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Abstract—We propose a federated edge-computing architec-
ture for management of data. Our vision is to enable a service
provider model for “data-services”, where a user can enter
into economic agreements with an infrastructure maintainer to
provide storage and communication of data, without necessarily
trusting the infrastructure provider. Toward this vision, we
present cryptographically hardened cohesive collections of data
items called DataCapsules, and an overview of the underlying
federated architecture, called Global Data Plane.

Index Terms—Edge Computing, Data Security, Distributed
Systems.

I. INTRODUCTION

Edge computing, the next major paradigm of computing
after cloud computing, is the use of resources at the edge of the
network to augment or supplant resources in the cloud. Gartner
estimates that by 2025, 75% of enterprise-generated data will
be created and processed outside a traditional centralized data
center or cloud [6]. The appeal is obvious. Resources at
the edge provide an opportunity for low-latency and high-
bandwidth communication, lower energy consumption, and
(potentially) improved data security, privacy, and isolation.

Between an end user’s device and the cloud are a variety
of decentralized resources, managed by individuals, small
corporations, municipalities and others (see Figure 1). Many
are in homes, offices, public infrastructure, factory floors,
enterprises, nano/micro data centers, and elsewhere; a large
fraction are behind firewalls or NATs and aren’t even directly
reachable on the public Internet. In an ideal world, these
federated resources could be exploited in a unified manner by
users and applications designers. In fact, some have concluded
that the resources in this hidden layer are crucial to enable
rich applications of tomorrow [10], [37]. Unfortunately, edge
environments are extremely heterogeneous, not just in terms of
capabilities, but also in terms of resource ownership, security,
privacy, reliability, and other such soft factors [31], [13].
Worse, it is extremely difficult to exploit them in a secure,
understandable, and cost-effective way.

To start with, this extended vision of edge computing has
two rather fundamental issues. First, the edge environment is
often not as trustworthy as the cloud; resources at the edge of
the network may be owned and maintained by novice users
or malicious third parties, leading to a distinct possibility that
devices may be unreliable or compromised. Further, physical
security is less prevalent in edge environments, leading to
a variety of physical attack vectors. Compromised devices
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Fig. 1: A Case for Federation: Pervasive network resources
partitioned by ownership could be exploited for secure edge
computing. However, to avoid vendor lock-in and stove-pipe
solutions, we must refactor the network around information
and trust, abstracting above the level of packet communication
to adopt a standardized environment for protecting, managing,
and migrating information.

could steal information in transit, covertly monitor commu-
nication, or deny service. Standard application frameworks
do not provide sufficient mechanism to reason about or act
on the ownership of resources at the edge. Further, even
when environments are ostensibly secured through profes-
sional management, many distributed applications make use
of middleware that assumes by default that it operates in a
trusted, non-malicious environment (i.e., relying on border
security from firewalls both in the network and onboard multi-
tenant hosts); once breached, these boundaries often expose
unencrypted and unsecured information1.

Second, modern connected and cyber-physical applications
that could benefit from the edge environment (such as robots,
autonomous vehicles, or smart-manufacturing environments)
are extremely vulnerable to data corruption, insertion attacks,
and failure-induced data loss or inconsistency; under attack,
these applications could cause property damage, injury, or even
loss of life. Such vulnerabilities already occur in cloud-only
deployments—without introducing the complexities of edge
environments. Since the need for universal attribution (prove-
nance) and protection of information has become increasingly
acute in today’s world, edge environments seem less and less
appropriate for the very applications that could benefit most

1Note that the notion of “securing communication” through cryptography
(e.g. TLS) has at its root the misconception that end hosts (including those in
large datacenters) are somehow secure against breach.



Fig. 2: DataCapsule: a cohesive representation of information
analogous to a shipping container. Internally, it is an ordered
collection of immutable records that are linked to each other
and signed. Their unique names and identity are derived from
hashes over metadata that include ownership credentials.

from their resources.
Consequently, any approach that attempts to provide edge

resources to reliable applications must: (1) provide a standard-
ized way in which to access heterogeneous resources, thereby
freeing application writers from ad-hoc interfaces and stove-
pipe solutions; (2) respect the natural boundaries of ownership
and trust as shown in Figure 1, giving applications and users
the ability to make choices based on these boundaries; and
(most important) (3) address the security and provenance of
information independently from physical device boundaries.
While such an approach would be desirable for any system–
including one owned and maintained entirely by a single entity
such as a large corporation–these requirements are essential
to freeing applications to exploit resources in a federated
environment, one in which public or semi-public resources
may be bought and sold, borrowed and donated, to supplement
the private resources of users and application providers.
A. Refactoring Around Information and Trust

To solve these problems, we advocate a fundamental refac-
toring of the information and communication infrastructure
into a data-centric “narrow waist” focused on information
rather than physical, destination-based packet communication.
Unlike other data-centric proposals (e.g., NDN [38]), we
provide data update and attribution semantics by introducing
a new entity, called a DataCapsule, that operates on top of
a data-centric infrastructure called the Global Data Plane.
As shown in Figure 2, DataCapsules are the information
equivalent of the ubiquitous shipping containers seen at every
port and on ships, trains, and trucks. They are standardized
metadata containers, with unique names derived as hashes over
their metadata, that hold cryptographically linked information
histories. These histories are directed graphs of transactions
with provenance (e.g., signatures).

The Global Data Plane enables location-independent con-
versations between clients (or application components) and
DataCapsules based only on DataCapsules’ unique names.
The Global Data Plane is organized as a graph of Trust
Domains (TDs), enabling communication to be restricted
to portions of the network trusted by DataCapsule owners.
Since conversations with DataCapsules do not involve physical
identifiers, such as IP addresses, they may be placed, moved,
or replicated to satisfy requirements for availability, durability,
performance, or privacy without compromising the integrity or

global shareability of the enclosed information.
B. Agile and Secure Edge Computing.

An important aspect of edge computing (to complement
DataCapsule mobility) is agile secure computing, namely
the ability to instantiate a secure computation on demand
in an edge environment–complete with code, cryptographic
keys, and data inputs and outputs. To protect information
while enabling on-demand edge computing, the Global Data
Plane infrastructure is ideally coupled with secure, lightweight,
virtual machine containers that can be entrusted with secret
keys and attested code. Secure computational enclaves (such
as constructed via Docker [28] and SGX [12], [9] or its follow-
ons) are a vital component of our edge-computing vision, but
beyond the scope of this current paper. DataCapsules provide
an ideal mechanism with which to distribute secure, multi-
versioned binaries to secure enclaves as well as repositories
for data used by the resulting computation.

