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In this work, we perform atomistic simulations to study the phase transfor-
mations (PT) in graphite under compression. Our major findings are: (1) when
the compression is parallel to the basal plane, graphite layers buckle, kink
bands form, and then the diamond nucleates at the intersection of kink bands;
the initially introduced dislocations block the graphite layer slippage and
promote the graphite-to-diamond PT; (2) instead, when the sample is com-
pressed normal to the basal plane, no buckling is observed, and in this situ-
ation, the pre-existing dislocations delay the structure change; and (3) the PT
is found to be controlled by local stresses from which a criterion can be for-
mulated for detecting the graphite lattice instability. Despite the limited
length scales in our atomistic models, the above results may support the
search for new routes to fabricate artificial diamonds at a significantly less

cost than that required by traditional techniques.

INTRODUCTION

Interests in synthesizing diamonds continue since
the first appearance of artificial diamonds from
phase transformations (PTs) in graphite exposed to
high temperature (3000 K) and high pressure (12.5
GPa) nearly 60 years ago."? In particular, because
the creation of a high temperature and high pres-
sure (HTHP) environment is extremely energy-
demanding,®* in recent decades, intensive research
has been dedicated to reducing the gra?hite-to-
diamond PT pressure and temperature,’®~? which
is believed to be one key for achieving a scalable
production of synthetic diamonds at the industrial
scale. One popular approach to achieve this goal is
using catalysts to facilitate an “easy” graphite-to-
diamond PT. For instance, beginning in the 1990s,
the carbonates of Li and Na have been introduced as
catalysts into the starting graphite in HTHP exper-
iments,'®!* which indeed significantly reduced the
graphite-to-diamond PT pressure and temperature
to a level of ~7.7 GPa and ~2000 K. However, in
this approach, due to the direct contact between
graphite and the catalytic metals, other forms of
carbon can be formed which need to be mechanically
or chemically removed from the final products,

Published online: 15 August 2019

which is not trivial. Alternatively, instead of apply-
ing hydrostatic pressure, through imposing a large
plastic shear on the graphite in a rotational anvil,’
nanocrystalline hexagonal and cubic diamonds were
obtained in a recent experiment at room tempera-
ture and a compressive stress as low as ~0.5 GPa.
Without the need of any catalysts, this strategy is
obviously very promising in facilitating an “easy”
graphite-to-diamond PT at a significantly lower cost
than that in HTHP, but is currently still at a “trial
and error” stage because: (1) the final products from
PTs in graphite under a combined compression and
shear have been found to be sensitive to a variety of
factors, including the loading direction, the starting
graphite microstructure, the lateral confinement,
the level of the applied shear strain, among many
others; and (2) the role of material defects such as
the grain boundaries or the plastic shear-induced
dislocations in the graphite-to-diamond PT remains
to be fully understood.

This has inspired a large number of computer
simulations of the mechanical behavior in graphite
under deformation. Historically, the continuum-
level comPutational methods, such as finite element
(FE),>'5'® phase field,'®?® or crystal plasticity
models,?* 2% have enjoyed the most popularity.
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However, such continuum-level models require con-
stitutive rules as inputs, which are usually difficult
to be accurately calibrated. In contrast, with the
advent of high-performance computing, by consid-
ering materials as a collection of atoms, atomistic
simulations such as molecular dynamics (MD)
become a powerful tool for describing the activities
of dislocations, PTs, and their interaction in mate-
rials.?’ 32 In particular, for graphite, Tucker and his
co-workers have performed MD simulations®*~3° to
explore its deformation behavior. They discovered
that the deformation in graphite under indentation
may be largely carried by a so-called “rippolocation”.
As far as the graé)hite—to-diamond PTs are con-
cerned, Khaliullin®® conducted atomic-level MD
simulations using an ab initio quality neural-net-
work potential. The pathways for the nucleation of
hexagonal and cubic diamonds in graphite under
compression were determined for the first time in a
tiny sample containing only thousands of atoms.
Furthermore, with the aim of exploring the effects
of the simulation cell size, especially the dimension
along the direction parallel to the basal plane, on
the PT process in graphite under compression,
classical MD simulations using a LCBOPII poten-
tial were conducted.?” It was found that, with the
increase of the simulation cell, the graphite layers
first buckled before the occurrence of a PT. The
buckled microstructure is related to the activities of
material defects like “ripplocations” and kink
bands.?3-35:3839 Regsearchers believe that the gra-
phite layer buckling, together with other pre-exist-
ing material defects (dislocations or grain
boundaries), may play an important role in the
graphite-to-diamond PT, although direct evidence is
still lacking.

