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The behaviour of low-viscosity, pressure-driven compressible pore fluid flows in
viscously deformable porous media is studied here with specific application to gas
flow in lava domes. The combined flow of gas and lava is shown to be governed by
a two-equation set of nonlinear mixed hyperbolic–parabolic type partial differential
equations describing the evolution of gas pore pressure and lava porosity. Steady state
solution of this system is achieved when the gas pore pressure is magmastatic and
the porosity profile accommodates the magmastatic pressure condition by increased
compaction of the medium with depth. A one-dimensional (vertical) numerical
linear stability analysis (LSA) is presented here. As a consequence of the pore-fluid
compressibility and the presence of gravitation compaction, the gradients present in
the steady-state solution cause variable coefficients in the linearized equations which
generate instability in the LSA despite the diffusion-like and dissipative terms in the
original system. The onset of this instability is shown to be strongly controlled by the
thickness of the flow and the maximum porosity, itself a function of the mass flow
rate of gas. Numerical solutions of the fully nonlinear system are also presented and
exhibit nonlinear wave propagation features such as shock formation. As applied to
gas flow within lava domes, the details of this dynamics help explain observations of
cyclic lava dome extrusion and explosion episodes. Because the instability is stronger
in thicker flows, the continued extrusion and thickening of a lava dome constitutes
an increasing likelihood of instability onset, pressure wave growth and ultimately
explosion.

Key words: magma and lava flow, porous media

1. Introduction
The flow of a low-viscosity fluid through a permeable network composed of a

more viscous fluid exists in a variety of geophysical contexts. Past studies of flow
in viscously deformable porous media (VDPM) have tended to focus narrowly on
constant-density, buoyancy-driven flows such as melt percolation in the upper mantle

† Email address for correspondence: davidhym@buffalo.edu
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(McKenzie 1984; Scott & Stevenson 1984, 1986; Spiegelman 1993a; Lowman &
Hoefer 2013). However, pressure-driven compressible pore-fluid flows in VDPM
comprise many important problems among geophysical flows including volatile
hydrocarbon extraction from compacting sedimentary beds, the flow of gases and
mud slurries in mud volcanoes and flow of magmatic gases and lava in a variety of
volcanic settings. In particular, lava domes – highly viscous extrusions of lava which
build up above a volcanic conduit – represent a type of pressure-driven gas flow
in a VDPM with particular properties convenient for analysis. These are the flows
analysed in this study (figure 1). It is clear from observations of passive, diffuse
degassing (e.g. Delgado-Granados et al. 2001) that growing lava domes typically host
networks of microcracks and bubbles which allow some pressure to relax by porous
flow. Indeed, by the time gas-rich magma reaches the surface to form a lava dome,
it has long since passed the transition between bubble-dominated flow and permeable
flow (Kozono & Koyaguchi 2010). This results in an effective porous network which
may deform and is sufficiently viscous to resist significant buoyancy-driven bubble
rise. Analyses of gas bubbles in lava based on percolation theory in these media
suggest the use of a power law in relating porosity (φ) to permeability (k) with a
percolation threshold below which the medium becomes impermeable (Blower 2001;
Mueller et al. 2005; Vasseur & Wadsworth 2017). To study permeability breakdown
in these flows we adopt the percolation relationship between the permeability (k) and
porosity (φ) suggested by Blower (2001):

k(φ)= k0(φ − φc)
b
+
:=

{
k0(φ − φc)

b φc <φ < 1
0 otherwise,

(1.1)

where k0 is a coefficient related to the mean bubble radius (rb) by k0 ≈ 0.13 r2
b, φc

is the percolation threshold which is typically taken as 0.3 and b is an empirical
exponent taken as 2.1. The presence of a percolation threshold will have critical
implications for the development of shock waves where the matrix becomes
impermeable. Above the percolation threshold, the specific parameter values in
this model are not expected to influence the broad behaviour of the system as long
as dk/dφ > 0 (Spiegelman 1993a). In this context, the gases flowing through the lava
are driven mainly by large pressure gradients imposed by the ambient atmospheric
pressure condition at the surface. As a result, lava domes represent an important
boundary layer at the surface of many volcanic systems. In general, many volcanic
hazards including lava dome collapse, the generation of dense pyroclastic currents, or
sudden explosions may be attributed to the breakdown of this boundary layer.

Periods of lava dome growth are very common and typically consist of one or
more cycles of dome growth, collapse and explosive destruction (Yokoyama 2005).
Because the strength of the dome is a function of the overburden, the pore pressure
required to fracture the porous medium is smaller for smaller domes. Consequently,
smaller domes pose less resistance to explosive breakup for a given pore pressure,
which may explain the observation that rapid cycling of dome building and explosion
tends to characterize the early phases of lava dome eruptions (Boudon et al. 2015).
In the past two decades, Volcán Popocatépetl, Mexico has become a type example for
this behaviour, having extruded and destroyed at least 38 small lava domes between
1996 and 2016 (Gómez-Vazquez, De la Cruz-Reyna & Mendoza-Rosas 2016). Recent
analysis of the sizes and residence times of these domes has led to the generation
of a ‘survival curve’ for the ongoing lava dome eruptive period at Popocatépetl
showing that the number of domes surviving to a given size decays exponentially
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FIGURE 1. Conceptual model of the two-phase flow of gas and lava in a lava dome. Main
figure shows a schematic representation of volcanic gases flowing through a permeable
lava dome which is itself slowly flowing. Magnified figure is a schematic representation
of the connection between local pore pressurization, matrix flow and porosity increase.
Inset figure shows the short-term periodicity of degassing measured with forward-looking
infrared (FLIR) images at Volcán Popocatépetl over ∼50 minutes (Hyman et al. 2018).

with increasing lava dome volume, that is, domes are more likely to be destroyed
by explosions early in their extrusion, limiting the number of domes that can survive
to a large size (Gómez-Vazquez et al. 2016). Given that the uncertainty in lava
parameters such as viscosity and permeability varies over several orders of magnitude
at Popocatépetl and other volcanoes, any attempt to model the long-time behaviour
of lava dome eruptions should sample over many orders of magnitude and should
show a consistent ensemble model behaviour. Because of the availability of dome
survival data from Popocatépetl, this work seeks to construct an adequate numerical
experiment of dome survival, the results of which may be combined and compared
with these data to explain patterns in the long term cyclicity of lava dome extrusion
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and destruction. Owing to this cyclic behaviour, Popocatépetl provides an excellent
natural example for comparison with the theory developed here.