We envision that secured computational providers at the
edge could interact with applications (through a broker) to
offer secure enclaves in which to execute sensitive components
of applications in edge environments. Applications could judge
the reliability of such resources via secure attestation. For
this paper, however, we contend that refactoring applications
around DataCapsules provides a significant first step toward
our federated, edge-computing vision.
C. Our Contributions

In what follows, we refine our federated, edge-computing
vision and discuss how an infrastructure standardized around
DataCapsule metadata enables this vision. In particular:
• We identify a ‘platform vision’ to address the extreme

heterogeneity of resources at the edge of the network.
• We explore how DataCapsules secure information within

the network while simultaneously enabling a wide variety of
familiar data access patterns such as databases, filesystems,
and multimedia streaming.

• We discuss the design of the Global Data Plane platform that
serves as a substrate for DataCapsules, and investigate how
the Global Data Plane operates in a federated environment
by embracing and exploiting multiple domains of trust.

II. A PLATFORM VISION FOR THE EDGE

In this section, we explore whether a platform abstraction
can be applied to ease the burden of application writers
confronted with an edge-computing environment. As opposed
to the infrastructure approach of forcing application develop-
ers to configure and manage systems directly, the platform
provides developers with a way to convey properties such as
performance and security to the underlying infrastructure.2

As shown in Figure 3, we seek a storage and communication
platform that is widely distributed over a heterogeneous infras-
tructure managed by many administrative entities. We envision
that such a system could provide a seamless integration

2Here, our use of the word “platform” is similar to the way it is used in
“Platform as a Service” (PaaS) in cloud computing, and as opposed to the
alternative “Infrastructure as a Service” (IaaS) [29].
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Fig. 3: A widely distributed system spread over heterogeneous
infrastructure. DataCapsules are self-sufficient containers that
enable our data-centric vision (see section IV).

of resources at the edge with those in the cloud if done
correctly. Such a system differs from the current cloud model
which is (by and large) oriented around a single owner and
administrator of resources. As argued previously, we believe
that refactoring applications around a secure-storage API is
an essential step to enabling edge computing.

Many big-data systems, backed by cloud infrastructures,
have evolved with the assumption that the infrastructure is
trusted—an assumption that might be valid in the closed,
single-administrator model (although a host of recent data
breaches might argue to the contrary). Such assumptions must
be revisited in a federated, multi-administrator environment.
The DataCapsule vision outlined in the last section is an
essential first step toward our platform vision, since it sep-
arates concerns of the security, authenticity, and integrity of
information from the physical properties of the platform.

Other than the typical properties of a distributed storage
system (scalability, fault-tolerance, durability, etc.), let us take
a look at the additional requirements needed to support the
edge-computing paradigm:
• Homogeneous interface: A homogeneous interface allows

application developers to create portable applications and
avoid stove-piped solutions. This property is important,
given the extreme heterogeneity of resources at the edge. It
is also useful if the interface can support a wide-variety of
applications natively, or allows for creation of higher level
interfaces.

• Federated architecture: The platform should not be re-
stricted to a single (or a handful of) administrative enti-
ties; instead, anyone should be able to contribute their re-
sources and be a part of the platform3. The edge-computing
ecosystem has the potential for a vast and varied set of
administrative entities. For a truly federated architecture,
reputation should not give an unfair advantage to large
service/infrastructure providers; we argue for a baseline of
verifiable data-security to make it a fair playing field.

3An administrative entity could be an individual with a small smart-hub
in their home, small/medium business with a closet full of servers, a large
corporation with their own small data-centers, or a large scale cloud service
providers with massive data-centers.

• Locality: Locality is extremely important for at least two
reasons: First, local resources enable low-latency and real-
time interactions unavailable from the cloud [10]. Second,
information privacy is enhanced by limiting access exclu-
sively to local clients or using local private resources that
may be more trusted to not engage in sophisticated side-
channel attacks. Finding such local resources relative to a
client usually requires knowledge of the routing topology,
a process best assisted by the network itself (e.g., network
assisted anycast) which hints towards an overlay network
of some kind. However, such global routing state, if not
managed properly, can be corrupted by adversaries.

• Secure storage on untrusted infrastructure: The infras-
tructure should provide a baseline verifiable data security
(confidentiality and integrity) even in the face of potentially
untrusted elements. In the cloud ecosystem, there are few
if any commercial storage offerings that provide verifiable
security guarantees. As a result, the cloud ecosystem is pow-
ered by trust based on reputation—a model that is favorable
to large service providers. Enabling secure interfaces allows
for a utility model of storage where smaller but local service
providers can compete with larger service providers.

• Administrative boundaries: The system should provide
visibility of administrative boundaries to an application
developer. Ideally, a developer should be able to dictate
what parts of the infrastructure to be used for specific data
for two reasons. First, as hinted above, concerns over data
privacy and security—especially for highly sensitive data—
may require that data be restricted to a specific organization.
Second, an application developer should be able to form
economic relations with a service provider and hold them
accountable if the desired Quality of Service (QoS) is not
provided by the service provider.

• Secure routing: Data security in transit is equally important
as data security at rest and simply encrypting the data is
not sufficient in many cases. Encryption does provide a
baseline of data confidentiality; however, any adversarial
entity monitoring communication in real time can learn
much information from the side-channels [8]. In a federated
infrastructure where the system routes a reader/writer to a
close-by resource, it becomes easy for third-party adver-
saries to pretend to be such a close-by resource and either
perform man-in-the-middle attacks or simply drop traffic
(effectively creating a black-hole)—a problem well studied
in overlay routing schemes [35]. These two requirements—
that anyone can be a part of the network but that the
network must be secure against timing channels or denial
of service—would appear to be at odds, and a federated
system must provide a solution to such conflicting goals.

• Publish-Subscribe paradigm: The usefulness of a stor-
age system increases exponentially when communication
is an integral part of the ecosystem; such ideas have been
well studied in the economics of communication (network
effect) [16]. Toward this goal, we believe that a secure
publish-subscribe is crucial to enabling composability of
services and applications.
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• Incremental Deployment: Any system must be incremen-
tally deployable, suggesting a hybrid combination of over-
lay networking for initial network penetration and native
implementation (such as using an SDN infrastructure) for
later performance enhancement.

A system that meets these high-level requirements—security
and locality being the two most important—provides appli-
cation developers a secure ubiquitous storage platform that
supports a wide variety of deployment scenarios: a service
provider model with a high density of resources; private
corporations with restricted data flows; strict control loops in
industrial environments with explicitly provisioned resources;
and a strict data-center model similar to the cloud.

