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Abstract
A newmethod to identify the source vent location of tephra fall deposits based on thickness or maximum clast size measurements
is presented in this work. It couples a first-order gradient descent method with either one of two commonly used semi-empirical
models of tephra thickness distribution. The method is applied to three tephra thickness and one maximum clast size datasets of
the North Mono and Fogo A tephra deposits. Randomly selected and localized subsets of these datasets are used as input to
evaluate its performance. The results suggest the utility of the method and show that estimating the dispersal axis is a more robust
way to constrain the vent location compared with directly estimating the vent coordinates given sparse observations. Local
change in dispersal direction can be detected given localized observations. Bootstrap aggregating and visualizing the surface of
the cost function are used to analyze epistemic uncertainty for the method. Our discussion focuses on how different features of
tephra deposits and technical aspects of the method would affect the performance of the method. Suggestions on how to use the
method given limited observations are listed. One subset of the North Mono Bed 1 thickness dataset and thickness datasets of the
Trego Hot Springs and Rockland tephras are used as case studies. The method is then applied to the well-correlated tephra sub-
units within the Wilson Creek Formation to estimate their vent location and volume. The simplicity and flexibility of the method
make it a potentially useful tool for analyzing tephra fall deposits.

Keywords Tephra source vent . Thickness and maximum clast size distribution . Tephra correlation . Eruption parameter
estimation . Inverse method

Introduction

Identifying the source vent location of tephra fall deposits is
critical to the reconstruction of volcanic eruptions. Given the
source vent location, characteristics of fall deposits at different
sample sites can be integrated in a systematic way (e.g.,

Walker and Croasdale 1971b; Self 1983; Sieh and Bursik
1986; Engwell et al. 2013; Klawonn et al. 2014), which is a
necessary step towards further interpretation and quantifica-
tion (e.g., Suzuki 1983; Carey and Sparks 1986; Burden et al.
2011; Pyle 1989; Bursik et al. 1992b; Koyaguchi 1994;
Connor and Connor 2006; Biass and Bonadonna 2011).

For fall deposits near vent, the source location is commonly
identified based on isopach and isopleth mapping and direct
observation (e.g., Walker and Croasdale 1971b; Sieh and
Bursik 1986; Miller 1985; Bonadonna et al. 2002; Bursik
et al. 2014). This is subjective and may fail given insufficient
sample sites. In such cases, identifying the source vent of a
tephra deposit requires extra knowledge of the specific deposit
and its potential vents (e.g., Green et al. 2014; Kawabata et al.
2015, 2016). Variable data quality and format hamper the
construction of a universal solution. A generalized way of
estimating eruption parameters, including the vent position,
is to combine inverse methods with tephra transport models
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(e.g., Connor and Connor 2006; Volentik et al. 2010; Bonasia
et al. 2010; Klawonn et al. 2012; Burden et al. 2013;
Kawabata et al. 2013; White et al. 2017). Most of these
models require the vent coordinates as input or are very sen-
sitive to a prescribed vent location. Although sensitivity anal-
yses have been conducted on these models (Scollo et al. 2008;
Bonadonna et al. 2015; Pouget et al. 2016), their high-
dimensional parameter space can still introduce uncertainties
to the problem. This stresses the importance of uncertainty
quantification (Biass and Bonadonna 2011; Biasse et al.
2014; Green et al. 2016; White et al. 2017), which cannot be
easily done given sparse observations.

For tephra found at distal sites, the identification of the source
vent relies heavily on geochemical analyses and geologic records
(e.g., Wood 1977; Turner et al. 2009; Pouget et al. 2014a;
Marcaida 2015; Sigl et al. 2015; Marcaida et al. 2019). The
correlation with a certain vent is determined by integrating differ-
ent lines of evidence, such as similarity in age and composition.

Two semi-empirical models (Gonzalez-Mellado and Cruz-
Reyna 2010; Yang and Bursik 2016) have been developed to
analyze tephra thickness distributions for different purposes
(e.g., Rhoades et al. 2002; Kawabata et al. 2013, 2016; Yang
and Bursik 2016). Kawabata et al. (2013, 2015) have used the
semi-empirical model proposed by Gonzalez-Mellado and
Cruz-Reyna (2010) together with statistical approaches to rec-
ognize the number of lobes and identify the source of each
lobe for different deposits, with prior knowledge of potential
vent locations. The semi-empirical model proposed by Yang
and Bursik (2016) is used for isopach mapping. These models
describe the tephra thickness distribution as a function of lo-
cation with respect to the source vent and are similar to a cone
that is stretched and rotated along the dispersal axis. This
particular geometry is mainly caused by turbulent diffusion,
wind advection, and horizontal spreading of the volcanic
plume at the neutral buoyancy level (Csanady 1973; Sparks
et al. 1991; Bursik et al. 1992a; Rhoades et al. 2002;
Bonadonna and Phillips 2003; Gonzalez-Mellado and Cruz-
Reyna 2010; Costa et al. 2013). The two semi-empirical
models have distinct functional forms describing how tephra
deposits thin with distance from the vent.

In this study, we present a new algorithm that can be used
to identify the source vent location and dispersal axis of tephra
fall deposits based on thickness or maximum clast size mea-
surements. It couples either of the two semi-empirical models
of tephra thickness distribution (Gonzalez-Mellado and Cruz-
Reyna 2010; Yang and Bursik 2016) with a first-order gradi-
ent descent method. Our working hypotheses are:

1. This method can be used to identify the vent location of
tephra deposits based on thickness or maximum clast size
measurements.

2. Given sparse observations, compared with estimating the
vent location, estimating the dispersal axis is a more

robust way to constrain the source vent location for tephra
deposits whose transport was affected by wind. If a de-
posit was affected by wind, the direction along which the
deposit has the lowest thinning rate (the downwind direc-
tion) should be easier to estimate compared with the vent
location.

In the following text, we briefly introduce the methodology
and apply the method to three different thickness plus one
maximum clast size datasets of North Mono Beds 1 and 2
(NMB1 and NMB2) from the North Mono eruptions (Sieh
and Bursik 1986) and the Fogo A tephra deposit (Walker
and Croasdale 1971b) to demonstrate its utility. Randomly
selected and localized subsets of data are used as input to
evaluate its performance in cases of sparse observations.
With randomly selected subsets of different sizes, we examine
the vent locations and dispersal axes predicted from the meth-
od. Using localized subsets, we evaluate how locations of
sample sites affect the estimated results. This experiment also
serves to test how the method responds when a deposit was
affected by a change in wind direction during sedimentation.
Bootstrap aggregating (bagging; Breiman 1996) and examin-
ing surface of the cost function, together with using localized
subsets as input, are proposed to characterize the epistemic
uncertainty. Surface of the cost function also provides infer-
ences on how different thinning patterns of tephra fall deposits
would affect the performance of the method.

We discuss how different features (i.e., thinning rate,
change in dispersal direction, local variation, and multiple
lobes) of tephra thickness or maximum clast size distribution
affect the performance of the method, and we analyze the
benefits and limitations of this approach. Suggestions on
how to use the method given dataset of different sizes and
qualities are listed. One subset of the NMB1 thickness dataset
and thickness datasets of the Trego Hot Springs (THS) and
Rockland tephras are applied to the method to test its perfor-
mance in dealing with sparse measurements. The method is
then applied to constrain the vent location and estimate the
volume of a series of well-correlated tephra sub-units pre-
served within the Wilson Creek Formation (WCF) of Mono
Lake, CA, USA (Lajoie 1968).

The well-constrained near-field dispersal pattern of single-
unit tephra deposit indicates the direction towards which most
of the finer ash would travel and therefore provides guidance
on where the tephra is likely to be preserved at locations much
farther from the vent. This can be used as an additional and
independent constraint for the correlation of marker tephras,
such as the ones preserved in the Great Basin (Davis 1978;
Madsen et al. 2002; Bursik et al. 2014). The method presented
here is simple to implement and does not necessarily require
additional information about the deposit, which makes it
promising to be integrated into quantitative strategies for teph-
ra characterization and correlation (e.g., Bursik and Rogova

   51 Page 2 of 31 Bull Volcanol           (2019) 81:51 



2006; Rogova et al. 2007; Pouget et al. 2014b; Rogova et al.
2015; Kawabata et al. 2016).

Data

We build and test the method against thickness datasets of
NMB1 and NMB2 (digitized from Sieh and Bursik 1986
and Bursik and Sieh 2013, respectively), the Fogo A tephra
deposit (digitized from Walker and Croasdale 1971b), and
maximum clast size measurements of NMB1 (Bursik 1993).
These deposits and their thickness and maximum clast size
measurements are well-studied (e.g., Walker and Croasdale
1971a; Sieh and Bursik 1986; Sparks et al. 1992; Bursik
1993; Engwell et al. 2013), have known vent location, and
display distinct features that are typical of tephra thickness
or maximum clast size distribution (Yang and Bursik 2016).
The method is also applied to tephra deposits with sparse
measurements, including the THS and Rockland tephras,
and several tephra sub-units within theWCF. Brief description
of the deposits and their datasets is given in this section. The
observed thickness and maximum clast size at each sample
site for NMB1, NMB2, and Fogo A deposit are shown in
Fig. 1a–d (see supplementary material for raw data and
hand-drawn isopachs). Observed thickness and maximum
clast size in log scale are also plotted against distance to the
source vent for each sample site of the deposits (Fig. 1e). Key
characteristics of the deposits and their associated datasets are
summarized in Table 1.

North Mono Beds 1 and 2

NMB1 and NMB2 are two sub-Plinian tephra beds produced
from the most recent eruptions from theMono Craters, eastern
central California. The eruptions took place during the four-
teenth century A.D. (Sieh and Bursik 1986; Bursik 1993). The
rhyolitic deposits were erupted from vents at the northern end
of the volcanic chain (Fig. 1a) and hence named North Mono
by Sieh and Bursik (1986). The eruption produced eight
distinct and widely dispersed air fall beds, as well as
pyroclastic flow and surge deposits, and lava domes and
flows. Isopach and isopleth maps of them are presented in
the studies of Sieh and Bursik (1986) and Bursik (1993), re-
spectively. The datasets used in this work are from Sieh and
Bursik (1986) and Bursik and Sieh (2013).

NMB1 is the basal unit of the North Mono tephra and has a
total volume of 0.042 km3. It was erupted from the southwest-
ern portion of North Coulee, and the vent is oriented along the
arch of the Mono Craters (Sieh and Bursik 1986; Bursik and
Sieh 1989, Fig. 1a inset figure). The deposit is characterized
by normal grading and was deposited in south-southwesterly
winds (dispersal direction ∼ 18° from north clockwise)
throughout the course of the eruption, but the proximal

material was transported more towards the northeast (~ 40°
from north clockwise; Sieh and Bursik 1986; Table 1). A
hundred and eighteen thickness and forty-six maximum clast
size measurements (non-zero) without signs of reworking
were made for this deposit (Fig. 1a, b).

