantic content of a particular system state x is defined as
the conditional distribution (under the optimal intervention)
of the environment’s states, given that the system is in state x.
The semantic content of x reflects the correlations which are
relevant to maintaining the existence of the system, once all
other ‘meaningless’ correlations are scrambled away. To use
a previous example, the semantic content for a food-caching
bird would include the conditional probabilities of different
food-caching locations in the forest, given bird neural states.
By applying appropriate ‘pointwise’ measures of syntactic
information to the optimal intervention, we also derive
measures of pointwise semantic information in particular
system states (see §5 for details).

As mentioned, our framework is not tied to one particular
measure of syntactic information, but rather can be used to
derive different kinds of semantic information from different
measures of syntactic information. In §5.1, we consider seman-
tic information derived from the mutual information between
the system and environment in the initial distribution p(xo,
Yo), which defines what we call stored semantic information.
Note that stored semantic information does not measure
semantic information which is acquired by ongoing dynamic
interactions between system and environment, which is the
primary kind of semantic information discussed in the litera-
ture on autonomous agents [14]. In §5.2, we derive this
kind of dynamically acquired semantic information, which
we call observed semantic information, from a syntactic
information measure called transfer entropy [81]. Observed
semantic information provides one quantitative definition of
observation, as dynamically acquired information that is
used by a system to maintain its own existence, and allows
us to distinguish observation from the mere build-up of
syntactic information between physical systems (as generally
happens whenever physical systems come into contact).
In 8§53, we briefly discuss other possible choices of

syntactic information measures, which lead to other measures n

of semantic information.

Given recent work on the statistical physics of information
processing, several of our measures—including value of
information and semantic efficiency—can be given thermo-
dynamic interpretations. We review these connections
between semantic information and statistical physics in §2,
as well as in more depth in §5 when defining stored and
observed semantic information.

To summarize, we propose a formal definition of seman-
tic information that is applicable to any physical system. Our
definition depends on the specification of a viability function,
a syntactic information measure, and a way of producing
interventions. We suggest some natural ways of defining
these factors, though we have been careful to formulate our
approach in a flexible manner, allowing them to be chosen
according to the needs of the researcher. Once these factors
are determined, our measures of semantic information are
defined relative to choice of

(1) the particular division of the physical world into ‘the
system’ and ‘the environment’;

(2) the timescale 7; and

(3) the initial probability distribution over the system and
environment.

These choices specify the particular spatio-temporal scale
and state-space regions that interest the researcher, and should
generally be chosen in a way to be relevant to the dynamics of
the system under study. For instance, if studying semantic infor-
mation in human beings, one should choose timescales over
which information has some effect on the probability of survival
(somewhere between ~100ms, corresponding to the fastest
reaction times, and ~100 years). In §6, we discuss how the
system/environment decomposition, timescale and initial dis-
tribution might be chosen ‘objectively’, in particular, so as to
maximize measures of semantic information. We also discuss
how this might be used to automatically identify the presence
of agents in physical systems, and more generally the
implications of our framework for an intrinsic definition of
autonomous agency in physical systems.

The rest of the paper is laid out as follows. The next section
provides a review of some relevant aspects of non-equilibrium
statistical physics. In §3, we provide preliminaries concerning
our notation and physical assumptions, while §4 provides a
discussion of the viability function. In §5, we state our formal
definitions of semantic information and related concepts.
Section 6 discusses ways of automatically selecting systems,
timescales, and initial distributions so as to maximize semantic
information, and implications for a definition of agency. We
conclude in §7.

2. Non-equilibrium statistical physics

The connection between the maintenance of low entropy
and autonomous agents was first noted when considering
the thermodynamics of living systems. In particular, the fact
that organisms must maintain themselves in a low entropy
state was famously proposed, in an informal manner, by
Schrodinger [82], as well as Brillouin [83] and others [84,85].
This had led to an important line of work on quantifying
the entropy of various kinds of living matter [86—89].
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However, this research did not consider the role of organism-
environment information exchanges in maintaining the
organism'’s low entropy state.

Others have observed that organisms not only maintain a
low entropy state but also constantly acquire and use
information about their environment to do so [52,90-95].
Moreover, it has been suggested that natural selection can
drive improvements in the mechanisms that gather and
store information about the environment [96]. However,
these proposals did not specify how to formally quantify
the amount and content of information which contributes
to the self-maintenance of any given organism.

Recently, there has been dramatic progress in our under-
standing of the physics of non-equilibrium processes which
acquire, transform, and use information, as part of the devel-
opment of the so-called thermodynamics of information [34].
It is now well understood that, as a consequence of the
Second Law of Thermodynamics, any process that reduces
the entropy of a system must incur some thermodynamic
costs. In particular, the so-called generalized Landauer’s
principle [69,97,98] states that, given a system coupled to a
heat bath at temperature T, any process that reduces the
entropy of the system by n bits must release at least n - kgT
In2 of energy as heat (alternatively, at most n-kgT In2 of
heat can be absorbed by any process that increases entropy
by n bits). It has also been shown that in certain scenarios,
heat must be generated in order to acquire syntactic infor-
mation, whether mutual information [34,99-101], transfer
entropy [102-106], or other measures [107-111].

Owing to these developments, non-equilibrium statisti-
cal physics now has a fully rigorous understanding of
‘information-powered non-equilibrium states” [63,99-101,103,
112-122], i.e. systems in which non-equilibrium is main-
tained by the ongoing exchange of information between
subsystems. The prototypical case of such situations are
‘feedback-control” processes, in which one subsystem acquires
information about another subsystem, and then uses this
information to apply appropriate control protocols so as to
keep itself or the other system out of equilibrium (e.g.
Maxwell’s demon [121-123], feedback cooling [120], etc.).
Information-powered non-equilibrium states differ from the
kinds of non-equilibrium systems traditionally considered in
statistical physics, which are driven by work reservoirs with
(feedback-less) control protocols, or by coupling to multiple
thermodynamic reservoirs (e.g. Bénard cells).

Recall that we define our viability functions as the negative
entropy of the system. As stated, results from non-equilibrium
statistical physics show that both decreasing entropy (i.e.
increasing viability) and acquiring syntactic information carries
thermodynamic costs, and these costs can be related to each
other. In particular, the syntactic information that a system
has about its environment will often require some work to
acquire. However, the same information may carry an arbitra-
rily large benefit [124], for instance by indicating the location
of a large source of free energy, or a danger to avoid. To com-
pare the benefit and the cost of the syntactic information to
the system, below we define the thermodynamic multiplier
as the ratio between the viability value of the information and
the amount of syntactic information. Having a large thermo-
dynamic multiplier indicates that the information that the
system has about the environment leads to a large ‘bang-per-
bit" in terms of viability. As we will see, the thermodynamic
multiplier is related to the semantic efficiency of a system:

systems with positive value of information and high semantic
efficiency tend to have larger thermodynamic multipliers.

