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Abstract

Herbivores mediate the abundances of primary producers both from the top-down, by
consuming them, and from the bottom-up, by recycling nutrients. Whereas the top-down effects
of herbivores on algae in marine ecosystems are well-documented, less is known about their
roles as mediators of local-scale nutrient availability. We conducted a series of surveys and
measurements of tide pools and the grazers in those pools between October of 2016 and June of
2017 at an intertidal site on the coast of Southern California, USA (33° 35' 16.3" N, 117° 52' 1.5"
W). We surveyed grazer abundances in the field, measured biomass of representatives from four
different grazer groups (littorine snails, limpets, chitons, and turban snails), measured
ammonium excretion rates, and quantified ammonium accumulation rates in tide pools at our
study site. We found that different grazer groups were characterized by different per-biomass
ammonium excretion rates. Some grazer groups — turban snails and chitons — contributed more
ammonium than predicted by their biomass, whereas other grazer groups — littorine snails and
limpets — contributed less ammonium than predicted by biomass. Because of these differences
between grazer groups, ammonium accumulation rates in tide pools at our study site were
effectively predicted based on the ammonium excretion rates of the different grazer groups.
However, ammonium accumulation rates were not related to total herbivore biomass. Our results
highlight the importance of grazer identity — and particularly the role of species such as turban
snails that contribute disproportionately to nutrient recycling — in understanding the contributions

of grazers as mediators of bottom-up processes in marine systems.

Key words: ammonium; bottom-up; diversity; grazer; herbivore; nitrogen; rocky intertidal
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Introduction

Despite decades of work documenting the roles of marine herbivores in mediating the
diversity and abundance of primary producers (e.g., Kitching and Ebling 1961; Lubchenco 1978;
Nielsen 2001; Williams et al. 2013), previous work in benthic marine systems has often ignored
the fact that herbivores not only consume algae, they also affect nutrient availability. Herbivores
therefore affect primary producers not only from the top-down, via consumption, but also from
the bottom-up, by excreting inorganic nutrients as waste products. For example, marine
invertebrate herbivores excrete ammonium (Carpenter 1986; Taylor and Rees 1998; Bracken et
al. 2014), thereby enhancing nutrient availability, algal growth (Bracken et al. 2014) and
productivity (Carpenter 1986). Nitrogen is an important limiting nutrient in coastal marine
systems (Ryther and Dunstan 1971; Corwith and Wheeler 2002), so predicting rates of
consumer-mediated nitrogen recycling is essential to understanding nutrient availability and
limitation in marine ecosystems.

However, most marine systems are characterized by diverse consumer assemblages,
which makes predictions of those consumers’ roles as mediators of nutrient availability
potentially difficult (Burkepile et al. 2013; Layman et al. 2013). For example, Taylor and Rees
(1998) found that ammonium excretion rates of a diverse assemblage of mobile epifauna in
seaweed beds are nonlinearly related to invertebrate body mass, suggesting that mass- or taxon-
specific ammonium excretion rates are necessary in order to predict the contribution of a diverse
invertebrate assemblage to nutrient availability. Furthermore, McIntyre et al. (2008) quantified
ammonium excretion rates of 47 co-occurring species of freshwater fish and found that even
after accounting for body mass, there were significant differences between species’ ammonium

excretion rates.
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We took a similar approach to understanding the role of herbivores as mediators of local-
scale nutrient availability in a rocky intertidal ecosystem. Recent work has highlighted the
importance of local-scale consumer-mediated nutrient loading in mediating the diversity (e.g.,
Bracken and Nielsen 2004) and growth (e.g., Bracken 2004; Pfister 2007; Aquilino et al. 2009)
of algae on rocky shores, but much of that work has focused either on a single consumer species
(e.g., the snail Littorina littorea; Bracken et al. 2014) or on consumers that do not actually eat the
algae that benefit from the nutrients that they excrete (e.g., the mussel Mytilus californianus;
Bracken 2004; Bracken and Nielsen 2004; Pfister 2007; Aquilino et al. 2009). Given the high
diversity of herbivores in many rocky shore systems (Nielsen 2001; O’Connor et al. 2015), there
is a clear need to evaluate the collective role of these consumers as not only top-down consumers
of algae but also as bottom-up facilitators.