Clearly, despite extensive research in both exper-
imental and computational aspects, fabricating dia-
monds through manipulating the PT in graphite
still necessitates studies that can isolate the effects
of a few controlling parameters, such as the loading
directions and defects, on the PT process. To meet
this need, here, we perform MD simulations of
perfect and defected graphite samples under com-
pression along different directions. Following this
introduction, the simulation cell, boundary condi-
tions, and the loading strategies, as well as the
deployed interatomic potential, are introduced in
“Computational Setup” section. The results are
presented in “Simulation Results” section. “Sum-
mary and Discussion” section ends this paper with a
summary of our major findings and a brief discus-
sion of the limitations of this work together with our
future endeavor along this direction.

COMPUTATIONAL SETUP

Atomistic computer models for graphite in a
dimension of 5 nm x 68 nm x 83 nm containing
4096,000 atoms have been constructed. The x, y,
and z directions of the simulation cell are along the
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[1120], [1100], and [0001] directions, respectively. In
order to investigate the dependence of the PT on the
crystallographic orientation, the compressive load-
ings along two different directions are applied
(Fig. 1a and b): one is along the y direction, which
is parallel to the basal plane in graphite (Fig. 1a),
and the other is along the z direction, i.e., normal to
the basal plane in graphite (Fig. 1b). To understand
the role of dislocations in graphite-to-diamond PTs,
several defected graphite samples containing differ-
ent numbers of dislocations have been constructed.
Here, only the prismatic edge dislocations are
considered, which can be initially introduced into
the model through deleting a few half-graphene
layers. The number of the deleted half-graphene
layers is determined by the number of dislocations
to be introduced. In this way, an array of the
prismatic edge dislocations can be generated. Fig-
ure 1lc shows a typical defected graphite sample
containing nine dislocations, which are initially
introduced into the sample with uniform spacing
between each other. Thereafter, before applying the
compressive loading, with a time step of 0.5 fs, both
the perfect and the defected graphite samples are
equilibrated at T = 2000 K in NPT ensembles for
20 ps. During the equilibration, the pressure com-
ponents along the lateral direction, i.e., P, and P,,
are set at zero, and P, is set at 30 GPa. Such a “pre-
compression” along the normal direction of the basal
plane is used to reduce the graphitic layer spacing
from 3.35 A to 2.42 A, which will significantly speed
up the onset of the PTs in graphite under compres-
sion. During all the above equilibrations, periodic
boundary conditions (PBCs) are applied along the x,
y, and z directions. To ensure that the atomic
configuration obtained through this equilibration is
in equilibrium, we measure the local stress near the
equilibrated dislocation core at 0 K and compare it
with the solution from elasticity marked by the
black lines and labels in Fig. 1d and e. Here, the
atomic stress is calculated using the Virial stress
formula for simplicity, which has been implemented
in LAMMPS,* although the consistency between
the Virial stress formula and the concept of a
Cauchy stress is still in debate.*'™**

After the equilibration, the samples are com-
pressed along the y and z directions at a constant
loading speed of 100 m/s in an NVT ensemble at
T = 2000 K. During the compression, the PBCs are
always maintained along the non-compressed direc-
tions, while a non-periodic and shrink-wrapped
boundary is applied along the loading direction.
That is, when the sample is compressed along the y
direction, the PBCs are imposed along the x and z
directions. Instead, when the sample is compressed
along the z direction, the PBCs are imposed along
the x and y directions. At both the equilibration and
compressive loading stages, a bond order empirical
potential, LCBOP,*” for describing the atomic inter-
actions in graphite is chosen because, firstly, it
includes a dihedral term together with a term for
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Fig. 1. Atomistic computer models for graphite samples under compression along a direction that is (a) parallel and (b) normal to the basal plane;
(c) a defected sample containing an array of built-in prismatic edge dislocations; (d) the shear (s,,) and (e) the normal stress (o,,) near a

dislocation core and its comparison with that calculated by elasticity.

