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Abstract—Designing effective algorithms for commu-
nity detection is an important and challenging problem
in large-scale graphs, studied extensively in the litera-
ture. Various solutions have been proposed, but many
of them are centralized with expensive procedures
(requiring full knowledge of the input graph) and have
a large running time.

In this paper, we present a distributed algo-
rithm for community detection in the stochastic
block model (also called planted partition model), a
widely-studied and canonical random graph model
for community detection and clustering. Our algo-
rithm called CDRW(Community Detection by Random
Walks) is based on random walks, and is localized and
lightweight, and easy to implement. A novel feature of
the algorithm is that it uses the concept of local mixing
time to identify the community around a given node.

‘We present a rigorous theoretical analysis that shows
that the algorithm can accurately identify the commu-
nities in the stochastic block model and characterize
the model parameters where the algorithm works. We
also present experimental results that validate our
theoretical analysis. We also analyze the performance
of our distributed algorithm under the CONGEST
distributed model as well as the k-machine model, a
model for large-scale distributed computations, and
show that it can be efficiently implemented.

Index Terms—community detection, random walk,
local mixing, conductance, planted partition model.

I. INTRODUCTION

Finding communities in networks (graphs) is an impor-
tant problem and has been extensively studied in the last
two decades, e.g., see the surveys [1], [10], [17], [18] and
other references in Section II. At a high level, the goal
is to identify subsets of vertices of the given graph so
that each subset represents a “community.” While there
are differences in how communities are defined exactly
(e.g., subsets defining a community may overlap or not), a
uniform property that underlies most definitions is that
there are more edges connecting nodes within a subset
than edges connecting to outside the subset. Thus, this
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captures the fact that a community is somehow more
“well-connected” with respect to itself compared to the
rest of the graph. One way to express this property
formally is by using the notion of conductance (defined in
Section I-C) which (informally) measures the ratio of the
total degree going out of the subset to the total degree
among all nodes in the subset. A community subset will
have generally low conductance (also sometime referred to
as a “sparse” cut). Another way to measure this is by using
the notion of modularity [35] which (informally) measures
how well connected a subset is compared to the random
graph that can be embedded within the set. A vertex
subset that has a high modularity value can be considered
a community according to this measure.

Designing effective algorithms for community detection
in graphs is an important and challenging problem. With
the rise of massive graphs such as the Web graph, social
networks, biological networks, finding communities (or
clusters) in large-scale graphs efficiently is becoming even
more important [10], [15], [18], [20], [35]. In particular,
understanding the community structure is a key issue in
many applications in various complex networks including
biological and social networks (see e.g., [10] and the refer-
ences therein).

Various solutions have been proposed (cf. Section II),
but many of them are centralized with expensive proce-
dures (requiring full knowledge of the input graph) and
have a large running time [10]. In particular, the problem
of detecting (identifying) communities in the stochastic
block model (SBM) [1], [10] has been extensively studied in
the literature (cf. Section II). The stochastic block model
(defined formally in Section I-B), also known as the planted
partition model (PPM) is a widely-used random graph
model in community detection and clustering studies (see
e.g., [1], [8], [25]). Informally, in the PPM model, we are
given a graph G on n nodes which are partitioned into a set
of r communities (each is a random graph on n/r vertices)
and these communities are interconnected by random
edges. The total number of edges within a community
(intra-community edges) is typically much more than the
number of edges between communities (inter-community
edges). The main goal is to devise algorithms to iden-



tify the r communities that are “planted” in the graph.
Several algorithms have been devised for this model, but
as mentioned earlier, they are mostly centralized (with
some exceptions — cf. Section IT) with large running time.
There are few distributed algorithms (see e.g., [10], [27])
but either they are shown to work only when the number
of communities is small (typically 2) [10]) or when the
communities are very dense[27]). In particular, to the best
of our knowledge, (prior to this work) there is no rigorous
analysis of community detection algorithms in distributed
large-scale graph processing models such as MapReduce
and Massively Parallel Computing (MPC) model [24], and
the k-machine model [26].

A. Our Contributions

In this paper, we present a novel distributed algorithm,
called CDRW (Community Detection via Random Walks)
for detecting communities in the PPM model[12].} Our
algorithm is based on the recently proposed local mixing
paradigm [33] (see Section I-C for a formal definition) to
detect community structure in sparse (bounded-degree)
graphs. Informally, a local mixing set is one where a
random walk started at some node in the set mixes well
with respect to this set. The intuition in using this concept
for community detection is that since a community is
well-connected, it has good expansion within the com-
munity and hence a random walk started at a node in
the community mixes well within the community. The
notion of “mixes well” is captured by the fact that the
random walk reaches close to the stationary distribution
when restricted to the nodes in the community subset [33].
Since the main tool for this algorithm uses random walks
which is local and lightweight, it is easy to implement
this algorithm in a distributed manner. We will analyze
the performance of the algorithm in two distributed com-
puting models, namely the standard CONGEST model of
distributed computing [40] and the k-machine model [26],
which is a model for large-scale distributed computations.
We show that CDRW can be implemented efficiently in
both models (cf. Theorem 6 and Section III-B). The k-
machine model implementation is especially suitable for
large-scale graphs and thus can be used in community
detection in large SBM graphs. In particular, we show that
the round complexity in the k-machine model (cf. Section
II1-B) scales quadractically (i.e., k~2) in the number of
machines when the graph is sparse and linearly (i.e.,k™!)
in general.

As is usual in community detection, a main focus is
analyzing the effectiveness of the algorithm in finding
communities. We present a rigorous theoretical analysis
that shows that CDRW algorithm can accurately identify
the communities in the PPM, which is a popular and
widely-studied random graph model for community de-
tection analysis [1]. A PPM model (cf. Section I-B) is a

IThroughout this paper, we use the terms stochastic block model
(SBM) and planted partition model (PPM) interchangeably.

parameterized random graph model which has a built-in
community structure. Each community has high expansion
within the community and forms a low conductance subset
(and hence relatively less edges go outside the community);
the expansion, conductance, and edge density can be con-
trolled by varying the parameters. CDRW does well when
the number of intra-community edges is much more than
the number of inter-community edges (these are controlled
by the parameters of the model). Our theoretical analysis
(cf. Theorem 6 for the precise statement) quantitatively
characterizes when CDRW does well vis-a-vis the param-
eters of the model. Our results improve over previous
distributed algorithms that have been proposed for the
PPM model ([10]) both in the number of communities that
can be provably detected as well as range of parameters
where accurate detection is possible; they also improve on
previous results that provably work only on dense PPM
graphs [27] (details in Section II).