We addressed this knowledge gap by using a combination of field surveys, measurements
of biomass and ammonium excretion of different herbivore species, and measurements of
ammonium accumulation rates in tide pools to evaluate the role of a diverse herbivore
assemblage in mediating nutrient availability on a Southern California rocky shore. Local-scale
nutrient inputs are likely to be especially important in this system, as ambient inorganic nitrogen
concentrations in the adjacent nearshore ocean are generally low (< 5 umol L") and have been
declining for the past several years (Martiny et al. 2016). Based on previous work, we
hypothesized that different grazer groups would be characterized by different ammonium
excretion rates. We therefore predicted that the rate of ammonium accumulation in the field
would be better predicted based on the ammonium excretion rates of the component species and

not by the total biomass of herbivores in the tide pools.



83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Page 5

Materials and Methods
Study location and species

Surveys, field measurements, and collections were conducted in a set of natural tide pools
in a rocky reef at Corona del Mar State Beach on the coast of Southern California, USA (33° 35'
16.3" N, 117° 52" 1.5" W). All research was conducted between October of 2016 and June of
2017 under California Department of Fish and Wildlife Scientific Collecting Permit SCP-13405.
The rocky substratum at the site is composed of sedimentary Monterey formation intertidal reefs.
Volumes of the tide pools in this study averaged X + SE =22.6 + 3.6 L, n = 18, and bottom
surface areas averaged 0.46 + 0.05 m?.

These tide pools were very high on the shore; tidal elevations, determined using a self-
leveling laser level (CST/berger, Watseka, Illinois, USA), averaged X + SE = 1.58 £ 0.04 m
above the local tidal datum at mean lower-low water. Based on predicted tide heights at the
entrance to Newport Bay (Flater 1998), 1.1 km from our study site, these tide pools were only
submerged for 5.8% of the time over the year immediately preceding our measurements. In the
absence of waves, based on these predictions, tide pools were submerged only during the highest
tides of each month, and they were often isolated for several days at a time during neap tides.
The median isolation time for these pools in the absence of wave splash was 23.0 h, but waves
reduced the typical duration of pool emersion (M. Bracken, personal observation). Thus, given a
wave swell height of 0.5 m, which is not unusual at our study location (O’Reilly et al. 2016), tide
pools would be either washed over or covered for 32.6% of the time, with a median isolation
time of 8.3 h.

Despite their elevation on the shore, these pools were characterized by a diverse

invertebrate assemblage primarily composed of herbivorous gastropods. These included littorine
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snails (Littorina scutulata [Gould 1849] and Littorina plena [Gould 1849]), limpets (Lottia
limatula [Carpenter 1864], L. scabra [Gould 1846], and L. strigatella [Carpenter 1864]), chitons
(Cyanoplax hartwegii [Carpenter 1855] and Nuttalina californica [Reeve 1847]), and turban
snails (Tegula funebralis [A. Adams 1854] and T. gallina [Forbes 1850]). Collectively, these
grazing mollusks represented the vast majority of invertebrates in the tide pools, though pools
also contained occasional mussels (e.g., Brachidontes adamsianus [Dunker 1856] and Mytilus
californianus [Conrad 1837]), hermit crabs (e.g., Pagurus samuelis [Stimpson 1857]), and sea
anemones (Anthopleura spp.). None of these invertebrates were abundant enough, relative to the
grazers, to appreciably modify nutrient availability. Other, smaller invertebrates, such as
copepods and amphiphods, were rare to absent in the pools. Macroalgae were also virtually

absent from the tide pools, and the grazers primarily consumed periphyton.

Grazer abundances and attributes

We surveyed grazer abundances in 18 tide pools by spreading a flexible mesh net across
the bottom of each pool (Foulweather Trawl Supply, Newport, Oregon, USA; Bracken and
Nielsen 2004). The net was composed of 10 cm % 10 cm squares and facilitated both counting of
grazers and measurement of tide pool surface area. Grazer abundances were divided by the
volume of each tide pool (i.e., ind L"), as we were interested in the potential for grazers to
mediate the concentration (pmol L'') of ammonium in the pools.

We collected 10 representative individuals each of Littorina scutulata/plena (these
species are not differentiable in the field), Lottia limatula, Lottia scabra, Lottia strigatella,
Cyanoplax hartwegii, Nuttalina californica, Tegula funebralis, and Tegula gallina from the tide

pools. Samples were representative of the size range of each taxon present in the tide pools. We
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dried individuals to constant mass at 60 °C, weighed them, combusted them for 4 h in a muffle
furnace at 450 °C, and weighed them again to calculate mean ash-free dry mass values for each
species. These were then averaged to calculate mean values (mg ind™!) for each grazer group:
littorine snails, limpets, chitons, and turban snails.