Recent studies of magmatic degassing have shown that gas flow has significant
periodicity with dominant oscillation periods in the range O(102)–O(103 s) across
a wide variety of volcanic settings representing a range of lava compositions and
physical parameterizations. These include periods of 40–250 s and 500–1200 s
at Mt. Etna, Italy (Tamburello et al. 2013), ∼600 s at the Mt. Erebus lava lake,
Antarctica (Sweeney et al. 2008), 300–600 s at Santiaguito lava dome complex,
Guatemala (Holland et al. 2011), 100–2000 s at Mayon Volcano, Philippines (Girona
et al. 2015) and ∼100–1000 s at Volcán Popocatépetl, Mexico (figure 1 inset, Hyman
et al. (2018)). Overall, these measurements suggest that the flux of gas through a lava
dome is oscillatory, providing a natural time scale with which to study the dynamics
of lava dome gas flow. The short duration of this natural time scale with respect to
viscous relaxation time scales in the matrix will allow for important simplifications
in the governing equations including an approximately stationary matrix phase.

As in previous studies of VDPM, the compaction length of these flows exerts a
strong control on the dynamics of the system. Generally, the compaction length is
a combination of the matrix permeability, the matrix viscosity and the pore-fluid
viscosity which together form a natural length scale in these problems. As originally
defined by McKenzie (1984), the compaction length is a natural length scale in the
simplified problem of a saturated porous medium compacting onto an impermeable
lower boundary. In that context, McKenzie (1984) defined the compaction length
δ as the distance from the impermeable boundary over which the compaction rate
decays by a factor of e. Despite the simplicity of this problem, the compaction length
as a combination of model parameters is widely used as a natural length scale in
studies of compacting porous media outside the bounds of this specific mathematical
definition. Although studies of melt percolation in the upper mantle have considered
compaction and expansion due to isotropic and shear stresses, in this study, we
consider only isotropic compaction and expansion of a free-surface VDPM in one
dimension, effectively ignoring the effects of shear near the crater walls. Because of
this simplification and the form of the k − φ relationship used here, we define the
compaction length in this study as δ =

√
k0ζ/µ, where µ is the pore-fluid dynamic

viscosity and ζ is the bulk viscosity of the matrix. Owing to the lack of data for
this parameter in a volcanic context, we take this to be the same order of magnitude
as the matrix shear viscosity. In the study of a free-surface VDPM, the role of
the compaction length in the flow dynamics will be affected by the thickness of
the flow. In the present study, that thickness is the dome height above the top of
the conduit. As a result, there are two natural length scales of the problem: the
dome thickness and compaction length. This will generate a parameterization of the
flow with small differences from previous studies of VDPM where the relationship
between compaction length and dome thickness will control the flow behaviour. The
most important simplification arising in this study of gas flow in VDPM applied
to lava domes is that these domes may be treated as slow-moving gravity currents
and thus the lava matrix phase pressure is approximated as magmastatic, yielding
space-dependent source terms in the resulting governing equations.

In the present study, we show that consideration of a compressible pore fluid leads
directly to a two-equation mixed hyperbolic–parabolic system describing a diverse
suite of behaviours including nonlinear wave-diffusion behaviour.

Previous studies of flow in VDPM have focused on cases where the pore and matrix
fluids are incompressible, which has generally led to nonlinear equations governing
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Gas flow in viscously deformable porous media 89

the pore fluid fraction or porosity. Despite the dominance of viscous processes
and thus low Reynolds number in these flows, the governing equations derived in
previous studies describe non-dissipative flow phenomena such as dispersive and
non-dispersive shock waves (Spiegelman 1993a,b; Lowman & Hoefer 2013). In
particular, the problem of upper-mantle melt percolation has led to the development
of a single governing equation for the porosity describing nonlinear dispersive wave
phenomena and is typically called the ‘magma equation’ (Lowman & Hoefer 2013).
In this context, buoyancy of the percolating phase with respect to the matrix phase
drives the flow. In previous studies of compressible pore-fluid flows in VDPM, the
focus has typically been two-phase gas–lava flows. In this application, the lava–gas
viscosity ratio has typically been significantly lower than the mantle rock–magma
viscosity ratio in classical VDPM theory. As a result, the fluid dynamics of the matrix
phase has played a significant role in studies of gas–lava VDPM flows (Melnik &
Sparks 1999; Costa et al. 2007; Michaut et al. 2013). In particular, Michaut et al.
(2013) in studying wave dynamics of the system, derived governing equations for the
flow of gas in permeable lava in a volcanic conduit which described the behaviour of
the gas density, lava porosity, gas velocity and variable lava velocity. However, that
study failed to produce an equilibrium solution to the derived equations and instead
constructed a non-equilibrium background state. Consequently, upon performing a
linearization, the background states considered led to linear equations with variable
coefficients into which an unjustified plane-wave ansatz was substituted despite such
equations requiring alternative methods of linear stability analysis. Despite this, the
authors suggested that the resulting dispersion relation showed that the flow of
gas and lava is unstable and that the excited gas wave periodicity compared well
with observations of lava dome growth and instability from Soufrière Hills volcano,
Montserrat. Overall, the good agreement between that model and natural data, despite
the mathematical errors, has made the study of the wave dynamics of gas flow in
viscous lavas less clear.

The purpose of this study is to extend and adapt VDPM theory to the pressure
gradient-driven flow of compressible pore fluids with specific application to under-
standing gas flow in lava domes. This is presented as follows: we begin with the
general equations of motion in VDPM and introduce various simplifying assumptions
related to the specific problem of gas flow in lava domes including that of an
isothermal ideal gas and the magmastatic lava pressure condition. In doing so, we
show that the isothermal pore-fluid compressibility generates a parabolic partial
differential equation (PDE) governing nonlinear diffusion of pore pressure which is
modulated by compaction due to porosity wave motion. We then present several
solutions to limiting cases in one dimension including spatially variable steady-state
pressure and porosity profiles and show that these steady states are conditionally
stable dependent on several physical parameters of the flow. From this analysis we
show that numerical solutions contain both diffusion-type and nonlinear wave-type
behaviour. In particular, we highlight the formation of shock waves in connection
to the development of permeable–impermeable transitions. Lastly, we perform a
numerical experiment showing that lava dome fragmentation is predicted in agreement
with natural lava dome survival data from Volcán Popocatépetl, Mexico.

2. Governing equations for gas flow in a deforming lava dome

In the following, we consider a simplified model of lava dome gas flow in which the
gas is assumed to percolate by permeable flow through the deforming pore network of
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the lava dome at constant temperature with negligible mass exchange between lava and
gas. In this model, we assume that the bulk compressibility of the lava–gas mixture is
due to changes in porosity and gas pressure and that the liquid phase is incompressible.
The governing equations can then be written after Spiegelman (1993a), Blower (2001)
as

∂t(φρ
gas)+∇ · (φρgasv)= 0 (2.1a)

ρ lava ∂t(1− φ)+ ρ lava
∇ · ((1− φ)V)= 0 (2.1b)

φ(v −V)=−
k(φ)
µ
∇p (2.1c)

k(φ)= k0(φ − φc)
b
+

(2.1d)

ρgas
= p/RTdome, (2.1e)

where φ is the porosity of the dome lava, ρ() is the phase density, v and V are
respectively the gas and lava velocities, k is the lava permeability, µ is the gas
viscosity, p is the gas pressure, R is the specific gas constant and Tdome is the
temperature of the dome, assumed to be constant and equal for the gas and lava.
Equations (2.1a) and (2.1b) express conservation of mass for the gas and lava phases
respectively. Equation (2.1c) is a co-moving form of Darcy’s law which constitutes
an equation for the conservation of momentum of the gas.