We also present extensive simulations of our algorithm
in the PPM model under various parameters. Experimen-
tal results on the model validate our theoretical analysis;
in fact experiments show that CDRW works relatively
well in identifying communities even under less stringent
parameters.

B. Model, Definitions, and Preliminaries

1) Graph Model: We describe the stochastic block model
(SBM) [21], a well-studied random graph model that is
used in community detection analysis. Before that we
recall the Erdds-Rényi random graph model [16], a basic
random graph model, that the SBM model builds on. In
the Erdés-Rényi random graph model, also known as the
G,p model, each of (g) possible edges is present in the
graph independently with probability p. The Gy,, random
graph has close to uniform degree (the expected degree of
a node is (n — 1)p) and a well-known fact about G(n,p)
is that if p = ©(logn/n) the graph is connected with high
probability? and its degree is concentrated at its expecta-
tion. In the SBM model, the vertices are partitioned into r
disjoint community sets (r is a parameter). Let ¢(u) denote
the community that node u belongs to. If two nodes u and
v belong to the same community (i.e., ¢(u) = ¢(v)), they
connect independently with probability p., (independent
of other nodes). If they belong to different communities,
they connect independently with probability pe(u),c(v)-
A SBM model has a separable community structure [1]
if it has a higher value of intra- than inter-community
connectivity probability. A commonly used version of SBM
model that is called Planted Partition Model (PPM),
denoted as Gjpq [11], [21] is usually used as a benchmark.
A symmetric Gy,pq with r blocks is composed of 7 exclusive
set of nodes in C =< Cq,Cs,...,C, >, where Uﬁi{ i =
V, |C;| = |Cjland C; N C; = O when i # j. In Gy,
each possible edge e(u,v) is independently present with

2Throughout this paper, by “with high probability” we mean,
“with probability at least 1 — 1/n.”



(a) A PPM graph shown without its (b) Redrawing of the same PPM
ground-truth communities. graph showing the communities.
Fig. 1: Both of the above graphs are the same PPM graph. The
graph size is n = 1000, number of communities » = 5, the existence
probability of intra(inter) community edges is p = %(q = Tloo) as
in [1, Figure 1]. We highlight ground truth communities in different
colors in Figurelb.

probability p if both ends of u and v belong to the same
block C;, otherwise with probability ¢. Figure 1 shows a
PPM of 5 blocks (r = 5), each containing 200 nodes. For
the PPM model, each of the r communities induce a n/r-
vertex subgraph which is a G(n/r,p) random graph. The
goal of community detection in the PPM (or SBM) model
is to identify the r community sets. This problem has been
widely studied [1].

2) Distributed Computing Models: We consider two dis-
tributed computing models and analyze the complexity of
the algorithm’s implementation under both the models.
CONGEST model. This is a standard and widely-
studied CONGEST model of distributed computing [37],
[40], which captures the bandwidth constraints inherent in
real-world networks. The distributed network is modelled
as an undirected and unweighted graph G = (V| E),
where |[V| = n and |E| = m, where nodes represent
processors (or computing entities) and the edges represent
communication links. In this paper, G will be a graph
belonging to the PPM model. Each node is associated
with a distinct label or ID (e.g., its IP address). Nodes
communicate through the edges in synchronous rounds;
in every round, each node is allowed to send a message
of size at most O(logn) bits to each of its neighbors.
The message will arrive to the receiver nodes at the end
of the current round. Initially every node has limited
knowledge; it only knows its own ID and its neighbors
IDs. In addition, it may known additional parameters of
the graph such as n,m, D (where D is the diameter). The
two standard complexity of an algorithm are the time
and message complexity in the CONGEST model. While
time complexity measures the number of rounds taken by
the algorithm, the message complexity measures the total
number of messages exchanged during the course of the
algorithm.
k-machine model. The k-machine model (a.k.a. Big
Data model) is a model for large-scale distributed com-
puting introduced in [26] and studied in various papers
[3], [23], [26], [38], [39]. In this model, the input graph
(or more generally, any other type of data) is distributed
across a group of k > 2 machines that are pairwise inter-

connected via a communication network. The k£ machines
jointly perform computations on an arbitrary n-vertex, m-
edge input graph (where typically n,m > k) distributed
among the machines (randomly or in a balanced fashion).
The communication is point-to-point via message passing.
Machines do not share any memory and have no other
means of communication. The computation advances in
synchronous rounds, and each link is assumed to have
a bandwidth of B bits per round, i.e., B bits can be
transmitted over each link in each round; unless otherwise
stated, we assume B = O(logn) (where n is the input size)
[38], [39]. The goal is to minimize the round complezity,
i.e., the number of communication rounds required by the
computation.3

Initially, the entire graph G is not known by any single
machine, but rather partitioned among the k£ machines in
a “balanced” fashion, i.e., the nodes and/or edges of G are
partitioned approximately evenly among the machines. We
assume a verter-partition model, whereby vertices, along
with information of their incident edges, are partitioned
across machines. Specifically, the type of partition that
we will assume throughout is the random vertex partition
(RVP), that is, each vertex of the input graph is assigned
randomly to one machine. (This is the typical way used
by many real systems, such as Pregel [31], to initially
distribute the input graph among the machines.) If a
vertex v is assigned to machine M; we say that M; is the
home machine of v. A convenient way to implement the
RVP model is through hashing: each vertex (ID) is hashed
to one of the & machines. Hence, if a machine knows a
vertex ID, it also knows where it is hashed to. It can
be shown that the RVP model results in (essentially) a
balanced partition of the graph: each machine gets O(n/k)
vertices and O(m/k + A) edges, where A is the maximum
degree.