Ammonium excretion rates of members of each grazer group were evaluated in
microcosms containing 200 mL of saltwater (salinity of 35; Instant Ocean® Sea Salt, Blacksburg,
Virginia, USA). Each microcosm contained a travertine tile that approximated the sedimentary
Monterey formation rocks at our study site. Water in the microcosms was not stirred or aerated
in order to simulate a still-water tide pool environment. Temperatures were maintained at 20 °C
to ensure constant conditions across experimental trials that were representative of field
conditions. Grazers were collected from the field immediately prior to experimental
measurements of ammonium accumulation. We made sure that the individuals collected were
representative of the size range present in the tide pools. A consistent biomass of grazers (X + SE
=0.91 £0.01 g) was added to each microcosm at the beginning of each experimental trial.
Because members of the different grazer groups were characterized by different individual

masses (Table 1), maintaining a constant mass across grazer groups necessitated different

Table 1. Biomass (ash-free dry mass) and ammonium (NH,") excretion rates of tide pool herbivores.
Values are X + SE.

Biomass NH,* excretion
Grazer group (mg ind") (umol h'! ind ") (umol h'! g1
Littorine snails 6.8 0.5 0.021 +0.004 3.1+£0.6
Limpets 20.6 + 1.8 0.046 £ 0.015 22+0.7
Chitons 583+ 11.1 0.357+0.359 6.1+1.0

Turban snails 183.8 +11.6 1.751 £ 0.353 95+19
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numbers of individuals for each group in each microcosm: 135 littorine snails, 45 limpets, 15
chitons, or 5 turban snails. During trials, microcosms were covered with flexible windowscreen
mesh secured by a rubber band to prevent escapes and limit external sources of potential
ammonium contamination.

Microcosm trials were run for ~19 h, which was between the median isolation time of
field tide pools in the absence of wave splash (23.0 h) and after accounting for a 0.5 m swell
height (8.3 h). Initial water samples (n = 2) were taken from each microcosm prior to adding the
grazers, and a second set of samples was taken at the end of the trial. The ammonium
concentration in the water samples was analyzed using the phenolhypochlorite method
(Soldrzano 1969) on a UV-1800 benchtop spectrophotometer (Shimadzu, Carlsbad, California,
USA). Ammonium accumulation rates were calculated on both a per-individual (umol h'! ind™!)
and per-biomass (umol h™' g'!) basis based on the change in ammonium concentrations over
time. Ammonium accumulation rates were measured in #» = 8 microcosms for each grazer group,
split into two trials of n = 4 replicate microcosms each. Changes in ammonium concentrations in
an equivalent number of control microcosms without grazers were minimal and were accounted
for when calculating ammonium accumulation rates. Initial ammonium concentrations averaged
X+ SE=0.9+0.2 umol L.

Assessing changes in ammonium concentrations using only two points assumes a linear
relationship between ammonium accumulation and time. To verify this assumption, we
conducted a second set of trials where we collected water samples over time (0.00, 0.25, 0.50,
1.00, 2.00, 4.00, 6.00, and 22.75 h) instead of only at the beginning and end of trials. We
conducted these trials for littorine snails and turban snails because they are the most abundant

grazer groups in the tide pools, collectively composing > 90% of grazer biomass in the field. We
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compared linear and saturating (Michaelis-Menten) fits to the relationship between ammonium
concentration (umol L) and time (h) using the corrected Akaike Information Criterion (AIC,;
Burnham and Anderson 2002) and found that a linear relationship always provided a better fit to

the data.