NMB2 is in sharp contact with NMB1. Its vent is the Upper
Dome of Northwest Coulee (Fig. 1c). The lower part of the
deposit is rich in obsidian and hence presents a darker color.
This bed was blown towards the north-northwest (334°; Sieh
and Bursik 1986; Bursik 1993). However, distal (> ∼ 20 km
from the vent) portion of the deposit was dispersed towards
the north-northeast (Sieh and Bursik 1986). The isopach map
suggests that the dispersal direction for the distal portion is ~
345°. The deposit is subject to limited or no reworking, and
was sampled at seventy-five sites (Sieh and Bursik 1986; Fig.
1c).

Fogo Member A

The Fogo A Plinian eruption on São Miguel, Azores, took
place about 5000 years ago (Moore 1990). It has a total vol-
ume of 1.2 km3 on land and originated from Lagoa do Fogo
(Walker and Croasdale 1971b). Thickness and maximum
pumice and lithic size of this deposit were sampled at 249 sites
(Walker and Croasdale 1971b), but these define a lower bound
on thickness due to severe erosion. There are 184 valid thick-
ness measurements (Fig. 1d) that can be directly used as input
(primary deposit, excluding sample sites with no tephra ob-
served) for the Fogo A deposit. The deposit was further divid-
ed into syenite-poor lower (< 20 vol%) and syenite-rich upper
divisions (> 20 vol%) by Bursik et al. (1992b) with the lower
dispersed predominantly to the south and the upper
transported to the east. The presence of two lobes is not evi-
dent based on thickness measurements (Walker and Croasdale
1971b; Engwell et al. 2015; Yang and Bursik 2016). The
dataset used in this work uses the summed thickness of the
two divisions.

THS and Rockland tephras

The THS tephra layer was first described by Davis (1978). It
was erupted from Mt. Mazama 23.21 ± 0.30 ka, which can be
corrected to ∼ 26 ka BP using the Kitagawa and van der Plicht
calibration curve (Benson et al. 1997; King et al. 2001;
Benson et al. 2003). A GISP2 (Greenland Ice Sheet Project
2) model age has been estimated to be 29.9 ka (Benson et al.
2013). The Rockland tephra (Sarna-Wojcicki et al. 1985),
aged 570–610 ka (Sarna-Wojcicki et al. 1985; Lanphere
et al. 1999, 2004), was produced from the Rockland caldera
complex now infilled by Brokeoff Volcano, a part of the
Lassen volcanic complex (Clynne 1984; Lanphere et al.
1999; Clynne and Muffler 2010). Wide dispersal of these
two tephra deposits makes them critical markers for climate
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and stratigraphic reconstructions of the geologic history of the
western USA (Davis 1978; Sarna-Wojcicki et al. 1985, 1991;
Alloway et al. 1992; Benson et al. 1997; Lanphere et al. 1999;
Sarna-Wojcicki 2000; Benson et al. 2003; Adams 2010).
Estimated volumes of the THS and Rockland tephras are
15–56 km3 (Pouget et al. 2014a) and 50–248 km3 (Sarna-
Wojcicki et al. 1985; Pouget et al. 2014b), respectively. In this
work, we use the thickness datasets compiled by Pouget et al.
(2014b) from previous studies as input (Sarna-Wojcicki et al.
1985, 1987; Negrini et al. 1988; Alloway et al. 1992; Rieck
et al., 1992; Benson et al. 1997; King et al. 2001; Bowers
2009; Adams 2010; Benson et al. 2013). Each dataset contains
eight observations, and two measurements for the Rockland
tephra may have been reworked (Pouget et al. 2014a).

Tephra sub-units in the Wilson Creek Formation

The WCF is composed of lacustrine deposits formed in
Pleistocene Lake Russell (the present-day Mono Lake),
interbedded with tephra layers (Lajoie, 1968), which were
mostly produced from the Mono Craters. Little is known
about their vent location and total volume (Lajoie 1968;
Bursik and Sieh 1989; Marcaida et al. 2014). Among
them, sub-unit correlation of ashes B7, A4, A3, and A2
(from Black Point volcano) has been established based on
outcrops sampled near Mono Lake (Yang et al. 2019). The
sub-unit A4-d has been observed at six sites, and its strat-
igraphic features suggest that it was produced from the
northern part of the Mono Craters (Yang et al. 2019).

Fig. 1 a, b NMB1 thickness and maximum clast size measurements. c
NMB2 thickness measurements. d Fogo A thickness measurements.
Corresponding source vents for these deposits are marked as red
polygons in a–d. In the lower-right corner in a–c, the vent location is
marked with a greater resolution. The contour of the Mono Craters is
highlighted in light green polygons in a–c and is amplified in c. Raw data

and hand-drawn isopach and isopleth maps can be found in
supplementary material. The data are digitized from Walker and
Croasdale (1971b) for the Fogo A deposit and from Sieh and Bursik
(1986) and Bursik (1993) for all North Mono Beds. eObserved thickness
(mm) and maximum clast size (mm) under log-scale are plotted against
distance (m) to the source vent for each measurement and for each dataset
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Ash A4 is possibly correlative with the Lowder Creek ash
found in the Markagunt Plateau, Utah (Madsen et al.
2002). Sub-units B7-a and A3-f have been correlated at
four to five sites. Since the method allows for the drawing
of isopachs in an objective way (including estimating the
wind direction objectively, given a potential vent loca-
tion), it is applied to these datasets to estimate their
volumes.

Method

The main idea upon which the method is built is a gradient
descent method applied to a semi-empirical model of tephra
thickness distribution. The semi-empirical models and gradi-
ent descent method are introduced separately in this section.
The algorithm is programmed in the R language (R Core
Team 2017), and the code is made public on Vhub (https://
vhub.org/resources/4377; Yang et al. 2018). Workflow of the
method is shown in Fig. 2.

Semi-empirical models of tephra thickness
distribution

The semi-empirical models proposed by Gonzalez-Mellado
and Cruz-Reyna (2010) and Yang and Bursik (2016) are used
here to characterize thickness and maximum clast size distri-
bution of tephra deposits. In this section, we only refer to
thickness in describing the method to avoid redundancy.

Given a known vent location (xs, ys) and downwind direc-
tion (φ), the two semi-empirical models describe the tephra
thickness distribution (ti) at any coordinates (xi, yi) as
(Gonzalez-Mellado and Cruz-Reyna 2010; Yang and Bursik
2016):

ti ri; θijxs; ys;φð Þ ¼ γe −βUri 1−cos θi−φð Þ½ �f gri−α ð1Þ
and

ti ri; θijxs; ys;φð Þ ¼ e βzþβddricos θi−φð Þþβrri½ � ð2Þ
where (ri, θi) is the polar coordinates with respect to the source
vent (xs, ys) for the arbitrary point (xi, yi). Other parameters in

Fig. 2 Workflow of the method (upper portion). The numbers (1, 2, and
3) marked in boxes correspond to method description in text. Lower
portion of the figure shows how the method moves in the x-y plane
given case 2. a and b correspond to the cases listed in text. Black lines

denote the isopachs of the cost function (value marked in green circle) in
the x-y plane. The figure briefly shows the direction (red arrow) towards
which the next iteration would move based on values of gj, gj∗, and gj ∗ ∗
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the two equations (i.e., γ, β,U,α in Eq. 1 and βr, βdd, and βz in
Eq. 2) denote how tephra thickness changes with distance and
azimuth with respect to the source vent: γ and βz are used to
characterize the thickness of the tephra fall deposit near the
vent; α and βr describe how tephra thickness decays with
distance to the source vent; and βU (combined to a single
parameter) and βdd determine howmuch the tephra fall depos-
it is stretched along the downwind direction and shortened in
the upwind direction due to the advection of wind. See
Gonzalez-Mellado and Cruz-Reyna (2010) and Yang and
Bursik (2016) for more details on the interpretation of these
parameters.

The major distinction between the two semi-empirical
models is that, given a fixed wind direction (φ) with respect
to the source (also fixed θi), the thickness in Eq. 1 changes

with both e −βUri 1−cos θi−φð Þ½ �f g and ri
−α, but only decays with

e βddricos θi−φð Þþβrri½ � in Eq. 2. That is to say, Eq. 1 is the product
of exponential and power-law functions of ri, whereas Eq. 2
only thins exponentially. The thinning rate of Eq. 1 using the
log scale is not constant (with fixed θi): it has a relatively
greater thinning rate closer to the vent and thins more slowly
for a distal portion of a deposit. Eq. 2 has a constant thinning
rate using the log scale (with fixed θi). For simplicity, we call
them the power-law (note the term ri

−α in Eq. 1) and expo-
nential models, respectively, in this study.

Gradient method

The semi-empirical models show that to estimate the vent
location, another four variables, namely, wind direction φ
and coefficients in Eqs. 1 and 2, need to be estimated. We
construct the cost function as the sum-of-squared residuals
under log scale:

f xs; ys;φð Þ ¼ ∑
n

i¼1
ln ~ti
� �

−ln tið Þ
h i2

ð3Þ

where ~ti denotes the ith prediction from the semi-empirical
model, and n is the number of observations. The occurrence
of wind direction, an angular variable, in Eqs. 1 and 2 indi-
cates that the problem cannot be solved directly through pseu-
do-inverse. However, for a given vent position (xs, ys) and
wind direction φ, a linear system can be constructed for each
semi-empirical model, and ti(ri, θi) can be written in matrix
form (Gonzalez-Mellado and Cruz-Reyna 2010; Yang and
Bursik 2016):

APbp ¼ T ð4Þ

and

Aebe ¼ T ð5Þ
where T is a column vector with logarithmic thickness at sites

( x i , y i ) , i = 1 , 2 , … , n , b p = ( l n (γ ) , −βU , −α ) T,
be = (βz, βdd, βr)

T. AP and Ae are n-by-3 matrices with the
ith row being (1, ri[1 − cos(θi −φ)], ln(ri)) and (1, ri cos(θi
−φ), ri), respectively.

With known vent location and wind direction, other coef-
ficients in Eqs. 1 and 2 (equivalently, bp and be in Eqs. 4 and 5)
can be determined by solving a standard least square problem
through pseudo-inverse. Estimating the vent location is thus
simplified as finding the combination of vent location and
wind direction that minimizes Eq. 3. This is done by a gradient
descent method, which is divided into two steps.

First, a standard one-dimensional gradient descent method
is constructed to find the optimum wind direction with a fixed
vent location (~xs;~ys ), which minimizes
f xs; ys;φjxs ¼ ~xs; ys ¼ ~ysð Þ. This one-dimensional gradient
descent method can be regarded as a function s ~xs;~ysð Þ whose
output is the optimum wind direction ~φopt.