3. Preliminaries and physical set-up

We indicate random variables by capital letters, such as X,
and particular outcomes of random variables by correspond-
ing lower-case letters, such as x. Lower-case letters p, g, . . . are
also used to refer to probability distributions. Where not clear
from context, we use notation like px to indicate that p is a
distribution of the random variable X. We also use notation
like px y for the joint distribution of X and Y, and px)y for
the conditional distribution of X given Y. We use notation
like pxpy to indicate product distributions, i.e. [pxpy](x, y) =
px(x)py(y) for all x, y.

We assume that the reader is familiar with the basics of
information theory [36]. We write S(px) for the Shannon
entropy of distribution px, I,(X; Y') for the mutual information
between random variables X and Y with joint distribution px v,
and I,(X; Y|Z) for the conditional mutual information given
joint distribution pxyz. We measure information in bits,
except where noted.

In addition to the standard measures from information
theory, we also use a measure called transfer entropy [81]. Given
a distribution p over a sequence of paired random variables
(Xo, Yo), (X1, Y1), ..., (X5, Y,) indexed by timestep t € {0, ..., 7},
the transfer entropy from Y to X at timestep ¢ is defined as the
conditional mutual information,

7—[7(Yf e Xt+1) = Ip(Yt, XH»l‘Xt)- (31)

Transfer entropy reflects how much knowledge of the state of Y
at timestep  reduces uncertainty about the next state of X at the
next timestep f + 1, conditioned on knowing the state of X at
timestep f. It thus reflects ‘new information” about Y that is
acquired by X at time ¢.

In our analysis below, we assume that there are two
coupled systems, called ‘the system X and ‘the environment
Y’, with state-spaces indicated by X and Y, respectively.
The system/environment X x Y may be isolated from the
rest of the universe, or may be coupled to one or more
thermodynamic reservoirs and/or work reservoirs. For sim-
plicity, we assume that the joint state space X x Y is
discrete and finite (in physics, such a discrete state space is
often derived by coarse-graining an underlying Hamiltonian
system [125,126]), though in principle our approach can also
be extended to continuous state-spaces. In some cases, X x Y
may also represent a space of coarse-grained macrostates
rather than microstates (e.g. a vector of chemical concen-
trations at different spatial locations), usually under the
assumption that local equilibrium holds within each
macrostate (see appendix B for an example).

The joint system evolves dynamically from initial time
t =0 to final time t = 7. We assume that the decomposition
into system/environment remains constant over this time
(in future work, it may be interesting to consider time-
inhomogeneous decompositions, e.g. for analysing growing
systems). In our analysis of observed semantic information
in §5.2, we assume for simplicity that the coupled dynamics
of X and ) are stochastic, discrete-time and first-order
Markovian. However, we do not assume that dynamics are
time-homogeneous (meaning that, in principle, our frame-
work allows for external driving by the work reservoir).
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Other kinds of dynamics (e.g. Hamiltonian dynamics, which
are continuous-time and deterministic) can also be con-
sidered, though care is needed when defining measures like
transfer entropy for continuous-time systems [106].

We use random variables X; and Y to represent the state
of X and Y at some particular time t > 0, and random vari-
ables Xy ,=(Xo,..., X, and Y, ,=(Yy, ..., Y, to indicate
entire trajectories of X and ) from time t =0to t = 7.

4. The viability function

We quantify the ‘level of existence’ of a given system at any
given time with a viability function V . Though several via-
bility functions can be considered, in this paper we define the
viability function as the negative of the Shannon entropy of
the marginal distribution of system X at time 7,

V(px,) = ~S(px,) = Y _ plx:)log p(xs). (4.1)

If the state space of X represents a set of coarse-grained
macrostates, equation (4.1) should be amended to include
the contribution from ‘internal entropies’ of each macrostate
(see appendix B for an example).

There are several reasons for selecting negative entropy as
the viability function. First, as discussed in §2, results in non-
equilibrium statistical physics relate changes of the Shannon
entropy of a physical system to thermodynamic quantities
like heat and work [33,34,68—71]. These relations allow us
to analyse our measures in terms of thermodynamic costs.

The second reason we define viability as negative entropy
is that entropy provides an upper bound on the amount of
probability that can be concentrated in any small subset of
the state space X (for this reason, entropy has been used as
a measure of the performance of a controller [61-63]). For
us, this is relevant because there is often a naturally defined
‘viability set” [64-67,127,128], which is the set of states in
which the system & can continue to perform self-mainten-
ance functions. Typically, the viability set will be a very
small subset of the overall state space X. For instance, the
total number of ways in which the atoms in an E. coli bacter-
ium can be arranged, relative to the number of ways they can
be arranged to constitute a living E. coli, has been estimated
to be of the order of 2% %% %% [86]. If the entropy of system
X is large and the viability set is small, then the probability
that the system state is within the viability set must be small,
no matter where that viability set is in X. Thus, maintaining
low entropy is a necessary condition for remaining within
the viability set. (Appendix A elaborates these points, deriving
a bound between Shannon entropy and the probability of the
system being within any small subset of its state space.)

At the same time, negative entropy may have some
disadvantages as a viability function. Most obviously, a dis-
tribution can have low entropy but still assign a low
probability to being in a particular viability set. In addition,
a system that maintains low entropy over time does not
necessarily ‘maintain its identity” (e.g. both a rhinoceros
and a human have low entropy). Whether this is an advan-
tage or a drawback of the measure depends partly on how
the notion of ‘self-maintenance’ is conceptualized.

There are other ways to define the viability function, some
of which address these potential disadvantages of using
negative entropy. Given a particular viability set A C X, a

natural definition of the viability function is the probability n

that the system’s state is in the viability set, p(X. € A). How-
ever, this definition requires the viability set to be specified,
and in many scenarios we might know that there is a viability
set but not be able to specify it precisely. To use a previous
example, identifying the viability set of an E. coli is an
incredibly challenging problem [86].

Alternatively, it is often stated that self-maintaining
systems must remain out of thermodynamic equilibrium
[11,14,52]. This suggests defining the viability function in a
way that captures the ‘distance from equilibrium’ of system
X. One such measure is the Kullback—Leibler divergence
(in nats) between the actual distribution over X, and the
equilibrium distribution of & at time 7, indicated here by 7x,

D (px. || 7x.) (4.2)

This viability function, which is sometimes called ‘exergy’ or
‘availability’ in the literature [129,130], has a natural physical
interpretation [68]: if the system were separated from
environment ) and coupled to a single heat bath at tempera-
ture T, then up to kgT- Dky(px || mx ) work could be extracted
by bringing the system from px to .