For momentum conservation in the lava, we take the lava pressure to be
magmastatic, given by plava

= pa + ρ
lavag(h − z), where pa is atmospheric pressure

at the lava dome surface and z = h is the surface of the dome, which may vary
horizontally. Furthermore, we simplify the compressibility of the bulk lava with a
linear rheological assumption. This is expressed as

ζ∇ ·V = p− plava (2.2)

after Scott & Stevenson (1986), where ζ is the bulk viscosity of the lava medium,
typically estimated as the same order of magnitude as the dynamic viscosity. This
relation couples the lava and gas pressures and describes compression and expansion
of the lava–gas mixture (figure 1).

2.1. Combined equations
We combine all of the above equations into a set of two governing equations:

φ
Dp
Dt
=

k0

µ
∇ · [(φ − φc)

b
+

p∇p] −
1
ζ

p(p− plava) (2.3a)

Dφ
Dt
=

1
ζ
(1− φ)(p− plava), (2.3b)

where D/Dt= ∂/∂t+V · ∇ is the Lagrangian derivative. Apart from advection, which
will be shown to be negligible, the system consists of a nonlinear diffusion–reaction
type PDE coupled to a first-order ordinary differential equation (ODE) describing
evolution of the porosity field.

To non-dimensionalize this system, we use the transformation

p∗ = p/p0; V∗ =V/Vc; x∗ = x/h0; t∗ = t/tc;

h∗ = h/h0; f = plava/p0 = fa + h∗ − z∗,

}
(2.4)
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Gas flow in viscously deformable porous media 91

Variable Meaning Values Dimension

h0 Maximum dome thickness 101–102 m
δ Compaction length 101–103 m
pa Atmospheric pressure 105 Pa
ρ lava Lava phase density 2500 kg m−3

g Gravitational acceleration 9.8 m s−2

tc Time scaling 102–103 s
Vc Lava velocity scaling 10−5–10−4 m s−1

µ Gas dynamic viscosity 10−5 Pa s
ζ Lava matrix volume viscosity 106–109 Pa s
k0 Permeability coefficient 10−9–10−7 m2

φc Percolation threshold 0.3 —
b Permeability exponent 2.1 —
φa Surface porosity 0.4–0.8 —
fa Scaled surface pressure 0.04–0.4 —
χ Vctc/h0 10−5–10−2 —
α p0k0tc/µh2

0 100–104 —
β p0tc/ζ 10−2–103 —
β/α µh2

0/k0ζ 10−4–101 —
χ/α µVch0/p0k0 10−7–10−5 —

TABLE 1. Values of parameters used including ranges where uncertain.

where h0 is the maximum dome height, p0 = ρ
lavagh0 is the maximum lava pressure

at the base of the dome, fa = pa/p0 is the non-dimensional ambient air pressure, f
represents the non-dimensional lava pressure and Vc and tc are scale factors for the
lava velocity and time respectively. This yields a non-dimensional system (with stars
dropped) where p, φ, x, t, V and f are now O(1) dimensionless variables:

φ(∂tp+ χV · ∇p)= α∇ · [(φ − φc)
b
+

p∇p] − βp(p− f ) (2.5a)
∂tφ + χV · ∇φ = β(1− φ)(p− f ) (2.5b)

χ =
Vctc

h0
; α =

k0p0tc

µh2
0
; β =

p0tc

ζ
. (2.6a−c)

Typical lava dome volumetric flow rates are ∼1–10 m3 s−1, implying that for typical
lava dome volumes (O(106)–O(108) m3), the mean velocity throughout a dome is
only O(10−5)–O(10−4) m s−1 (Sheldrake et al. 2016). For typical values of the
parameters in χ , α and β the diffusion and compaction terms are much stronger
than the advection term (table 1). Therefore we neglect the advection and take the
limit χ→ 0 throughout the present study. This limit simplifies (2.5a) and (2.5b) to a
system of two equations for two unknown fields: the pressure p and porosity φ.

2.2. One-dimensional analysis
We will consider a simplified version of these combined equations: purely vertical gas
flow, casting the equations over only the vertical coordinate and time as

φ ∂tp= α ∂z[K(φ)p ∂zp] − βp(p− f ) (2.7a)
∂tφ = β(1− φ)(p− f ), (2.7b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 a
t B

uf
fa

lo
 L

ib
ra

ri
es

, o
n 

27
 A

ug
 2

01
9 

at
 2

1:
21

:5
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.211
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


92 D. M. Hyman, M. I. Bursik and E. B. Pitman

where K(φ) = (φ − φc)
b
+

is the non-dimensional permeability. In addition to these
governing equations, we implement the following boundary conditions:

p= fa on {z= 1} × [0,∞] (2.8a)
K(φ)p ∂zp=−ΛsQ(t) on {z= 0} × [0,∞], (2.8b)

where

Λs =
ṁsµRTdome

ρ2g2h0k0A
, (2.9)

which represent a constant ambient pressure at the dome surface and some flux of gas
from the lower boundary (volcanic conduit) which is Λs during steady-state conditions
and varies from steady state according to Q(t). The lower boundary condition is given
here in a general form to be detailed later. These simplified equations represent a
coupled system in which the diffusion of gas pressure is modified by changes in
the porosity and permeability due to expansion and compression of the porous lava
medium. This compaction is itself dependent on the gas–lava pressure difference.
Equation (2.7a) is a nonlinear parabolic PDE which becomes singular in both of the
limits p→ 0+ and φ→ φ+c . The first limit is a common degeneracy and is related
to the similarity between (2.7a) and the equation governing porous flow of gases in
a rigid network, the so-called porous medium equation (PME). Generally, the PME
yields nonlinear diffusion due to pressure-proportional diffusivity resulting in steeper
pressure gradients than linear diffusion and finite propagation speed (Vazquez 2007).
In the present context, the p→ 0 limit is unphysical; however, porosities below the
percolation threshold are found widely in lava dome samples (Boudon et al. 2015)
and so the second limit (φ→ φc) is physically relevant. If φ 6 φc, equations (2.7a)
and (2.7b) can be combined as

∂tp
p
=

∂tφ

φ(1− φ)
(2.10)

and integrated to find a phase-plane solution:

p(z, t)= pc(z)
φc

1− φc

[
1− φ(z, t)
φ(z, t)

]
, (2.11)

where pc(z) is the local pore pressure when the porosity drops below the percolation
threshold or pc(z)= p(z; φ= φc). Although there is no closed-form solution for p and
φ in terms of z and t only, this relation indicates that in a hydraulically unconnected
region, the pressure and porosity are inversely related, that is, when the porosity drops
below the percolation threshold due to a negative pressure anomaly (p− f < 0), the
porosity will continue to contract, causing the pressure to rise back to p= f .