At the end of the computation, for the community de-
tection problem, the community that each vertex belongs
to will be output by some machine.

C. Random Walk Preliminaries and Local Mizing Set

Our algorithm is based on the mixing property of a
random walk in a graph. We use the notion of local
mixing set of a random walk, introduced in [33], to
identify communities in a graph. Let us define random
walk preliminaries, local mixing time, and local mixing
set as defined in [33]. Given an undirected graph and
a source node s, a simple random walk is defined as:
in each step, the walk goes from the current node to
a random neighbor i.e., from the current node wu, the
probability of moving to node v is Pr(u,v) = 1/d(u) if
(u,v) € E, otherwise Pr(u,v) = 0, where d(u) is the degree
of u. Let pt(s) be the probability distribution at time ¢
starting from the source node s. Then pg(s) is the initial
distribution with probability 1 at the node s and zero at

3The communication cost is assumed to be the dominant cost —
which is typically the case in Big Data computations — and hence
the goal of minimizing the number of communication rounds [44].



all other nodes. The p;(s) can be seen as the matrix-vector
multiplication between (A)' and po(s), where A is the
transpose of the transition matrix of G. Let p:(s,v) be
the probability that the random walk be in node v after ¢
steps. When it’s clear from the context we omit the source
node from the notations and denote it by p;(v) only. The
stationary distribution (a.k.a steady-state distribution) is
the probability distribution which doesn’t change anymore
(i.e., it has converged). The stationary distribution of
an undirected connected graph is a well-defined quantity
which is (d;i), dg:j) e, dé’:;)), where d(v;) is the degree
of node v;. We denote the stationary distribution vector
by 7, i.e., m(v) = d(v)/2m for each node v. The stationary
distribution of a graph is fixed irrespective of the starting
node of a random walk, however, the number of steps
(i.e., time) to reach to the stationary distribution could
be different for different starting nodes. The time to reach
to the stationary distribution is called the mizing time
of a random walk with respect to the source node s. The
mixing time corresponding to the source node s is denoted
by 7. The mixing time of the graph, denoted by 77,
is the maximum mixing time among all (starting) nodes
in the graph.

Definition 1. (7% (¢)-mizing time for source s and

T (€)—mizing time of the graph)

Define 7™ (e) = min{t : ||p;—7||1 < €}, where ||-||1 is the

Ly norm. Then 7% (¢) is called the e-near mixing time for

any € in (0,1). The mizing time of the graph is denoted by

TME(€) and is defined by 7™ (€) = max{r*(e) : v € V'}.
|

. . v
It is clear that 77" (e) < 7™ (e).

We sometime omit € from the notations when it is
understood from the context. For any set S C V, we
define u(S) is the wolume of S ie., u(S) = > cgd(v).
Therefore, p(V') = 2m is the volume of the vertex set. The
conductance of the set S is denoted by ¢(S) and defined
by ¢(S) = smttsianigyy: Where B(S,V\S) is the set of
edges between S and V' \ S. The conductance of the graph
G is ¢ = mingcy @(9).

Let us define a vector mg over the set of vertices S
as follows: mg(v) = d(v)/u(S) if v € S, and wg(v) = 0
otherwise.

Notice that my is the stationary distribution w of a
random walk over the graph G, and g is the restriction of
the distribution 7 on the subgraph induced by the set S.
Recall that we defined p; as the probability distribution
over V of a random walk of length ¢, starting from some
source vertex s. Let us denote the restriction of the
distribution p; over a subset S by p;[s and define it as:
pels(v) = pi(v) if v € S and pi[s(v) = 0 otherwise.

It is clear that p;[s is not a probability distribution over
the set S as the sum could be less than 1.

Informally, local mixing set, with respect to a source
node s, means that there exists some (large-enough) subset
of nodes S containing s such that the random walk
probability distribution becomes close to the stationary

distribution restricted to S (as defined above) quickly. The
time that a random walk mixes locally on a set S is called
as local mizing time which is formally defined below.

Definition 2. (Local Mizing Set and Local Mizing Time)
Consider a vertex s € V. Let B > 1 be a positive constant
and ¢ € (0,1) be a fized parameter. We first define the
notion of local mizing in a set S. Let S C V be a fixed
subset containing s of size at least n/f. Let pils be the
restricted probability distribution over S after t steps of a
random walk starting from s and wg be as defined above.
Define the mixing time with respect to set S as 75 (8, ¢€) =
min{t : ||ptls — ms||1 < €}. We say that the random walk
locally mixes in S if 75 (3, €) exists and well-defined. (Note
that a walk may not locally mix in a given set S, i.e., there
exists no time t such that ||pils — Ts||1 < €; in this case
we can take 72(B, €) to be 00.)

The local mizing time with respect to s is defined as
75(B, €) = ming 75 (B, €), where the minimum is taken over
all subsets S (containing s) of size at least n/B, where the
random walk starting from s locally mizes. A set S where
the minimum is attained (there may be more than one) is
called the local mixing set. The local mixing time of the

graph, 7(8,€) (for given B and €), is maxy,ey 7, (B,€). W

From the above definition, it is clear that 7,(3, €) always
exists (and well-defined) for every fixed § > 1, since in
the worst-case, it equals the mixing time of the graph;
this happens when |S| = n > n/f (for every 8 > 1). We
note that, crucially, in the above definition of local mixing
time, the minimum is taken over subsets S of size at least
n/B, and thus, in many graphs, local mixing time can be
substantially smaller than the mixing time when g > 1
(i.e., the local mixing can happen much earlier in some
set S of size > n/f than the mixing time).

II. RELATED WORKS

There has been extensive work on community detection
in graphs, see, e.g., the surveys of [1], [2], [17], [18]. Here we
focus mainly on related works in distributed community
detection and in the SBM, especially the G, model.