the long-range van der Waals interactions between
the graphitic layers. Those two terms are absent in
many other potentials, such as Tersoff,**° for
carbon materials, but can be very important for
correctly reproducing the stacking sequences of
graphite layers, especially in defected samples
where the stacking sequences deviate from the
perfect ones.?*%! This feature facilitates its applica-
bility for capturing the graphite layer stacking
sequence changes during a graphite-to-diamond
PT process. Secondly, it can approximately capture
the sp2-bond breaking and also the sp>-bond forma-
tion involved in a graphite-to-diamond PT process,
although in an empirical manner. Thirdly, com-
pared with other high-fidelity potentials, such as
COMB3°? and ReaxFF,” it is significantly less
demanding in computational resource. This enables
us to explore the effects of the sample sizes on the
PT process in relatively larger material specimens.

SIMULATION RESULTS

PTs in perfect and defected graphite
under compression along the y [1100] direction

When a graphite sample is compressed along the
y direction, we found that, if the applied compres-
sive strain is sufficiently small (less than 0.02, prior
to the initiation of buckling as shown in the first row
of Fig. 2), the graphite layers remain flat and the
deformation at this stage can be fully recoverable
when unloading. Thereafter, with a further increase
of the compressive stress, the materials start to
yield locally. Figure 2 presents the snapshots of the
atomic structure evolution near a region where the
permanent deformation occurs in perfect and
defected graphite samples. In order to quantify the
local material deformation, using the initial atomic
configuration in the zero-strained sample as a
reference, an atomic-level Von-Mises shear
in>455 is calculated and used to color the atoms
in OVITO®® in Fig. 2:
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Fig. 2. Time sequences of the snapshots of the deformation behavior in perfect and defected graphite containing five and nine dislocations when
the compressive loading is applied along the y direction. The buckling of graphite layers and their slippage with each other are visualized through
the atomic-level Von-Mises shear strain, which is calculated using the initial atomic configuration as a reference. The /labels on the axes in these
images indicate the actual positions. CD and HD represent cubic diamond and hexagonal diamond, respectively.

where n; (I =x, y, and z; j =x, y, and 2) are the
components of a Green—Lagrangian strain tensor on
each atom.’®®! It is clearly seen that, when the
graphite samples are deformed by a compressive
loading along a direction parallel to the basal plane,
the deformation behavior in both perfect and
defected graphite samples containing either five or
nine dislocations falls into three characteristic
stages: (1) a few graphite layers start to buckle at
a critical compressive stress of oy, the values of oy
are 39.55 GPa, 35.51 GPa, and 32.81 GPa for the
perfect sample, the defected sample containing five
dislocations and the one containing nine disloca-
tions, respectively; (2) multiple graphite layers are
collectively buckled with the continuous increase of
the loading, kink bands start to form (the bands can
be clearly identified as a collection of those atoms in

red, as shown in the second row in Fig. 2), and upon
further compression, many kink bands are formed
and eventually intersect with each other; and (3) the
intersections of those kink bands “block and jam”
the slippage of the graphite layers, introduce high
local stress—strain concentrations, and, in turn,
activate the nucleation and growth of diamond
crystals, which are recognized using “Identify the
diamond structure”®’ in OVITO.?® Despite the com-
monality in terms of the above three-stage defor-
mation process, the critical stress, o, ¢, for
nucleating diamonds in perfect and defected gra-
phite samples are obviously different: the more
dislocations, the less compressive stress required to
active a graphite-to-diamond PT.