Additionally, equations (2.7a) and (2.7b) have three steady-state solutions (ps(z),
φs(z)), although only one is physical and allows porous gas flow:

ps(z)= f (z)= fa + 1− z (2.12a)

φs(z)= φc +

[
Λs

f (z)

]1/b

, (2.12b)

where Λs is the dimensionless Darcy flux, ṁs is the steady-state mass flow rate of gas
through the dome and A is the dome cross-sectional area. The values of the parameters
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FIGURE 2. (a) One-dimensional steady-state (equilibrium) profiles for gas pressure
(non-dimensional) (grey) and porosity (black). (b) Variation of these profiles for different
parameter values represented in the p− φ phase plane. φa= 0.4 (solid), φa= 0.6 (dashed),
φa = 0.8 (dotted).

in Λs are restricted in the sense that the porosity must remain physically bounded
(0 6 φ 6 1). Because the steady-state porosity profile increases towards the surface,
we define an additional parameter (φa), the ‘surface porosity’ of the lava dome as

φa = φc +

(
Λs

fa

)1/b

= φc +

(
ṁsµRTdome

paρ lavagk0A

)1/b

. (2.13)

To find physically reasonable values of the flux Λs, the parameters must be
constrained such that φc <φa(Λs) < 1.

The exact form of the porosity steady-state solution is governed by the k − φ
relationship. Although K(φs) ∝ 1/f in general, the exact form of φs(z) will
depend upon inverting the particular K(φ) for the problem. Consideration of other
porosity–permeability relationships is beyond the scope of this work.

These solutions indicate a magmastatic steady-state pore gas pressure and that the
steady-state porosity profile accommodates this linear pressure increase by increased
compaction with depth (figure 2a). Furthermore, the dimensionless pressure gradient
is always normalized as df /dz = −1 regardless of the choice of the parameters fa

and φa; however, the porosity profile changes significantly for different choices of
these parameters (figure 2b). Indeed, for small fa, the porosity profiles are most
heavily curved, which can be seen as phase plane curves with the lowest values of
dp/dφ (figure 2). The steady-state pressure plays a particularly important role for
understanding how the transient equations evolve since the expansion and compaction
terms of (2.7a) and (2.7b) are functions of the deviation from steady-state pressure,
that is, perfect gas–lava pressure coupling.
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3. Linearization and wave growth analysis

We linearize p, φ around the steady-state profiles, now introducing two additional
shorthand notations: the porosity contrast between the surface of the matrix and
percolation threshold (1φ = φa − φc) and the steady-state permeability ks(z) =
1φbfa/f (z). For a small parameter ε, we substitute the ansatz(

p(z, t)
φ(z, t)

)
=

(
ps(z)
φs(z)

)
+ ε

(
p(1)(z, t)
φ(1)(z, t)

)
+O(ε2) (3.1)

into (2.7a) and (2.7b) and take the limit ε→ 0.

3.1. Uniform background state
To examine the effects of the background state on the behaviour of perturbations,
we first consider the assumption of a uniform background state that has typically
been used in linear stability analyses (LSA) of similar gas–lava mixtures (Manga
1996; Jellinek & Bercovici 2011; Yarushina et al. 2015). In this formulation, f ,
φs and ks are taken as constants. This implies either of the unphysical conditions:
depth-invariant lava pressure or zero lava dome thickness. However, we make this
assumption to simplify the analysis and give insight into the contrast between the
behaviour of the system under uniform and non-uniform background states which we
examine in greater detail below. Following the linearization procedure yields

φs ∂tp(1) = α1φbfa ∂zzp(1) − βfp(1) (3.2a)
∂tφ

(1)
= β(1− φs)p(1), (3.2b)

where to first order, p(1), φ(1) are the scaled perturbations. A classical LSA for a
parabolic system typically makes the ansatz of a plane-wave solution (p(1), φ(1)) =
exp[iκz+ λ(κ)t] with constant wavenumber (κ) and then examines the form of the
dispersion relation λ(κ):

λ(κ)=−
f
φs
(αksκ

2
+ β)6 0, (3.3)

which implies that for all physical values of the parameters, the background state
is stable and perturbations will decay. Additionally, because λ is purely real,
perturbations decay in place, eliminating any wave motion. However, the simplicity
of a constant background state does not capture the reality of background gradients
present in the steady-state solutions.

3.2. Non-uniform background state
Using the properties of the steady states (2.12a), (2.12b), the linearization ansatz
yields (after much simplification)

1
α
∂tp(1) =wp ∂zp(1) +wφ ∂zφ

(1)
+Dp ∂zzp(1) + Rppp(1) + Rpφφ

(1) (3.4a)

1
α
∂tφ

(1)
= Rφpp(1), (3.4b)
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with boundary conditions giving zero perturbation flux at the base and zero
perturbation pressure at the surface:

∂zp(1) = 0 on {z= 0} × [0,∞] (3.5a)
p(1) = 0 on {z= 1} × [0,∞] (3.5b)

and

wp(z)=−ks(z)φs(z)−1 (3.6a)

wφ(z)=−b1φb−1f (b−1)/b
a f (z)1/bφs(z)−1 (3.6b)

Dp(z)=1φbfaφs(z)−1 (3.6c)

Rpp(z)=−[ks(z)f (z)−1
+ γ f (z)]φs(z)−1 (3.6d)

Rpφ(z)=−ks(z)(b−1)/bφs(z)−1 (3.6e)
Rφp(z)= γ [1− φs(z)], (3.6f )

where

γ =
β

α
=
µh2

0

k0ζ
=

h2
0

δ2
. (3.7)

For a particular dome height h0, the parameter γ balances the permeability k0 and
volume viscosity ζ of the lava medium or alternately, it represents a comparison of
the dome thickness and compaction length. Additionally, we define a new scaled time
tα = αt and write the system as a matrix equation:

∂tαu=W ∂zu+ D ∂zzu+ Ru, (3.8)

where u = (p(1), φ(1))ᵀ, W =
(wp wφ

0 0

)
, D =

(Dp 0
0 0

)
and R =

(Rpp Rpφ
Rφp 0

)
. In this case, the

plane-wave ansatz is unjustified because all of the coefficients in (3.8) depend on
position as the waves are propagating through a non-uniform background. Here, we
are concerned mainly with the growth or decay of waves and so we convert this
problem to an eigenvalue problem for the wave growth rates.

