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The identification of effective collective variables remains a challenge in molecular simulations of complex 
systems. Here, we use a nonlinear manifold learning technique known as the diffusion map to extract key 
dynamical motions from a complex biomolecular system known as the nucleosome: a DNA-protein complex 
consisting of a DNA segment wrapped around a disc-shaped group of eight histone proteins. We show that 
without any a priori information, diffusion maps can identify and extract meaningful collective variables 
that characterize the motion of the nucleosome complex. We find excellent agreement between the collective 
variables identified by the diffusion map and those obtained manually using a free energy-based analysis. 
Notably, diffusion maps are shown to also identify subtle features of nucleosome dynamics that did not 
appear in those manually specified collective variables. For example, diffusion maps identify the importance 
of looped conformations in which DNA bulges away from the histone complex that are important for the 
motion of DNA around the nucleosome. This work demonstrates that diffusion maps can be a promising tool 
for analyzing very large molecular systems and for identifying their characteristic slow modes.

I. INTRODUCTION

The continued development of advanced sampling 
techniques has extended the reach of molecular simula­
tions considerably, thereby enabling the study of molecu­
lar systems of substantial complexity.1 Higher complexity 
is accompanied by the challenge of describing key molec­
ular processes. Ideally, we desire for these complex dy­
namics to be represented by a few low-dimensional de­
scriptors, but automatically identifying such descriptors 
and quantifying how well they capture the system’s dy­
namics can be challenging.

A range of approaches is available to discover these 
low-dimensional descriptors from simulated trajectories 
of a particular system. One attractive option is to use 
a dimensionality reduction technique to furnish a low- 
dimensional embedding of data from molecular dynamics 
trajectories,2 using algorithms such as principal compo­
nent analysis (PGA3), isometric feature map (Isomap4), 
locally linear embedding (LLE5), sketch-maps,6 and dif­
fusion maps.7,8 Diffusion maps have been widely applied 
to a variety of molecular systems, including all-atom 
miniprotein folding,9 self-assembly of patchy colloids,10 
and coarse-grained protein models.11 Furthermore, they 
have been adopted as part of multiple accelerated sam­
pling algorithms, such as diffusion-map-directed MD 
(DM-d-MD12) and intrinsic map dynamics (iMapD13), 
and variations on the diffusion map itself have also been 
developed in order to address challenges in working with 
data with inhomogeneous densities and to reduce com­
putational costs.11’14

While diffusion maps have been applied in diverse con­
texts, there remain interesting challenges in applying dif­
fusion maps to large and complex macromolecular sys­
tems, which exhibit inherently rich dynamics. One such 
system is the nucleosome, a DNA-protein complex con­

sisting of a DNA segment wrapped around a disc-shaped 
complex of eight histone proteins.15 The nucleosome is 
the basic building block of eukaryotic chromatin, which 
packs into successively higher-order structures in order 
to form the mitotic chromosome. Nucleosome positions 
and proper packaging of DNA are important for healthy 
cellular function.16,17

Recent work has shown that DNA sequence is a key 
factor that governs nucleosome position, with different 
DNA sequences exhibiting different affinities for the his­
tone octamer. The probability of nucleosome formation 
changes with this affinity and can span orders of mag­
nitude across different DNA sequences. Several studies 
on DNA repositioning have been carried out, leading to 
the identification of two major repositioning mechanisms: 
(1) the loop propagation model,18-23 in which a loop of 
DNA is formed on one side of the nucleosome and moves 
in an inchworm-like manner along the histone complex; 
and (2) the twist diffusion model,24-27 in which a twist 
defect is introduced into the natural helicity of the DNA 
and diffuses in a corkscrew-like manner along the histone 
complex. Recent work by Lequieu et al.28 investigated 
the relationship between DNA sequence and reposition­
ing dynamics using a molecular model of the nucleosome; 
that study showed that different DNA sequences indeed 
rely on different mechanisms to reposition through path­
ways reminiscent of the proposed looping and twisting 
processes.