Not only is such a federated infrastructure better than stove-
piped custom solutions, clear interfaces that separate compute
from state allow for a refactoring of applications for a better
security audit of the information—one can reason about the
information flows by analyzing well-defined entry-points and
exit-points of information in an application.

III. EXISTING WORK: WHERE DOES IT FALL SHORT?
To realize such a vision, can we modify existing systems

and applications and make them work in a federated envi-
ronment and untrusted infrastructure? Often, when faced with
such a question, application developers present a simplistic
viewpoint: ‘let’s add encryption to an existing system’. Such
an approach, while perhaps appealing, is insufficient, since
encryption provides confidentiality, but not data integrity and
provenance. Further, information objects that update over time
require additional considerations to ensure protection against
replays, reorders, message drops, etc. An approach like this
leads to insecure applications in the worst case and point
solutions in the best case.

An edge computing storage platform has to address a num-
ber of challenges all at the same time, whereas the alternatives
can get away with addressing only a subset of such challenges.
e.g. cloud-based data management systems can work based on
‘reputation’, whereas such a platform for edge computing ab-
solutely must provide verifiable security. Similarly, on-premise
system management by application developers typically do not
even assume untrusted infrastructure, since the infrastructure
is under their direct control.

Quite a few tools and systems have been proposed in
the past to address the challenge of secure data-storage or
secure communication in the face of untrusted infrastructure.
However, when applied to the edge-computing platform vision,
often there is a mismatch between the performance require-
ments and the security requirements; we present some such
examples here. Note that we do not necessarily claim novelty
in identifying or addressing individual challenges; instead, our
novelty claim is the high-level vision of the federated platform
that requires these challenges to be solved in a specific context.
A. Existing IoT Platforms

A number of ecosystems and application frameworks have
emerged for the Internet of Things (IoT) to alleviate challenges
very similar to those present in edge-computing [1], [4], [5],

[3]. While these ecosystems are helpful to some extent, they
only address the short-term—and rather shallow—challenge of
providing API-uniformity and do not necessarily address the
underlying issues of data security and trust, especially when
the resources at the edge are owned by many different entities.
Rather than providing the flexibility to work with multiple trust
domains and enabling users to maintain the ownership/control
of their own data, these frameworks create walled gardens
trapping the data that belongs to users, leading to stove-pipes
and system lock-in. In our opinion, they are solving a very
different problem: how to convince as many users as possible
to hand-over their data that can be stored in cloud data centers.
B. Information Centric Networks

Information Centric Networks (ICNs) are hailed as an
architecture to enable locality, mobility, and various other
useful properties in a data-centric architecture [38]. ICNs raise
the abstractions to the information itself rather than the host-
centric messaging networks such as IP. The defining property
of an ICN is information objects can be addressed as a first
class citizen. Various ICN architectures propose pervasive
caching where anyone can respond to a client seeking a
specific object, and provide a way for the client to verify
the correctness of the object [14]. There are two challenges
with applying such ICN architectures to our federated edge-
computing platform:
• Pervasive caching, or uncontrolled caching in general, is bad

for privacy, especially when dealing with sensitive data. It
is important to control where data flows. Routing to the
closest copy of an object, while allowing anyone to host
a copy, gives rise to sybil attacks where malicious entities
can insert themselves at strategic points in the network and
effectively perform man in the middle attacks.

• Existing ICNs work well with static objects, but not with
dynamic objects (such as streams). For objects that change
over time (and thus have multiple versions with the same
name), it is difficult for a client to know whether or not it
is getting the most recent version of the object. No entity in
the infrastructure is explicitly responsible for providing the
most up-to-date copy or providing semantics for the update
of information.

We believe that a strict delegation of caching, storage and
routing of objects to specific service providers can alleviate
both of these problems. As we will discuss later, we use
explicit cryptographic delegations in a service provider context
to obviate both of these limitations.
C. Distributed Storage and Untrusted Servers

Storage on untrusted infrastructure is a well-studied prob-
lem [18], [26], [23]. Distributed storage brings many chal-
lenges related to failures, network partitions, and data con-
sistency. The presence of potentially untrusted entities makes
the distributed storage problem even more challenging. Var-
ious existing systems have addressed distributed storage on
untrusted infrastructure [21], [11], [36], [15].

A common theme among these solutions is to assume
Byzantine failures and create a quorum that decides which
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TABLE I: A summary of how Global Data Plane meets the platform requirements (see section II).

Goal Enabling feature
Homogeneous interface DataCapsule interface that supports diverse applications by providing limited yet sufficient flexibility to enable applications

achieve their desired performance.
Federated architecture Using the flat name for a DataCapsule as the trust anchor and does not rely on traditional PKI infrastructure.
Locality Hierarchical structure for routing domains that mimics physical network topology.
Secure storage DataCapsule as an authenticated data structure that enables clients to verify the confidentiality and integrity of information.
Administrative boundaries Explicit cryptographic delegations to organizations at a DataCapsule-level.
Secure routing Secure advertisements and explicit cryptographic delegations.
Publish-subscribe paradigm Publish-subscribe as a native mode of access for a DataCapsule.
Incremental Deployment Routing over existing IP networks as an overlay.

new writes are to be accepted and in what order4. While this
is an excellent solution for certain use cases, it is somewhat
contradictory to the edge-computing vision: on the one hand,
we’d like to use local resources as much as possible, and on the
other we’d like to consult multiple network resources (owned
by different providers and geographically separated).

In comparison to existing systems, we explore a relatively
unexplored design point: a cryptographically hardened, single-
writer, append-only data structure where the ordering of writes
is decided by the single writer.

D. Secure Transport

While we focus on object security, it is important to assert
that the responses to various requests come from the correct
parts of the infrastructure, and not an adversary that has
somehow managed to insert itself in-between the path, or just
happens to be in the path. In a service-provider model, it is
important to ensure that an honest infrastructure provider can’t
be framed by an adversary.

A seemingly obvious solution is to create a secure channel
to the infrastructure using TLS. However, this approach is
contradictory to the notion of an ICN, since it is going back
to securing the host-to-host communication. Even if one were
to use TLS-like mechanisms, a solution for mapping an object
name to a host name is needed. Another solution is for
an infrastructure provider to simply sign the responses [23].
However, such an approach leads to practical challenges of
obtaining the public key of the server, especially when dealing
with a large number of information objects.