3.2.1. LSA as an eigenproblem
We seek a separated solution of the form: u(z, t) = eλtα û(z), where the growth

constant for the unscaled non-dimensional time can be obtained from the solution as
u(z, t)= eλαtû(z). This leads to the generalized eigenvalue problem

λû(z)=Lû(z), (3.9)

where the linear operator L =W (z) ∂z + D(z) ∂zz + R(z). We solve this eigenproblem
numerically because of the variable coefficients on all derivatives, meaning that the
eigenfunctions (û(z)) will not be plane waves. Instability of the steady-state flow
(wave growth) is given if any eigenvalues exist with Re{λ} > 0, whereas linear
stability is given if no such eigenvalues exist.

3.2.2. Numerical solution to eigenvalue problem
The above eigenvalue problem is solved numerically by discretizing the linear

operator with central finite differences (FD) and the coefficients are evaluated at
z= j1z:

λûj =
1

21z
Wj(ûj+1 − ûj−1)+

1
(1z)2

Dj(ûj+1 − 2ûj + ûj−1)+ Rjûj, (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 a
t B

uf
fa

lo
 L

ib
ra

ri
es

, o
n 

27
 A

ug
 2

01
9 

at
 2

1:
21

:5
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.211
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


96 D. M. Hyman, M. I. Bursik and E. B. Pitman

with boundary conditions at z = 0 ( j = 1) and z = 1 ( j = J) as specified by (3.5a)
and (3.5b). Because the discrete representation of L is a 2(J − 2) × 2(J − 2) block-
tridiagonal matrix, there will be J−2 pairs of eigenvalues corresponding to the growth
rates of the discretized eigenfunctions.

3.2.3. Distribution and variation of eigenvalues and eigenfunctions
For a given set of free parameters in the eigenvalue problem (γ , fa, φa), the

eigenvalues (λj ∈ C) are mainly distributed along the negative half – Re{λ} line;
however, a small fraction have non-zero imaginary part (Im{λj} 6= 0) and are near
the stability–instability threshold (figure 3). For some ranges of the parameters, there
exists eigenvalues with Re{λj}> 0. Focusing on these positive eigenvalues, for a given
value of γ , they are distributed in two symmetric branches (in the upper and lower
half-planes) each of which generally begin near the origin and increase in imaginary
and real parts (figure 3a). In many cases, there is one eigenvalue on each branch with
Re{λj} significantly larger than nearby eigenvalues. This larger positive eigenvalue
corresponds to a dominating growth rate of its associated eigenfunction wave profiles.
Because of this, these scenarios represent unstable flow regimes, causing particular
excited oscillation to grow with time.

Varying the ratio of expansion rate to diffusion rate (γ ) and examining the
eigenvalues with largest real parts (λmax), it is clear that λmax(γ ) increases with γ ,
meaning that for greater expansion and contraction and lesser diffusion, waves grow
more quickly and the instability is stronger (figure 3). Stated in terms of physical
parameters, less viscous or less permeable lavas allow greater wave growth than more
viscous or permeable lavas. Where permeability is relatively low, pressure anomalies
cannot relax sufficiently quickly by porous flow and as a consequence, the porosity
will expand or contract as the pressure anomaly grows. Inversely, very permeable
lavas allow efficient gas escape, smoothing out steep pressure gradients, limiting
the growth of high and low pressure anomalies. Similarly, if the matrix viscosity
is relatively low, even a small pressure anomaly will cause a significant change in
porosity since over-pressurized regions are allowed to expand and under-pressurized
regions allowed to contract against a weaker viscous resisting force in the matrix.
These effects become self-reinforcing since the waves travel (Im{λ} 6= 0). In particular,
the porosity governing equation predicts that a travelling pressure wave will induce
a porosity wave that lags behind as it travels. As a result, the negative phase of a
pressure wave lowers the porosity and permeability of the lava and the next arriving
positive pressure wave phase will not diffuse through the low-permeability region
easily, causing the pressure to rise behind the constriction, resulting in overall wave
growth.

The dominant eigenfunctions at each value of γ show that the maxima of the
eigenfunction moduli or the location of the most principally excited waves gets closer
to the surface for increasing γ (figure 3b). Additionally, as γ increases, the pressure
and porosity eigenfunctions have the same general shape; however, for the pressure,
the maximum of the modulus decreases whereas for the porosity, the maximum
increases, meaning that for larger γ , excited pressure waves are proportionally
smaller in magnitude than their associated porosity waves. The structure of these
eigenfunctions shows that the number of waves in the domain also increases, that is,
the mean wavelength of the excited waves decreases with increasing γ . This trend
corresponds with the notion that for small γ , the system is diffusion dominated,
resulting in larger wavelengths and smoother gradients; however, for larger γ , the
system experiences very little diffusion and so high frequency waves are allowed to
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FIGURE 3. (Colour online) (a) Distribution of a subset of eigenvalues (growth parameters)
in the complex plane for fa = 0.05, φa = 0.5. The colours represent different values of γ .
The eigenvalue with largest real part at each value of γ is represented by a larger, brighter
circle, corresponding to the dominant wave that will grow for that particular γ . Inset figure
shows the distribution of all of the eigenvalues from which those in the main figure are
subset. The approximate range of the inset figure is −2500< Re{λ}< 1,−2< Im{λ}< 2.
(b) Eigenfunctions associated with the dominant eigenvalues over six values of γ showing
the real part (blue, solid), imaginary part (red, dotted) and the region bounded by the
modulus (green).
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FIGURE 4. (Colour online) (a, left) The variation of λmax(γ ) for different values of
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associated steady-state porosity profile corresponding to each value of fa. (b) Contours of
λmax(γ , fa) for two values of φa showing the modification of the instability threshold (bold
lines) with surface porosity.

grow. This instability is not universal for all values of fa and φa. For increasing values
of fa and smaller γ , Re{λmax} decreases until all even the largest eigenvalue becomes
negative, implying linear stability of the steady state for those parameters (figure 4a).
For each set of stable fa and φa, there are stable and unstable values of γ . The critical
value at which this threshold occurs (γc) increases with both fa and φa (figure 4b).
The complexity of this bifurcation contrasts with the unconditional stability predicted
from the assumption of a uniform background state. An important consideration is
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the fact that as fa increases, the pressure and porosity background states become
more approximately uniform and linear stability is predicted over a wider range of
γ (figure 4b). This mirrors the conditions of the LSA for a uniform background and
agrees with that analysis. Critically, when fa is small, significant gradients form in
the steady-state porosity field resulting from gravitational compaction of the column
(figure 4b). When fa is large, the dome is short and there is less overburden on
the base of the dome which experiences less gravitational compaction. From these
considerations, it is clear that increased dome height causes the porous lava to
compact more, creating larger gradients in the dome’s porosity, which in turn initiate
instability onset. Although this generalized eigenvalue problem yields insight into
the generation of fluid instabilities in this system, significant simplifications have
been made in reducing the highly nonlinear governing equations to a linear form.
Consequently, the LSA above does not provide insight into higher-order processes
which may limit the initial wave growth nor does it yield any insight into the
dynamics near the φ→ φ+c limit. Building from these simple analyses, we will next
solve the one-dimensional (1-D) system ((2.7a) and (2.7b)) numerically to study the
nonlinear effects that follow from the linear wave growth analysed here and gain
insight into general characteristics of solutions.