Dyer and Frieze [14] show that if p > ¢ then the
minimum edge-bisection is the one that separates the two
classes and present an algorithm that gives the bisection
in O(n?) expected time. Jerrum and Sorkin improved this
bound for some range of p and ¢ by using simulated
annealing. Further improvements and more efficient algo-
rithms were obtained in [12], [34]. We note that all the
above algorithms are centralized and based on expensive
procedures such as simulated annealing and spectral graph
computations: all of them require the full knowledge of the
graph.

The work of Clementi et. al [10] is notable because
they present a distributed protocol based on the popular
Label Propagation approach and prove that, when the
ratio p/q is larger than n® (for an arbitrarily small constant
b > 0), the protocol finds the right planted partition in
O(logn) time. Note that however, they consider only two



communities in their PPM model. We also note that this
ratio can be significantly weaker compared to the ratio (for
identifying all the » communities) derived in our Theorem
6 which is p/q = O(rlog(n/r) where r is the number of
communities (which can be much smaller compared to n,
the total number of vertices). Also our algorithm works
for any number of communities.

Some works uses linear dynamics of graphs to per-
form basic network processing tasks such as reaching self-
stabilizing consensus in faulty distributed systems [6],
[36] or Spectral Partitioning [13], [29], [41]. They work
on connected non-bipartite graphs. Becchetti et al [4]
defines averaging dynamics, in which each node updates
its value to the average of its neighbors, in iterations.
It partitions a graph into two clusters using the sign of
last updates. Another interesting research by Becchetti
et. al. [5] used random walk to average values of two
nodes when randomly any two nodes meet and showed
that it ends in detecting communities. The convergence
time of the averaging dynamics on a graph is the mixing
time of a random walk [45]. These methods works well
on graphs with good expansion [22] and are slower on
sparse cut graphs. Label Propagation Algorithm (LPA) [43]
is another updating method which converges to detecting
communities by applying majority rule. Each node initially
belongs to its own community. At each iteration, each node
joins a community having majority among its neighbors,
applying a tie-breaking policy. Recently Kothapalli et al
provided a theoretical analysis for its behavior [27] on
dense PPM graphs (p = Q(1/n'/*) and ¢ = O(p?)).
In comparison, our algorithm works even for the more
challenging case of sparse graphs (p = Q(logn/n), i.e.,
the near the connectivity threshold). A major drawback of
LPA algorithm is the lack of convergence guarantee. For
example, it can run forever on a bipartite graph where each
part gets a different label (each community is specified by
a label).

Although this paper uses the notion of local mixing time
introduced in [33], there are substantial differences. In [33],
the authors consider only the local mixing time which is
essentially the existence of a mixing set of certain size, but
not the set of nodes where the random walk mixes. The
computation of the local mixing set is more challenging.
A key idea of this paper is to use this notion to identify
communities. For this, the algorithm and approach of [33]
has to be modified substantially.

ITI. ALGORITHM FOR COMMUNITY DETECTION

We design a random walk based community detection
algorithm (cf. Algorithm 1). Given a graph and a node, the
algorithm finds a community containing the node in a dis-
tributed fashion. We show the efficiency and effectiveness
of the algorithm both theoretically and experimentally on
random graphs and stochastic block model.

Outline of the Algorithm. We use the concept of local
mizing set, introduced by Molla and Pandurangan [33],
to identify community in a graph. A local mixing set of

a random walk is a subset of the vertex set where the
random walk probability mixes fast, see formal definition
in the Section I-B. Intuitively, a random walk probability
mixes fast over a subset where nodes are well-connected
among themselves. The idea is to use the concept of local
mixing set to identify a community — a subset where
nodes are well-connected inside the set and less-connected
outside. That is, if a random walk starts from a node
inside a community, its probability distribution is likely
to mix fast inside the community nodes and less amount
of probability will go outside of the set. Thus the high
level idea of our approach is to perform a random walk
from a given source node and find the largest subset (of
nodes) where the random walk probability mixes quickly.
We extend the distributed algorithm from [33] to find a
largest mixing set in the following way. In each step of
the random walk, we keep track the size of the largest
mixing set. When the size of the largest mixing set is not
increasing significantly with the increase of the length of
the random walk, we stop and output the largest mixing
set as the community containing the source node.

Algorithm in Detail. Given an undirected graph
G(V, E), our algorithm randomly selects a node s and out-
puts a community set C* C V containing s. It maintains a
set, called as pool which contains all the remaining nodes
of V' excluding the nodes in C®. Then another random
node gets selected from the set pool and we compute the
community containing that node in G, and so on. This
way all the different communities are computed one by
one. The pool set is initialized by V in the beginning. The
algorithm stops when the pool set becomes empty.

Now we describe how the algorithm computes the com-
munity set C*° in G from a given node s. The algorithm
performs a random walk from the source node s and
computes the probability distribution p; at each step
¢ of the random walk. The probability distribution py
starting from the source node s is computed locally by
each node as follows: Initially, at round 0, the probabil-
ity distribution is: at node s, po(s,s) = 1 and at all
other nodes u, po(s,u) = 0. At the start of a round ¢,
each node u sends py_1(s,u)/d(u) to its d(u)-neighbors
and at the end of the round ¢, each node u computes
pe(s,u) = 3 ,en(u Pe—1(8,v)/d(v). This local flooding
approach essentially simulates the probability distribution
of each step of the random walk starting from a source
node. Moreover, this deterministic flooding approach can
be used to compute the probability distribution p; of
length ¢ from the previous distribution py_1 in one round
only— simply by resuming the flooding from the last step.
The full algorithm can be found in Algorithm 1 in [33].
Then at each step ¢, our algorithm computes a largest
mixing set Sy. The largest mixing set S, is computed
as follows: Each node u knows its p(u) = pe(s,u) value.
The algorithm gradually increases the size of a candidate



local mixing set S starting from size 1.* First each node
u locally calculates its z, value as x, = |[pe(u) — %L
where 1/(S) = 22|S] is the average volume of the set S.
Note that any node u can compute p'(S) when it knows
the “size”- |S| and hence can compute x,, locally. However,
it’s difficult to compute p(S) unless it knows the set S (i.e.,
the nodes in S) and the degree distribution of the nodes in
S. Computing nodes in S and their degree distribution is
expensive in terms of time. That’s why we consider u'(.S)
instead w(S) in the localized algorithm.