The effects of dislocations on the graphite-to-
diamond PT can be quantified through correlating
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Fig. 3. Stress—strain curves in perfect and defected graphite under compression along the y [1100] direction: the three-stage deformation in a
perfect sample are shaded as Stages-I, -1l, and -/lI; the critical stresses are also indicated.

the number of dislocations with the reduction of the
critical compressive stress. Here, we measure the
averaged stresses in perfect and defected samples
along the loading direction, i.e., gy, and plot it
against the applied compressive strain (Fig. 3). It
can be seen that, when the compressive strain is
small, all the samples are under elastic deformation.
At this stage, the stress—strain curves are linear
and overlap with each other, from which Young’s
modulus can be approximately measured as 1226
GPa. This is larger than the experimentally mea-
sured elastic constant (1060 GPa) of graphite along
a direction parallel to the basal plane,”® but is
reasonably acceptable due to the small sample sizes
and the idealized crystalline structure in the sim-
ulation cell. Thereafter, in parallel to the three-
stage deformation process observed in Fig. 2, the
stress—strain curves in Fig. 3 are seen to also fall
into three regimes: (1) when the applied stress
approaches a level of oy as indicated in Fig. 3, the
materials yield, corresponding to the Stage-I defor-
mation at which a few graphite layers start to
buckle; (2) at Stage-II, multiple graphite layers
buckle, and kink bands form and interlock with
each other; correspondingly, the stress exponen-
tially increases with the increase of the applied
compressive strain; and (3) at Stage-III, due to the
nucleation and growth of the diamond crystal at the
intersection of kink bands, a sudden drop in the
stress—strain curve is observed. Obviously, there
exists a perfect correspondence between the stress—
strain curves and the three-stage deformation pro-
cess. From Fig. 3, for graphite under compression
along the y direction, the critical compressive
stress,g,,_c, required for the occurrence of PTs can
be measured. The obtained results are summarized
in the inset table in Fig. 3. The reduction of

graphite-to-diamond PT stress can be quantitatively
correlated with the number of dislocations in the
starting materials. In details, when nine disloca-
tions are introduced into the models, the critical
compressive stress for the occurrence of PT reduces
from ~228 GPa to 182 GPa, which corresponds to a
~20% reduction and suggests the possibility of a
dislocation-assisted PT.

Since the present atomistic simulation provides
us with the capability of tracking the motion of
individual atoms, here we attempt to identify the
roles of dislocations through analyzing the process
of the diamond nucleation as a consequence of the
change in the graphite layer stacking sequences
accompanied by an atomic-level buckling out of the
basal plane. For graphite under no deformation,
Fig. 4a shows the structure of hexagonal graphite
(HG), a typical “ABA” stacking sequence of graphite
layers. When hexagonal graphite containing no
defects is compressed along the y direction (Fig. 4b),
the graphite layers buckle and the slippage between
them is blocked by the sharp angle vertex of the
buckling. This, in turn, leads to the stacking
sequence change from “ABA” to “AAA”, which
corresponds to orthorhombic graphite (OG). With
further increase of the compressive loading, the
local buckling occurs within the newly formed OG
layers and activates hexagonal diamond (HD)
nucleation and growth (Fig. 4b). In contrast, for
defected graphite containing dislocations, prior to
the formation of the sharp buckling vertex angles,
the initially introduced dislocations can effectively
block the slippage of graphite layers. Thereafter,
with a small increase of the compressive strain,
nearby the dislocation core, the hexagonal graphite
in “ABA” stacking sequences can be easily trans-
formed to “ABC”, which corresponds to
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Fig. 4. A detailed analysis of the evolution of the graphite layers stacking sequence change and the resulting graphite-to-diamond PTs in perfect
and defected graphite under a compressive loading along the y direction: (a) the “ABA” stacking sequence in un-deformed hexagonal graphite;
(b) the process of PT from hexagonal graphite to hexagonal diamond (HG — OG — HD); and (c) the process of a dislocation-assisted PT

from hexagonal graphite to cubic diamond (HG — RG — CD).

rhombohedral graphite (RG) and then to the cubic
diamond (CD). The above findings suggest two totally
different PT pathways for diamond nucleation in
perfect and defected graphite when compressed along
the y direction: HG — OG — HD in perfect gra-
phite and HG — RG — CD near a dislocation in
defected graphite. However, it should be pointed out
that, at a later stage of the deformation, these two
pathways appear in both perfect and defected sam-
ples. Hence, no matter whether or not the starting
graphite sample contains dislocations, if the graphite
is compressed along the y direction, the CD and HD
coexist in the resulting final products.