The simulations performed to reach these conclusions 
were considerably demanding, and required over 5 mi­
croseconds of unbiased simulation data, for 9 different 
DNA sequences. In the study of Lequieu et al. how­
ever, the order parameters used to characterize DNA 
motion were identified manually, and were necessarily 
influenced by human biases. As such, it is unclear if they 
can fully represent the true underlying dynamics of the
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nucleosome. The order parameters used in Lequieu et ah 
were based on the two previously proposed repositioning 
mechanisms, and thus analysis of the simulations focused 
specifically on loop propagation and twist diffusion. It 
is conceivable that other motions within the nucleosome 
might play important roles in cellular function, and may 
have been overlooked in this prior study.

In this work, we exploit this wealth of molecular dy­
namics data to interrogate the dynamics of the nucleo­
some using the diffusion map. This approach represents 
a bias-free method for identifying the collective variables 
that dominate nucleosomal motions. We show that a 
diffusion map approach is effective for identifying the 
collective variables previously found by Lequieu et ah 
through a detailed free energy analysis. Notably, with­
out any a priori information, the diffusion map can dis­
tinguish DNA sequences that reposition via loop prop­
agation from those that reposition via twist diffusion. 
Furthermore, the diffusion map approach is able to iden­
tify subtle molecular motions involving looping confor­
mations, in which DNA bulges away from the histone De­
tainer, and DNA breathing, in which DNA spontaneously 
unwraps from the histone complex. By applying the dif­
fusion map to nucleosome dynamics, we show that both 
dominant and subtle dynamical modes can be automati­
cally extracted from molecular simulation data, thereby 
reinforcing the diffusion map as a useful tool for unrav­
eling the behavior of complex biomolecular systems.

II. METHODS

A. MD Simulations of the Nucleosome

Molecular dynamics simulations were carried out with 
in-house codes using a coarse-grained representation of 
the 223 base pair nucleosome, as described in Lequieu et 
al.28 The 3SPN.2C model is used to represent DNA and is 
the most recent version of the 3SPN model,29-32 in which 
DNA is represented by three sites at the centers of mass 
of phosphate, sugar, and base of each DNA nucleotide. 
The 3SPN.2C model has been further parameterized to 
capture the correct melting behavior of double-stranded 
to single-stranded DNA, sequence effects, and salt ef­
fects. The AICG model is used to represent the histone 
proteins, using a single site per amino acid at the side 
chain center of mass.33 Interactions between the DNA 
and histone proteins consist of excluded volume effects 
and electrostatic forces, calculated using Debye-Huckel 
theory. Molecular dynamics simulations were performed 
in the canonical ensemble using a Langevin thermostat 
and ionic strength of 150 mM, with frames saved for 
later analysis every 1 ns. Further details can be found in 
Lequieu at al.28

B. Diffusion maps

Diffusion maps are a type of nonlinear dimensional­
ity reduction technique originally introduced by Coifman 
and co-workers.7,8 Here, we briefly step through the al­
gorithm to clarify and facilitate subsequent discussion. 
Specifically, we use the density-adapted diffusion map 
introduced by Wang and Ferguson14 due to the inhomo­
geneous sampling of configurations in brute-force molec­
ular dynamics simulations of the nucleosome.

First, pairwise distances dij are calculated between 
datapoints x« and Xj. In this case, we use the root-mean- 
squared distance between translationally and rotationally 
aligned atomic coordinates between two molecular config­
urations. dij is then passed through a Gaussian kernel to 
construct matrix A, which contains the now thresholded 
pairwise distances, with entries

A, (1)

Here, e is the kernel bandwidth and a rescales pairwise 
distances globally in order to smooth out density inho­
mogeneities in sampled configurations. We find that an 
a value of 0.3 works well for configurations from all three 
DNA sequences considered here. The kernel bandwidth e 
defines the extent of the local neighborhood around each 
datapoint in which to consider pairwise distances to other- 
points, and we use an e of 3.0 for our data across all se­
quences. A is then row-normalized to form the Markov 
matrix

M = D 4A, (2)

where D is a diagonal matrix with entries

Dij = Aij. (3)
3

M is effectively a transition matrix, with entries My 
corresponding to transition probabilities between config­
urations x.j and Xj.