A final engineering challenge is to be able to work with
multiple replicas of the same object (potentially hosted by mul-
tiple service-providers simultaneously). As with IP-networks,
‘anycast’ works well with connectionless protocols (such as
DNS); connection-oriented protocols run into the issue of
routes flipping in the middle of the connection. As a result,
a protocol that requires explicit key-exchange before any data
transmission may not work well.

Toward this goal, we propose a connectionless mechanism
for securing responses from the infrastructure; our protocol
starts the chain of trust from the name of the object itself and
quickly translates to efficient HMAC based secure acknowl-
edgments.

4An exception is blockchain based solutions that rely on proof-of-work.
While interesting from a theoretical standpoint, they have limited practicality
to serve as a data-storage infrastructure because of scalability challenges.

IV. GLOBAL DATA PLANE AND DATACAPSULES

A. DataCapsules

A DataCapsule is a globally addressable cohesive encapsu-
lation of information that lives in a widely distributed system
and provides a unified storage and communication primitive.
DataCapsules are cryptographically hardened so that they
can be migrated across domains of trust while maintaining
the integrity and confidentiality of information. Internally, a
DataCapsule is an authenticated data structure (ADS) [32] that
works well with a distributed infrastructure underneath5.

A DataCapsule is extremely flexible the information that it
can contain; it can be used for a static information dump or an
evolving stream of information. Similarly, there is no inherent
restriction on the frequency or volume of information updates;
the only constraints are the amount of available resources.
Thus, a DataCapsule could be used to store a short text file,
time-series data representing ambient temperature, streaming
video, or anything else. Depending on the information that a
DataCapsule contains, the level of durability and consistency
requirements can be varied to match well with the infrastruc-
ture underneath6.

The inspiration for DataCapsules is a shipping-containers
equivalence for data, an idea elegantly introduced by Lucas, et
al [24]. The introduction of a standardized shipping container
produces a strong network effect [16]: the underlying infras-
tructure of ships, trains, trucks, cranes and storage locations,
can all be developed in support of this form factor for
all containers regardless of source or destination. Each new
port benefits all the preexisting ports. Thus, the standardized
interface benefits both users and shippers. Further, during the
shipping process, the goods are handled by many parties. Not
only is it challenging to keep track of loose goods, but they
are prone to theft as well. A shipping container makes it much
easier to keep track of goods; a locked container not only
protects against accidental loss but also prevents opportunistic
thefts. Of course this analogy is may only be stretch so far.

In a federated and widely distributed computation infras-
tructure where data is almost invariably handled by multiple
parties at various stages of its lifetime, we envision a DataCap-
sule to be the data container that enables one to manage the

5An ADS allows a client to get a proof of operations carried out on a
remote data structure stored on an untrusted server. A number of ADSs have
been proposed in the past, e.g. Merkle trees, authenticated dictionaries, etc.

6For example, a DataCapsule representing a streaming video can tolerate a
few missing frames, but another DataCapsule that supports a file-system can
not tolerate any missing data.
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Fig. 4: DataCapsules rest on storage available in the network
and become durable through replication. Storage provided
by DataCapsule-servers and routing provided by GDP-routers
collectively form the infrastructure: Global Data Plane.

information through various domains of trust while enabling
interoperability across rich and diverse applications.

B. Global Data Plane: An Ecosystem for DataCapsules

While a DataCapsule is an abstract bundle of information,
the physical backing for the DataCapsule is provided by the
Global Data Plane (GDP). At a high level, the GDP is to a
DataCapsule is what a distributed file-system is to a file. The
GDP is a widely distributed system of storage and routing
nodes that enables an ecosystem for such DataCapsules (see
Figure 4). While an application decides what information goes
in a DataCapsule and in what order, the infrastructure is
tasked with making the information durable and available to
appropriate readers.

The infrastructure is owned and operated by organizations.
An organization can operate DataCapsule-servers and act as
a storage organization; or it can operate GDP-routers along
with the associated routing infrastructure and act as a routing
domain; or both. Anyone can create their own organization;
all they need is to put up appropriate infrastructure. Similar to
a DataCapsule, an organization is identified by a unique iden-
tifier. Not only organizations, even individual DataCapsule-
servers and GDP-routers also have their own unique identity.
These organizations are what define the Trust Domains that
we mentioned earlier.

Note that these names/identities for various addressable enti-
ties (organizations, DataCapsules, DataCapsule-servers, GDP-
routers) are all part of the same flat name-space, which is also
their address in the underlying GDP network: a routing fabric
consisting of GDP-routers that collectively enable communica-
tion between these flat addresses. Instead of being exclusively
a host-to-host network, this is a more abstract network where
one can communicate directly with services, data, or in the
general case—principals. Since DataCapsules representing in-
formation are a first class citizen of this network, this network
fits the definition of an Information-Centric Network (ICN).

DataCapsules reside on DataCapsule-servers in Global Data
Plane, as assigned by the DataCapsule-owner. The task of

DataCapsule-servers is to make information durable and avail-
able to the appropriate readers while maintaining the integrity
of data. The durability is ensured by creating replicas; a single
DataCapsule may have a number of replicas throughout the
GDP network across domains.

A DataCapsule-owner assigns the responsibility for storing a
DataCapsule and providing a route to the name of DataCapsule
by using cryptographic delegations. Thus, such organizations
define the administrative boundaries for where a DataCapsule
can reside or be routed through. Organizations can have
hierarchies (sub-organizations, and so on) to enable fine-
grained administrative controls. Such hierarchies allow flex-
ibility on the granularity of delegation; a DataCapsule-owner
can selectively delegate DataCapsule related responsibilities to
specific sub-organizations. Just like redundancy for a utility,
the architecture allows a single DataCapsule to be delegated to
multiple service providers at the same time. The GDP network
natively supports locality and anycast to the closest replica and
enables clients to satisfy their performance requirements.

C. Threat model

A DataCapsule targets a separation of integrity and con-
fidentiality from service availability. Appropriate entities in
the infrastructure act on service requests from a client (e.g.
sending a message to a destination, reading data from a
DataCapsule-server), and honest infrastructure operators fulfill
their contractual obligation to provide service to honest clients.
In the most general case, a client does not trust the rout-
ing/storage infrastructure for data-integrity or confidentiality.
The infrastructure can behave incorrectly either accidentally
or deliberately, but a client can detect such deviations. As
examples of what is permissible under such threat model, any
messages can be arbitrarily delayed, replayed at a later time,
tampered with during transit, or sent to the wrong destination.
Similarly, a DataCapsule-server can attempt to tamper with
individual records or the order of records when stored on disk.