Then the source node s collects |S| smallest of x,
values and checks if their sum is less than 1/2e (mixing
condition). For this each node may sends its x, to the
source nodes s via upcasting through a BFS tree rooted
at s. (A BFS tree is computed from s at the beginning of
the algorithm). However, the upcast may take Q(n) time
in the worst case due to the congestion in the BFS tree.
A better approach is used in [33], which is to do a binary
search on {z, |u € V}, as follows: All the nodes send zpin
and Zyax (the minimum and maximum respectively among
all x,,) to the root s through a convergecast process (e.g.,
see [40]). This will take time proportional to the depth of
the BFS tree. Then s can count the number of nodes whose
x,, value is less than Tmid = (Zmin + Tmax)/2 via a couple
of broadcast and convergecast. In fact, s broadcasts the
value xniq to all the nodes via the BFS tree and then the
nodes whose z,, value is less than x4 (say, the qualified
nodes), reply back with 1 value through the convergecast.
Depending on whether the number of qualified nodes is less
than or greater than |S|, the root updates the xyiq value
(by again collecting in O Zmax in the reduced set) and
iterates the process until the count is exactly |S|. Note that
there might be multiple nodes with the same z,, value. We
can make them distinct by adding a ‘very’ small random
number to each of the z, such that the addition doesn’t
affect the mixing condition. The detailed approach and
analysis can be found in [33].

Once the node s gets |S| smallest x,s, it checks if their
sum is less than 1/2e. If true, then these nodes u whose
sum value is less than 1/2e gives a candidate mixing set
and its size is |S|. Then we increase the set size and check
if there is a larger mixing set. If the mixing condition
doesn’t satisfy, then there is no mixing set of size |S|. The
algorithm iterates the checking process few more times by
increasing the size of S and checking if there is a mixing
set of larger size. If not, then the algorithm stops for this
length ¢ and stores the largest mixing set at s. This way,
the algorithm finds the largest mixing set S, at the ¢t"
step of the random walk. Note that we can increase the
candidate mixing set size by 1 each time. This will increase
the time complexity of the algorithm by a factor of the
“size of the largest mixing set”. Instead we increase the
size of the mixing set by a factor of (1 + 1/8e) in each

4In the pseudocode we assume the size of each community is at
least log n.

iteration. This will only add a factor of O(logn) to the
time complexity. The reason why we increase by a factor
of (14 1/8e) instead of doubling is discussed in [33] (see,
Lemma 3 in [33]). The correctness of the all the above
tests is also analyzed in [33].

Then the algorithm checks if the size of the largest
mixing set Sy at step £ increases significantly than mixing
set Sy_y in the previous step (¢ — 1). This is checked
locally by the source node as the source node has the
information of the largest mixing set of the current and
previous steps. If the size doesn’t increase by a factor
(149), i.e., if Sp < (14 6)S¢—1, then the algorithm stops
and output Sy_1 as the community set C°. Otherwise, the
algorithm increases the length by 1 and checks for Sy1.
The parameter ¢ is chosen to be the conductance of the
graph ®¢ which essentially measures the vertex expansion
of the graph.

A. Analysis

We analyze the algorithm and show that it correctly
identifies communities in the planted partition model
(PPM) — Gppq graphs. The G,p, graph is formed by
connecting several communities of G, graphs (see the def-
inition in Section I-B). Let us first analyze the Algorithm 1
on the random graph G,,,. We then extend the analysis to
the stochastic block model G-
On G,, Graphs. Suppose the algorithm is executed
on the standard random (almost regular) graph G,, =
(Vi, Ev), defined in Section I-B. Since G, is an expander
graph, the random walk starting from any node mixes
over the vertex set V; very fast; in fact in O(logn) steps.
Given any node s, we show that our algorithm computes
the community C® as the complete vertex set V;. More
precisely, we show that the size of the largest mixing set
increases on a higher rate (than the considered threshold)
after each step of the random walk, when the length of
the walk is o(logn). Since O(logn) is the mixing time of
Gy, the random walk probability reaches the stationary
distribution after clogn steps, for a sufficiently large
constant c.

Let p;(u) be the probability that the walk is at u after
t steps (starting from a source node s). It is known that
in a regular graph p:(u) is bounded by:

1 1
E*)\éﬁpt(u)S%JF)\tz (1)

where )z is the second largest eigenvalue (absolute value)
of the transition matrix of G,,,°. Hence, the above bound
on the probability distribution p; holds in Gy, graphs. It
is further known that in a random d-regular graph, the

5The bound follows from the standard bound |p:(s,u) — 7(v)| <
AL\/m(v)/7(s) in general graphs [30]. In a regular graph, m(v) = 1/n
for all v. Note that Gy is not exactly a regular graph, but very close
to regular (especially if p = (clogn)/n for a large enough constant
¢). It can be shown that 7(v) = 1/n + 0o(1/n) in Gpp. For simplicity
we assume that Gpp is a regular graph as this little +€ changes in the
degree or in the probability distribution doesn’t affect the lemmas.



Algorithm 1 COMMUNITY-DETECTION-BY-RANDOM-WALKS (CDRW)

Input: An undirected graph G = (V, E).
Output: Set of Detected Communities CP.
1: CP «+ {}; pool < V
2: while pool # () do
s < pick a random node from pool
s computes a BFS tree of depth O(logn) via flooding
Set R =
,O(logn) do

logn, po(s) =1, and po(u) = 0 for all other nodes w.

> There exist nodes not assigned to any communities yet

> Length of the random walk

Each node u whose py_1(u) # 0, does the following in parallel:
(i) Send pg_1(u)/d(u) to all the neighbors v € N (u).

3
4
5:
6: for 1 =1,2,3,...
7.
8
9

10: for |S| =

(ii) Compute the sum of the received values from its neighbors and sets it as pg(u).