Finally, M is diagonalized in order to calculate its 
eigenvectors {r/y} and associated eigenvalues {A.,,}. Due 
to the Markovian nature of M, the top eigenvalue- 
eigenvector pair (V’o, Aq) is trivial; this pair corresponds 
to the steady-state distribution of a random walk with 
Ac = 1.

By locating a gap in the eigenvalue spectrum between 
Afc and Afc+i, one can identify the top k non-trivial eigen­
vectors {V’ijiLi corresponding to slow diffusion modes of 
the system, which dominate over the fast modes corre­
sponding to the remaining lower eigenvectors {Vq }*>fe • 
The original high-dimensional data can then be embed­
ded in k dimensions by projecting the data onto the top 
k non-trivial eigenvectors,
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x, (*),•• -Tk(i)\- (4)

In some cases, multiple gaps may emerge in the eigen­
value spectrum, in which case one must avoid only us­
ing eigenvectors up to the first gap, which may produce 
misleading results. The final low-dimensional embedding 
reflects the intrinsic manifold underlying the molecular 
system as extracted from the sampled molecular dynam­
ics data.

Analysis of nucleosome simulations using the density- 
adapted diffusion map began with calculation of A for 
each DNA sequence studied, using Equation 1 and snap­
shots extracted from MD simulation trajectories. M was 
then calculated for each sequence as described above in 
Equations 2 and 3, followed by calculation of eigenvectors 

and eigenvalues {A%} for each sequence’s M. The 
spectra of {A%} were examined visually in order to iden­
tify gaps and determine non-trivial eigenvectors for each 
sequence-specific diffusion map embedding. Multiple col­
lective variables (described in the following three subsec­
tions) were calculated for each simulation snapshot used 
to create the embeddings and then projected onto the 
non-trivial eigenvectors to create diffusion map embed­
dings of collective variables for each sequence. These dif­
fusion map embeddings of collective variables were then 
used to identify sequence-specific correlations of collec­
tive variables with dominant dynamical modes of the nu­
cleosome system.

ST: DNA Translocation SR: DNA Rotation

Sr = ~\ Sfl = +|

FIG. 1. Schematic of order parameters St and Sr, which 
characterize DNA translocation and DNA rotation, respec­
tively. These order parameters are defined in Section IIC.

0 forward

0backward

FIG. 2. Schematic of order parameters forward and ^backward 
characterizing DNA breathing, in which strands of DNA spon­
taneously unwrap and rewrap from the histone complex. Each 
angle is calculated from two vectors: vector b points from the 
histone complex center of mass to the dyad, and vectors a 
and c point along either end of the DNA strand, from the 
30th base pair to the first and endmost base pair.

C. Collective Variables Describing DNA Translocation and 
Rotation

DNA translocation relative to the histone dyad is char­
acterized by St, defined as:

ST = (±,r==yj^L)). (5)

Here, vector P points from the center of a base step to 
the center of the protein complex, and P0 is the corre­
sponding value of P taken from a reference nucleosome 
crystal structure (PDB ID: 1KX5),34 which was used to 
create initial structures for the nucleosome simulations. 
The average in Equation 5 is taken over -15, -5, +5, and 
+15 base steps relative to the histone dyad, located at 
the central position on the nucleosome (indicated by the 
triangle in Figure 1). If (P x P0) • f <0 then the pos­
itive sign is used (otherwise, negative), where vector f 
points along the center of the nucleosomal DNA super he­
lix. Using this sign convention, positive St corresponds 
to forward translocation of DNA toward the 5’ end, while 
negative St corresponds to reverse translocation toward 
the 3’ end.