We assume service availability from the infrastructure,
which is achieved with a utility provider model. If a client
does not receive the expected level of service (e.g. excessive
message loss, low resiliency to component failures, etc.), it
can find a different service provider without compromising the
security of data. For mission-critical data, the DataCapsule-
owner preemptively delegate multiple service-providers to
ensure no accidental or malicious disruption in service. The
GDP natively supports such redundant delegation.

The infrastructure may receive requests for DataCapsule
operations from not just appropriately authorized clients, but
also from third parties pretending to be legitimate clients.
DataCapsule is designed to allow honest service providers
implement appropriate access control, and for honest clients
to detect when such access control has been violated.

In summary, the GDP ensures that data security (i.e. in-
tegrity, confidentiality, and provenance) can be managed by the
users, whereas durability and availability are the responsibility
of an underlying infrastructure enabled by a utility provider
model.
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V. INTERNALS AND MECHANISMS

In this section, we describe the internal details and mecha-
nisms of the architecture. Note that unless otherwise specified,
‘hash’ refers to a SHA256 hash function. Also, ‘signatures’
refer to ECDSA instead of a non-EC algorithm (RSA, DSA)
because of smaller key sizes.

A. DataCapsule: A configurable ADS

In an abstract sense, a DataCapsule is a single-writer,
append-only data structure stored on a distributed infrastruc-
ture and identified by a unique flat name. This flat name serves
as a cryptographic trust anchor for verifying everything related
to the DataCapsule. The unit of read or write to a DataCapsule
is called a record. Internally, a DataCapsule is an ordered
collection of variable sized immutable records linked together
with hash-pointers.

The key operations available to a client are: ‘append’,
‘read’ and ‘subscribe’. An ‘append’ (or publish) is adding new
records to the DataCapsule. ‘Read’ is for fetching records by
addressing them individually or by a range, while ‘subscribe’
allows a client to request future records as they arrive, enabling
an event-driven programming model. Thus, a DataCapsule not
only enables a persistent information repository by providing
efficient random reads for old data, it also supports real-time
communication with a pub-sub paradigm and secure replays
at a later time (a time-shift property).

The absolute simplest DataCapsule is essentially a hash-
list of records; each new record has a hash-pointer to the
previous record. An append operation is adding new records
at the end of such a list. Each update is associated with a
signed ‘heartbeat’ generated by the writer; such signature is
over the most-recent record using a key known only to the
writer. Read queries can be verified against a particular state
of the data-structure, identified by the ‘heartbeat’. As we will
describe next, each read comes with a cryptographic proof of
correctness created using signatures and hash-pointers.

While there is only a single writer for a DataCapsule, there
can be multiple readers. The readers and the single writer
of a DataCapsule are collectively referred to as clients. At
a cryptographic level, the write access control is maintained
by the writer’s signature key, and read access control is
maintained by selective sharing of decryption keys.7 Clients
use digital signatures and encryption as the fundamental tools
to enable trust in data than in infrastructure.
DataCapsule Name as A Trust Anchor: The globally unique
name of the DataCapsule is derived by computing a hash of
the ‘metadata’; metadata is a special record at the beginning
of a DataCapsule. Metadata is essentially a list of key-
value pairs signed by the DataCapsule-owner, that describe
immutable properties about a DataCapsule. One such property
is a public signature key belonging to the designated single
writer; another property is the owner’s signature key.

7Note that infrastructure ensures that the data does not leave specified
routing domains as controlled by policies. Encryption provides the final level
of defense in the case when the entire infrastructure is compromised.

The name of a DataCapsule serves as a cryptographic trust
anchor for everything related to the DataCapsule. e.g. given
the metadata of DataCapsule, a reader can get the correct
signature key and verify the entire history of DataCapsule up to
a specific point in time against a specific heartbeat. In addition
to verifying entire history, a reader can also get cryptographic
proofs for specific records from a DataCapsule in a similar
way as the well-known Merkle hash trees [32].

Why use signatures? Signatures are computationally ex-
pensive. However, they have two benefits: (a) they enable
write access control, which can be verified by DataCapsule-
servers or anyone else. (b) Because of the hash-pointers, each
signed heartbeat effectively attests the entire history of updates
(both the content and the ordering), thus providing a data-
provenance.
Secure Responses: Not only does a DataCapsule name enable
verification of DataCapsule contents, it also enables a client to
verify that only a designated DataCapsule-server is responding
to the requests. As we discussed in subsection III-D, this
requires careful thought. We address it as follows.

The creation of a DataCapsule involves two operations
by the DataCapsule-owner: (a) placing the signed metadata
on appropriate DataCapsule-servers, and (b) creating a cryp-
tographic delegation to specific servers, allowing them to
respond to queries for the specific DataCapsule. Such delega-
tions are called AdCerts and are essentially a signed statement
by the DataCapsule-owner that a certain DataCapsule-server
is allowed to respond for the DataCapsule in question.8

DataCapsule-servers are identified by their names, which is
derived in a similar way as the DataCapsule, i.e. by a com-
puting a cryptographic hash over a list of key-value pairs that
includes a public key of the DataCapsule-server.

With such delegations in place, a DataCapsule-server can
respond to clients on behalf of a DataCapsule and include
signatures with its own signature key. In order to facilitate
verification by the client, the DataCapsule-server provides
its own metadata and the corresponding AdCert along with
the signed response. As an optimization, a client and a
DataCapsule-server dynamically establish a shared secret in
parallel with actual request/response, which they can use to
create HMAC instead of signatures and achieve a steady state
byte overhead roughly similar to TLS.
Configuration Flexibility: A DataCapsule goes beyond just a
simple hash-list and allows for a variable number of additional
hash-pointers to past records for efficiency and fault-tolerance.
With such additional hash-pointers, a DataCapsule looks more
like an authenticated skip-list that allows skipping over records
for creating more efficient proofs [25]. Our ingenuity is in
exposing the flexibility of which hash-pointers to include to
the application. Regardless of the hash-pointers chosen by
the writer, all invariants and proofs work with a generalized
validation scheme.

8Of course, a DataCapsule-owner can issue such delegations to a number
of DataCapsule-servers. While we do not discuss the mechanisms in detail, in
practice, a DataCapsule-owner issues such delegations to storage organizations
instead of individual DataCapsule-servers.
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These additional hash-pointers provide a very configurable
mechanism to support desired performance for high-level
interfaces; a file-system interface on a DataCapsule may make
all records to include a hash-pointer to a checkpoint record; a
video stream in a DataCapsule may use such hash-pointers to
allow for records missing in transmission while maintaining
integrity properties; and so on.