4. Numerical solution of governing equations
In order to extend the above analysis of small amplitude pressure and porosity

waves to determine the behaviour of these waves as they grow, we solve the 1-D
system numerically given physically realistic boundary and initial conditions and
examine some characteristic features of the solutions. The goal of this effort is to
observe the behaviour of the system after it has evolved out of the regime of small
amplitude waves which were studied in the LSA. Boundary data for the problem
are estimable due to the constant ambient pressure at the dome surface and the
inference of a pulsing flux of gas from depth based on observations of short-period
(∼100–1000 s) oscillations in system-scale degassing observed across a variety of
volcanic systems including lava dome systems (e.g. Tamburello et al. 2013; Hyman
et al. 2018).

We numerically solve an initial-boundary value problem (IVBP) for (2.7a) and
(2.7b) taking the steady-state pressure and porosity profiles as initial conditions and
specifying boundary data for (2.7a) only. The system to be solved may be stated:

φ ∂tp= α ∂zF− βp(p− f ) (4.1a)
∂tφ = β(1− φ)(p− f ) (4.1b)

p(z, 0)= f (z) (4.1c)
φ(z, 0)= φs(z) (4.1d)

F(0, t)=−ΛsQ(t) (4.1e)
p(1, t)= fa, (4.1f )

where the flux is F=K(φ)p ∂zp, Λs is the steady-state flux and Q(t) is the temporal
behaviour of gas flux into the dome base. To test the response of the dome pressure
and porosity to oscillatory gas supply, we consider the dimensionless function

Q(t)= 1+ q sin(2πt) (4.2)

in which there is one oscillation of relative amplitude q per dimensionless time unit,
that is, time for the solution is measured in the number of flux oscillations elapsed.
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This included boundary flux is intended to incorporate the oscillatory degassing flux
observed at many volcanic systems including dome systems (Holland et al. 2011;
Girona et al. 2015; Hyman et al. 2018). Although an unstable ( fa, φa) pair would
produce instability without an added boundary flux, in nature the instability is initiated
in a gas flow setting that includes these O(ε) to O(1) oscillations. Consequently the
boundary flux data are included in a simplified manner – unimodal oscillations – to
capture the basic aspects of this reality.

4.1. Finite-difference scheme
In solving this system numerically, we employ a modified backward Euler finite-
difference (BEFD) scheme based on the well-established methods of Huyakorn
& Pinder (1983) for modelling multiphase subsurface flow problems. To solve the
coupled equations for pressure and porosity, equations (4.1a) and (4.1b) are discretized
on a staggered, uniform grid where the pressures are located at the nodes (z = j1z)
and the porosity and fluxes evaluated between the nodes (z = ( j ± 1/2)1z) on the
interval z ∈ [0, 1] =1z{1, . . . , J}. This approach respects the fact that variables like
permeability and porosity control the flux of gas through the dome and thus should
be located between nodes. Consequently, all pressure terms in the porosity equation
are necessarily averaged between the two nearest nodes to the porosity half-node sites.
For the pressure equation, since the flux is evaluated at the half-nodes, the pressure
in the flux is similarly averaged. This local averaging in the numerical scheme can
be thought of as a local volume element averaging as in Whitaker (1999). Using
the staggered grid and local volume element averaging ensures that in simulating of
the steady-state conditions, the diffusivity in the pressure equation (K(φ)p) remains
constant and reproduces the steady state upon updating.

The main modifications to the BEFD scheme is that the compaction terms are
evolved according to forward differencing and the time steps are dynamic and are
performed with a mid-time predictor–corrector step. The dynamic time stepping is
based on the Jacobian of the compaction term in (4.1a) at the last time step, that is

tn+1
− tn
=1tn+1

= 0.1
[

max
j∈{2,...,J−1}

|(Jp)
n
j |

]−1

, where (Jp)
n
j = β

fj − 2pn
j

φn
j

. (4.3)

Due to the nonlinearity in the diffusion term, for numerical solution to be tractable,
this scheme is partially linearized by evaluating the non-constant diffusivity (K(φ)p)
at the previous time step. In the discretization of (4.1a), the derivatives of the fluxes
are evaluated as the difference across the edges of the cells:

〈φ∗j+1/2〉−
pn+1

j − pn
j

1tn+1
=
α

1z
(Fn+1

j+1/2 − Fn+1
j−1/2)− βp∗j (p

∗

j − fj) (4.4a)

φn+1
j±1/2 − φ

n
j±1/2

1tn+1
= β(1− φ∗j±1/2)〈p

∗

j − fj〉
±
, (4.4b)

where the fluxes in (4.4a) are

Fn+1
j±1/2 =K∗j±1/2〈p

∗

j 〉±

(
±

pn+1
j±1 − pn+1

j

1z

)
(4.5)
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and the local volume averages are 〈(·)j〉±=1/2[(·)j+ (·)j±1], centred at z= ( j±1/2)1z.
Boundary values for (4.4a) are discretized as

pn+1
2 − pn+1

1

1z
=−

Λs

K∗1+1/2〈p
∗

1〉+
[1+ q sin(2πtn+1)] (4.6a)

pn+1
J = fa. (4.6b)

The scheme is made more accurate with the mid-time predictor–corrector step,
wherein (4.4a) and (4.4b) are first solved for a half time step with ∗= n (predictor at
n+ 1/2). In the second stage, the predicted values (pn+1/2

j and φn+1/2
j±1/2 ) are substituted

for the starred quantities and the equations are solved again for the full time step
with updated estimates of the nonlinear coefficients (corrector).

4.2. Wave-diffusion behaviour
Solutions of (4.4a) and (4.4b) oscillate around the steady-state solutions ps(z) and
φs(z) in a series of diffusive waves propagating toward the surface. As pressure waves
pass, there are concordant porosity waves that lag just behind the pressure pulses
(figure 5). Early in simulations, waves grow in a manner similar to the eigenfunctions
of the LSA above; however, if the solution is continued, these waves grow and steepen
as they propagate toward the surface (figure 5). This is an indication that nonlinear
processes in the diffusion term of the pressure equation are dominating the simple
linear wave growth predicted by the LSA. In general, the propagating pressure waves
are steepest in the deepest troughs of the porosity waves. The amplitude of these
waves continues to grow until φ= φc, where the next arriving pressure wave steepens
into a discontinuity (shock) (figure 5). In the regions of φ 6 φc, the pressure and
porosity evolve as predicted by (2.11), with the pressure increasing asymptotically
back to the local magmastatic pressure ( f (z)) from p = pc(z). Once multiple shocks
develop, the excess pressure (p− f ) takes the form of a series of ‘N-waves’ separated
by regions of magmastatic pressure in which φ < φc (figure 5). The shocks generally
slow and decay slightly as they propagate to shallower levels in the domain. Because
the N-waves are separated by regions which are impermeable, there is no flow from
one shock-bounded region to the next. Although no systematic study of the Rankine–
Hugoniot relations for shock propagation speed has been made here owing to the
complexity of the flux term, it is noted that in the simulations, successive N-waves
rarely interact. These rare interactions always result in the up-gradient N-wave quickly
diffusing into the down-gradient N-wave as the impermeable region separating the
converging shocks becomes narrower until it vanishes (figure 5a,b (right panels)). This
behaviour is merely a consequence of the sudden hydraulic connection of two isolated
permeable domains with different mean pressures. Although shock development is
common across a wide set of free parameters in the problem, this wave behaviour
is not universal. Still, in cases without shock development, waves steepen as they
propagate toward the atmospheric boundary.