R,(1+1/8€¢)R,(1+1/8¢)?R,...,n do
11: Each node u computes the difference x,, = |pg(u) — ;;1“;‘ | locally
12: s computes the sum of |S| smallest z, values using blnary search method discussed in the detail description of the algorithm.
13: s checks if the sum is less than 1/2e, i.e., if Z«HS\ smallest 7y} Tt < g5
14: If “true”, then s checks for the next size of the mixing set
15: Else, s sets Sy to be the largest set S which satisfies the mixing condition. s broadcasts an indicator message to all the nodes

via BFS tree. The nodes whose z, value gives the |S| smallest values belong to the largest mixing set Sp.

16: s checks the community condition: if

17: C® + Sy_1; CP + CP U{C*}; pool < pool \ C*%;
18: Return CP

\Slfflll < (14 6) Then Break the for-loop.

>0 =g

second largest eigenvalue is bounded by [19]:

1 1
\/gSAQS ﬁ+o(1) (2)
Let By be the set of nodes that are within the distance ¢
from the s. The distance is measured by the hop distance
between nodes. Let’s call By a ball of radius /¢ centered at
s. We now show that after ¢ steps of the random walk, the
largest mixing set is By, in a G, graph.

Lemma 1. Let a random walk start from a source node s
in a Gnp graph. Then for any length £ which is less than
the mizing time of the random walk, the largest mizing set
is the ball B|/2) with high probability.

Proof: Assume ¢ = o(logn), since ¢ is less than the
mixing time O(logn). It is known that the size of the ball
By in a random graph G, is bounded by O((np)?) with
high probability (cf. Lemma 2 in [9]). To prove the lemma
we show that the random walk probability mixes inside
the ball B|y/3) and doesn’t mix on the ball of radius larger
than |¢/2]. Recall that the condition of locally mixing on
a subset B|/g) is ZueBWzJ |pe(u) — m\ < 5, (since
Gp is regular graph). Using the above bound of p;(u), Az
(Equ 1, 2) and |B|g/z)| < d*/2] (since d = np = O(logn)
in expectation in Gyp) we have:

S et - O VI

\szﬂ‘ -

uEB | 4/2) UEB | 1/2) |B\_€/2J|
1 1 dle/2]
le/2)| 2 . & ar’=
<d ‘n—kd% +o(1) — szJ‘ +0(1)
1 ) dle/2] ) . :
< % [since — = o(1) as £ = o(logn)

This shows that the random walk of length ¢ mixes over
the nodes in B|s/2). Now we show that it doesn’t mix on

B, for t > ¢/2. Again from Equation 1 and 2,

P \B| :

= A\ +7
Z’ ** 15
| By|
A
2

’** 2 \Bt|

[since t > £/2 and d =

’)\Z‘ [since | B;| < n]

>

>d>1/2e log n]
Thus the largest mixing set is B|g/z- [ |

Now we show that our algorithm outputs the full vertex
set as the community in Gy, graphs.

Lemma 2. Given a random regular expander graph G, =
(Va, E1), the Algorithm 1 outputs the vertex set Vi as a
single community with high probability.

Proof: It follows from the previous lemma that when
¢ is less than the mixing time of G,,,, then the largest local
mixing set is B|;/2|. Therefore, in each step of the random
walk, the size of the mixing set is increased by a factor
% = O(d) = O(logn) > (1 + J). Hence, by the
condition of the Algorithm 1, it doesn’t stop and continue
to look for a community set for the larger lengths of the
random walk. It means, until the length of the random
walk reaches to the mixing time of the graph G,,, the
algorithm continue its execution. When the length reaches
the mixing time, then the random walk will mix the full
vertex set V7. Then the algorithm stops and outputs V;
as a single community set (as the size of the mixing set
won’t increase anymore for larger lengths). [ |
On G,,, Graphs. Let us now analyze the algorithm on
the planted partition model i.e., on a random G4 graph.
A random G, graph is formed by r equal size blocks
C1,C5, ..., C, where each component C; is a G zp, random
graph (see the definition in Section I-B). We show that the



algorithm correctly identifies each block as a community.
Suppose the randomly selected node s belongs to some
block C. The induced subgraph on C' is a Gz, graph
i.e., the nodes inside C' are connected to each other with
probability p. Further each node in C' is connected to every
node outside of C' with probability q. Thus the random
walk may go out of the set C' at some point. We show
that the probability of going out of C' is very small when
the length of the walk is smaller than the mixing time of
G n,, graph, which is O(log(n/7)).

Lemma 3. Given a Gypq graph and a node s in some block
C, the probability that a random walk starting from s stays
inside C is at least 1 — o(1) until £ = O(log(n/r)) when
q= O(Tlogj(jn/r))'

Proof: We show that in each step, the probability
that the random walk goes outside of C' is o(1/logn).
For any w € C, the number of neighbors of u in C is
p|C| = pn/r and the number of neighbors in C' =V \ C' is
q|C| = q(n — n/r) in expectation. Thus the probability
that the random walk goes outside of the block C' is

p(n/qr(ﬂ;%??/r) = p_‘i(qr(;i'l). This is o(1/log(n/r)) when
g = o0 W) Thus in ¢ = O(log(n/r)) steps, the

probability that walk goes outside of the block C is o(1).
That is the random walk stays inside C' with probability
at least 1 — o(1). [

Now we show that the random walk probability will mix
over C in O(log(n/r)) steps.

Lemma 4. Given a Gypq graph and a node s € C, a
random walk starting from s will miz over the nodes in C
after = O(log(n/r)) steps with high probability.