A second nucleosome repositioning order parameter is 
Sr, which characterizes DNA rotation:

U^'+pim))' ,6)
where vector B points from the center of a given base 
step on the sense strand to its complementary base step 
on the anti-sense strand. P and the average denoted by 
the angle brackets are as defined for St- If (PxB)-D < 0, 
then the positive sign is used (otherwise, negative). D is 
a vector in the 5’ to 3’ direction along the sense strand 
of the DNA. If Sr = — the minor groove of the DNA 
double helix is oriented toward the histone core, whereas 
when Sr = \, the minor groove is oriented away from 
the histone complex.

D. Collective Variable Describing DNA Breathing

DNA breathing, which involves spontaneous unwrap­
ping and rewrapping of DNA from the nucleosome, 
was characterized by two angle parameters, forward and 
^backward, shown in Figure 2. Each angle is calculated be­
tween a vector from the center of mass of the histone to 
the dyad, which is relatively immobile, and a vector from 
the 30th DNA base pair to the first and endmost DNA 
base pair, which moves significantly as DNA unwraps.
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FIG. 3. Schematic of the loopiness order parameter, which 
characterizes the extent to which DNA bulges away from the 
histone octamer. Calculation of this order parameter is de­
scribed in Section IIE.

E. Collective Variable Describing DNA Looping

DNA looping, which involves DNA bulging away from 
the histone octamer, was characterized using a loopiness 
order parameter (Figure 3). To calculate loopiness, we 
first calculate two values for each ith DNA base pair: the 
distance of the base pair to the histone center of mass, 
and the location of the base pair relative to the dyad, 6^. 
For ease of calculation, we compute the average distance 
from a base pair to the histone center of mass as a func­
tion of location 0, denoted as {1(0)). In order to normal­
ize (1(0)), we then calculate the corresponding value of 
this average distance in the complete absence of looping, 
(1(0)), which is calculated from a nucleosome simulation 
performed in very low salt concentration for a strongly 
binding DNA sequence. We then normalize (1(0)) using 
(1(0)) by calculating deviation from the loop-free case 
A 1(0) = (1(0)) — (1(0)}; in cases where there is no DNA 
looping, Al is approximately 0 across all locations 0, and 
in cases where DNA loops form, Al > 0. To eliminate 
baseline noise, we threshold Al by subtracting a thresh­
old value of SA, which corresponds to the Debye length 
at 150 mM at which DNA-histone attraction has largely 
decayed. The post-threshold looping parameter Al* is 
then integrated along the entire circumference around 
the histone octamer (over all 0) in order to obtain our 
final loopiness order parameter.

III. RESULTS AND DISCUSSION

We apply the diffusion map to a subset of these tra­
jectories from three representative DNA sequences: se­
quence A, a strongly binding sequence that primarily 
repositions by loop propagation; sequence B, a moder­
ately binding sequence that exhibits a combination of 
loop propagation and twisting; and sequence C, a weakly 
binding sequence that primarily repositions by twisting. 
These sequences are tabulated in Table I with their re­
spective binding strengths and sequence identities. Fig­
ure 4 summarizes the loop propagation and twisting mod­
els of nucleosome repositioning, along with the respective 
repositioning behaviors for all three sequences studied 
and the collective variables used to describe reposition­
ing, which will be introduced later in the text.

Loop Propagation 
Quantified by ST 

Exhibited by sequence A

Sequence B exhibits both

Twist Diffusion 
Quantified by SR 

Exhibited by sequence C

FIG. 4. Schematic showing two proposed nucleosome repo­
sitioning mechanisms: loop propagation and twist diffusion. 
The histone complex is represented in red, and DNA in blue. 
St and Sr quantify loop propagation and twist diffusion, 
respectively; definitions for these order parameters are in­
troduced in the Methods section. Individual repositioning 
propensities for sequences A, B, and C are also shown.