5. Lava dome survival experiment
Following from the study of wave growth in the LSA and the observation of

nonlinear wave growth and development of shocks in the direct numerical simulation,
we are interested in how these characteristics affect the pressurization and destruction
of lava domes. Particularly, we are interested in the sudden explosion of lava
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FIGURE 5. Numerical solution ( fa = 0.05, φa = 0.5, α = β = 10, q = 0.1) showing wave
propagation, steepening and shock formation for porosity (a) and pressure (b) profiles.
(a, left) Dashed lines on first and last porosity profiles represent steady-state porosity,
the dotted line on first profile represents the percolation threshold φc, and the black
regions represent the areas with φ < φc. (b, left) Light and dark grey shaded regions
represent positive and negative pressure anomalies respectively. (a, right) and (b, right)
show the behaviour of the porosity and pressure respectively late in the simulation during
an interaction of two shocks between 0 6 z/h0 6 0.25.

domes undergoing the type of oscillatory degassing observed at many volcanoes.
As mentioned above, to simulate the overall behaviour of a long period of lava dome
extrusion and destruction cycles, the space of lava properties must be sampled widely,
resulting in a set of α and β that vary over many orders of magnitude. Using the
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Gas flow in viscously deformable porous media 103

result of the LSA as a guide, we choose a representative pair of fa and φa ( fa= 0.05,
φa = 0.5) which initiate instability for a wide range of γ and sample α and β to
test how long the given sample will survive until fragmentation. To assess this, a
fragmentation criterion must be established.

5.1. Porosity-dependent fragmentation threshold
From experimental studies of lava fragmentation, Spieler et al. (2004) determined
an empirical fragmentation threshold relationship that relates the pressure difference
required to fragment a sample (1p) to the sample porosity as

1p=
σm

φ
, (5.1)

where σm is taken as 1 MPa, which they noted should not be expected to hold
for highly porous rocks. This relationship is an alternative to earlier studies which
had concluded that porosity was the main control on fragmentation, considering
fragmentation thresholds of porosities between 65 and 85 % (Sparks 1978; Sparks
et al. 1994). As a result we modify the threshold of Spieler et al. (2004) to respect
the failure of this relationship for large porosity:

1p(φ)=


1 MPa
φ

φ < 0.8

0 φ > 0.8.
(5.2)

We incorporate this threshold into the numerical model presented above by predicting
failure at time tf = tn+1 if

pn+1
j − fj >1p(〈φn+1

j+1/2〉−). (5.3)

In doing so, we can examine the predicted failure times across a range of
representative parameters for intermediate-composition lava domes (table 1).

In the development of the LSA, we showed that for initial wave growth, the
diffusion rate parameter α mainly scales time during wave growth whereas the ratio
of expansion rate to diffusion rate (γ ) controls the behaviour of these waves. In the
nonlinear case, α is expected to not only scale time, but also control some nonlinear
effects due to the severe nonlinearity of the diffusion in (2.7a) and so α and β are
varied independently in the ranges 0 6 log(α)6 4 and −1 6 log(β)6 2. Additionally,
the boundary flux oscillation strength is varied in the range 0.1 6 q 6 1. As a result,
we consider the failure time as a function of the three-dimensional sample space:
tf : S⊂R3

→R.

5.2. Parametric dependence of dome failure times
As anticipated by the derivation of the LSA, the diffusion rate parameter α has the
strongest control on the failure time followed by the compaction rate parameter β
and relative boundary oscillation amplitude q. Although q 6= 0 is the only condition
generating the non-equilibrium conditions, variation of q explains almost none of the
variability in computed survival times (tf ) compared with α and β (figure 6a–c). For
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FIGURE 6. (Colour online) (a–c) The variation of tf with α, β and q for several values of
the other two parameters. (d) Logarithmic contour plot of tf (α, β) generated by averaging
values of tf (α, β, q) through q and a single convolution with a 3× 3 running average filter.
Red dotted contours represent values of γ .

example, the full domain of q is only able to change tf (q) by less than one order of
magnitude (figure 6a) compared with ∼ 2 orders of magnitude for β (figure 6b) and
1− 2 orders of magnitude for α (figure 6c). Because of this, we principally analyse
the variation of tf through the parameter space of {α}× {β} only, averaging tf through
the full space along q (figure 6d). The computed function tf (α, β) is only defined on
a subset of the parameter space approximately where γ > O(10−2) (figure 6d). The
excluded region includes parameter values for which initial instability causes wave
growth as predicted by the LSA; however, higher order terms limit the growth and the
pressure and porosity waves are bounded below the fragmentation threshold. Analysis
of these solutions is beyond the scope of the present work. Within the domain of finite
fragmentation times, increased β decreases the survival time with an approximately
exponential decay. By contrast, increasing α decreases tf on approximately α < 10β;
however, with higher α, the survival time grows quickly until it meets the undefined
region in which the higher-order effects prevent fragmentation. Although the value of
γ plays a large role in the initial wave growth and in the behaviour of the excited
waves, it does not seem to exert a strong control over the timing of failure by itself.
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FIGURE 7. (Colour online) (a) Non-dimensional and (b) dimensional contour plots of
the threshold functions (a) γc( fa, φa) and (b) hc

0(δ, φa) showing the threshold for stability
versus instability. (a) Values of γ larger than γc( fa, φa) yield instability. (b) Values of h0
larger than hc

0(δ, φa) yield instability. White space indicates regions without data coverage.