Unfortunately, there are difficulties in using equation (4.2)
as the viability function in the general case. In statistical phy-
sics, the equilibrium distribution is defined as a stationary
distribution in which all probability fluxes vanish. Since the
system X is open (it is coupled to the environment Y, and poss-
ibly multiple thermodynamic reservoirs), such an equilibrium
distribution will not exist in the general case, and equation (4.2)
may be undefined. For instance, a Bénard cell, a well-known
non-equilibrium system which is coupled to both hot and
cold thermal reservoirs [59], will evolve to a non-equilibrium
stationary distribution, in which probability fluxes do not
vanish. While it is certainly true that a Bénard cell is out of
thermodynamic equilibrium, one cannot quantify ‘how far’
from equilibrium it is by using equation (4.2).

In principle, it is possible to quantify the ‘amount of
non-equilibrium’ without making reference to an equilibrium
distribution, in particular, by measuring the amount of
probability flux in a system (e.g. instantaneous entropy
production [131,132] or the norm of the probability fluxes
[133,134]). However, there is not necessarily a clear relationship
between the amount of probability flux and the capacity of a
system to carry out self-maintenance functions [135]. We
leave exploration of these alternative viability functions for
future work.

It is important to re-emphasize that, in our framework, the
viability function is exogenously determined by the scientist
analysing the system, rather than being a purely endogenous

characteristic of the system. At first glance, our approach
may appear to suffer some of the same problems as do
approaches that define semantic information in terms of an
exogenously specified utility function (see the discussion in
§1.1). However, there are important differences between a
utility function and a viability function. First, we require that
a viability function is well defined for any physical system,
whether a rock, a human, a city, a galaxy; utility functions,
on the other hand, are generally scenario-specific and far
from universal. Furthermore, given an agent with an exogen-
ously defined utility function operating in a time-extended
scenario, maintaining existence is almost always a necessary
(though wusually implicit) condition for high utility. A
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reasonably chosen viability function should capture this mini-
mal, universal component of nearly all utility functions.
Finally, unlike utility functions, in principle, it may be possible
to derive the viability function in some objective way (e.g.
in terms of the attractor landscape of the coupled system-
environment dynamics [64,128]).

5. Semantic information via interventions

As described above, we quantify semantic information
in terms of the amount of syntactic information which
contributes to the ability of the system to continue existing.

We use the term actual distribution to refer to the orig-
inal, unintervened distribution of trajectories of the joint
system—environment over time t=0 to t= 7, which will
usually be indicated with the symbol p. Our goal is to quan-
tify how much semantic information the system has about the
environment under the actual distribution. To do this, we
define a set of counter-factual intervened distributions
over trajectories, which are similar to the actual distribution
except that some of syntactic information between system
and environment is scrambled, and which will usually be
indicated with some variant of the symbol p. We define
measures of semantic information by analysing how the via-
bility of the system at time 7 changes between the actual and
the intervened distributions.

Information theory provides many different measures of
syntactic information between the system and environment,
each of which requires a special type of intervention, and
each of which gives rise to a particular set of semantic infor-
mation measures. In this paper, we focus on two types of
syntactic information. In §5.1, we consider stored semantic
information, which is defined by scrambling the mutual
information between system and environment in the actual
initial distribution px v, while leaving the dynamics
unchanged. In §5.2, we instead consider observed semantic
information, which is defined via a ‘dynamic’ intervention
in which we keep the initial distribution the same but
change the dynamics so as to scramble the transfer entropy
from the environment to the system. Observed seman-
tic information identifies semantic information that is
acquired by dynamic interactions between the system and
environment, rather than present in the initial mutual
information. An example of observed semantic information
is exhibited by a chemotactic bacterium, which makes
ongoing measurements of the direction of food in its envi-
ronment, and then uses this information to move towards
food. In §5.3, we briefly discuss other possible measures of
semantic information.

5.1. Stored semantic information

5.1.1. Overview
Stored semantic information is derived from the mutual
information between system and environment at time ¢ = 0.
This mutual information can be written as

p(XO/ ]/0)

1,(Xo,Yo) = Zy p(x0, vo) logm. (5.1)

Mutual information achieves its minimum value of 0 if and
only if Xy and Y, are statistically independent under p, i.e.

when px, v, = px Py, Thus, we first consider an intervention -

that destroys all mutual information by transforming the
actual initial distribution px y, to the product initial
distribution,

Pxovo = ?)f)‘(lnl}YO = PXoPYo- (5'2)

(We use the superscript ‘full’ to indicate that this is a ‘full
scrambling’ of the mutual information.)

To compute the viability value of stored semantic infor-
mation at =0, we run the coupled system—environment
dynamics starting from both the actual initial distribution
Px,y, and the intervened initial distribution fzgg)]}yo, and
then measure the difference in the viability of the system at
time 7,

AV = V(px,) — V(). (53)

For the particular viability function we are considering
(negative entropy), the viability value is

AVitered — S(ph) — S(px.).- (5.4)

Equation (5.3) measures the difference of viability under
the ‘full scrambling’, but does not specify which part of
the mutual information actually causes this difference. To
illustrate this issue, consider a system in an environment
where food can be in one of two locations with 50% prob-
ability each, and the system starts at t =0 with perfect
information about the food location. Imagine that system'’s
viability depends upon it finding and eating the food. Now
suppose that the system also has 1000 bits of mutual infor-
mation about the state of the environment which does not
contribute in any way to the system’s viability. In this case,
the initial mutual information will be 1001 bits, though
only 1 bit (the location of the food) is ‘meaningful” to the
system, in that it affects the system’s ability to maintain
high viability.

In order to find that part of the mutual information
which is meaningful, we define an entire set of “partial” inter-
ventions (rather than just considering the single ‘full’
intervention mentioned above). We then find the partial
intervention which destroys the most syntactic information
while leaving the viability unchanged, which we call the
(viability-) optimal intervention. The optimal intervention
specifies which part of the mutual information is meaning-
less, in that it can be scrambled without affecting viability,
and which part is meaningful, in the sense that it must be
preserved in order to achieve the actual viability value.
For the example mentioned in the previous paragraph, the
viability-optimal intervention would preserve the 1 bit of
information concerning the location of the food, while
scrambling away the remaining 1000 bits.

Each partial interventions in the set of possible partial
interventions is induced by a particular ‘coarse-graining
function’. First, consider the actual conditional probability
of system given environment at t=0, px |, as a com-
munication channel over which the system acquires
information from its environment. To define each partial
intervention, we coarse-grain this communication channel
Px,|y, using a coarse-graining function ¢(y), which specifies
which distinctions the system can make about the environ-
ment. Formally, the intervened channel from Y, to X,
induced by ¢, indicated as ﬁﬁoIYo' is taken to be the

~
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actual conditional probability of system states X, given
coarse-grained environments ¢(Y),

20ty = dtyo) PXOY0)
2yt = otyo) PWO)

p*(xolyo) := p(xol d(yo)) = (5.5)

We then define the intervened joint distribution at t =0 as
?Jﬁo,yn = fJ)d;U\YUPYo' Under the intervened distribution f]ﬁ(ﬂo,
Xy is conditionally independent of Y, given ¢(Yy), and any
two states of the environment y, and y, which have
&(yo) = P(yo') will be indistinguishable from the point of
view of the system. Said differently, X, will only have infor-
mation about ¢(Yj), not Yy itself, and it can be verified that
Lo (Xo; Yo) = I,(Xo; ¢(Y0))- In the information-theory litera-
ture, the coarse-grained channel i)ﬁum is sometimes called a
‘Markov approximation” of the actual channel pxy, [77],
which is itself a special case of the so-called channel pre-
garbling or channel input-degradation [77-79]. Pre-garbling
is a principled way to destroy part of the information flowing
across a channel, and has important operationalizations in
terms of coding and game theory [78].