TABLE I. DNA sequences used in this work, along with their 
binding strengths and sequence names used in the literature.

Sequence Name Binding Strength Name in Literature
A Strong c3a
B Moderate TRGCb
C Weak TTAGGGC

a See Segal et al. 2006.35 
b See Moyzis et al. 198836 and Morin 1989.37 
c See Shrader and Crothers 1989.38

By applying the density-adapted diffusion map on con­
figurations for sequences A, B, and C as described in the 
previous section, we obtain the eigenvalue spectra shown 
in Figure 5. Snapshots for the diffusion map analysis 
were extracted from the molecular dynamics trajectories 
at evenly spaced intervals (every 40 ns for sequences A 
and B, and every 25 ns for sequence C), for a total of 
16,207 snapshots from sequence A, 14,917 from sequence 
B, and 10,713 from sequence C. Sequences A and B ex­
hibit similar hierarchical eigenvalue spectra, indicated by 
multiple spectral gaps. Both sequences exhibit gaps be­
tween i/js and and between i/j6 and Vb7, suggesting that 
dynamics are dominated by a combination of three major 
slow modes (i/q to ^3) and three moderate modes (i/q to 
i/jq). The eigenvalue spectrum for sequence C exhibits a 
large, distinct gap after Vh and a smaller gap after ^3, 
which indicates that one major slow mode dominates the 
system, followed by two moderate modes.

A. DNA Translocation

First, we check if the diffusion map is able to recover 
the two nucleosome repositioning order parameters stud­
ied in Lequieu et al.28 We begin with S^, the order pa­
rameter characterizing DNA translocation relative to the 
histone dyad. Figure 6 shows two- and three-dimensional
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Sequence A Sequence B Sequence C

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
eigenvalue number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
eigenvalue number

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
eigenvalue number

FIG. 5. Eigenvalue spectra for sequences A, B, and C. Note that sequences A and B exhibit hierarchical character, indicated by 
multiple gaps in the eigenvalue spectra. Both spectra show three dominant eigenvalues, followed by three moderate eigenvalues, 
suggesting that three major slow dynamical modes dominate the system, while three less significant modes still contribute to 
the system dynamics.

diffusion map embeddings for all three sequences studied, 
using the first three non-trivial eigenvectors and colored 
by St- In all three sequences, DNA translocation is found 
to be well parameterized by either the slowest (Vh) or sec­
ond slowest (^2) dynamical mode identified by the diffu­
sion map, indicating that St correlates with slow modes 
across binding affinities. The correlation of St with ei­
ther Vq or yq in all three sequences supports the idea 
that there will always be some degree of translocational 
motion in the nucleosome repositioning process, regard­
less of the preference for a particular DNA sequence to 
reposition by either looping or twisting.

B. DNA Rotation

Figure 7 shows diffusion map embeddings of Sr, which 
quantifies DNA rotation, for all three sequences studied, 
using the top three non-trivial eigenvectors and colored 
by Sr. There is no correlation of Sr with these top 
three eigenvectors for sequences A and B; further analysis 
confirms that Sr is not well parameterized by any of the 
top six eigenvectors for these sequences. This is expected, 
since A and B exhibit relatively strong binding affinities 
and are more likely to reposition by a looping mechanism 
as opposed to a twisting mechanism.

In contrast, sequence C, a weakly binding sequence 
that primarily repositions by rotation, exhibits a peri­
odic banded structure, which appears more clearly in the 
two-dimensional embedding of sequence C in i/q and ^3 
(Figure 7d). Furthermore, we can construct an effec­
tive free energy landscape from the diffusion map em­
bedding of sequence C by collecting a histogram of se­
quence C datapoints in i/q and Sr, normalizing by the 
total number of datapoints so that the resulting proba­
bility in the bins sum to 1, and taking the negative log­
arithm of these probabilities. This effective free energy 
landscape is plotted in Figure 7e; this is reminiscent of 
the free energy landscape calculated for sequence C using 
conventional methods (umbrella sampling and WHAM) 
found by Lequieu et ah,28 plotted in St vs Sr and re­

produced in Figure 7f; this is consistent with our earlier 
finding that St correlates with i/q for this sequence.