6. Discussion
6.1. Transition between stability and instability

From the numerical LSA for non-constant background conditions, it is clear that
varying the dome height and the surface porosity causes growth rates to transition
from stable Re{λmax}< 0 to unstable Re{λmax}> 0 for some critical value of the ratio
of diffusion and compaction rates (γc). In determining the onset of instability, we
are mainly interested in determining the relationships between the most uncertain or
variable physical parameters: k0, ζ , ṁs, Tdome, A and h0. Because of the nonlinear
transformation of these physical parameters into γ , fa and φa, which governing the
underlying physics of instability onset, the effects of the different physical parameters
cannot be fully decoupled. However, by fixing the values of the better constrained
physical parameters pa, ρ lava, and g (table 1) and rewriting h0 and δ in terms of fa,
γ gives

h0 =
pa

ρ lavagfa
and δ =

√
k0ζ

µ
=

pa

ρ lavagfa
√
γ
. (6.1a,b)

Consequently, the relationship between fa and the critical value of γ for instability
onset can be mapped onto a similar relationship between the compaction length δ and
the threshold value of dome thickness for instability onset (hc

0) (figure 7). The dome
thickness required to trigger instability onset increases with both δ and φa (figure 7).
This suggests that more permeable, more viscous lavas can support thicker domes
before the onset of flow instability. Similarly, the critical dome thickness hc

0 increases
with surface porosity, which is related to higher mean gas flux (ṁs/A, equation (2.13)).

Although the background pressure gradient is unchanged by variations in dome
thickness or surface porosity, the porosity field is affected by the dome thickness
and the surface porosity or gas flux. Increased dome thickness gives a smaller
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FIGURE 8. Survival distribution for (a) lava dome volumes measured by (Gómez-Vazquez
et al. 2016) at Volcán Popocatépetl, Mexico and (b) time to fragmentation as computed
for the model in this study.

background porosity gradient and higher porosities throughout whereas increased φa

increases the porosity gradient and values near the surface with very minor increases
in porosity away from the surface. Because gas flow becomes unstable when domes
cross a thickness threshold, the likelihood of flow instability grows the longer lava
dome extrusion takes place. This in turn increases the likelihood of lava dome
overpressurization and destruction.

6.2. Survival time distribution
To make an ensemble model of the above numerical experiment, the above parametric
survival function tf (α, β) is sampled uniformly in log α and log β where parameters
such as lava viscosity and permeability may vary over many orders of magnitude as
could be reasonably expected in a volcanic system like Popocatépetl. The distribution
of survival times generated by the numerical experiment show a significant decrease in
frequency with survival time (figure 8b). The number of domes surviving longer than
a given time – the survival distribution – can be modelled as a decaying exponential
over different domains of the distribution (figure 8b). In general, successive lava
dome eruptions may be expected to extrude lavas with more uniform properties than
were sampled here and as a result would be expected to show significantly less total
dispersion in survival times. Because different exponentials fit different segments
of the survival distribution, narrower parameter sampling would likely result in a
distribution which conforms better to one particular exponential survival distribution.
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Although the numerical solutions generating this distribution were generated from a
specific set of fa and φa, survival distributions constructed from different ( fa, φa) pairs
(figure 7a) are expected to have similarities with the distribution shown in figure 8.

Because of the natural scaling of time to measure the number of boundary flux
oscillations, the survival times record the number of such oscillations between when
the dome grows to the thickness h0 and when fragmentation begins. Although this
is not a perfect representation of time since instability onset, we consider it a useful
approximation. Consequently, the modelled survival times are expected to relate to the
volume of lava extruded at the time of explosion because of the slow, approximately
continuous growth of lava domes over the considered time scales. In this context,
the basic characteristics of the survival time distribution generated here appears to
compare favourably with the survival volume distribution measured at Popocatépetl,
Mexico from 1996–2016 (figure 8a) (Gómez-Vazquez et al. 2016). Because of the
large uncertainty in extrusion rates, lava properties, and the fact that dome thicknesses
at explosion were not consistent at Popocatépetl during this period, the theoretical
survival distribution can only be compared to the natural data qualitatively. Despite
this, the apparent agreement suggests that lava dome growth and explosion cycles may
be governed by the dynamics of gas–lava VDPM flows described here and that despite
the unpredictability of individual lava dome explosion cycles at similar volcanoes, the
variation in survival volumes of lava domes is the product of random variation in the
underlying parameters governing the flow such as the lava viscosity and permeability.
Because the permeability coefficient used in the present study is related to the mean
bubble radius (rb) by k0 ≈ 0.13 r2

b, some of the properties of these flows could be
reconstructed from detailed study of bubble sizes in cooled lava dome remnants or
the fragmental products of lava dome explosions.

7. Conclusions

(i) The pressure-driven flow of compressible pore fluids in viscously deformable
porous media as applied to gas in lava domes is governed by nonlinear parabolic
differential equations describing pressure and porosity diffusion and wave motion. In
this formulation, equilibrium solutions exist which balance the pressure and porosity
where increased equilibrium pressure compresses the medium, lowering the porosity.
However, under non-steady conditions, positive pressure anomalies cause an increase
in the porosity and permeability of the medium which in turn accelerates the flux of
gas.

(ii) Linear stability analysis of the governing equations suggests that the flow of
gas and lava is stable for very thin domes, but as a dome grows, a thickness threshold
is exceeded and instability is generated causing the growth of pressure and porosity
waves. This instability is principally caused by the increased gravitational compaction
of the bulk medium due to the vertical nature of the problem and the compressibility
of the pore fluid. Because of the gradients present in the equilibrium solutions,
particularly that of the porosity, the growth of these waves is not uniform throughout
the lava dome thickness and the distribution of growth constants in the complex plane
is difficult to characterize. However, the onset of instability (λmax > 0) is governed
both by properties of the equilibrium solution including the dome thickness h0, the
surface porosity φa (a measure of the mean gas flux), and the compaction length,
itself a measure of the permeability and viscosities of the lava dome and gas. In
particular, less permeable, less viscous domes are more unstable for a given dome
thickness than domes with higher permeability or lava viscosity since more efficient
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gas escape (higher permeability) and a more rigid medium (higher lava viscosity)
hinder the growth of pressure and porosity waves.

(iii) In general, the flow of gas and lava approaches and eventually exceeds the
critical thickness for instability as a particular lava dome grows over time. Above
this height threshold, the steady flow of gas through the lava medium is unstable,
producing growth of pressure and porosity waves which may cause pressurization-
induced destruction of the lava dome. Because lava domes thicken over the duration
of an eruption, the likelihood of instability onset and dome destruction increases over
time, even without specific knowledge of the lava viscosity and permeability.

(iv) Direct numerical experimentation across a wide range of lava parameters
confirms this inference from the study of linear stability, suggesting that pressure
and porosity waves grow sufficiently large to cause fragmentation of the lava
medium, which would in turn initiate dome destruction. Qualitative agreement
between the distribution of survival times generated by random sampling in the
numerical experiment with the natural dome volume survival distribution generated
by Gómez-Vazquez et al. (2016) from lava dome extrusions at Volcán Popocatépetl,
Mexico from 1996 to 2016 suggests that the dome thickening-induced instability may
drive the cycles of lava dome growth and destruction at Popocatépetl and perhaps
other lava dome-producing volcanoes.
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