So far we have left unspecified how the coarse-graining
function ¢ is chosen. In fact, one can choose different ¢, in
this way inducing different partial interventions. The ‘most
conservative’ intervention corresponds to any ¢ which is a
one-to-one function of Y, such as the identity map ¢(y) =y.
In this case, one can use equation (5.5) to verify that the inter-
vened channel from Y, to X, will be the same as the actual
channel, and the intervention will have no effect. The ‘least con-
servative’ intervention occurs when ¢ is a constant function,
such as ¢(y) = 0. In this case, the intervened distribution will
be the ‘full scrambling’ of equation (5.2), for which
Iio (Xo; Yo) = 0. We use @ to indicate the set of all possible
coarse-graining functions (without loss of generality, we can
assume that each element of this set is ¢: Y — Y).

We are now ready to define our remaining measures of
stored semantic information. We first define the information/
viability curve as the maximal achievable viability at time 7
under any possible intervention,

Dorea(R) = max V(p§) st L(Xo, Yo) = R,

where R indicates the amount of mutual information that is pre-
served. (Note that Dgored (R) is undefined for values of R when
there is no function ¢ such that [ p(Xo,Y0) = R.) Dsored(R) is
the curve schematically diagrammed in figure 1c.

We define the (viability-) optimal intervention fa;‘:yu as
the intervention that achieves the same viability value as
the actual distribution while having the smallest amount of
syntactic information,

PR, € argmin Lo (Xo,Yo) st. V(p%) =V(px). (5.6)

oD

By definition, any further scrambling of fﬂg?zfyo would change
system viability, meaning that in f?;ﬁfyo all remaining mutual
information is meaningful. Therefore, we define the amount
of stored semantic information as the mutual information
in the optimal intervention,

Sstored 1= Iﬁ)"?' (Xo, Yo)- (57)

While the value of information AV{S™d can be positive or

negative, the amount of stored semantic information is
always non-negative. Moreover, stored semantic information

reflects the number of bits that play a causal role in determin- n

ing the viability of the system at time 7, regardless in whether
they cause it to change positively or negatively.

Since the actual distribution px v, is part of the domain of
the minimization in equation (5.6) (it corresponds to any ¢
which is one-to-one), the amount of stored semantic infor-
mation [t (Xo,Yp) must be less than the actual mutual
information I,(Xo, Yo). We define the semantic efficiency as
the ratio of the stored semantic information to the overall
syntactic information,

S, stored

stored ' = —o—— € [0,1]. 5.8
Mstored IP(XOIYO) [0,1] (5.8)

Semantic efficiency measures what portion of the initial
mutual information between the system and environment
causally contributes to the viability of the system at time 7.

5.1.2. Pointwise measures

As mentioned, the optimal intervention only contains seman-
tic information, ie. only information which affects the
viability of the system at time 7. We use this to define
the pointwise semantic information of individual states of
the system and environment in terms of ‘pointwise” measures
of mutual information [136] under p°Ft,

Hopt
Sstored(xo; yO) = 10g i7 p (XO’]/O) (59)

°P(x0) PP (vo)
We similarly define the specific semantic information in
system state xo as the ‘specific information” [137] about Y
given X,

. PP (olxo)
Ss ore ; Yo) = Opt 1 pAio .
tored (X0; Y0) Eyo P (yolxo) log 7P (0)

These measures quantify the extent to which a system state
Xo, and a system—environment state x, o, carry correlations
which causally affect the system’s viability at ¢t = 7. Note
that the specific semantic information, equation (5.10), and
overall stored semantic information, equation (5.7), are expec-
tations of the pointwise semantic information, equation (5.9).

Finally, we define the semantic content of system state x,
as the conditional distribution p°P'(yo|xo) over all yo € Y. The
semantic content of x, reflects the precise set of correlations
between x and the environment at ¢ = 0 that causally affect
the system’s viability at time 7.

It is important to note that the optimal intervention may
not be unique, i.e. there might be multiple minimizers of
equation (5.6). In case there are multiple optimal interven-
tions, each optimal intervention will have its own measures

(5.10)

of semantic content, and its own measures of pointwise
and specific semantic information. The non-uniqueness of
the optimal intervention, if it occurs, indicates that the
system possesses multiple redundant sources of semantic
information, any one of which is sufficient to achieve the
actual viability value at time 7. A prototypical example is
when the system has information about multiple sources of
food which all provide the same viability benefit, and
where the system can access at most one food source
during t € [0, 7].

5.1.3. Thermodynamics
In this section, we use ideas from statistical physics to define
the thermodynamic multiplier of stored semantic information.
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This measure compares the physical costs to the benefits of
system—environment mutual information.

We begin with a simple illustrative example. Imagine a
system coupled to a heat bath at temperature T, as well as
an environment which contains a source of 10°] of free
energy (e.g. a hamburger) in one of two locations (A or B),
with 50% probability each. Assume that the system only
has time to move to only one of these locations during
the interval t € [0,7]. We now consider two scenarios.
In the first, the system initially has 1 bit of information
about the location of the hamburger, which will generally
cost at least kgT In 2 of work to acquire. The system can use
this information to move to the hamburger’s location and
then extract 10°] of free energy. In the second scenario, the
system never acquires the 1 bit of information about
the hamburger location, and instead starts from the ‘fully
scrambled”  distribution f?&“ol/lyo = px,Pyv, (equation (5.2)).
By not acquiring the 1 bit of information, the system can
save kgT In 2 of work, which could be used at time 7 to
decrease its entropy (i.e. increase its viability) by 1 bit. How-
ever, because the system has no information about the
hamburger location, it only finds the hamburger 50% of the
time, thereby missing out on 0.5 x 10°] of free energy on
average. This amount of lost free energy could have been
used to decrease the system’s entropy by 0.5 x 10°/ (kT In2)
bits at time t= 7. At typical temperatures, 0.5 x 10°/ (kT
In2) > 1, meaning that the benefit of having the bit of infor-
mation about the hamburger location far outweighs the cost
of acquiring that bit.