Another two-dimensional gradient descent method is
adopted to minimize:

g ~xs;~ys
� �

¼ f xs; ys;φjxs ¼ ~xs; ys ¼ ~ys;φ ¼ s ~xs;~ys
� �� �

ð6Þ

The gradient descent method finds the optimum vent loca-
tion by moving iteratively in the x-y plane towards the direc-
tion that leads to a smaller value of g ~xs;~ysð Þ. Note that the
wind direction φ is updated for each iteration (Eq. 6). Starting
from an initial guess of the vent position (~x js;~y

j
s ), and a spec-

ified search radius hj with j = 0, the method compares the
value of g j ¼ g ~x js;~y

j
s

� �
and the value of g at locations near

~x js;~y
j
s

� �
. These locations are ð~x js � hj;~y js � hj ), where hj can

be regarded as search radius. By defining g j* ¼ min

g ~x js � hj;~y js � hj� �� �
and comparing it with gj, the method

determines what to do for the next iteration:

1. If gj < gj∗, then the true vent position is closer to ~x js;~y
j
s

� �
,

and therefore, we keep ~x jþ1
s ;~y jþ1

s

� � ¼ ~x js;~y
j
s

� �
and shrink

the search radius hj + 1 = 0.7hj. The value 0.7 can be
changed to any value from 0.5 to 1. The range has been
chosen such that at the initial stage of the iteration, hj

would not decrease too rapidly. This allows the method
to move ~x js;~y

j
s

� �
to the area close to the global or local

minimum with relatively fewer iterations even if the
search radius has been shrunk once or twice at the very
beginning of the iteration.

2. If gj > gj∗, then the vent position is closer to one of
~x js � hj;~y js � hj� �

, rather than ~x js;~y
j
s

� �
. That means a

new location provides a better fit between observations
and model predictions. Thus, we need to update the vent
position, which is described in the following text.

3. For the jth iteration (j > 1), if (i) the (j − 2)th iteration did
not update the vent to a new location (i.e., ~x j−2s ;~y j−2s

� �
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¼ ~x j−1s ;~y j−1s

� �
); (ii) the (j − 1)th iteration updates the vent

position; and (iii) gj < gj∗, the search radius for the next
iteration is updated as hj + 1 = (1 − 0.7)hj, instead of hj + 1 =
0.7hj, and we keep ~x jþ1

s ;~y jþ1
s

� � ¼ ~x js;~y
j
s

� �
for the next

iteration. This is because the (j − 2)th and (j − 1)th steps
imply that location ~x js;~y

j
s

� �
is close to the true vent loca-

tion, and it is thus justified to shrink the search radius with
a greater rate to improve the efficiency of the method
(there is no need to decrease the search radius gradually).

This setup allows the method to be in low resolution but
more efficient during the initial iterations. As ~x js;~y

j
s

� �
approx-

imates the true vent, the length of the search radius shrinks
faster, and the decreased search radius helps improve the res-
olution of the method during the last iterations. The iteration
will be terminated as it reaches certain thresholds on pre-
specified search radius, number of iterations, or value of the
cost function (workflow shown in upper portion of Fig. 2).

The location for the next iteration ~x jþ1
s ;~y jþ1

s

� �
is updated

based on the difference between gj and the two smallest values

among g ~x js � hj;~y js � hj� �
, defined as gj∗ and gj ∗ ∗:

(i) If gj > gj∗ and gj > gj ∗ ∗ and gj∗ and gj ∗ ∗ are produced due
to the change in both x and y-directions:

The quadrant which ~x jþ1
s ;~y jþ1

s

� �
will be in with respect to

~x js;~y
j
s

� �
is determined. For example, if g j* ¼ g ~x js þ hj;~y js

� �
and

g j** ¼ g ~x js;~y
j
s þ hj� �

, then the next step will move to the first

quadrant with respect to ~x js;~y
j
s

� �
. The direction of the shift vector

is also determined by Δgj∗ = gj∗ − gj and Δgj ∗ ∗ = gj ∗ ∗ − gj.
Following that ~x jþ1

s ;~y jþ1
s

� �
will go to the first quadrant, the next

iteration is ~x jþ1
s ;~y jþ1

s

� � ¼ ~x js þ Δx jj j; ~y js þ Δy jj j� �
, and (|Δxj|,-

|Δyj|) can be written as −h jΔg j*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δg j*ð Þ2þ Δg j**ð Þ2

p ; −h jΔg j**ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δg j*ð Þ2þ Δg j**ð Þ2

p
� �

.

(ii) If gj > gj∗ and gj > gj ∗ ∗ and they are produced due to the
change only in the x- or y-direction (ridge), or, gj > gj∗

and gj < gj ∗ ∗:

We move the point towards the direction that is consistent
with gj∗ and fix the other coordinate. For example, if

g j* ¼ g ~x js þ hj;~y js
� �

, the next iteration will move towards
the positive direction of the x-axis, and the absolute value of
the shift vector for the next step is (|Δxj|, |Δyj|) = (hj, 0).

Note that an explicit formulation of the above arguments is
not given, because the method considers the comparison be-

tween g ~x js;~y
j
s

� �
and g ~x js � hj;~y js � hj� �

instead of approxi-
mating the gradient of the cost function. This approach is
intentionally designed to reduce the potential of a local mini-
mum solution. The gradient descent method described above

is independent of the semi-empirical model and could be ap-
plied flexibly to other functional forms.

The output of the method includes the predicted vent coor-
dinates and dispersal direction and the search radius (h) and
fitted coefficients (γ, α, βU for the power-law model, and βdd,
βr, βz for the exponential model) at the last iteration. Sum-of-
squared residuals and coefficient of determination from the
fitting (conditioned on the predicted vent location and dispers-
al direction) are also calculated.

Use of the gradient method can introduce local minima, as
well as unphysical and non-convergent predictions. These oc-
cur naturally in different kinds of optimization problems and
are not exclusive to one another. Localminima can be detected
by starting from different initial locations and assessing their
convergence towards a similar or dissimilar location (indicat-
ing a local minimum). To reduce the possibility of their occur-
rence, it is necessary to specify the starting point based on
prior knowledge about the deposit. The starting point should
be within an area that includes all potential vents or that is
close to the sample site with the greatest thickness or maxi-
mum clast size measurement. With limited observations, it is
suggested to plot the surface of the cost function (Eq. 6) to
examine local minima explicitly.

Unphysical predictions, namely, distributions that thicken
or coarsen with distance, might occur, given sparse observa-
tions. They can be recognized by examining values of the
fitted coefficients: the results are unphysical if the predicted
α < 0 for the power-law model (Eq. 1), or the predicted (βdd +
βr) > 0 for the exponential model (Eq. 2). The occurrence of
unphysical results suggests that the current measurements can-
not be well described by the semi-empirical model being used.
In our experience, unphysical predictions occur rarely.

By specifying a sufficiently large number of iterations for
the method, it will lead to (1) convergence at local or global
minimum or (2) lack of decrease of the search radius (diver-
gence). If the latter occurs, the method could continue to
“walk” in the x-y plane at the initial search radius. After a
sufficiently large number of iterations, the predicted vent lo-
cation could be at a point that is far from the potential source
region and sampled area. Therefore, if the latter occurs, it is
certain that the prediction is incorrect.

Here the criterion for “sufficiently large” is based on the
size of the potential vent area and length of the initial specified
search radius. Consider the worst case scenario wherein the
initial guess and true vent location are two points that have the
greatest distance from each other within the potential source
region. The longest path possible to reach the true vent can be
assumed to be the semicircle centered at the midpoint between
the initial guess and true vent location. The iteration only
migrates in 2D space and the semi-empirical models have
simple functional forms, which make the surface of the cost
function relatively simple, and the likelihood for a path that is
longer than the semicircle is extremely small. Here we assume

   51 Page 8 of 31 Bull Volcanol           (2019) 81:51 



that the iteration would not go away from the direction to the
true vent. If the distance between the initial guess and true vent
location is L, the longest path possible is πL

2 . If the initial search

radius is h0, the rounding of πL
2h0

plus one iterations would

allow ~x js;~y
j
s

� �
to approach the global or local minimum (dis-

tance to the true vent below h0; if the search radius has shrunk)
or lead to divergent results (the search radius remains un-
changed). Then, the method should start to shrink the search
radius if the result is not divergent. Again, consider the worst
case scenario that the search radius shrinks at the lowest rate
(0.7). To reach the resolution of 0.02 × h0 (the prediction is
within 0.02 × h0 from the true vent location) takes ~ 11 itera-
tions (0.711 ≈ 0.198). Therefore, the sufficiently large number
of iterations could be πL

2l plus 12. In the following experiments,
the number of iterations for each run is specified as “suffi-
ciently large” in the present sense.

Results

In this section, we present results from applying the method to
datasets introduced above. First, we confirm that the approach
determines accurate source locations given abundant data.
More subsets with fewer input points are applied to the meth-
od to evaluate its performance given sparse observations.
Since the forward models used for the method, namely, the
power-law and exponential models, are simple, epistemic un-
certainty cannot be neglected. Our key concerns are how the
method reacts or if the method is able to detect (1) change in
wind direction, (2) the presence of multiple lobes, and (3)
severe local variation for a tephra deposit. The first concern
is tested by applying localized subsets of the NMB1 and
NMB2 datasets to the method, and the last two are addressed
by applying statistical bagging with the method to the Fogo A
dataset. Characteristics of these deposits match the concerns
listed above (Table 1). Surfaces of the cost function for all
tested datasets are plotted and visualized as another way of
using the method, and the complete datasets are used as input
such that systematic and intrinsic sources of uncertainty can
be observed. The two semi-empirical models are considered
equally important, but our results show that the performance
of the method is greatly affected by the use of different semi-
empirical models. It is thus not necessary to use both semi-
empirical models all the time. Which semi-empirical model is
applied to the below experiments is highlighted in Table 1,
and the reasoning is also pointed out in text (based on results
shown in “Method illustration”).

The ideal initial condition for this approach should reflect
our prior knowledge on the specific tephra deposit or the cor-
responding dataset. For NMB1 and NMB2, the prior knowl-
edge is assumed to be that they were erupted from somewhere
within the Mono Craters (Fig. 1). For the Fogo A deposit, the

starting point is a random location within 250 m from the
sample site with the greatest measurement (this sample site
changes in each run as the input dataset is different).

The number of iterations is set to be 40 for all runs, and the
initial search radius is set to be h0 = 1000m. This means that if
the method fails to converge, the corresponding prediction
will be ~ 40,000 m (40 × 1000 m) from the starting location.
This is sufficient given the size of the potential vent area (Fig.
1). The randomness in specifying the starting point can be
neglected because (1) the initial search radius is set to be
1000 m for all cases, greater than the randomness from spec-
ifying the starting point, and (2) the results are always present-
ed as a series of predictions from using different subsets of
data as input instead of a single prediction. Local minima
could be detected if the predictions do not converge to the
same point (each time the initial location is different, if local
minima exist, they will be detected). In the following results,
unphysical predictions occur rarely and are pointed out if
present. Non-convergent results are not highlighted because
it is certain that they are incorrect.