The above analysis also suggests that, in both
perfect and defected graphite under deformation,
diamond nucleation necessitates at least three local
structure changes: (1) a deviation of the graphite
layer stacking sequence from that in HG; (2) a
blockage of any further graphite layer slippage with
each other, either by sharp buckling angle vertex
(Fig. 4b) or by dislocations (Fig. 4¢); and (3) an
atomic-level buckling of the graphite layer out of the
basal plane for triggering the formation of sp® bonds
between the layers. Then, we characterize the local
stress states at 16 potential diamond nucleation
sites to investigate the parameter that controls the
local structure changes. It goes through the follow-
ing three steps: (1) the volume elements in a
dimension of 3 nm x 3 nm x 3 nm are constructed
around each potential diamond nucleation site; (2)
the six components of the local stresses on the
volume elements associated with each nucleation

site are calculated using the Virial stress formula;
and (3) the principal stresses, o7, 077, and oy, at
each nucleation site are calculated. The obtained
data are then plotted in the o7 — 677 — o777 coordinate
system (Fig. 5a). The projections of those data onto
the 67— o777 and the 677 — o777 planes are also provided
in Fig. 5b and c, respectively. Surprisingly, all the
principal stress states at different potential dia-
mond nucleation sites fall approximately into one
plane, expressed mathematically as Eq. (2).

0.151 % o7 + 0.1044 x 617 + o7 = 264 GPa (2)

Therefore, we conclude: (1) the local structure
changes are controlled by local principal stresses,
and (2) all the six components of the local stress
tensor contribute to the structure changes. Further-
more, Eq. (2) may be used in higher length-scale
computer models, such as FE,>%718 or phase field
models,%23% to detect the diamond nucleation in
graphite under compression along the y direction.

PTs in perfect and defected graphite
under compression along the z [0001]
direction

Due to its highly anisotropic crystalline struc-
ture®® (1020 GPa for the planar Young’s modulus,
while 37 GPa along the c-axis direction), graphite
under compression along the direction normal to the
basal plane can behave significantly different from
that under compression parallel to the basal plane.
Figure 6 presents the snapshots of the deformation
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behavior in perfect and defected graphite under
compression along the z direction, i.e., the normal
direction of the basal plane in graphitic materials. It
differs from the structural evolutions in Fig. 2 for
graphite under compression along the y direction in
the following four main aspects: (1) when the
loading is normal to the basal plane, even at a very
high level of compressive strain, in both perfect and
defected samples, the graphite layers always only
get closer with each other and never buckle, while
the graphite layers can be easily buckled when the
compression is along the y direction; (2) the change
of the graphite layer stacking sequence in Fig. 6
only occurs near the sample boundaries where the
loading is applied; instead, the stacking sequence
change can take place anywhere in the whole
sample when the slippage between graphite layers
is blocked or altered by the presence of the sharp
angle vertex of a buckling for graphite under
compression along the y direction; (3) no matter
whether the starting sample contains dislocations
or not, when compressed along the z direction, the
graphite layers stacking sequence always only
transforms from “ABA” to “ABC” (Fig. 6b), and in
contrast, when the compression is along the y
direction, the stacking sequence changes from
“ABA” to “AAA” and “ABC” respectively; and (4)
as a consequence of the dominating stacking
sequence change is “ABA” — “ABC” near the
sample boundaries, diamond nucleates underneath
the loading zone (Fig. 6a, b), the newly formed
diamonds are mainly in cubic structure. In contrast,
hexagonal and cubic diamonds co-exist in the final
products from the compression of the graphite along
the y direction.