The order parameters characterizing DNA transloca­
tion and rotation emerge in the same non-trivial eigen­
vector for sequence C, consistent with prior observations 
that sequence C repositions via twisting. In contrast, 
only translocation is extracted from the underlying MD 
data for sequences A and B, consistent with prior obser­
vations that sequences A and B do not reposition through 
DNA twisting. Through analysis of all three sequences, 
we observe that the diffusion map approach identifies a 
slow mode that correlates with DNA translocation across 
all binding strengths. DNA rotation emerges in the same 
slow mode if the sequence exhibits repositioning by ro­
tation as well, suggesting that this particular non-trivial 
eigenvector corresponds to a more general repositioning 
motion consisting of a combination of translocation and, 
if the sequence exhibits it, rotation.

C. DNA Breathing

Next, we examine whether the diffusion map approach 
can be used to identify key nucleosome dynamics beyond 
the translocational and rotational repositioning mecha­
nisms studied in Lequieu et al.28 One particularly inter­
esting aspect of nucleosome dynamics is DNA breathing, 
which involves unwrapping of nucleosomal DNA from 
the histone complex. Single-molecule FRET experiments 
have shown that nucleosomal DNA can spontaneously 
unwrap and rewrap from the histone octamer, allowing 
transcription factors, enzymes, and other proteins to in­
teract with previously unaccessible portions of DNA that 
were buried by the histone complex.39,40

Figure 8 shows two-dimensional diffusion map embed­
dings for all three sequences, colored by the average of 
^forward and ^backward, which captures breathing on both 
sides of the nucleosome. The average breathing order pa­
rameter correlates with ^2 for sequence A, and with ^1 
for sequences B and C. Interestingly, in each sequence, 
the average breathing order parameter correlates with
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FIG. 6. 2- and 3-dimensional diffusion map embeddings of St for all sequences. DNA translocation correlates with 2p2 for 
sequence A, indicated by the gradient in St along the vertical ^2 axis. DNA translocation correlates with ^1 for sequences B 
and C, indicated by the gradient in St along the horizontal ipi axis.

Sequence A 
(a)

SequenceB 
(b)

~°°2

Sequence C 
(c)

3-
V)

FIG. 7. (a-c): 3-dimensional diffusion map embeddings of Sr, the order parameter that characterizes DNA rotation, for all 
sequences. For clarity, datapoints with greater values of Sr are shown at higher layers of the plot. There is no correlation of 
Sr with top non-trivial eigenvectors for sequences A and B; (d) 2-dimensional diffusion map embedding of Sr for sequence 
C. ip 1 correlates with cycles of DNA rotation, as indicated by the periodic bands of Sr along ipi; (e) effective free energy 
constructed from the diffusion map embedding for sequence C. Effective free energy is calculated by histogramming datapoints 
for sequence C in ipi and Sr, normalizing each histogram bin by the total number of datapoints to calculate probabilities, and 
then taking the negative log of each bin. The resulting density plot exhibits a periodic banded structure reminiscent of the free 
energy landscape for sequence C constructed by conventional methods by Lequieu et ah,28 which is plotted in (f) in St vs Sr. 
Note that St was previously found to correlate with ^1 for sequence C; the diffusion map has effectively unfurled the same 
previously calculated free energy landscape.
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the same eigenvector as ST (and SR, in the case of se­
quence C); this is evident in the visual similarities be­
tween Figures 6 and 8. The shared correlations of the 
average breathing order parameter with ST and SR sug­
gest that repositioning dynamics and breathing dynamics 
are closely tied. The embeddings generated by the diffu­
sion map approach capture both of these motions within 
the same non-trivial eigenvector, implying that these two 
types of dynamics are innately part of the same charac­
teristic dynamic mode exhibited by the nucleosome. Al­
though the diffusion map is unable to provide an explicit 
nonlinear mapping from the high-dimensional input to 
low-dimensional coordinates, and interpretation of the 
low-dimensional coordinates is limited to correlating the 
top eigenvectors of M with various descriptors of the sys­
tem, this perceived deficiency may also be interpreted as 
an advantage, since it provides a tool for identifying mul­
tiple CVs that may be coupled together in the same slow 
dynamical mode, as we have just observed with ST and 
Sr for sequence C.