Proof: We show that after O(log(n/r)) steps of the
walk, the amount of probability goes out of C'is very little
and that the remaining probability will mix inside C'. The
expected number of outgoing edges from any subset S of
the block C is |E(S,V \ C)| = ¢|C||S| = q(n —n/7)(|S]).
In each step the amount of probability goes out of C' is
%, as d = p(n/r) + qg(n —n/r) is the degree of a
node, each edge carries 1/d|S| fraction of the probability.

|E(S,VAC)| _ (n=n/r)|S| _
We have == = tota/rjzatnn/myrs] = 0(1/108(n/7))
for ¢ = O(W). Thus in ¢ = O(log(n/r)) steps, the

amount of probability goes out of C'is o(1). Hence 1 —o0(1)
fraction of the probability remains inside C' and it will mix
over the nodes in C after O(log(n/r)) steps as shown in
the above Lemma 1 and 2. [ |

Thus it follows from the above lemma that the largest
mixing set is C after 7 = O(log(n/r)) steps of the random
walk. Further, it is shown in Lemma 4 of [33] that the
random walk keeps mixing in C' until 27 steps. In other
words, C' remains the largest local mixing set for at least
another 7 steps. Thus the size of the largest local mixing
set will not increase from C' in the further few steps of the
walk after the mixing time 7. Hence the algorithm outputs
C as a community with high probability. Since we sample

the source node s from the different blocks, each time our
algorithm outputs a new community until all the blocks
are identified as separate communities.

The § value measures the rate of change of the size of the
largest mixing set in each step. When the largest mixing
set reaches a community C', the vertex expansion becomes
LECYAD] which is the conductance of the Grpg graph.
If the largest mixing set doesn’t reach the community,
the size increases in higher rate than §. Hence we take
0 to be ®g in our algorithm to stop and output the
community. We assume that &5 is given as input, or it
can be computed using a distributed algorithm, e.g., [28].
Complexity of the Algorithm in the CONGEST
model. Let us first analyze the distributed time com-
plexity of the Algorithm 1 which computes a community
corresponding to a given source node. We will focus on
the CONGEST model first. The algorithm first computes
a BFS tree of depth O(logn) from the source node.
This takes O(logn) rounds. Note that the diameter of
a Gpp graph is O(logn); hence the BFS tree covers all
the nodes in the community containing the source node.
The algorithm then iterates for the length of the walk,
£=1,2,4,...,0(logn). In each iteration:

e The algorithm probability distribution p,. As we
discussed before, it takes O(1) rounds to compute py
from py_;.

e s collects the sum of |S| smallest x,s through
the BFS tree using binary search method. It takes
O((depth_BFS _tree) - logn) = O(log®n) rounds.
This is done for all the potential candidate set of
size (1 + 1/8e)?|S|, where i = 0,1,2,.... It may take
O(logn) rounds in the worst case. Hence the total
time taken is O(log® n) rounds.

o Checking if the sum of differences is less than 1/2e
and also checking the community condition is done
locally at s.

Thus the total time required is O(logn)+O(logn)-(O(1)+
O(log®n)), which is bounded by O(log* n).

Message Complexity of the Algorithm. Let us calcu-
late the number of messages used by the algorithm during
the execution in a Gy graph. The degree of a node is
p(n/r) + q(n — n/r) in expectation. Hence the number of
edges in the Gy, graph is n?p/r + ng(n — n/r). In the
worst case, the the algorithm runs over all the edges in
the graph. Thus the message complexity of the algorithm
for computing a single community is bounded by (time
complexity) x (the number of edges involved during the
execution), which would be O(”—:(p + q(r — 1)) log* n)
in expectation. That is the message complexity of the
Algorithm 1 is O(%(p +q(r —1))).

Therefore we have the following main result.

Theorem 5. Consider a stochastic block model G,y with
r blocks, where p = Q(k’i") and ¢ = O(W). Given a
node s in the Gpg graph, there is a distributed algorithm

(cf. Algorithm 1) that computes the block containing s as




a community with high probability in O(log4 n) rounds and

incurs O(”2 (p+q(r —1))) messages in expectation.

T
The CDRW algorithm can be used to detect all the r
communities in the PPM graphs one by one. In that case
the running time would be r times the time of detecting
one community, which is O(rlog*n). The message com-
plexity in this case would be O(n?(p + q(r — 1)) log* n) in
expectation. Thus we have the following theorem.

Theorem 6. Given a stochastic block model Gpq with
r blocks, where p = Q(lofi") and q = O(W), there
is a distributed algorithm (cf. Algorithm 1) that correctly
computes each block as a community with high probability
and outputs all the v communities in O(rlog*n) rounds

and incurs expected O(n?(p + q(r — 1))) messages.

B. Complezity in the k-machine model.

As mentioned earlier, in the k-machine model, the in-
put (SBM) graph is partitioned across the k machines
according to the random vertex partition (RVP) model
(cf. Section I-B). The algorithm can be implemented in
the k-machine model by simulating the corresponding
CONGEST model algorithm. Note that since each vertex
and its incident edges are assigned to a machine (i.e., its
“home” machine — cf. Section I-B), the machine simply
simulates the code executed by the vertex in the CON-
GEST model. If a vertex u sends a message to its neighbor
u in the CONGEST model, then the home machine of
u sends the same message to the home machine of v
(addressing it to v). If w and v have the same (home)
machine, then no communication is incurred, otherwise
there will be communication along the link that connects
these two home machines. This type of simulation is de-
tailed in [26]. Hence one can use the Conversion Theorem
(part a) of [26] to compute the round complexity of the
CDRW implementation in the k-machine model which
depends on the message complexity and time complexity
of CDRW in the CONGEST model. If M and T are
the message and time complexities (respectively) in the
CONGEST model, then in the k-machine model then by
the Conversion Theorem, the above simulation will give
a round complexity of O(M/k? + (AT)/k), where A is
the maximum degree of the graph.® For the SBM model,
A = O(np/r+ (n—n/r)q). Hence plugging in the message
complexity and time complexity from the CONGEST
model analysis, we have that the round complexity in the
k-machine model is O((ij + &)(p+q(r—1))).