More interestingly, for the defected graphite
under compression along the z direction, the ini-
tially introduced prismatic dislocations can actually
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block the propagation of the graphite layer stacking
sequence change. In details, as shown in Fig. 6b, at
a compressive strain of &= 0.05, the stacking
sequence of the graphite layers above the disloca-
tions (the material domain above the red line in
Fig. 6b) has changed to “ABC” but does not trans-
form to “ABC” in those layers where the dislocation
sits. For the sample containing no dislocations
(Fig. 6a), at this strain level, the stacking sequence
of all the graphite layers has transformed to “ABC”
and is ready for the nucleation of cubic diamonds
through a route of HG — RG — CD. In that
sense, we believe that prismatic dislocations only
assist the PTs when the compressive loading is
parallel to the basal plane in graphitic materials,
and they may delay or even suppress the occurrence
of PTs in graphite when the compressive loading is
along the z direction. This can be confirmed through
the following constitutive response of a defected
graphite to the compression along the z direction
and its comparison with that of a perfect sample.
Figure 7 shows the stress—strain curves of the
perfect and defected graphite (containing five ini-
tially built-in prismatic dislocations) under com-
pression along the 2z direction. The critical
compressive stress at which the diamond starts to
nucleate are indicated as o,,.c. Obviously, the
activation of a graphite-to-diamond PT in the
defected graphite requires noticeably larger stress
than that by the perfect sample: the critical com-
pressive stress under which the PT occurs in the
perfect sample is 187 GPa, and is 204 GPa in the
defected sample, respectively. This result implies
that (1) material defects not always promote the
PTs, and (2) the interplay between dislocations and
PTs in graphite largely depends on the direction of
the applied loadings. Also, similar to the previously
discussed PT Dbehavior in graphite under
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Fig. 7. The stress—strain curves of the perfect and defected graphite under compression along the z direction..
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compression along the y direction, after the stacking
sequence change from “ABA” to “ABC”, the diamond
may nucleate simultaneously at multiple atomic
sites near the sample boundary. Those potential
nucleation events are found to be triggered by
lattice stability, i.e., the atomic-level buckling of
graphite out of the basal plane, which is believed to
be controlled by the local stress states. Follow the
same procedure in the previous section, here we
measure the full stress tensor around each potential
diamond nucleation site, calculate the principal
stresses, o7, o7, and o7, and plot them in the
principal stress coordinate system (Fig. 8a). The
projections of these data points on the o7 — o777 and
the 677 — o777 are provided in Fig. 8b and c, respec-
tively. Again, similar to that in Fig. 5a—c, results in
Fig. 8a—c show that the principal stress states at
different potential diamond nucleation sites fall into
one plane, which can be fitted as the Eq. (3). It may
be used as a criterion for detecting the lattice
instability in continuum-level models for simulating
the deformation behavior in graphite under com-
pression along the z direction.

0.195607 + 0.16150; + o7 = 202 GPa (3)

SUMMARY AND DISCUSSION

To summarize, in this work, we have carried out
MD simulations to investigate the phase transfor-
mation (PT) behavior in perfect and defected single-
crystalline graphite under a compressive loading
along different directions. The results show that the

conditions required for the occurrence of graphite-
to-diamond PT, the atomistic mechanisms respon-
sible for the PT processes, and the microstructure of
the products resulting from the PT, can all be
largely determined by the loading direction and the
initially introduced material defects. Several major
findings can be highlighted as:

(1) When the compressive loading is parallel to
the basal plane, the graphite layers always buckle
first, and kink bands form. And then, at the
intersection of the kink bands, diamonds nucleate
through either an HG — OG — HD or an HG —
RG — CD process. In this situation, at the kink
band intersections, the initially introduced pris-
matic dislocations are found to promote the PT
through “jamming” the slippage between graphite
layers;

(2) For the graphite sample under compression
along a direction normal to the basal plane, the
wavy graphite layer buckling is not observed and no
kink band is formed. The stacking sequence
between the graphite layers is found to change from
“ABA” to “ABC”, diamond nucleates underneath the
boundary where the compressive loading is applied,
and then cubic diamonds are formed. In this
scenario, the initially introduced prismatic disloca-
tions are found to suppress the graphite-to-diamond
PT through delaying the graphite layer sequence
change from “ABA” to “ABC”;

(3) No matter the graphite is compressed parallel
or normal to the basal plane, when diamonds starts
to nucleate, it may occur at multiple different sites.



The local stress states around these potential
nucleation sites are found to fall into one plane in
the principal stress space. This suggests that all the
six components of the local stress tensor contribute
to the crystal structure change. A mathematical
functional form of this plane fitted from MD data
may be used in formulating a criterion for detecting
the stress-controlled lattice instability induced by
the PTs in graphite under deformation.