To make this argument formal, imagine a physical
‘measurement’ process that transforms the fully scrambled
system—environment distribution fﬂ%‘;}%: px,Py, to the actual
joint distribution px v, Assume that during the course of this
process, the interaction energy between & and ) is negligible
and that a heat bath at temperature T is available. The minimum
amount of work required by any such measurement
process [34,100] is kgT In 2 times the change of system-
environment entropy in bits, AS=[S(px)+ S(py,)] —
S(px,y,) = L,(Xo; Yo). We take this minimum work,

Wanin = ks TIn2 - T,(Xo; Yo), (5.11)

to be the cost of acquiring the mutual information. If this
work were not spent acquiring the initial mutual information,
it could have been used at time 7 to decrease the entropy of
the system, and thereby increase its viability, by I,(Xo; Yo)
(again ignoring energetic considerations).

The benefit of the mutual information is quantified by the
viability value AVEered which reflects the difference in entropy
at time t = 7 when the system is started in its actual initial dis-
tribution px v, versus the fully scrambled initial distribution
fﬂg‘(‘ul}yo = px,Py,, as in equation (5.4).

Combining, we define the thermodynamic multiplier of
stored semantic information, kg.req, as the benefit/cost ratio
of the mutual information,®

_ AV SR — S(px)
fotored =T Xo; Yo)  1,(Xo; o)

(5.12)

The thermodynamic multiplier quantifies the ‘bang-per-bit’
that the syntactic information provides to the system,
and provides a way to compare the ability of different
systems to use information to maintain their viability high.
Kstored > 1 means that the benefit of the information

outweighs its cost. The thermodynamic multiplier can also
be related to semantic efficiency, equation (5.8), via
AV?t(t)red
0!

Kstored = Tstored S 4
store

If the value of information is positive, then having a low
semantic efficiency msoreq translates into having a low ther-
modynamic multiplier. Thus, there is a connection between
‘paying attention to the right information’, as measured by
semantic efficiency, and being thermodynamically efficient.

It is important to emphasize that we do not claim that the
system actually spends kgT In 2 - I(Xo; Yo) of work to acquire
the mutual information in px y, The actual cost could be
larger, or it could be paid by the environment ) rather than
the system, or by an external agent that prepares the joint initial
condition of X’ and )Y, etc. Instead, the above analysis provides
a way to compare the thermodynamic cost of acquiring the
initial mutual information to the viability benefit of that
mutual information. In situations where the actual cost of
measurements performed by a system can be quantified (e.g.
by counting the number of used ATPs), one could define the
thermodynamic multiplier in terms of this actual cost.

Finally, we also emphasize that we ignore all energe-
tic considerations in the above operationalization of the
thermodynamic multiplier, in part by assuming a negligible
interaction energy between system and environment. We have
similarly ignored all energetic consequences in our analysis of
interventions, as described above. It is not clear whether
this approach is always justified. For instance, imagine that
the system and environment have a large interaction energy
at t=0. In this case, a ‘measurement process’ that per-
forms the transformation pxpy,+— px,Yo—or alternatively
an ‘intervention process’ that performs the full scrambling
Px, Y, PxPy,—may involve a very large (positive or negative)
change in expected energy. Assuming the system—environment
Hamiltonian is specified, one may consider defining a thermo-
dynamic multiplier that takes into account changes in expected
energy. Furthermore, one may also consider defining interven-
tions in a way that obeys energetic constraints, so that
interventions scramble information without injecting or extract-
ing a large amount of energy into the system and environment.
Exploring such extensions remains for future work.

5.1.4. Example: food-seeking agent
We demonstrate our framework using a simple model of a
food-seeking agent. In this model, the environment ) con-
tains food in one of five locations (initially uniformly
distributed). The agent X can also be located in one of
these five locations, and has internal information about the
location of the food (ie. its ‘target’). The agent always
begins in location three (the middle of the world). Under
the actual initial distribution, the agent has exact information
about the location of the food. In each timestep, the agent
moves towards its target and if it ever finds itself within
one location of the food, it eats the food. If the agent does
not eat food for a certain number of timesteps, it enters a
high-entropy ‘death’ macrostate, which it can only exit with
an extremely small probability (of the order of ~1073%).
Figure 2 shows the results for timescale 7= 5. The initial
mutual information is log, 5 & 2.32 bits, corresponding to the
five possible locations of the food. However, the total amount
of stored semantic information is only ~1.37 bits, giving a
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Figure 2. lllustration of our approach using a simple model of a food-seeking agent. (a) We plot viability values over time under both the actual and (fully
scrambled) intervened distributions. The vertical dashed line corresponds to our timescale of interest (=5 timesteps). (b) We plot the information/viability
curve for 7= 5 ( x ’s are actual points on the curve, dashed line is interpolation). The vertical dashed line indicates the amount of stored semantic information.

See text for details. (Online version in colour.)

semantic efficiency of nsorea ~ 0.6. This occurs because if the
food is initially in locations {2, 3,4}, the agent is close enough
to eat it immediately. From the point of view of the agent,
differences between these three locations are ‘meaningless’
and can be scrambled with no loss of viability. Formally,
the (unique) optimal intervention p°P' is induced by the
following coarse-graining function:

1 ify=1
dyo) = {3 if yo € (2,3,4)
5 ifyo=5

which is neither one-to-one nor a constant function (thus, it is
a strictly partial intervention). The value of information is
AViiered 221 bits, giving a thermodynamic multiplier of
Kstored = 9.5 (the food is ‘worth’ about 9.5 times more
than the possible cost of acquiring information about its
location).

In appendix B, we describe this model in detail, as well as
a variation in which the system moves away from food rather
than towards it, and thus has negative value of information.
A Python implementation can be found at https://github.
com/artemyk/semantic_information/.

5.2. Observed semantic information

To identify dynamically acquired semantic information, which
we call observed semantic information, we define interven-
tions in which we perturb the dynamic flow of syntactic
information from environment to system, without modifying
the initial system—environment distribution. While there are
many ways of quantifying such information flow, here we
focus on a widely used measure called transfer entropy [81].
Transfer entropy has several attractive features: it is directed
(the transfer entropy from environment to system is not
necessarily the same as the transfer entropy from system to
environment), it captures common intuitions about infor-
mation flow, and it has undergone extensive study, including
in non-equilibrium statistical physics [102-106].

Observed semantic information can be illustrated with
the following example. Imagine a system coupled to an
environment in which the food can be in one of two locations
(A or B), each of which occurs with 50% probability. At t =0,
the system has no information about the location of the food,

but the dynamics are such that it acquires and internally
stores this location in transitioning from t =0 to t = 1. If we
intervene and ‘fully’ scramble the transfer entropy, then in
transitioning from t=0 to f=1 the system would find
itself ‘measuring’ location A and B with 50% probability
each, independently of the actual food location. Thus, if the
system used its measurements to move towards food, it
would find itself finding food with only 50% probability,
and its viability would suffer. In this case, the transfer
entropy from environment to system would contain observed
semantic information.

Our approach is formally and conceptually similar to the
one used to define stored semantic information (§5.1), and we
proceed in a more cursory manner.