How to choose the hash-pointers? Depending on the usage
scenario, the performance of a DataCapsule can be tuned by
choosing an appropriate strategy for hash-pointers. Typically,
it’s a trade-off between the cost of ‘append’ and integrity
proofs for ‘read’. The simplest strategy without any additional
hash-pointers results in hash-chain, where the integrity proof
is as long as the number of records between the queried record
and an already known record. However, this simple linked-list
design is very efficient in range queries (a range of records in
a linked-list design is self-verifying with respect to the newest
record in the range).
B. Toward Richer Interfaces: CAAPIs

Many applications are likely to need more common inter-
faces than an append-only single-writer interface. It should
come as no surprise that DataCapsules are sufficient to im-
plement any convenient, mutable data storage repository. The
DataCapsule-interface is rather open to system integrators and
they can put together an interface of their choice that uses
these DataCapsules underneath to meet application specific
requirements such as the desired semantics for reads/writes,
consistency issues, access control, update ordering, etc. We
call such interfaces as Common Access APIs (CAAPIs),
see Figure 4.

Recall that in our vision of the world, the applications make
the decision of what information should be added to DataCap-
sules and how to order such information; the infrastructure
merely makes the information durable and available wherever
needed. Such CAAPIs are consistent with this vision. As we
discussed earlier, DataCapsules provide additional flexibility
to ensure efficient performance to match the needs of an
application. While we expect that a number of applications
will rely on CAAPIs, the simplest of the applications can use
the DataCapsules directly. Regardless, because DataCapsule
serves as the ground truth, the benefit of integrity, confidential-
ity, and access control are easily carried over to such interfaces.

VI. REPLICATION: DURABILITY AND CONSISTENCY

As we discussed earlier, a DataCapsule has multiple copies
in the infrastructure for durability scalability, fault-tolerance,
etc.. The DataCapsule-name represents the DataCapsule and
all its replicas. This means that a DataCapsule replica can
be reached by using this name as an address; one does not
need to know a priori what physical machine(s) does this
DataCapsule reside on. Also, recall that a DataCapsule-owner
explicitly delegates responsibility for a DataCapsule to specific
DataCapsule-server(s)/organizations using AdCerts. For highly
replicated DataCapsules, the underlying routing network en-
sures that the requests are automatically directed to the closest
replica. Replicas can be migrated and new replicas can be

created based on usage patterns; such placement decisions are
made by the owner of a DataCapsule.

A. Why a single-writer append-only mode?

An append-only design is an elegant choice for distributed
storage systems. With an append-only interface, the data can
not be changed once it is written, which greatly simplifies
replication across as a distributed infrastructure; the repli-
cation problem translates to keeping the replicas up-to-date.
As such, an append-only design is used by many existing
systems [20]. The choice for only allowing a single writer,
however, enables us to move the serialization responsibilities
to the writer/application, and keep the infrastructure design
simple while requiring minimum coordination between vari-
ous servers. In addition, a single-writer signing the records
and their ordering allows reasoning about data integrity and
provenance without trusting the infrastructure.

Not only does such a design avoid the problem of ac-
tive coordination between DataCapsule-servers, any append
operations from the single writer can be easily forwarded
as is to all the DataCapsule-servers in arbitrary order; since
the writer is the only point of serialization, and each record
has hash-pointers to older records, every signature by the
writer is attesting an order of all the records so far, which
can be verified by any DataCapsule-server and reader. For
any missing records, DataCapsule-servers can synchronize
their state in the background. This effectively leads us to a
leaderless replication design, which is much more efficient
in presence of failures. Note that a DataCapsule meets the
definition of a Conflict-Free Replicated Data Type [30].

The single-writer design comes with slightly increased
responsibilities for the writer; this design translates to the
writer performing two additional tasks: (a) keep some local
state, which at the very least includes the hash of the most
recent record (potentially in non-volatile memory to recover
after writer failures), and any additional hashes the writer
might need in near future; and (b) ensure that the durability
requirements for the DataCapsule are met. We call this the
Strict Single-Writer (SSW) mode.

Multiple writers can be accommodated in two ways: (a)
by using a distributed commit service [22], [11] that accepts
updates from multiple writers, serializes them, and appends
them to a DataCapsule, or (b) by creating an aggregation
service that subscribes to multiple single-writer DataCapsules
and combines them based on some application-level logic. In
the first case, such a distributed commit service is the single
writer, and represents a separation of write decisions from
durability responsibilities.

Note that durability should not be confused with consis-
tency; while they are intertwined, it is possible to achieve one
separately from the other. e.g. a number of readers can all
agree that a certain record is permanently lost (i.e. consistency
without durability), or as another example, a number of readers
may not agree on the most recent state of a DataCapsule
because of stale replicas (i.e. durability without consistency).
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B. Durability
In the simplest case, the writer receives a single acknowl-

edgment from the closest DataCapsule-server; the writer can
make progress while the DataCapsule-server propagates the
new updates to other DataCapsule-servers hosting a replica
in the background. However, during a small window of time,
some part of the DataCapsule is stored on only one single
DataCapsule-server. In case this DataCapsule-server crashes,
the hash-pointer chain can result in a ‘hole’ (see Figure 2).
Such holes can be transient or permanent, depending on failure
mode of the DataCapsule-server.

For certain applications such as video streams, minor tran-
sient (or even permanent) loss of data is acceptable; the
additional hash-pointers in the DataCapsule enable resilience
against such failures. On the other hand, applications that
can not tolerate such loss, the writer can indicate that the
DataCapsule-server must collect additional acknowledgments
from other replicas and return it to the writer. The writer must
block and retry unless it is satisfied with the durability of a
record; such a mode results in a reduced performance at the
cost of greater durability.
C. Consistency

In a strict single-writer (SSW) mode (such as an IoT sensor
recording data in a DataCapsule), records are strictly ordered
as defined by the hash-chain ordering. Thus, readers that
see different states from replicas can simply discard stale
information. The resulting consistency semantics observed by
readers are similar to that of sequential consistency. On the
other hand, a reader interested in the most up-to-date state of
a DataCapsule can query all replicas of a DataCapsule and
achieve read semantics similar to that of strict consistency at
the risk of losing fault tolerance; such a reader must block if
any single replica is unavailable.

In cases where SSW mode isn’t available (e.g. because of
writer failures in the absence of non-volatile storage to store
most-recent hash), a Quasi-Single Writer (QSW) mode can
be used. The assumption in QSW mode is that there can
be more than one concurrent writers from time to time, but
such situations are rare, and that each such writer attempts to
synchronize its state out-of-band (e.g. a personal file-system
mounted on multiple devices, where it is rare, but possible,
that there are multiple concurrent writers). In QSW mode,
there is a chance of branches in the DataCapsule. Ignoring the
additional hash pointers, a branch is a condition when two or
more records have hash pointers that point to the same record.
Such branches result in a partial order of records. In such a
case, a reader can only expect strong eventual consistency.