D. DNA Looping

In Figure 5, sequences A and B were found to exhibit 
hierarchical eigenvalue spectra, with three dominant non­
trivial eigenvectors (Vq, Vtq V’s) and three moderate non­
trivial eigenvectors (Vq, V’s, Vq)- Our analysis thus far, 
using the diffusion map approach, has focused on motions 
correlating with the top group of non-trivial eigenvec­
tors. We now examine the significance of the moderate 
non-trivial eigenvectors in sequences A and B (and why 
this feature is absent from the eigenvalue spectrum for 
sequence C).

Figure 9 shows two-dimensional diffusion map embed­
dings of the loopiness order parameter, described in the 
Methods section, for sequences A, B, and C using the 
moderate eigenvectors Vq, Vq, and Vq- Protrusions are 
observed in all three embeddings for sequence A and the 
embedding of sequence B in Vq and Vs- Through vi­
sual inspection of configurations corresponding to points 
within and outside of the protruding lobe, we find that 
the protrusion corresponds to configurations exhibiting 
DNA loops. In more “loopy” configurations, DNA bulges 
away from the histone complex, and gaps are formed be­
tween the DNA and histone octamer. Loopy configura­
tions are necessary for the loop propagation involved in 
DNA translocation characterized by the order parameter 
ST, as described earlier, with translocation dominating 
in more strongly binding sequences.

The emergence of loopiness in Vq, Vq, and Vq in se­
quences A and B is consistent with their relative propen­
sities for translocation. For strongly binding sequence A, 
loopiness emerges in multiple higher eigenvectors com­
pared with moderately binding sequence B; loopy config­
urations for sequence A are clearly isolated in Vq through 
Vq- In contrast, loopiness only emerges in Vq for sequence 
B, which exhibits a lower propensity for translocation

compared to sequence A. Furthermore, weakly binding 
sequence C repositions entirely by rotation and does not 
exhibit any moderate eigenvectors. In fact, loopiness 
does not emerge in any of the top 12 eigenvectors for 
sequence C.

DNA loop formation is important well beyond the con­
text of the mechanics of loop propagation, with implica­
tions in chromatin remodeling and spontaneous nucleo­
some migration,23 and we show that the diffusion map 
can automatically identify this subtle mode. Further­
more, we find that looping is embedded in higher-order 
eigenvectors, which diffusion map studies often bypass 
while focusing on the first several dominant eigenvectors. 
These top eigenvectors often extract the dynamic modes 
corresponding to collective variables more easily identi­
fied by hand, as the present study shows with ST and 
SR. We show that thorough examination of higher-order 
modes can provide valuable insight into more subtle dy­
namics of complex systems that may be easier for humans 
to miss.

IV. CONCLUSIONS

Diffusion maps were used to extract key motions un­
derlying nucleosome dynamics from MD trajectories of 
nucleosome repositioning for three representative DNA 
sequences, spanning different binding strengths (and con­
sequently, different repositioning dynamics). Translo- 
cational and rotational motions, which had been previ­
ously identified through a detailed free energy analysis 
by Lequieu et ah,28 were confirmed by the diffusion map 
approach. Translocational motions were found to cor­
relate with dominant slow modes across the three DNA 
sequences examined here. Rotational motions were only 
found to emerge in the weakest binding sequence stud­
ied, emerging in the same slow mode that correlates with 
translocation.