Method illustration

A different number of data points (NMB1 and NMB2 60, 40,
and 20; Fogo A deposit 150, 100, 50, 30) are randomly drawn
from the complete datasets for 25 times each and applied to
the method. The same procedure was done for the maximum
clast size data of NMB1 except with 30 input points drawn
from the complete dataset for 10 times due to fewer measure-
ments. Since this section is aimed at demonstrating the utility
of the method, these subjective choices would not affect the
motif herein. To avoid the uncertainty being amplified by data
scarcity, it is preferred to have relativelymore samples as input
here.

For NMB1 (Fig. 3) with the power-lawmodel, there are 25,
22, and 21 predictions that are within 2 km from the true vent
center using 80, 40 and, 20 input points, respectively.
Predictions with the exponential model form a linear pattern
lying along the upwind portion of the dispersal axis. Predicted
source vents derived from the maximum clast size data behave
in similar fashions. When the power-lawmodel is used, all ten
predictions are located at the true vent location, whereas seven
out of ten predictions (the other three are outside the extent of
Fig. 3c) from the exponential model are again located in the
upwind portion of the dispersal axis. The predicted wind di-
rections using the NMB1 thickness data (Fig. 3d, e) are con-
sistent with the general dispersal pattern of the deposit, and
difference between results from the two models is negligible.
Wind directions predicted from the method have two modes
when the maximum clast size data is used (Fig. 3f). The two
modes correspond to the dispersal direction for the proximal
(northeast) and distal (north-northeast) portions of the deposit.
This feature is more distinct when the maximum clast size
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dataset is used because more measurements were made at
locations closer to the source vent.

Predicted vent locations for NMB2 (Fig. 4) using the
power-law model are concentrated at the eastern half of the

true vent. With 60, 40, and 20 input points, there are 25, 18,
and 14 predictions within 1 km (the size of the vent is smaller
compared with NMB1) from the center of the vent, respec-
tively. For the exponential model, the corresponding counts

Fig. 3 a, b Estimated vent locations of NMB1 from using the power-law
(triangle) and exponential (diamond) models, respectively, with 80 (red),
40 (yellow), and 20 (blue) input points randomly drawn from the original
datasets. Shown are ensembles of 25 predictions for each dataset size. c
Predicted vent positions of NMB1 from using the maximum clast size

data with the power-law (light green triangle) and exponential (purple
diamonds) models, respectively, with 30 input points randomly drawn
for ten times from the original dataset. d–f Predicted dispersal directions
corresponding to a–c with consistent color

Fig. 4 a, b Estimated vent positions of NMB2 from using the power-law
(triangle) and exponential (diamond) models, respectively, with 60 (red),
40 (yellow), and 20 (blue) input points randomly drawn from the original

thickness dataset. Shown are ensembles of 25 predictions for each dataset
size. c, d Predicted wind directions corresponding to a and b with con-
sistent color
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are 25, 23, and 18. Predictions from the exponential model are
concentrated at the western half of the Upper Dome, in agree-
ment with the published map of Sieh and Bursik (1986).
Predicted wind directions (Fig. 4c, d) between the two models
are consistent with the main dispersal direction of NMB2
despite a slight difference of 15°. The predicted wind direc-
tions calculated from the power-law and exponential models
correspond to the dispersal patterns of the proximal and distal
portions of the deposit (Table 1).

For the Fogo A deposit, using the power-law model, most
of the predictions are at the southern rim of the Lagoa do Fogo
caldera lake (Fig. 5a). This is partly due to digitization error.
For example, Point a in Fig. 5a is a sample site located on the
island north of its current marked position. With the power-
law model, there are 25, 25, 18, and 14 predictions that are
within 2 km from the center of the vent using 150, 100, 50,
and 30 input points, respectively. With the exponential model,
the corresponding counts are 24, 17, 16, and 12, less accurate
compared with the power-law model. Predicted vent locations
are more scattered in the latitudinal direction when the expo-
nential model is used. In terms of predictions in the dispersal
direction (Fig. 5c, d), the two semi-empirical models give
similar results, pointing towards southeast, but the variance
is greater when the exponential model is used. The wind di-
rections shown in Fig. 5c, d are similar to the overall dispersal
direction of the deposit inferred from previous studies (Walker
and Croasdale 1971b; Engwell et al. 2015).

The above results show that the method can be used to
estimate the vent location and dispersal axis of tephra fall

deposits. The performance of the method varies with different
datasets and is also dependent on the use of different semi-
empirical models. For estimating the source vent location, the
power-law model is more accurate for NMB1 and the Fogo A
deposit, but the exponential model works better for NMB2.

Results from random subsetting

Knowing that the method is able to estimate the vent location
of tephra deposits, we need to evaluate its performance given
limited data. More experiments are performed in a similar
way, but with fewer input data points and more runs. We
obtain a thousand randomly selected subsets with 30, 20, 15,
and 10 input points, respectively, for each dataset and apply
them to the method. The predicted vent locations and dispersal
axes are examined in this section. Previous experiments have
shown that the power-law model is better than the exponential
model at predicting the vent location for the NMB1 and Fogo
deposit. Predicted vent locations from using the exponential
model for these deposits are not shown, but the corresponding
dispersal axes will be examined for NMB1.

Predicted vent locations

Predicted vent locations with different semi-empirical models
for each dataset using 30 and 10 input points (as end mem-
bers) are shown in Fig. 6. With 30 input points, results for the
NMB1 (using the power-law model) and NMB2 (using expo-
nential model) thickness datasets are clustered around the true

Fig. 5 a, b Estimated vent locations of the Fogo A deposit from using the
power-law (triangle) and exponential (diamond) models, respectively,
with 150 (yellow), 100 (blue), 50 (light green), and 30 (light pink) input
points randomly drawn from the original dataset. Shown are ensembles of

25 predictions for each dataset size. c, d Predicted wind directions corre-
sponding to a and b with consistent color. The southernmost sample site,
Point a, is marked to denote digitization error. It is sampled on the small
island in the north of it
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vent area. Results from the NMB1 maximum clast size and
NMB2 thickness datasets using the power-law model are
more scattered. For the Fogo A dataset, similar to the results
shown in Fig. 5, the predictions are clustered at the southern
part of the vent area with a greater variability in the y-direc-
tion. This is possibly due to digitization error and severe local
thickness variation. With 10 input points, the variability of
predicted vent coordinates increases for all cases. Distance
from each predicted vent to the center of the true vent is cal-
culated and plotted as histogram for each case in Fig. 7.
Unphysical results (marked in gray) occur rarely, and the cor-
responding predictions are far from the center of the true vent.

We use the ratio of predicted vents that are within 2 km
from the center of the true vent to denote accuracy of the
method (unphysical predictions are excluded). Given sizes
of the corresponding vents (Table 1), this length is considered
to be sufficient. Results for each case are summarized in
Fig. 9a–d and Table 2. The ratio of predictions that are within

1 and 3 km from the center of the true vent is also summarized
in Fig. 9a–d (1, 2, and 3 km are also marked in Fig. 7).

With 30 input points, accuracies are 99.4% and 65.7%
using the NMB1 thickness (power-law model) and maximum
clast size (power-law model) data, 84.6% and 99.4% for
NMB2 with the power-law and exponential models, and
88.3% for the Fogo A deposit (power-law model), respective-
ly. Accuracies decrease with the input dataset size. This trend
(Fig. 9a, d) is consistent and stable for the NMB1 (thickness)
and the Fogo A datasets, in which cases the accuracies de-
crease to 84.1% (15 input points) and 56.6% (10 input points)
for the former and 61.8% (15 input points) and 38.4% (10
input points) for the latter. The accuracy is not strongly affect-
ed by the input dataset size for the NMB1 maximum clast size
dataset, which ranges from 52.4 to 65.4%. This is because
NMB1 has different dispersal directions for the proximal
and distal portions of the deposit. This is more distinct for
the NMB1 maximum clast size data because more

Fig. 6 Predicted vent locations (blue points) for NMB1 (thickness and
maximum clast size), NMB2, and the Fogo A deposit. The results are
derived from applying randomly selected subsets containing 30 and 10

sample points for 1000 times. The dataset and semi-empirical model
being used and the size of input are highlighted in the upper-right corner
of each figure
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measurements were made at sites proximal to the vent. The
tradeoff between gaining useful information and incorporating
observations that represent two dispersal patterns makes the
accuracy less susceptible to the size of input dataset in this
case. For NMB2, the exponential model outperforms the
power-law model particularly given limited observations.
The accuracies decrease to 37.9% (15 input points) and
30.8% (10 input points) with the power-law model and to
81.3% (15 input points) and 71.7% (10 input points) for the
exponential model.

The above results show that the method can be used to
estimate the source vent location of tephra deposits based on
limited (≤ 30) thickness or maximum clast size measurements.
The results also show that the performance of the method
varies with different datasets and the semi-empirical model

being used. Results for NMB2 indicate that the power-law
model becomes less stable given limited observations (≤ 15).

Predicted dispersal axes

The dispersal axis can be defined by the vent location and
dispersal direction. Our hypothesis (2) states that estimating
the dispersal axis for tephra fall deposits affected by wind is
less impacted (more robust) by different sources of uncertainty
(e.g., data scarcity, measurement error, and epistemic uncer-
tainty from the semi-empirical models) compared with esti-
mating the vent location directly.

To test it, we examine the predicted dispersal axes for
NMB1 (both thickness and maximum clast size data) and
NMB2. The Fogo A dataset is excluded here because the
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Fig. 7 Distribution of distances from predicted vent location to the center
of the true vent location (power-law model is applied to all datasets, and
the exponential model is only applied to NMB2). Predicted vents that are
more than 10 km from the center of the true vent are rare and are thus not

shown in this figure. The dataset and semi-empirical model being used
and size of input data are labeled. The three dashed lines mark 1000,
2000, and 3000 m from the center of the vent. Gray bars correspond to
unphysical predictions

Bull Volcanol           (2019) 81:51 Page 13 of 31    51 



deposit was not strongly affected by wind and is composed of
two sub-layers. Predicted dispersal axes from using both semi-
empirical models are examined with the same input used for
the previous section.

Distance from the predicted dispersal axis to the true vent
location is summarized as histograms in Fig. 8. Predictions
that are unphysical or have inconsistent dispersal direction
with respect to the true pattern of the deposit are marked in
gray. Here a dispersal direction is assumed to be inconsistent if
it was outside the range of dispersal directions defined in
Table 1 ± 10° (e.g., for NMB1, inconsistent dispersal direction
needs to be outside the range of 8–28° and 30–50°). We use
the ratio of dispersal axes that (1) are within 2 km from the
center of the true vent, (2) correspond to physical prediction,
and (3) have consistent dispersal direction to denote the accu-
racy (Fig. 9e–g and Table 2). Note that the third criterion may
exclude some valid estimations, but such a criterion is neces-
sary because a dispersal axis that is orthogonal to the true
dispersal direction of the deposit is not a correct prediction.
Here the range for consistent dispersal direction is chosen to
be small such that the accuracies are characterized in a more
rigorous way. When the exponential model is used, the accu-
racies are in general greater than the ones calculated from the
power-law model. This is especially true given limited input
points. With 30 samples, the accuracies are 99.9% and 98.5%
for the NMB1 thickness dataset using the power-law and ex-
ponential models, respectively. The corresponding accuracies

are 27.7% and 88.1% for the NMB1 maximum clast size data
and 83.9% and 98.3% for the NMB2 thickness dataset. The
sharp contrast in accuracy for the NMB1 maximum clast size
data is due to our strict criterion to determine if a dispersal
direction is consistent. Many results calculated from the
power-law model using the maximum clast size dataset have
dispersal directions slightly greater than 50°. They are still
excluded for uniform and comparable criterion.