IV. EXPERIMENTAL RESULTS

In this section we experimentally analyze the perfor-
mance of our algorithm in the PPM model under various
parameters. In particular, we show how accurately our
algorithm can identify the communities in the PPM model.
As an important special case, we also analyze the case
when r = 1, i.e., there is only one community — in other
words, the whole graph is a G(n,p) random graph. In this

60 notation hides a polylog n multiplicative and additive factor.
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Fig. 2: Community detection accuracy of CDRW algorithm on G
random graphs. It shows even when the graph is sparse, when p
is small and as close to the connectivity threshold as possible, its
accuracy is still high. The vertical line shows that when the size is
big enough (n > 219), the accuracy becomes almost 1.0.

case, we expect the algorithm to output the whole graph
as one community.

Since in the PPM model, we know the ground-truth
communities, we use F-score metric [32] to measure the
accuracy of the detected communities. Let CP be the set of
detected communities by CDRW algorithm and C¢ = UC;
be the ground-truth communities (each C; is a ground-
truth community). Let C*® be the detected community by
CDRW using seed node s and C9 be the ground-truth
community that seed node s belongs to. Then the precision
is the percentage of truly detected members in detected
community defined as precision(C®) = €0 and recall

|C]
is the percentage of truly detected members frorp tghe
ground truth community defined as recall(C*) = '€ gg(‘j |

Both precision and recall return a high value when a
method detects communities well. For example, if all the
detected members belong to the ground-truth community
of the seed node, then its precision is equal to 1.0; and
if all the ground-truth community members of the seed
node are included in the detected community, then its
recall value is equal to 1.0. We utilize F-score as our
accuracy measurement metric which reflects both precision
and recall of a result. F-score of a detected community C*
is defined as:F-score(C*) = 2xprectoton(C)xrecatlCl)  Then
the total F-score is equal to the average F-score of all de-
tected communities: F-score = 12p7 30 con F-score(CY) .
Again a higher F-score value means a better detection of
communities.

The first challenge for any community detection (CD)
algorithm is detecting a random graph as a single com-
munity. This challenge becomes harder when the graph
becomes sparse and it gets closer to the connectivity
threshold of a random graph (i.e. p = Cl"%, st.c> 1) [7].
In the first experiment we show that our CDRW algorithm
detects almost the whole graph as a single community

resulting in a high F-score accuracy value, see Figure 2.
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Fig. 3: Performance of CDRW algorithm on PPM graphs when there
are two parts/communities (r = 2). We fixed the size of the graph to
n = 2!, each planted partition is of size 210, It showszthat CDRW
works well for small values of p = 21(’% 210%
small enough.

and p = when q is

Figure 2 shows that when we increase the size of graph
n, the accuracy of our algorithm increases as well. For
example, for n = 210 the accuracy metric becomes almost
1.0, meaning that almost all the nodes of the graph is
detected as a single community. It also shows that when p
increases (graph gets denser), the accuracy also increases.
So in the remaining experiments on PPM graphs, we
choose two lowest values of p = Clo% and p = %
for generating its random parts in order to give more
challenging input graphs to the CDRW algorithm.

After showing that CDRW works well on G,), random
graphs, now we consider PPM G,,;,, graphs. At first we
fix the number of communities to two (r = 2) so that
we can consider the effect of various values of p and q.
This will show us the threshold for the ratio of % where
CDRW works well. As we showed in Figure 2, when the
size of each random graph is big enough (n > 210), CDRW
detects a single G, community well. Therefore we set
the size of Gppq to n = 21 which makes each ground-
truth community big enough (% = 210). When considering
PPM graphs with p and ¢, as the connectivity probability
for intra- and inter-community edges, CD algorithms face
hardship in detecting communities when p is small and ¢
is relatively high. But the 1;1 ratio can not be arbitrarily
small because it causes the two communities blend into
each other and the graph looses its community structure.
Figure 3 shows accuracy of CDRW for different values
of p and ¢. We highlight that it shows even for sparse
parted G, graphs: for p = 210%, CDRW detects the two
communities with a high F-score value (more than 0.90)
for g = % and %. In other words, our CDRW algorithm
works well even on sparse parted PPM graphs when the £

ratio is as small as (Q(logn)). Notice that when p = 2 I?Lg",

the two ground truth communities of the PPM graph are
as sparse as possible, i.e close to its connectivity threshold.
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Fig. 4: Varying the number of ground-truth communities to see its
effect on the accuracy of our CDRW algorithm. It shows that when we
increase the number of communities, the accuracy decreases slightly.
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partition has in expectation e;, = (g)p = 10230 intra
and eoys = *(n — *)q = 614 inter community edges. It
means the ratio of inter to intra community edges ()
is high and equal to 6%.

We now consider the effect of increasing the number of
ground-truth communities (r) in order to see its effect on
the accuracy of our CDRW algorithm, see Figure 4. We do
it in two ways. First, we fix the size of each community to
210 and vary the number of communities. The size of graph
is n = r x 2!%, Figure 4a shows that our CDRW algorithm
works well when we reasonably increase the number of
communities. Second, we fix the size of graph to a number
so that the size of each community is 2'° when the number
of communities is the biggest (r = 8), see Figure 4b. Then,
when the number of communities becomes lower, the size
of communities gets bigger. By comparing Sub-figures 4a
and 4b, we see that when the number of communities are
the same, the accuracy is higher when the size of each
community is bigger.

In the latter example, for instance, when ¢ =

V. CONCLUSION

We proposed a distributed algorithm, CDRW, for com-
munity detection that works well for the PPM model
(Gnpq random graph), a standard random graph model
used extensively in clustering and community detection
studies. Our CDRW algorithm is relatively simple and
localized; it uses random walk and mixing time property
of graphs to detect communities. We provide a rigorous
theoretical analysis of our algorithm on the G, random
graph and characterize its performance vis-a-vis the pa-
rameters of the model. In particular, our main result is
that it correctly identifies the communities provided ¢ =
o(p/(rlog(n/r))), where r is the number of communities.
Our algorithm takes O(r X polylog n) rounds and hence
is quite fast when r is relatively small. We point out that
our algorithm can also be extended to find communities
even faster (by finding communities in parallel), assuming
we know an (estimate) of r. For future work, it will be
interesting to study the performance of this algorithm on
other graph models and can be a starting point to design
and analyze community detection algorithms that perform
well in the more challenging case of real-world graphs.
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