Note that updates across DataCapsules can be ordered using
entanglement schemes described by [25].

VII. SECURE ROUTING IN GDP WILDERNESS

So far, we have assumed an underlying routing network
that enables clients to address DataCapsules directly. Such
routing network is composed of GDP-routers that enable
efficient routing in a flat address space (see Figure 4). Like
DataCapsule-servers, GDP-routers are owned and operated by

Fig. 5: Routing architecture for the GDP network. Two
routing domains, their corresponding GLookupService, the
global GLookupService are shown. Communication between
two entities with names ‘A’ and ‘B’ is enabled by a series of
GDP-routers.

various organizations called ‘routing domains’ that collectively
form a federated network. Recall the challenges of ICNs
from subsection III-B: traditional ICNs suffer from privacy
issues and do not support freshness properties. Such challenges
are even more pronounced in a federated network with no
central authority for assigning names.

The routing related goals for this network are twofold: (a)
provide locality of access and enable ‘anycast’ for the layer
above, and (b) ensure routing security to prevent trivial man-
in-the-middle attacks, i.e. ensure that people can not simply
claim any name they desire. Of course, this network needs
to be scalable as well. At a system level, we also desire to
maintain control over data, i.e. (a) ensure that data does not
leave specific boundaries, and (b) control on who can serve
(or advertise for) a specific object (freshness issue). The GDP
network enables such control as well.

While it is a work in progress, we briefly describe the
architecture of the GDP network. To ensure scalability, locality
of access, and security of routing, we use two principles: (a) a
hierarchical structure for routing enabled by routing-domains,
and (b) independently verifiable routing state maintained sep-
arately from GDP-routers.
Routing delegations: In order to achieve the routing security
goal and maintain control over data, we use strict crypto-
graphic delegation for being able to route to a name; we call
such a routing delegations RtCert. A RtCert is a signed state-
ment issued by a physical machine (e.g. a DataCapsule-server)
to a GDP-router authorizing the GDP-router to send/receive
messages on behalf of DataCapsule-server. RtCerts are issued
during ‘secure advertisements’.
Secure advertisements: When clients and DataCapsule-
servers connect to GDP-routers, they advertise the names
that they can service to the routing infrastructure. The set
of available names is advertised via one or more a naming
catalogs in the form of DataCapsules containing individual
advertisements and access-control credentials9. The advertiser

9Such credentials enable network-level routing restrictions, such as restrict-
ing subscription to DataCapsule updates (i.e. who can join a secure multicast
tree associated with a given name) or to stop denial of service attacks at the
border of a trust domain.
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must prove to the routing infrastructure that it possesses
authorized delegations for each of its advertised names; we
call this mechanism ‘secure advertisement’. All such proof is
included in a catalog, signed by the advertiser.

Advertisements have corresponding expiration times, which
can be deferred as a group by appending extension records
to the catalog. This architecture is particularly optimized for
transient failure and re-establishment of DataCapsule-service
(e.g. when a DataCapsule-server fails and restarts, or when
a trust domain becomes unavailable due to transient network
failure). It also allows names and access control certificates
to be easily synchronized with routing elements within the
network (such as the GLookupService mentioned below).

As an example, when a DataCapsule-server connects to a
GDP-router, the DataCapsule-server engages in a challenge-
response process with the GDP-router to prove that it pos-
sesses the private key corresponding to the name of the
DataCapsule-server and that it possesses various properties
referenced in delegations (e.g. membership in a given orga-
nization). Once this process succeeds, the DataCapsule-server
issues a RtCert to the GDP-router (or to the routing domain,
depending on the granularity policies). Once a DataCapsule-
server has proven to the GDP-router that it is who it claims to
be, it can then export the AdCerts for various DataCapsules by
making naming catalogs available. The routing infrastructure
can thus verify the chain of trust created by AdCerts and
RtCerts to ensure secure routing to such names.

Within a routing domain, all routing information is kept in
a shared database that we call a GLookupService. Such infor-
mation includes any RtCert issued by the DataCapsule-server,
AdCerts presented for each of the DataCapsules hosted by
the DataCapsule-server, etc. The GLookupService is populated
during the ‘secure advertisement’ process. When a GDP-router
receives a request for a destination it does not know the route
to, it can query this GLookupService, verify the routes by
following the chain of trust, and update its local state. Such
a model is similar to those of SDNs [27], where an SDN-
controller plays a similar role to the GLookupService.

Recall that routing domains are hierarchical in nature. When
a specific name cannot be found in the local GLookupSer-
vice, such a name is queried in the GLookupService of
the parent routing domain, and so on. Finally, there is a
global GLookupService that contains verifiable routing in-
formation for all publicly available DataCapsules; this top-
level GLookupService corresponds roughly to a tier-1 service
provider in the general Internet. It requires that any infor-
mation acquired during the advertisement process also be
propagated to the parent GLookupService. This is where any
policies for the scope of a DataCapsule are adhered to; any
restriction on where can a DataCapsule be routed through are
specified by the DataCapsule-owner at the time of issuance of
AdCert to the DataCapsule-servers; the routing infrastructure
adheres to such restrictions when propagating such routing
information.

Note that the GLookupService is essentially a key-value
store and is not required to be trusted; existing technologies

Fig. 6: Forwarding rate in PDUs/sec and throughput as a
function of changing PDU size. At steady state, a preliminary
version of our GDP-router is able to achieve close to 1 Gbps
throughput as PDU size reaches close to 10k bytes. The PDU
processing rate is 120k PDU/s even for very small sized PDUs.

such as distributed hash tables (DHTs) can be used to im-
plement a highly distributed and scalable GLookupService.
Also note that the GLookupService architecture is similar
to the hierarchical nature of DNS, with the exceptions that
(i) we query flat names and (ii) the returned information is
independently verifiable.

VIII. SYSTEM IMPLEMENTATION

We have implemented a prototype to validate the feasibility
of the Global Data Plane and associated concepts. We also
maintain a small infrastructure at our university that has been
running since late 2014, and has gone through a number of
major upgrades. Currently, it implements a subset of features
but is usable and has enabled us to understand the application
developers’ needs. While our implementation is still a work
in progress, it is very much a real system with real users and
supports a number of applications ranging from time-series
environmental sensors, visualization of time-series data via a
web-browser, audio/video support via GStreamer [34], file-
system support for TensorFlow [7], web gateways using REST
and websockets, and many more.