The accuracy decreaseswith the input dataset size as shown in
Fig. 9e–g. For the NMB1 thickness dataset, the accuracies from
using the power-law and exponential models are 46.3% and
54.8%, respectively, given 10 input points. For the NMB1 max-
imum clast size and NMB2 datasets, accuracies are 32.8%
(power-law model) and 64.2% (exponential model) and 29.3%
(power-lawmodel) and 72.4% (exponential model), respectively.

The results confirm that the exponential model is more
robust in predicting the dispersal axis given limited data. We
examine the distribution of predicted dispersal axes for NMB1
(excluding results from maximum clast size data to avoid re-
dundancy) and NMB2 in the x-y plane. The distributions,
shown in Fig. 10, are plotted in the following procedure: all
dispersal axes are first turned from vectors to grids. For one
dispersal axis, its pixelated counterpart is a grid whose cell has
the value one if it intersects the dispersal axis and is zero
otherwise. As long as the grid for each dispersal axis has the
same extent and cell size, the results can be plotted cumula-
tively by summing up the values for each pixel. The value in

Table 2 Ratio of predicted vents
and dispersal axes that are within
2 km from the center of the vent

Dataset Input dataset size Ratio (%) of predictions within 2 km from the true vent
center (results from power-law/exponential models)

Vent location Dispersal axis

NMB1 (thickness) 30 99.4/− 99.9/98.5

20 88.8/− 93.3/72.5

15 84.1/− 72.5/85.4

10 56.6/− 46.3/54.8

NMB1 (maximum clast size) 30 65.7/− 27.7/88.1

20 61.5/− 67.6/67.7

15 52.4/− 22.9/42.7

10 65.4/− 32.8/64.2

NMB2 (thickness) 30 84.6/99.4 83.9/98.3

20 90.8/94.6 90.6/93.0

15 37.9/81.3 37.9/85.5

10 30.8/71.7 29.3/72.4

Fogo A (thickness) 30 88.3/− −/−
20 72.6/− −/−
15 61.8/− −/−
10 38.4/− −/−

Note that results (predicted vent location) from the exponential model are not shown for the NMB1 and Fogo A
datasets because it is already known that the exponential model does not work well with them. The FogoA deposit
was not strongly affected by wind, and therefore, the accuracy for predicted dispersal axis is not summarized
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each cell denotes the number of times that the dispersal axes
cut across it. With 30 and 20 input points, for both datasets,
distributions of the dispersal axes derived from the two semi-
empirical models are well-constrained and consistent with the
true dispersal patterns of the deposits. With 15 and 10 input
points, the variability in the distribution increases. Notably,
when the power-law model is used, more dispersal axes with
incorrect dispersal pattern occur, while with the exponential
model, most results are still consistent with the dispersal pat-
tern of the deposits.

The results suggest that the predicted dispersal axes from
the method can be used to constrain the source vent location of
tephra deposits affected by wind. Given limited data, the ex-
ponential model is more stable and provides more accurate
predictions compared with the power-law model.

Results from localized subsets

To analyze how the method reacts to tephra deposits whose
transport was affected by change in wind direction, local-
ized subsets of the NMB1 (both thickness and maximum
clast size) and NMB2 datasets are applied to the method.
The Fogo A deposit is not examined here due to severe
local variation. Since sample site layout for the two de-
posits is oriented in the north-south direction, we take local
subsets each containing 30 samples by a moving window
along the latitudinal direction. As an example, for the first
subset, we take the 30 southernmost sample points as input,
and in the next subsetting, we exclude the southernmost
and include the 31st southernmost measurement in the in-
put dataset.

Input sample size: 30 Input sample size: 20 Input sample size: 15 Input sample size: 10
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Fig. 8 Distribution of distances from predicted dispersal axis to the center
of the true vent location (results from both power-law and exponential
models; the Fogo A deposit is not used as an example here because it was
not strongly affected by wind). The dataset and semi-empirical model
being used and size of input data are labeled. The three dashed lines mark

1000, 2000, and 3000 m from the center of the vent. Predicted dispersal
axes that are more than 10 km from the center of the true vent are rare and
are thus not shown in this figure. Gray bars correspond to predictions that
are unphysical or have inconsistent dispersal direction
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We apply both semi-empirical models to the thickness
and maximum clast size datasets of NMB1 and NMB2.
The results are shown in Figs. 11, 12, and 13, which
display how the predicted vent location and dispersal di-
rection change with the mean latitude of the subsets sam-
pled from the moving window. Results for NMB1 derived
from thickness data show that with input points proximal
to the source vent, predictions are located at the true vent
location regardless of which semi-empirical model is used
(Fig. 11). As the moving window moves northwards, pre-
dicted vents move towards the north-northeast along the
dispersal axis. There is a series of subsets with mean
latitude below 4,200,000 that lead to unphysical results
(red box in Fig. 11a, b), regardless of which semi-
empirical model is used. This range of latitude corre-
sponds to the area where the dispersal direction changes
from northeast to north-northeast. Subsets with mean lat-
itude greater than 4,200,000 lead to predictions that are in
the north-northeast of the true vent along the dispersal
axis. How the predicted dispersal direction changes with
the mean latitude of each subset is better illustrated in
Fig. 11c. For the southernmost subsets (represent proxi-
mal portion of the deposit), the predicted dispersal direc-
tion is mainly towards northeast (with a few outliers from
the power-law model). For subsets further north, the pre-
dicted dispersal directions are correct and stable, pointing

towards north-northeast. For subsets with mean latitude
greater than 4,215,000 (near the northern shoreline of
Mono Lake), unphysical predictions start to occur. This
is because the deposit is thin (observed thickness range 1–
24 mm) at sample sites farther north, and the ratio of
useful information indicative of vent location or dispersal
pattern to measurement error decreases.

Results (Fig. 12) derived from the maximum clast size
data of NMB1 are similar to the ones shown in Fig. 11.
Most predicted vents are close to the true vent location.
The change in dispersal direction from north-northeast to
northeast can be observed as the mean latitude of input
dataset increases (Fig. 12c). Unphysical results are also
obtained when sample sites of the input are close to the
area where the dispersal pattern of the deposit changes
(red boxes in Fig. 12a, b). It is noticed that when the
power-law model is used, dispersal directions greater than
90° are obtained. This is probably related to the geometry
of the vent that is oriented along this direction (Bursik
1993, Fig. 1a) and again implies the instability of the
power-law model.

For NMB2, most predictions (Fig. 13a, b) using both
models are located at or near the Upper Dome and are not
strongly affected by the mean latitude of input sample
sites. Overall, the exponential model outperforms the
power-law model, since a few predictions from the latter
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Results from the power-law model 
(within 1 km from the center of the vent)

Results from the exponential model 
(within 1 km from the center of the vent)

Results from the power-law model 
(within 2 km from the center of the vent)

Results from the exponential model 
(within 2 km from the center of the vent)

Results from the power-law model 
(within 3 km from the center of the vent)

Results from the exponential model 
(within 3 km from the center of the vent)

Fig. 9 a–d Ratio of predicted vent locations (y-axis; excluding
unphysical predictions) that are within 3000 (green), 2000 (blue), and
1000 (red) m from the center of the true vent for different deposits with
different sample sizes (x-axis). Results from the power-law (circle) model
are shown for all datasets, and results from the exponential model
(triangle) are shown only for the NMB2 thickness dataset. e–g Ratio of

predicted dispersal axes (excluding predictions that are unphysical or
have inconsistent predicted dispersal direction) that are within 3000
(green), 2000 (blue), and 1000 (red) m from the center of the true vent
for NMB1 and NMB2. Results from using both semi-empirical models
are shown (circle and triangle for results from the power-law and expo-
nential models, respectively)
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are located near the southern shoreline of Mono Lake, far
from the source region. Predicted dispersal directions of
NMB2 (Fig. 13c) are relatively stable with small fluctua-
tions when southernmost subsets near the vent are used as
input. A few subsets with mean latitude just above
4,200,000 lead to inconsistent dispersal directions. With
the power-law model, the deviation from the true dispers-
al direction is greater. Dispersal directions from the
power-law and exponential models are slightly different

given subsets with mean latitude greater than ~ 4,205,000.
Based on our moving-window sampling scheme, this dif-
ference is introduced by the inclusion of a single measure-
ment and exclusion of another. This shows that one or two
measurements could greatly affect the prediction from the
power-law model, suggesting its instability. Results in
Figs. 11, 12, and 13 show that by applying localized sub-
sets to the method, the corresponding results reflect the
local dispersal pattern of the deposit.

30 20 15 10
Fig. 10 Distribution of predicted
dispersal axes from the results
shown in Fig. 8 for NMB1 and
NMB2 (using thickness data as
input). The value of each cell
represents the number of dispersal
axes that intersect it. As the size of
input dataset decreases, results
from the power-law model be-
come less stable
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Results from statistical bagging

The Fogo A deposit provides a great example for us to exam-
ine the performance of the method when the deposit is char-
acterized by severe local thickness variation and (or) com-
posed of multiple lobes. Our experiments have shown that
the accuracy is generally lower for the Fogo A deposit. We
couple statistical bagging (bootstrap aggregating; Breiman
1996) with the method to test if observations that greatly affect
the performance of the method can be detected in an objective
way. The main idea of statistical bagging is to group or pick
input data based on the corresponding outputs, which are de-
rived from applying a certain model to the input data. In our
case, the input and output data are thickness observations and
predicted vent locations, respectively. Statistical bagging is
implemented in the following way: subsets containing 30
samples are drawn randomly from a complete input dataset,
5000 times with redrawing, i.e., putting the data points back
after each draw, and then, the method is applied. We pick out
observations that could greatly affect the performance of the
method by examining the 5000 predicted vent locations. In the
case of the power-law model, which is used here since it
works better with the Fogo A deposit, the resultant predictions
are shown in Fig. 14a. Predictions outside the box in the figure

are assumed to be outliers, as they are farther from the vent.
The criterion for outliers can be defined in a flexible way. If
the exact vent location is unknown, the outlier can be defined
as predictions that are far from the center of the predicted vent
“cloud.” Here the vent location is assumed to be known, such
that we could find out which observations contribute to incor-
rect predictions. The experiment gleans 848 outlier predic-
tions, and the corresponding input subsets are gathered and
combined to a single dataset. The occurrence of each thick-
ness measurement in this combined dataset is summarized and
plotted as a histogram in Fig. 14b. If each sample point has the
same probability of leading to outlier, the histogram should
resemble a uniform distribution, and their occurrence should
all fluctuate slightly around 138 ≈ 848 × 30/184 (the green
horizontal line in Fig. 14b). However, it is clear that the oc-
currence of outlier prediction is dependent on the exclusion or
inclusion of certain samples. We pick out these points by
subjectively defined thresholds (red and yellow horizontal
lines in Fig. 14b). Their thicknesses and those of nearby sites
are marked in Fig. 14c.