The transfer entropy from Y to X over ¢ € [1..7] under the
actual distribution can be expressed as a sum of conditional
mutual information terms (see equation (3.1)),

1 1

DTV = Xia) = D> LK YelXo).
0 t=0

=

(5.13)

Note that the overall stochastic dynamics of the system and
environment at time t can be written as px, v, X, Y:=
Px,.1X,Y, PY,.,1X,Y,X,,» Where px, |x,y, represents the response
of the system to the previous state of itself and the environ-
ment, while py, x,v,x,, represents the response of the
environment to the previous state of itself and the system,
as well as the current state of the system. Observe that the
conditional mutual information at time ¢ depends only on
Px,,.1x, Y, MOt ON py,_|x,v,x,,,- Thus, we define a set of partial
interventions in which we partially scramble the conditional
distribution px, |x,y, while keeping the conditional distri-
bution py, x,v,x,, undistributed. This ensures that our
interventions only perturb the information flow from the
environment to the system, and not vice versa.t

We now define our intervention procedure formally. As
mentioned, the conditional distribution px, x,y, specifies
how information flows from the environment to the system
at time f. Each partial intervention is defined by using a
coarse-graining function ¢(y), which is used to produce an
intervened ‘coarse-grained’ version of this conditional distri-
bution at all times t. The intervened conditional distribution

induced by ¢ at time f, indicated as f}? is defined to

11Xt Y
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be the same as the conditional distribution of X;,; given X;
and the coarse-grained environment ¢(Y}),

PPl y) = P @l b)) (5.14)
_ Lyo=oty Pt |x;5 y;)f;:/’(xh V) -
Zy?i‘ﬁ(‘/ﬁ):d)(yf) P, y1)

Note that this definition depends on both the actual dynamics,
px,.|X,Y; and on the intervened system—environment
distribution at time f, f?ﬁhyl. Under the intervened distribu-
tion, X, is guaranteed to only have conditional information
about ¢(Yy), not Y, itself; formally, one can verify that
Tpo (Xev1; YiXp) = [,(Xis1; d(Y1)|X:). These definitions are lar-
gely analogous to the ones defined for stored semantic
information, and the reader should consult that section for
more motivation of such coarse-graining procedures.

Under the intervened distribution, the joint system-—
environment dynamics at time ¢ are computed as
?JE?M,YH[\Xf,Yf = i’ﬁ,ﬂ\X,,Y,PYmIXz,YuXm- Then, the overall inter-
vened dynamical trajectory from time t=0 to t=r,
indicated by i’%.n\/o..f’ is computed via the following iterative
procedure:

(1) At t=0, the intervened system-environment distri-
bution is equal to the actual one, f’io,Yo = PX,Yo-
(2) Using iﬂgyf and the above definitions, compute

pXr+1,Yr+1 DAY

o b o b
(3) US]I‘lg pxt-lryhl‘XhYt’ update pXo..hYo.r to pxo..:+1,Yo..1+1'
(4) Sett«— t+1 and repeat the above steps if t < 7.

We define @ to be set of all possible coarse-graining
functions. By choosing different coarse-graining functions
¢ € @, we can produce different partial interventions. One
can verify from equation (5.14) that the intervened distri-
bution ﬁﬁo..mmf will equal to the actual px, vy, whenever
¢ is a one-to-one function. When ¢ is a constant function,
the intervened distribution will be a ‘fully scrambled” one,
in which X;;, is conditionally independent of Y; given X;
for all times ¢,

i);ufljl\xhyf = i)%ﬂ\xr' (5'16)
In this case, the transfer entropy at every time step will
vanish.

We are now ready to define our measures of observed
semantic information, which are analogous to the definition
in §5.1, but now defined for transfer entropy rather than
initial mutual information. The viability value of transfer
entropy is the difference in viability at time 7 between the
actual distribution and the fully scrambled distribution,

AVEEed = V(px,) — V(PR (5.17)

where iig‘g” is the distribution over X at time 7induced by the

fully scrambled intervention. The viability value measures
the overall impact of scrambling all transfer entropy on viabi-
lity. We define information/viability curve as the maximal
achievable viability for any given level of preserved transfer
entropy,

—1

Daservea(R) = max V(p§) st Typo(¥y = Xii1) = R.
t=0

The (viability-) optimal intervention p°Py | is defined as
the intervened distribution that achieves the same viability

value as the actual distribution while having the smallest m

amount of transfer entropy,

—1

ijoptxo.myo..f € argmin Z 7}74’ (Y — Xi41)
phpED =0

st V(p%) = Vipx,).

(5.18)

Under the optimal intervention, f?"thO Yo all meaningless
bits of transfer entropy are scrambled while all remaining
transfer entropy is meaningful. We use this to define the
amount of observed semantic information as the amount
of transfer entropy under the optimal intervention,

7—1
7},0}71 (Y[ — X[+1).
t=0

Sobserved = (519)

Finally, we define the semantic efficiency of observed seman-
tic information as the ratio of the amount of observed semantic
information to the overall transfer entropy,

S observed
o To(Xs — Xiin)

Tobserved *— S [0, 1]

Semantic efficiency quantifies which portion of transfer
entropy determines the system’s viability at time 7. It is non-
negative due the non-negativity of transfer entropy. It is
upper bounded by 1 because the actual distribution over
system—environment trajectories, px, vy, , is part of the
domain of the minimization in equation (5.17) (corresponding
to any ¢ which is a one-to-one function), thus the amount of
observed semantic information Sgpserved Will always be less
than the actual amount of transfer entropy 7,(Y; — Xi11).

We now use the fact that p°P' contains only meaningful
bits of transfer entropy to define both the semantic content
and pointwise measures of observed semantic information.
Note that transfer entropy at time t can be written as

PP (e |xe, X 41)

Toort (Y — Xpp1) = P (xy, g, xp1) 1 _
port (Y te1) Z PP (xt, Y1, Xe41) log 5P (1)

Xt Yt X1

We define the semantic content of the transition x; — x;, as
the conditional distribution p°P(y;|xt, x411) for all y; € Y. This
conditional distribution captures only those correlations
between (x;, x;1) and Y; that contribute to the system’s viabi-
lity. Similarly, we define pointwise observed semantic
information using ‘pointwise’ measures of transfer entropy
[138,139] under p°P'. In particular, the pointwise observed
semantic information for the transition x;+— x;,; can be
defined as

fJOpt(]/r\Xt/ Xt11)

Sobserved(yf‘xl" le) = IOg ijoPt(ytlxt)

It is of interest to define the thermodynamic multiplier for
observed semantic information, so as to compare the viability
value of transfer entropy to the cost of acquiring that transfer
entropy. However, there are different ways of quantifying the
thermodynamic cost of acquiring transfer entropy, which
depend on the particular way that the measurement process
is operationalized [102-106]. Because this thermodynamic
analysis is more involved than the one for stored semantic
information, we leave it for future work.
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5.3. Other kinds of semantic information

We have discussed semantic information defined relative to
two measures of syntactic information: mutual information at
t=0, and transfer entropy incurred over the course of t €
[0..7]. In future work, a similar approach can be used to
define the semantic information relative to other measures of
syntactic information. For example, one could consider the
semantic information in the transfer entropy from the system
to the environment, which would reflect how much ‘obser-
vations by the environment’ affect the viability of the system
(an example of a system with this kind of semantic information
is a human coupled to a so-called ‘artificial pancreas’ [140], a
medical device which measures a person’s blood glucose and
automatically delivers necessary levels of insulin). Alter-
natively, one might evaluate how mutual information (or
transfer entropy, etc.) between internal subsystems of system
& affect the viability of the system. This would uncover
‘internal’ semantic information which would be involved in
internal self-maintenance processes, such as homeostasis.