In addition to finding the previously reported translo­
cational and rotational order parameters, the diffusion 
map analysis was also used to extract DNA breathing 
and looping motions. Measures of DNA breathing, in 
which DNA spontaneously unwraps from and re wraps 
around the histone complex, were found to correlate with 
the same eigenvectors that correlate with DNA translo­
cation and rotation, suggesting that DNA repositioning 
and DNA breathing are inherently part of the same dy­
namical mode. Sequences that exhibit DNA sliding were 
found to exhibit hierarchical eigenvalue spectra, with 
looping configurations isolated in the moderate eigenvec­
tors corresponding to eigenvalues between the first and 
second spectral gap. The dominance of DNA sliding over 
twisting is further reflected in the order in which loop­
iness appears in these moderate eigenvectors. Weakly 
binding sequence C, which primarily repositions by twist­
ing, neither exhibited a hierarchical eigenvalue spectra 
nor any eigenvectors that correlated with loopiness.

The diffusion map approach is particularly useful in
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FIG. 8. Two-dimensional embeddings of the average of ^forward and ^backward, which characterizes DNA breathing, for all 
sequences. The average breathing order parameter for sequence A correlates with ^2, as indicated by the gradient in the 
breathing order parameter along the vertical tJj2 axis; tJj2 also correlates with the order parameter characterizing DNA translo­
cation, St, for sequence A, as seen in Figure 6. The average breathing order parameter for sequences B and C correlate with 
ipi, as indicated by the gradient in the breathing order parameter along the horizontal ipi axis; this eigenvector also correlates 
with St for these two sequences, again as seen in Figure 6. For sequence C, this eigenvector also correlates with Sr, as seen 
in Figure 7.

Sequence A

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

f4
Sequence B

FIG. 9. Two-dimensional diffusion map embeddings of loopiness for all sequences, plotted by moderate eigenvectors Vq, i/q 
and 'ipQ. For sequence A, more loopy configurations are isolated by all three moderate eigenvectors. For sequence B, loopy 
conformations are only isolated by Loopy configurations are not extracted for sequence C.
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enabling the discovery of key dynamical motions directly 
from MD data without defining a priori what exactly 
these motions might be. Although interpretation of 
dominant dynamical modes is aided by embedding user- 
specified order parameters in the diffusion map, as done 
in this work, these order parameters need not be supplied 
in order to calculate the non-trivial eigenvectors corre­
sponding to these dominant modes, nor specially created 
in order to interpret a specific non-trivial eigenvector. 
For example, one might interpret a particular eigenvector 
by visually examining snapshots of the simulation drawn 
from different areas of the diffusion map, or use a gener­
alized collective variable instead (ex. fit an eigenvector 
as a function of atomic coordinates from each simulation 
snapshot in the diffusion map). Considering the impor­
tance of sequence dependence in nucleosome dynamics, 
diffusion maps provide an attractive solution for rapid 
screening and identification of key dynamics across se­
quences in more complex scenarios, for example in higher 
order chromatin structures or comparing across mutated 
sequences. Even in the single nucleosome case studied 
in this work, there remain several significant eigenvec­
tors for which the corresponding dynamics are unknown; 
we are actively working on elucidating these dynamics. 
More generally, this work emphasizes the possibilities of 
uncovering unintuitive properties in MD data that may 
be missed by more traditional approaches. Here, we are 
able to confirm both previously known and new order pa­
rameters using a small subset (and only 3 out of 9 total 
sequences) of the MD trajectories previously used in a 
detailed free energy analysis, attesting to the usefulness 
and efficiency of applying diffusion maps to previously 
simulated complex systems.
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