The inclusion of yellow points in Fig. 14c in the input tends
to have correct predictions. All but one of them are greater
than 5m thick. This is not surprising, as the source vent should
be close to thicker sample sites. The inclusion of red points in

Fig. 11 Estimated vent locations of NMB1 derived from the power-law
(a, triangle) and exponential (b, diamond) models using localized thick-
ness observations (size 30). The subsetting is done using a moving win-
dow scheme along the latitudinal direction. The mean latitude of each
subset is plotted in the blue box in a and b. Corresponding predicted vents

are plotted in the map with consistent color. Crosses in the blue box and
map represent unphysical predictions. c Mean latitude of each subset is
plotted against the corresponding predicted dispersal direction (in degrees
from north clockwise). The occurrence of crosses and color of the points
in c are consistent with a and b
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Fig. 12 Estimated vent locations of NMB1 derived from the power-law
(a, triangle) and exponential (b, diamond) models using localized maxi-
mum clast size observations (size 30). The subsetting is done using a
moving window scheme along the latitudinal direction. The mean latitude
of each subset is plotted in the blue box. Corresponding predicted vents

are plotted in the map with consistent color. Crosses in the blue box and
map represent unphysical predictions. c Mean latitude of each subset is
plotted against the corresponding predicted dispersal direction (in degrees
from north clockwise). The occurrence of crosses and color of the points
in c are consistent with a and b

Fig. 13 Estimated vent positions of NMB2 derived from the power-law
(a, triangle) and exponential (b, diamond) models using localized thick-
ness observations (size 30). The subsetting is done using a moving win-
dow scheme along the latitudinal direction. The mean latitude of each
subset is plotted in the blue box. Corresponding predicted vents are

plotted in the map with consistent color. No unphysical predictions occur
for the NMB2 dataset. cMean latitude of each subset is plotted against the
corresponding predicted dispersal direction (in degrees from north clock-
wise). Color of the points in c is consistent with a and b
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Fig. 14c in the input tends to have outlier predictions. Some of
these points have distinct measured thickness compared with
that of their neighboring sites. For example, the deposit at
Points a, b, and c in Fig. 14c is much thinner compared with
their neighboring sites. We also notice that thicknesses of
Point d and its neighboring sites in Fig. 14c imply that multi-
ple lobes exist for the deposit. Without the procedure of sta-
tistical bagging, we find it hard to detect this point subjective-
ly. In addition, five of these red points were measured along
the northern coast of the SãoMiguel Island, which is probably
related to local erosion (Walker and Croasdale 1971b).

The above results show that the coupled use of statistical
bagging and the method has the ability to detect observations
that cannot be coherently fitted by the semi-empirical model.
Some samples selected from this procedure that contribute to
outliers are characterized by severe local variation or are in-
dicative of multiple lobes. These results indicate that the
coupled bagging and gradient descent approach has promise
in quantitatively indicating the likelihood of a set of samples
correctly predicting the source vent. The simplicity of the
semi-empirical model suggests that epistemic uncertainty can-
not be neglected.With the introduced procedure, it is expected
that the detection of observations that are potentially critical to

the interpretation of a tephra deposit can be done in an objec-
tive way.

Surface of the cost function

Visualizing the surface of the cost function g ~xs;~ysð Þ (Eq. 6) is
another way of using the method. It is useful given limited
observations. However, the complete dataset is used as input
here, such that intrinsic and systematic factors affecting the
performance of the method can be found. Surfaces of the cost
function for each dataset using both semi-empirical models as

Fig. 14 Result from statistical bagging. a Predicted vent locations (blue
triangles) of the Fogo A deposit from 5000 randomly selected subsets
with 30 input points using the power-law model. Predictions outside the
bounding box are assumed to be outliers. Input subsets leading to outlier
predictions are collected and combined to a single dataset, and the occur-
rence (y-axis) of each observation within the combined dataset is plotted
as a histogram in b (x-axis, index of each sample point). There are 848
outlier predictions, which suggests a total number of 25,440 = 848 × 30

points are drawn. If the likelihood of contributing to outlier is the same for
each sample, the expected value in b should be 138 ≈ 848 × 30/184 (green
horizontal line in b). Some points have a higher or lower chance of
contributing to outlier predictions. Such points are selected based on
two thresholds marked as yellow and red horizontal lines in b.
Thicknesses (m) of these points and their neighboring sites are marked
in c with corresponding color

�Fig. 15 Surface of the cost function (Eq. 6) and predicted vent location
and dispersal axis using the complete dataset as input. a, c, e, gResults for
NMB1 (thickness and maximum clast size data), NMB2, and the Fogo A
deposit derived from the power-law model (solid triangle and solid line
for global minimum and corresponding dispersal axis, respectively).
Predictions at local minimum and corresponding dispersal axes are also
shown (void triangle and dashed line) if present. b, d, f, h Results for
NMB1 (thickness and maximum clast size), NMB2, and the Fogo A
deposit derived from the exponential model (yellow diamond and solid
line for global minimum and dispersal axis, respectively). Local minima
do not occur when the exponential model is used. Results from using the
power-law model are also displayed with transparent color in b, d, f, and
h for easier comparison
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well as the local and global minima and the corresponding
dispersal axes are shown in Fig. 15. With the power-law mod-
el applied to the NMB1 thickness and maximum clast size
datasets, local minimum occurs (Fig. 15a, c). When the expo-
nential model is applied to the NMB1 datasets, no local min-
ima occur (Fig. 15b, d). The local minimum with the power-
law model for the NMB1 datasets is almost identical to the
global minimum calculated from the exponential model. The
corresponding dispersal axes are also highly consistent except
for the global minimum using NMB1 maximum clast size
dataset with the power-law model (Fig. 15c). The dispersal
axis corresponding to the global minimum calculated from
the NMB1 maximum clast size dataset is pointing towards
northeast, reflecting the dispersal pattern of the proximal de-
posit. Local minima do not occur for the NMB2 and the Fogo
A deposits regardless of which semi-empirical model is used

(Figs. 16e–f). Surfaces of the cost function for the NMB1
datasets indicate that characteristics of the deposits in addition
to data scarcity could also contribute to local minima.

Discussion

Our results indicate that the method is able to estimate the vent
location of tephra deposits based on thickness or maximum
clast size measurements. The dispersal axis calculated from
the method can be used to constrain the vent location.
Performance of the method varies with the deposit being an-
alyzed as well as the use of different semi-empirical models.
In particular, the power-law model outperforms the exponen-
tial model in cases of NMB1 and the Fogo A deposit, and the
exponential model leads to more accurate and stable results

Fig. 16 Fourteen samples
(thickness marked in mm) from
the NMB1 thickness dataset are
selected and applied to the
method with both semi-empirical
models. The observed thickness
at Point a is 84 mm. Its thickness
is reset to 50, 84, 100, and
150 mm and can be regarded as
four datasets (their only difference
is the thickness at Point a). The
four datasets are applied to the
method. Results for the power-
law model are red triangles. Only
one of them is located near the
North Coulee (when Point a is set
to be 30mm thick), and the rest of
them are located at the same po-
sition near Point a. Predicted vent
locations (yellow diamond) from
the exponential model are all lo-
cated near the true dispersal axis,
and the predicted dispersal direc-
tions are consistent (17.0–20.5°
from north clockwise) with the
dispersal pattern of the deposit.
Two dispersal axes derived from
the exponential model are shown
that correspond to the results
when Point a is set to be 30 and
150 mm thick, respectively, as
end members. The different re-
sults highlight that the power-law
model is less stable given sparse
dataset for the method and is bi-
ased towards measurement(s)
with greater magnitude
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for NMB2. With limited observations, however, the exponen-
tial model is more stable and provides more accurate estimate
on the dispersal axis. Experiments with the NMB1 and NMB2
datasets show that this method is able to detect local change in
dispersal direction for tephra deposits given localized obser-
vations. The coupled use of statistical bagging with the meth-
od is able to pick out observations that may bear critical in-
formation about a deposit that cannot be well explained by the
semi-empirical model. The simplicity of the forward model
calls for attention to epistemic uncertainty. The following dis-
cussion focuses on factors that may affect the performance of
the method viewing from different perspectives.

Features of tephra deposits affecting
the performance of the method

Regardless of the eruption style as well as other physics
governing the transport and sedimentation of tephra deposits,
their net impact on tephra thickness or maximum clast size
distribution can be described as thinning or fining along dif-
ferent directions with respect to the source vent. Therefore, we
focus more on the physical properties of tephra deposits.

Decay pattern of thickness and maximum clast size

From the log thicknessð Þ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
isopach area

p
plot (Pyle 1989), it

was found that the thinning rate of tephra deposit could
change with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
isopach area

p
. Segmented or non-segmented

exponential (Pyle 1989), power-law (Bonadonna et al.
1998), and Weibull functions (Bonadonna and Costa 2012)
have been proposed to address this concern. The different
decay patterns may be related to the different dynamics near
the vent (Bursik et al. 1992b), particle Reynolds number
(Bonadonna et al. 1998), and many other factors, but the over-
all impact can be reflected from the log thicknessð Þ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
isopach area

p
plot.

Similarly, the key difference between the power-law and
exponential models is that the thinning or fining rate is not
constant for the former under log scale. The flexibility of the
power-law model makes it function well for the NMB1 de-
posit which is characterized by two distinct decay patterns in
thickness and maximum clast size (Fig. 1e). The flexibility of
the power-law model also makes it easier to be fitted to the
Fogo A deposit which is composed of two lobes and charac-
terized by local variation. For the exponential model, with the
NMB1 dataset, as the result of constant decay rate under log
scale, proximal observations exhibiting rapid decay in thick-
ness and maximum clast size are treated as measurement er-
rors by the method instead of systematic variation. This ex-
plains why predicted vent locations of NMB1 using the expo-
nential model are often located along the upwind portion of
the dispersal axis.

It is worth noting that local minimum from the power-law
model is similar to the global minimum predicted from the
exponential model for the NMB1 datasets (Fig. 15a, c). If
fewer observations are made for the proximal portion of
NMB1, predicted vents from the power-law and exponential
models should both be located at the upwind portion of the
dispersal axis (at the global minimum for the exponential
model). In such circumstances, vent locations predicted from
both semi-empirical models cannot be relied on, and we
should instead use the dispersal axis to constrain the vent
location. For NMB2, its decay rate does not change under
log scale, which can be better modeled by the exponential
model.