6. Automatic identification of initial
distributions, timescales and decompositions
of interest

Our measures of semantic information depend on: (1) the
decomposition of the world into the system &  and the environ-
ment ); (2) the timescale 7; and (3) the initial distribution over
joint states of the system and environment. The factors gener-
ally represent ‘subjective’ choices of the scientist, indicating
for which systems, temporal scales, and initial conditions the
scientist wishes to quantify semantic information.

However, it is also possible to select these factors in a more
‘objective” manner, in particular by choosing decompositions,
timescales, and initial distributions for which semantic infor-
mation measures—such as the value of information or the
amount of semantic information—are maximized.

For example, consider fixing a particular timescale 7and a
particular decomposition into system/environment, and then
identifying the initial distribution which maximizes the viabi-
lity value of stored semantic information,

p;((o,Yo € argmax AVtsctft)rEd(qXD,YO)/ (61)

X0, Yo

where we have made the dependence of AV}, on the initial
distribution explicit in equation (6.1), but left implicit its
dependence on the timescale 7 and the decomposition into
& and ). Given the intrinsic dynamics of the system and
environment, p¥, y, captures the initial distribution that the
system is ‘best fit for” in an informational sense, i.e. the distri-
bution under which the system most benefits from having
syntactic information about the environment. One can then
define various other semantic information measures, such
as the amount of semantic information and the semantic
content of particular states, relative to pi‘,y", rather than
some exogenously specified initial distribution. For instance,
the semantic content of some system state x € X under pX, v,
represents the conditional distribution over environmental
states that, given the dynamics of system and environment,
x is ‘best fit to represent’ in terms of maximizing viability
value.

One can also maximize the value of information (or
other measures) over timescales 7 and system/environment
decompositions of the world, so as to automatically detect
subsystems and temporal scales that exhibit large amounts
of semantic information. As mentioned in the Introduction,
our work is conceptually inspired by work on autonomous
agents, and our approach in fact suggests a possible formal
and quantitative definition of autonomous agency: a physical
system is an autonomous agent to the extent that it has a
large measure of semantic information. From this point of
view, finding timescales and system/environment decompo-
sitions that maximize measures of semantic information
provides a way to automatically identify agents in the
physical world (see also [141-144]). Exploring these possibi-
lities, including which semantic information measures (value
of information, the amount of semantic information,
thermodynamic multiplier, etc.) are best for automatically
identifying agents, remains for future work.

7. Conclusion and discussion

In this paper, we propose a definition of semantic information
as the syntactic information between a physical system and its
environment that is causally necessary for maintaining the sys-
tem’s existence. We consider two particular measures of
semantic information: stored semantic information, which is
based on the mutual information between system and environ-
ment at t =0, and observed semantic information, which is
based on the transfer entropy exchanged between system and
environment over t € [0, 7].

Our measures possess several features that have been
proposed as desirable characteristics of any measure of
semantic information in the philosophical literature [3,4,6].
Unlike syntactic information, semantic information should
be able to be ‘mistaken’, i.e. to ‘misrepresent’ the world.
This emerges naturally in our framework whenever infor-
mation has a negative viability value (i.e. when the system
uses information in a way that actually hurts its ability to
maintain its own existence). Furthermore, a notion of seman-
tic information between a system and environment should be
fundamentally asymmetrical (unlike some measures of syntac-
tic information, such as mutual information). For instance, a
chemotactic bacterium swimming around a nutrient solution
is presumed to have semantic information about its environ-
ment, but the environment is not expected to have semantic
information about the bacterium. OQur measures of semantic
information are fundamentally asymmetrical—even when
defined relative to a symmetric syntactic information measure
like mutual information—because they are defined in terms
of their contribution to the viability of the system, rather
than the environment.

Our framework does not require the system of interest to be
decomposed into separate degrees of freedom representing
‘sensors’ versus ‘effectors’ (or ‘membrane’ versus ‘interior’,
‘body’ versus ‘brain’, etc.). This is advantageous because
such distinctions may be difficult or impossible to define for
certain systems. Our framework also side-steps questions of
what type of ‘internal models” or ‘internal representations’,
if any, are employed by the system. Instead, our defini-
tions of semantic information, including the semantic content
of particular states of the system, are grounded in the intrinsic
dynamics of the system and environment.
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As mentioned, we do not assume that the system of interest
is an organism. At the same time, in cases where the system is,
in fact, an organism (or an entire population of organisms)
undergoing an evolutionary process, there are promising con-
nections between our approach and information-theoretic
ideas in theoretical biology. For instance, various ways of for-
malizing fitness-relevant information in biology [144-146]
appear conceptually, and perhaps formally, related to our defi-
nitions of semantic information. Exploring such connections
remains for future work.

Organisms are, of course, the prototypical self-maintaining
systems, and will generally have high levels of both stored
and observed semantic information. This suggests that our
measures of semantic information may be useful as part of
quantitative, formal definitions of life. In particular, we suggest
that having high levels of semantic information is a necessary,
though perhaps not sufficient, condition for any physical
system to be alive.
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Appendix A. Relationship between entropy and
probability of being in viability set
Imagine that A C X is some set of desirable states, which we

call the viability set. Assume that |A| < |X|. Here we show
that entropy bounds the probability that X is in set A as

log |X| — S(p(X))

POCE A= 20 = g x g Al

x€A

(A1)

To demonstrate this, let 1 4(x) be the indicator function for set
A, so that 14(x) is equal to 1 when x € A, and 0 otherwise.
Using the chain rule for entropy, we write

S(p(X)) = S(p(X,14(X)))
= S(p(X[14(X))) + S14(X))

< S(p(X1a(X))) + 1. (A2)

In the last line, we use the fact that the maximum entropy of a
binary random variable, such as 14(X), is 1 bit.
We now rewrite the conditional entropy as

S(PX14(X)) = p(X € A) - S(X[X € A) + (1 - p(X € A))
SS(X|X & A)
< p(X € A)log|A| + (1 — p(X € A)log X\ Al
(A3)
where we have used the fact that entropy of any distribution
over a set of size n is upper bounded by log 1 (as achieved by

the uniform distribution over that set). Combining with
equation (A 2) gives

S(p(X)) < p(X € A)(log|A| —log|X\A|]) +log | X\ A| + 1.