Although the above results may find applications
in interpreting experimental observations, support-
ing the development of higher length-scale com-
puter models, and even suggesting new routes for
synthesizing diamonds from graphite, great care
needs to be taken due to several limitations of the
present work. Firstly, for the LCBOP potential
employed here, the sp” bonds between carbon atoms
within a graphite layers are considered to break
when the distance between them is larger than a
critical value. The sp® bonds across the neighboring
graphite layers form when the distance between
them falls below a threshold. Such a treatment is
efficient for qualitatively capturing the atomistic
process of a graphite-to-diamond PT. However, it is
purely empirical without the quantum-level accu-
racy for the real chemical bond breaking and
formation. This might be one reason why diamonds
are formed through the PTs in graphite under an
unreasonably high compressive stress at a level of
hundreds of GPa. In particular, the graphite-to-
diamond PT pressure measured from the present
simulations is nearly one order higher than that
(~30 GPa) from the simulations using an ab initio
quality neuron network potential.®® To check the
dependence of the PT pressure on the interatomic
potentials, we also recently performed a series of
similar atomistic simulations using a reactive force
field (ReaxFF),’! which is believed to able to retain
the quantum mechanical accuracy for chemical
bond breaking, switching, and formations, but
demands significantly less computational cost than
that by ab initio calculations. We found that the
critical stress required for the PT in graphite using
ReaxFF is largely reduced. Secondly, the atomistic
models in this work are only for single-crystalline
graphite. However, in real situations, the
microstructure of the graphite used for artificial
diamond synthesis is extremely complicated. It
contains a variety of different types of defects, such
as vacancies, interstitials, dislocations, grain
boundaries, and chemical impurities, among many
others, none of which are considered here but
definitely play very important roles in PTs. As such,
many quantitative measurements in this work, such
as the critical compressive stress or strain for PTs,
actually only provide an “upper bound” in an
idealized situation. And, thirdly, when dislocations
and PTs occur simultaneously, both of them will
largely deviate the perfect crystal structure and
introduce long-range stress fields into the materials.
The effects of such heterogeneous stress fields could

Peng and Xiong

span several microns and even above. This casts
doubt on the quantitative prediction using MD for
such a phenomenon, because the solution could be
easily polluted by the image stresses no matter the
free surface or the periodic boundary conditions are
applied.

Hence, the incorporation of the complete
microstructure complexity, as well as the full suite of
mechanisms responsible for the dislocations, PTs and
their interactions in graphite, necessitates a multi-
scale method that can link the atomic-scale processes
to its deformation behavior at the micrometer level.
Here, we argue that our recent concurrent atomistic-
continuum (CAC) method®~"° is such a strategy.
Fundamental to CAC is a formulation that unifies
atomistic and continuum descriptions of the materi-
als.”! This formulation generalizes Kirkwood’s statis-
tical theory of transport processes’>"® by including a
two-level description of crystals. It considers the
crystalline material as a collection of continuously
distributed lattice cells, within each of which a group
of atomsis embedded. The atomic displacement field is
then expressed as the sum of a continuum-level lattice
deformation and a discrete sub-lattice internal defor-
mation. This two-level description leads to governing
equations that can be used to solve for the lattice cell
deformation at a continuum level and also the internal
motion of atoms at the sub-lattice level.6%%° Thus,
continuum modeling techniques, such as FE, can be
used to solve it. The utilization of FE in regions where
materials deform cooperatively leads to a coarse-
grained (CG) model,?"®° in which the atomic displace-
ment is constrained using FE shape functions to
reduce the number of degrees-of-freedom. For model-
ing dislocations or PTs, an element that conforms to
the geometry of a material’s primitive cell was
adopted, e.g., a rhombohedral element for fcc crystals
and silicon, in.°""®® One unique feature of CG is its
capability of explicitly accommodating PTs,®! disloca-
tion nucleation and migrations in a continuum domain
at a fraction of the cost of MD, but without smearing
out its atomistic nature.®’ The combination of the CG
and atomistic model naturally leads to a unique
multiscale materials modeling platform for predicting
the complex dynamics of dislocations, PTs, and their
interactions in materials from the atomistic to the
micrometer level. The research of expanding the CAC
computational framework for simulating the mechan-
ical behavior in graphite under deformation will be
intensively pursued and reported in our future work.
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