Wind directions

Thickness or maximum clast size distribution of tephra de-
posits can be greatly affected by wind. Under the assumption
that the wind direction is constant, the axisymmetric (with
respect to the dispersal axis) thickness or maximum clast size
distribution of tephra deposits is supported by the physics of
tephra transport and sedimentation.

Entrainment of horizontal momentum by a volcanic plume
can lead to plume bending (Bursik 2001) or cause the devel-
opment of a downwind propagating gravity current at the neu-
tral buoyancy level (Bursik et al. 1992a). Ultimately, the hor-
izontal transport of volcanic ash in the atmosphere is dominat-
ed by wind advection and turbulent diffusion (e.g., Suzuki
1983; Bonadonna et al. 2005; Schwaiger et al. 2012). The
overall axisymmetric (with respect to the centerline of the
eruption column) spreading of tephra when there is no wind,
as a result of vertical plume rise, spreading as an axisymmetric
gravity current, and turbulent diffusion, becomes less apparent
in the presence of strong wind or weak plume. Ideal plume
spread in the absence of wind leads to axisymmetric tephra
thickness distributions on the ground. In the presence of wind,
the solution to an advection-diffusion equation in 2D with a
continuous point source is asymmetric up- and downwind
with respect to the wind direction (Csanady 1973; Suzuki
1983), but has planar symmetry along the wind axis.
Differences between this pattern and the output of tephra
transport and sedimentation models (Suzuki 1983; Bursik
et al. 1992a; Bonadonna et al. 2005; Schwaiger et al. 2012;
Klawonn et al. 2012) are that the tephra is emitted from a
vertical line source and then falls at terminal velocity in the
z-direction. However, the resulting planar symmetry in the
deposit is independent of eruption parameters such as column
height and total volume and only relies on the assumption that
the prevailing wind direction is constant. This justifies using
dispersal axis to constrain the vent location given limited data:
limited data may not be sufficient enough for the method (or
any other methods) to capture features about how a deposit
decays in thickness and maximum clast size with distance
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along different directions, but the axisymmetric (with respect
to the dispersal axis) thickness or maximum clast size distri-
bution is easier to recognize.

When a tephra deposit was affected by change in wind
direction during its deposition, epistemic uncertainty arises
due to the simplicity of semi-empirical models. Our experi-
ments with NMB1 and NMB2 with localized input data sug-
gest that the method is able to identify the change in dispersal
direction (Figs. 11, 12, and 13). Given sufficient data, use of
the method could provide objective and more detailed con-
straints on the dispersal pattern of a tephra deposit. On the
other hand, with limited observations, the outcome from the
method might not be representative of the overall or local
dispersal pattern. Under such circumstances, we recommend
the use of leave-one-out validation or statistical bagging to
separate or group observations that cannot be coherently ex-
plained by the semi-empirical model and analyze them
separately.

Local variations and multiple lobes

Our experiments with the Fogo dataset show that the perfor-
mance of the method is affected by local variation and pres-
ence of multiple lobes. Given sufficient observations, the
coupled use of the method and statistical bagging is shown
to be effective in selecting potentially critical observations that
cannot be well explained by the semi-empirical model. Given
sparse observations, statistical bagging can be replaced by
leave-one-out or k-fold cross-validation with the same
purpose.

Technical concerns

The instability of the power-law model

Viewing the method as a tool that solves least-square problem
provides new perspectives about it and the semi-empirical
models. In our results, it has been shown several times that
the prediction from the power-law model becomes less stable
given sparse observations. This is due to its greater degrees of
freedom. Solving the least-square problem given fixed vent
location and dispersal direction using pseudo-inverse for the
power-law model gives more weight to measurements with
greater magnitude. The distal observations, which usually pre-
serve useful information about the dispersal pattern of the
analyzed deposit, are given less weight. Results derived from
using the power-law model highlight the tradeoff between
flexibility and instability. With limited observations, the
power-law model needs to be used with caution in predicting
either the vent location or dispersal axis.

Log transformation

The observed thickness or maximum clast size measurements
are log-transformed for the method. Theoretically, this should
cause the prediction to be more influenced by small observa-
tions that are relatively far from the source vent, but the use of
log transformation is justified here. Tephra deposits do not
thin or fine linearly with distance (e.g., Carey and Sparks
1986; Pyle 1989; Bursik et al. 1992a, b; Fierstein and
Nathenson 1992; Bonadonna et al. 1998; Kawabata et al.
2013; Yang and Bursik 2016). If raw observations are used
as input, the prediction will be strongly affected by the mea-
surements with large magnitude (higher values). This is fine,
given sufficient observations. With limited and unevenly dis-
tributed samples, however, one or two measurements could be
much greater than the others in magnitude. Under such con-
ditions, if raw measurements are used as input, the predicted
vent location would be close to the sample site with measure-
ment with the greatest magnitude, and the method would be
unable to capture the overall decay pattern of the studied
deposit.

Distribution of sample sites

Although our results suggest that given localized subsets, the
method is able to detect the local dispersal pattern of a tephra
deposit, it is noted that with localized or clustered sample sites,
the system would become “more overdetermined.”As sample
sites close to each other tend to have similar thickness and
maximum clast size measurements, measurement error be-
comes relatively greater, which increases the uncertainty of
the method.

Uncertainty propagation and scale dependence of accuracy

The accuracy of the prediction should be scaled with the area
of interest or sampled area. It is natural that using more prox-
imal observations could lead to more accurate predictions. On
the other hand, however, for tephra deposits of continental
scale, a rough but valid estimate on the vent location or dis-
persal axis could help a lot in constraining the potential vent
location.

Given the simplicity of the semi-empirical models, our dis-
cussion mainly focuses on how and if epistemic uncertainty
can be detected. To characterize measurement or aleatory un-
certainty, one could simply apply datasets generated from
Monte Carlo sampling based on original datasets to the meth-
od and examine the distribution of predictions. Our experi-
ment that applies randomly selected subsets to the method
(“Results from random subsetting”) can be viewed as a similar
procedure except that epistemic uncertainty is also taken into
account.
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Inclusion of zero observations

In the present work, locations with no tephra observed are not
used as input for the method. A plus-one transformation,
namely, adding one unit of thickness or maximum clast size
to all observations, can effectively incorporate sample sites
with no tephra observed into the input. The plus-one transfor-
mation has been adopted in Yang and Bursik (2016) to esti-
mate the extent of tephra deposits. Here it is not used due to
the concern that arbitrary number of zero-valued samples
could be added to the input, which introduces additional un-
certainty to the estimate. Unless the site with no tephra ob-
served is believed to be close to the extent of the tephra de-
posit, they should not be used as input for the method with
plus-one transformation.

Suggestions on using the method with datasets
of different sizes and qualities and case study

Based on our experiments and discussion, suggestions on how
to work with the method given dataset of different sizes and
qualities are listed in Table 3. If 6–10 observations are avail-
able, users should couple the exponential model with the
method given its stability. If observations suggest that the
deposit was affected by wind, the dispersal axis should be
used to constrain the vent location. Leave-one-out (or leave
several observations out) validation or examining the surface
of the cost function can be used to detect epistemic uncertainty
and local minima. Given 11–30 observations, if a rapid change
in decay rate can be confirmed, the power-law model is pre-
ferred to predict the vent location, and users should use the
exponential model and its predicted vent location or dispersal
axis (depending on prior knowledge about the deposit) to

constrain the vent location otherwise. Statistical bagging or
leave-one-out validation could be coupled with the method
to detect the occurrence of multiple lobes, local thickness/
maximum clast size variation, and whether the deposit was
affected by change in dispersal direction. With more than 30
observations, if a rapid change in decay rate can be confirmed,
the power-law model is preferred to predict the vent location,
and users should use the exponential model to predict the vent
location otherwise. Statistical bagging and applying localized
subsets to the method can be used to detect the occurrence of
multiple lobes, local thickness/maximum clast size variation,
and whether the deposit was affected by change in wind di-
rection. The following datasets with different sizes and fea-
tures (e.g., thinning rate, sample site distribution, and sample
site layout) are used to demonstrate the validity of the
suggestions.

Case one: a subset of the NMB1 thickness dataset

We select 14 sample points from the NMB1 thickness dataset
(green points in Fig. 16 with thickness measured), including
one observation that is much thicker and closer to the source
vent (Point a in Fig. 16; measured thickness: 84 mm). The
selected sample sites are mostly located on the right side of
the main dispersal axis of NMB1. They are clustered along the
east and northeast shoreline of Mono Lake and are not the
most proximal sample sites. Their thickness measurements
vary within the range of 17–24 mm except for Point a and
display local variations. We found it hard to subjectively con-
struct isopachs or infer the dispersal axis given these
observations.

We set the thickness at Point a to be 30, 50, 84, and
150 mm; apply the modified datasets to the power-law and

Table 3 Suggestions on how to
work with the method given
dataset of different sizes and
qualities

Dataset
size

Suggested semi-empirical model Vent location or
dispersal axis

Measures to detect epistemic
uncertainty

6–10 Exponential model Vent
location/dispersal
axis

Leave-one-out validation

Examining the surface of the
cost function

11–30 Change in decay rate recognizable:
power-law model

Vent location Statistical bagging or
leave-one-out validation

No change in decay rate: exponential
model

Vent
location/dispersal
axis

Statistical bagging or
leave-one-out validation

Change in decay rate unrecognizable:
exponential model

Dispersal axis Statistical bagging or
leave-one-out validation

>30 Change in decay rate recognizable:
power-law model

Vent location Statistical bagging

Applying localized subsets to
the method

No change in decay rate: exponential
model

Vent location Statistical bagging

Applying localized subsets to
the method
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exponential models, respectively; and examine the predicted
vent locations and dispersal axes. Three predicted vent loca-
tions using the power-lawmodel (predicted dispersal direction
2–7° from north clockwise) are concentrated at a location very
close to Point a. This shows that with the power-law model,
the method is strongly “biased” towards measurements with
greater magnitude. The only exception occurs when thickness
of Point a is set to be 150 mm, and the corresponding predict-
ed vent is located near North Coulee (Fig. 16). For the expo-
nential model, predicted vents are all located along the dis-
persal axis of the deposit within a narrow range (bounded by
the two dispersal axes plotted), and predicted dispersal direc-
tions (16–21°) are consistent with the true transport pattern of
NMB1. This example firmly confirms the instability of the
power-lawmodel for the method and supports our proposition
that it is more robust to estimate the dispersal axis using the
exponential model given limited data.

Cases two and three: THS and Rockland tephras

The THS and Rockland tephras are widely dispersed and sig-
nificant Quaternary deposits, and their primary thickness has
only been measured at eight sites each. Examining the surface
of the cost function and leave-one-out validation have been
applied to these datasets. Six sample sites of the THS tephra
have been observed in northwestern Nevada, where the thick-
ness shows great and systematic variation within a narrow
swath. This suggests that transport was subject to a strong
prevailing wind. Local minima tend to occur, given the pau-
city of sample sites. For the Rockland tephra, the sample sites
span a broader area, and local minima do not occur in the
surface of the cost function (not shown to avoid complexity).
Since two thickness measurements might be reworked for the
Rockland tephra, we include and exclude them to generate
two input datasets. This procedure is comparable to cross-
validation. The exponential model is used for both cases given
the limited observations.