The core component of our routing implementation is a
Click [19] based router that supports flat namespace routing.
GDP-routers route PDUs in the flat namespace network.
GDP-routers expose a TCP-based interface to clients and
DataCapsule-servers, but use a UDP tunneling protocol for
inter-router communication. Each GDP-router maintains a lo-
cal forwarding table (FIB), and also publishes the information
to a GLookupService. Our GLookupService is a limited appli-
cation that responds to UDP queries and uses a database server
for back-end storage. When a destination can not be found in
the local FIB, a GDP-router queries the GLookupService and
looks up the destination on-demand.

The DataCapsule-server is a daemon written in C which
uses SQLite for the back-end storage; each DataCapsule is
stored in its own separate SQLite database. SQLite enables a
DataCapsule-server to respond to random reads efficiently.

Client applications primarily link against an event-driven C-
based GDP library. The GDP library takes care of connecting
to a GDP-router using TCP, advertise the desired names, and
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Fig. 7: Robotics and machine learning at the edge. General
purpose robots are trained in the cloud and refined at the
edge. DataCapsules serve as the information containers for
both models and episode history of actual events for future
training/debugging. The GDP enables partitioning resources
based on ownership, and allows reasoning about flow of
information by a clear separation of policy from mechanisms.

provide the desired interface of a DataCapsule as an object that
can be appended to, read from, or subscribed to. In addition,
we have developed Python and Java language bindings for
client applications, which are simply wrappers around the C-
library. These higher-level wrappers provide an object-oriented
interface and enable quick prototyping.

In order to achieve good performance from the overall
system, it is of utmost importance to have a high-performance
network underneath. We claim that it is possible to achieve
high performance even with the security mechanisms, because
the additional cost of cryptographic validation is incurred only
once per flow per router at the beginning of flow establishment.
To validate this assumption, we ran a simple experiment with
an unoptimized preliminary version of our GDP-router running
on a 4-core EC2 c5.xlarge instance. We measured the PDU
forwarding rate and sustained bandwidth that a single GDP-
router can support in a steady state. To test this, we a total of 32
client processes and 32 server process spread uniformly over 4
16-core c5.4xlarge instances in the same data center and
all connected to the GDP-router. After advertising, each client
simply sends messages of a given size destined to a specific
server as fast as it can. As seen in Figure 6, the throughput
increases as the PDU size increases and easily reaches 1 Gbps.

IX. A CASE STUDY

In this section, we illustrate the real world usage of the GDP
and DataCapsules with the help of a case study on machine
learning for robotics applications at the edge [33]. Robots are
increasingly embedded in the real world environments such as
factory floors, households, etc. Programming these robots to
work in complex environment remains a challenge, but ma-
chine learning seems a promising mechanism. However, such
machine learning is driven by large volumes of potentially
sensitive data, and thus requires appropriate data handling and
management strategy.

Fig. 8: Read/write times (seconds) for our case study compar-
ing GDP to other options. We show a 28 MB (left) and a 115
MB (right) model (averaged over 5 runs). Smaller is better.

For our study, consider a factory floor with worker robots
as shown in Figure 7. Although general-purpose models are
trained in the cloud, they must be refined for the specific envi-
ronment of the factory. It is desirable to keep the environment-
specific information (e.g. refined models or episode history)
restricted to the factory floor for privacy reasons. DataCapsules
and the GDP provide a clean architecture where one can reason
about control on both raw data and trained models.

Toward the goal of enabling secure machine learning, we de-
veloped a CAAPI for TensorFlow—a popular machine learn-
ing framework [7]. TensorFlow supports custom filesystem
plugins; such plugin can be used for all file operations (loading
and storing data, models, checkpoints, events, etc.) during
various stages of training and deployment of an arbitrary
machine learning application. Default TensorFlow distribution
ships with a few such plugins including one that allows use of
Amazon S3 as a storage back-end. Our CAAPI is in form of
a C++ plugin (layered on top of the GDP library) that can be
loaded into TensorFlow at runtime, allowing existing applica-
tions to use DataCapsules. Internally, this CAAPI maintains
a top-level directory in a single DataCapsule. Each filename
is represented as its own DataCapsule; the top-level directory
merely maps filenames to DataCapsule-names.

We first show that given equivalent infrastructure, the GDP
and DataCapsules provide comparable performance to existing
cloud systems (S3). Next, we demonstrate how the GDP and
DataCapsules enable the use of close-by infrastructure for
better performance. For our experiments, our client is in a
residential network, with the Internet bandwidth capped to
100/10 Mbps (upload/download): a good representative of an
average household Internet connection in United States [2]. We
compare against an Amazon S3 bucket in a specific S3 region
(on the same continent). We run the GDP infrastructure in
Amazon EC2 in the same region as the S3 bucket. We also
compare against SSHFS [17] on the same host as our GDP
infrastructure10. Next, we run the same experiment, but this

10We note that the TensorFlow’s S3 implementation for loading data is not
particularly efficient, thus the non-standard use of SSHFS with TensorFlow
provides a better comparison.
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time we use the GDP infrastructure in local environment using
on-premise edge resources. Once again, we run SSHFS for
comparison. We repeat storing and loading of two pre-trained
and publicly available machine learning models of different
sizes. As can be seen from Figure 8, the GDP provides
performance somewhere between that of SSHFS and S3 when
using the cloud infrastructure. As expected, the performance
when using edge resources is orders of magnitude better.

In our case study, DataCapsules achieve comparable perfor-
mance to existing systems while also enabling use of close
resources and control over integrity and confidentiality of
information. Even further, the federated nature of the Global
Data Plane implies that power users can set up their own
private infrastructure to achieve a given Quality of Service
and still enjoy the benefits of a common platform.

X. CONCLUSIONS

While the GDP infrastructure is still ongoing work, we
presented a brief outline for what is needed to enable a
utility model for edge computing, noting the challenges ahead
and providing a high-level overview of how to address these
challenges. A number of challenges remain, such as trust-
based resource placement and routing; secure execution to
leverage DataCapsules and achieve end-to-end security; and
wide-scale deployment challenges. Regardless, we envision
that a seamless combination of edge resources and data-center
resources using a federated infrastructure—one that takes the
domains of ownership in account—is the way forward. With
cloud computing, we learned how to scale things well within a
single administrative domain. With edge computing, we must
learn how to scale in the number of administrative domains
to enable a truly federated infrastructure.
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