Rearranging gives
—-S(p(X)) + log | X\ A| + 1
log [X\A| —log |-A|
_ S(p(X)) —log |A] — 1
log [X\A| —log | A|
| S(p(x)) —log |4 — 1
log |X| —log | A|
_ S(p(X)) — log | A|
log |X| — log |A]
_ log[X| — S(p(X))
log |X| —log |A|”

PX € A) <

=1

where we have dropped the 1/(log | X\ A| — log |A]) term.
Thus, as entropy goes up, the probability concentrated
within any small set goes down.

Appendix B. Model of food-seeking agent

In this appendix, we describe our model of a simple food-
seeking system.

In this model, the state space of the environment ) con-
sists of Y = {1..n} U {0}, representing the location of a single
unit of food along 1 spatial dimension, or the possible lack
of food (©). The state space of the agent (i.e. the system &)
consists of three separate degrees of freedom, indicated as
X = X'0¢ x xlevel i x'arset x1o¢ = {1 _n} represents the spatial
location of the agent out of n possible locations. xlevel =
{0..Imax} represents the ‘satiation level” of the agent, ranging
from “fully fed’ (Imax) to ‘dead’ (0). X" '8t = {1..n} U {D} rep-
resents the agent’s internal information about the location
of food in the environment (& corresponding to information
that there is no food).

The dynamics are such that, as long as the agent is not ‘dead”
(x'vel 2 0), the agent moves towards X'*8*!, If the agent reaches
a location sufficiently close to the food (|X'*° — Y | <1), the agent
‘eats the food’, meaning that satiation level of the agent is chan-
ged to [may. Otherwise, the satiation level drops by one during
every timestep. The food stays in the same place unless it gets
eaten, or unless it spontaneously degrades (goes to ) which
happens with a small probability in each step. The agent never
changes its target belief. All states are assigned free energy
values, for which the dynamics obey local detailed balance.

Initially, the agent is located at the centre spatial location
(X%)OC = [n/2]), the satiation level is maximal X}Jevel = lnax, the
food location is uniformly distributed over 1..1, and the agent
has perfect information about the location of the food,
P y) = S, yo).

We assume that the state space of the agent corresponds
to a set coarse-grained macrostates. Formally, we write this
as X=f(Z), where Z is a random variable indicating the
microstate of X’ and fis a function that maps from microstates
to macrostates. The entropy of any microstate distribution p
can be written as

S(pz,) = S(pz,x.)
= S(px,) + S(pz,x,)
=S(px.) + > PSPz 2 -s.)-

Xr

We assume that within each macrostate, the microstate distri-
bution relaxes instantly to some local equilibrium, so that
each ‘internal entropy’ term S(pzj(z)= x) is constant, which
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Figure 3. lllustration of our approach using a simple model of a food-seeking system. Under the actual distribution, the system has perfect knowledge of the
location of food at t = 0. (a) We plot viability values over time under both the actual and (fully scrambled) intervened distributions. The vertical dashed line
corresponds to our timescale of interest (7 =15 timesteps). (b)) We plot the information/viability curve for 7=5 ( x ’s are actual points on the curve,
dashed line is interpolation). The vertical dashed line indicates the amount of stored semantic information. See text for details. (Online version in colour.)
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Figure 4. lllustration of our measure with a simple model of a system which moves away from where it believes food to be located. (a) We plot viability values over
time under both the actual and (fully scrambled) intervened distributions. The vertical dashed line corresponds to our timescale of interest (7 =5 timesteps). (b)
We plot the information/viability curve for 7 =5 (s are actual points on the curve, dashed line is interpolation). The vertical dashed line indicates the amount of

stored semantic information. See text for details. (Online version in colour.)

we indicate as Si¢(x,). Combining, we compute our negative
entropy viability function as

V(px.) = S(px.) + Y pa)Sini(x5).

In this particular model, we take the internal entropy of all
macrostates to be 0, except for any macrostate which has
X'l =0 (i.e. the agent is ‘dead’), in which case the internal
entropy is Sqeaq bits. Essentially, this means that the system
equilibrates instantly within the dead macrostate, and that
the dead macrostate has a large internal entropy (i.e. there
are many more ways of being dead than not).

To avoid having results that are sensitive to numerical
errors, we ‘smooth’ the information/viability curve by
rounding all viability and mutual information values to 5
decimal places.

Figure 3 shows the results for parameters 11 =15, Iya =5,
Sdead = 100 bits and timescale 7=05. The total amount
of mutual information is log, 5~2.32 bits, while the
total amount of semantic information is only ~1.37 bits,
which gives a semantic efficiency value of kyoreq = 0.6. This
occurs because if the food is initially in locations {2, 3,4}, the
agent is close enough to eat it immediately, and knowing in
which of these three locations the food is located does not

affect viability. The viability value of information is Avstored o

22.1 bits, giving a thermodynamic multiplier of Kyoreq = 9.5.
The model is also discussed in §5.1.4 in the main text.

We also analyse a different model, in which the agent’s
dynamics are such that it moves away from the target in each
timestep, until it reaches the edges of the world (X'°=1 or
X'°¢ = p) and stays there. The agent still dies if it does not eat
food for some number of timesteps. As before, the agent
begins initially with perfect information about the location of
the food. In this case, information about the world actually
hurts the agent’s ability to maintain its own existence, leading
to a negative viability value of information.

Figure 4 shows the results for this model, using the same
parameter values as before (1 =5, Inax =5, Sqeaa = 100 bits
and timescale 7= 5). The total amount of mutual information
is again log, 5 ~ 2.32 bits, and the total amount of semantic
information is again ~1.37 bits (if the food is initially in
locations {2,3,4}, the system is close enough to eat it
immediately, and knowing in which of these three locations
the food is located does not affect viability). This gives a
semantic efficiency value of kgorea = 0.6. Unlike the food-
seeking agent, the viability value of information in this case
is AVSored & —13.7 bits, giving a thermodynamic multiplier
of Kstored = —5.9.

A Python implementation of these models is available at
https://github.com/artemyk/semantic_information/.

L¥008L0T ‘8 S04 iy biobuiysigndAianosjedossyss E


http://https://github.com/artemyk/semantic_information/
http://https://github.com/artemyk/semantic_information/

Endnotes

!Semantic information has also sometimes been called ‘meaningful
information’ [25-28], ‘relevant information’ [19,20], ‘functional infor-
mation’ [29,30] and ‘pragmatic information” [9] in the literature.

“Much of our approach can also be used to quantify semantic infor-
mation in any dynamical system, not just physical systems. For the
purposes of this paper, however, we focus our attention on physical

systems.
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