Surface of the cost function for the THS tephra in the x-y
plane is plotted in Fig. 17a. Three local minima are obtained
with one (green triangle in Fig. 17a) being unphysical; the
others are close to Medicine Lake and Mount Shasta (see
Fig. 17b for the location of potential vents). Medicine Lake
and Mount Mazama are near the two, respective dispersal
axes. The two predictions arise from the uncertainty associat-
ed with the two sample sites in California, which could be on
the same or opposite side of the dispersal axis. Since the de-
posit was affected by strong wind, the predicted dispersal axis
is preferred to constrain the vent location. Therefore, the meth-
od narrows the seven potential vents down to two, namely,
Medicine Lake and Mount Mazama. The latter is the true vent
for this deposit.

Two estimated vent sites near Lassen Peak (Fig. 17b) plus
one unphysical prediction are obtained for the Rockland

tephra. Thicknesses at the sample sites indicate that the tephra
was widely dispersed downwind, but did not travel far in the
upwind direction. Therefore, the source vent cannot beMount
Shasta, Medicine Lake, or the others farther north. The vent
should be located near the two predicted locations shown in
Fig. 17b. This inference is correct as the Rockland tephra was
produced from the Rockland caldera complex, now underly-
ing Brokeoff Volcano, a part of the Lassen Volcanic complex
(Clynne and Muffler 2010; Pouget et al. 2014a).

We have estimated volumes of the two deposits based on
the exponential model with the correct vent locations. We use
volume estimation methods proposed by Pyle (1989),
Fierstein and Nathenson (1992), and Nathenson and
Fierstein (2014) to further process the isopach data. Deposit
volumes of the THS and Rockland tephras are estimated to be
20.8 and 326.7km3, respectively. The estimate for the THS
tephra is consistent with the previous estimate (Pouget et al.
2014a), while the estimate for the Rockland tephra is beyond
the range (50–248 km3) found in previous studies (Sarna-
Wojcicki et al. 1985; Pouget et al. 2014a). Given the methods
used in previous studies, we believe that the current estimate
of deposit volume represents a better, more objective, and
unbiased value. These results will need to be evaluated care-
fully, especially for the Rockland tephra, as a volume of
326.7 km3 suggests that it was an eruption of the same mag-
nitude as that of the Bishop ash (Wilson and Hildreth 1997).
Previous evaluation of the deposit suggested it was closer in
volume to the Mazama ash (Clynne and Muffler 2010).

Application to Wilson Creek Formation ashes

We now apply the method, coupled with the exponential mod-
el, to the thickness dataset of the WCFAsh A4-d, to constrain
its vent location. In another application, volumes of the WCF
ashes B7-a, A4-d, and A3-f are estimated, using the exponen-
tial model with four to six observations. The measured thick-
ness of Ash A4-d does not vary greatly from site to site,
indicating that measurement uncertainty might affect the final
estimate. Leave-one-out validation is used to examine whether
the corresponding predictions are consistent. All but one of
the predictions (unphysical prediction and the corresponding
left-out observation marked in light green; dispersal axis not
plotted) are consistent in both vent location and dispersal axis.
The predicted dispersal axes suggest that the source vent for
this sub-unit might be located near Dome 11. The inferred
vent area for Ash A4-d is consistent with a previous, very
poorly constrained and non-objective interpretation based on
stratigraphic characteristics (Yang et al. 2019).

Volumes of ashes B7-a, A4-d, and A3-f are estimated fol-
lowing the same procedure done for the THS and Rockland
tephras. Different potential vent locations (Marcaida et al.
2014 and this study) are assumed for these sub-units.
Estimated volumes (Table 4) suggest that given the current
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Table 4 Estimated volumes of
the THS and Rockland tephras
and ashes B7-a, A4-d, and A3-f
within the WCF

Tephra unit/sub-unit (dataset
size)

Assumed vent location/eruption
name

Estimated volume (dispersal
direction)

THS (8) Mt. Mazama 20.8

Rockland (8) Rockland caldera complex 326.7

B7-a (4) MC Dome 8 0.19 (243.2)

MC Dome 31 0.12 (261.5)

MC Dome 25 0.092 (289.6)

A4-d (6) MC Dome 8 0.041 (48.1)

MC Dome 11 0.041 (47.6)

MC Dome 31 0.034 (35.3)

MC Dome 25 0.031 (26.7)

A3-f (5) MC Dome 8 0.017 (339.9)

MC Dome 11 0.017 (339.3)

MC Dome 31 0.014 (341.7)

MC Dome 25 0.015 (349.1)

Orange-brown beds South Mono 0.016

Basal beds 0.0054

North Mono Bed 1 North Mono 0.042

South Deadman 1 1350 A.D. Inyo eruption 0.01

South Deadman 2 0.04

Lower obsidian flow < 0.01

Upper obsidian flow 0.01–0.02

Glass Creek 0.1

Volumes of selected tephra deposits from the most recent eruptions from the Mono-Inyo Craters are listed for
reference (Miller 1985; Sieh and Bursik 1986; Nawotniak and Bursik 2010; Bursik et al. 2014). Units for
estimated volume and dispersal direction are km3 and degree from north clockwise, respectively. MC is short
for Mono Craters

Fig. 17 Estimated vent locations (red triangle) and dispersal axes (black
arrow lines) for the THS (a) and Rockland (b) tephras and the WCFAsh
A4-d (c) using the exponential model. Thickness (cm) of the deposits at
each sample site is labeled. Unphysical predictions are marked as green
triangle. In a and b, potential vents (following Pouget et al. 2014a) for the
two deposits are plotted as void triangle, and the true vents are marked in
light blue. For the THS tephra, the surface of the cost function is plotted,
and two predictions plus one unphysical prediction (light green triangle)
are obtained. For the Rockland tephra, two estimates plus one unphysical

prediction are derived from including and excluding two possibly
reworked observations. For the WCF Ash A4-d (c), results from using
the complete dataset (predicted vent location marked with darker red
triangle) and subsets from leave-one-out sampling scheme as input are
shown. There is one unphysical prediction that is derived from excluding
the observation (marked in light green) in the north of Mono Lake. We
draw a red circle to denote the inferred vent area for the deposit based on
estimated dispersal axes. Locations of Domes 8, 11, 25, and 31 of the
Mono Craters are labeled
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sample sites, volumes of these tephra layers are not signifi-
cantly affected by the assumed vent location. The volume of
Ash B7-a is ∼ 0.092–0.19 km3, while the others have estimat-
ed volumes below 0.05 km3. Ash B7-a is thus the most volu-
minous single fall deposit yet known from the Mono Craters.
Volume ranges for the other deposits are consistent with vol-
umes of Holocene fall deposits from the Mono-Inyo Craters
(Table 4, Miller 1985; Sieh and Bursik 1986; Nawotniak and
Bursik 2010; Bursik et al. 2014). We believe that the crude
estimates on vent location and volume of the listed WCF
tephra sub-units can be used to improve our understanding
on the volcanic history of the Mono Craters (Bailey 2004;
Hildreth 2004; Marcaida 2015; Marcaida et al. 2019; Yang
et al. 2019). These estimates provide new constraints for the
volcanic hazard assessment of the Long Valley-Mono Craters
region (Bevilacqua et al. 2017, 2018).

Conclusions

We have presented a new algorithm that can be used to esti-
mate the source vent location and dispersal axis of tephra fall
deposits based on thickness or maximum clast size measure-
ments. The method is composed of a semi-empirical model
that describes the thickness or maximum clast size distribution
of tephra deposits, coupled with a gradient-descent method.
There are two semi-empirical models (Gonzalez-Mellado and
Cruz-Reyna 2010; Yang and Bursik 2016) that can be used.
The method is validated on datasets of the NorthMono Beds 1
and 2 and the Fogo A tephra deposit. The results show that the
method can be used to estimate the vent location of tephra fall
deposits or estimate the dispersal axis to constrain the vent
location. With sufficient local input, the method can detect
local changes in dispersal direction for tephra deposits. In
addition, statistical bagging is shown to be another effective
procedure in detecting epistemic uncertainty. Visualizing sur-
face of the cost function is proposed to examine the occur-
rence of local minima given sparse dataset and is also another
way of examining sources of uncertainty for the method.

The performance of the method is affected by the quality
and size of the input dataset and the semi-empirical model
being used. The flexibility of the power-law model makes
the method more accurate given sufficient observations, but
at the same time increases the instability of the method when
working with sparse dataset. Our experiments show that, in
the case of limited observations (≤ 10), estimating the dispers-
al axis first, instead of attempting to estimate the vent coordi-
nates de novo, is a more robust way to constrain the vent
location. This is because the planar symmetry of tephra thick-
ness or maximum clast size distribution with respect to the
dispersal axis, under the assumption of constant wind direc-
tion, is independent of many other eruptive and atmospheric
parameters and can be easily detected and captured by the

present method. Suggestions on how to use the method with
dataset of varying sizes and qualities are given in Table 3.

The method assumes a constant wind direction, and the
thickness and maximum clast size data are log-transformed
prior to the fitting process. These assumptions are parsimoni-
ous, conforming with Occam’s razor, which might introduce
potential uncertainties to the final estimate; however, the
method is shown to be useful and efficient and can be applied
to tephra thickness or maximum clast size datasets of varying
sizes and qualities. Due to the simplicity of the method, pro-
cedures (e.g., using localized subsets as input, statistical bag-
ging, and cross-validation) proposed to characterize the uncer-
tainty of the method focus on the detection of epistemic un-
certainty. The flexibility of the method makes it easier to be
incorporated into statistical systems and tephra databases to
help identify the source vent location and correlate tephra
deposits.

The method coupled with the exponential model is applied
to sparse thickness datasets of the NMB1 (subset), Trego Hot
Springs, and Rockland tephras, which provides useful con-
straints on their vent location. New estimates on their volume
are given following the exponential model, which yields 20.8
and 326.7 km3 (∼ 8 and ∼ 130 km3 DRE), respectively. If
these estimates are correct, then the Rockland tephra is among
the most voluminous fall deposits of the late Quaternary in
North America, formed 30–70 kyr after the caldera-forming
event from the Yellowstone Volcano which produced the Lava
Creek Tuff (Lanphere et al. 2002). Application of the method
to tephra sub-units within the Wilson Creek Formation shows
that Ash A4-d was erupted from a vent near Dome 11 of the
Mono Craters and that at least one sub-unit of A4 was blown
towards the northeast. From a transport pattern point of view,
this suggests that the Lowder Creek ash could be Ash A4
(Madsen et al. 2002), as speculated by the original discoverers
of that outcrop. The volume of Ash B7-a is estimated to be ∼
0.092–0.19 km3, and estimated volumes of other analyzed
sub-units are below 0.05 km3. The use of the method provides
new inferences about the eruptive history of the Mono Craters
during the late Quaternary.
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