Relative contributions to ammonium accumulation and biomass

Relative contributions of different grazer groups to ammonium accumulation rates and
biomass were calculated based on the per-individual rates of ammonium excretion (umol h™!
ind”!, Table 1), the average biomass of each individual (mg ind™!, Table 1), and the total number
of individuals of each grazer group in each of tide pools (n = 18) at Corona del Mar State Beach.
We estimated the total ammonium accumulation rate in each tide pool by multiplying the
abundance of each grazer in that pool by the measured ammonium excretion rate for that grazer
group. These values were then summed across the four grazer groups. The relative contribution
of each grazer group to the total ammonium accumulation rate was then calculated as a
percentage of the total. Similarly, we estimated the total biomass of grazers in each tide pool by
multiplying the average biomass of the members of each grazer group by the number of
individuals of that grazer group quantified in our field surveys. The relative contribution of each
grazer group to total biomass was then calculated as a percentage of that total. We calculated the
difference between each grazer group’s contribution to excretion and its contribution to biomass
by subtracting, for each tide pool, the percentage contribution to biomass from the contribution

to excretion.

Predicting the contribution of a diverse grazer assemblage to ammonium accumulation
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We quantified ammonium accumulation rates in tide pools (n = 5) at Corona del Mar
State Beach over a single day-time low tide. We deliberately chose a subset of pools that were
fully submerged during high tide and then isolated by the receding tide in the morning. Waves
were relatively large that day, so pools were only completely isolated from the ocean for ~6 h
before they were splashed again by the combination of waves and the incoming tide. We
collected water samples from each pool every hour while the pools were isolated and used the
slope of the relationship between ammonium concentration (umol L) and time (h) to calculate
the observed rate of ammonium accumulation (pmol L' h'!). We also counted and identified all
grazers in those pools on that day.

We compared ammonium accumulation rates measured in the field with predictions
based on (1) the total estimated biomass of grazers in each pool or (2) the ammonium
accumulation rate in the pool predicted based on the measured ammonium excretion rates of
each grazer group. Total estimated biomass was calculated by multiplying the average biomass
of the members of each grazer group (Table 1) by the number of individuals of that grazer group
quantified in our field surveys on that day. The predicted ammonium accumulation rate was
estimated by multiplying the average ammonium excretion rate of the members of each grazer
group (umol h'! ind!, Table 1) by the number of individuals of that grazer group quantified in

our field surveys.

Statistical analyses
Data were primarily analyzed using general linear models (PROC GLM) and t tests in
SAS v. 9.4 (SAS Institute 2012), including regression and ANOVA, after verifying that the data

met the assumptions of normality and homogeneity of variances. Analyses included evaluations
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of mean individual mass as a function of grazer group (littorine snails, limpets, chitons, and
turban snails) and ammonium excretion rates (both per-individual and per-biomass) as a function
of trial (as a blocking factor) and grazer group. Relative contributions of each grazer group to
biomass versus ammonium accumulation were assessed for each grazer group by subtracting, for
each tide pool, the calculated % contribution to biomass from the % contribution to excretion.
Averages for the n = 18 tide pools were then compared to zero using one-sample t tests. The
metabolic scaling relationship between biomass (mg ind™') and ammonium excretion rate (umol
h'!ind!') was evaluated by taking the logarithm (logio) of the mean biomass and excretion rate of
each herbivore group, then quantifying the relationship between them using a general linear
model (i.e., logio[excretion] = a-logio[biomass] + b; Glazier 2005). Of particular interest was the
slope of this relationship (a), which corresponds to the scaling exponent. Observed rates of
ammonium accumulation in the field were evaluated as either a function of (1) predicted
ammonium accumulation rates based on measured excretion rates of the different grazer groups
or (2) estimated total grazer biomass. These relationships were evaluated using general linear

models.

Results
Grazer abundances and attributes

Littorine snails were by far the most numerically abundant grazers in tide pools at Corona
del Mar State Beach (Fig. 1A); the number of Littorina scutulata/plena individuals per volume
was two orders of magnitude higher than the number of any other grazer group, and they were
the most abundant grazer in 17 of the 18 tide pools. However, littorines were also the smallest of

the grazers, with average masses 1-2 orders of magnitude lower than the other grazer groups
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Figure 1. Abundance and biomass estimates of tide pool herbivores. (A) Littorine snails
(Littorina scutulata/plena) were by far the most numerically abundant herbivores in the tide
pools (ind L!). (B) Turban snails (7egula spp.) were the herbivores with the highest total
biomass in the tide pools (g ash-free dry mass [AFDM] L), followed by littorine snails,
limpets (Lottia spp.), and chitons (Nuttalina fluxa and Cyanoplax hartwegii). Note that counts
of different herbivore species in tide pools were non-independent of each other, so statistical
comparisons were not made for abundance or biomass. In both panels, values are X + SE.

237  (Table 1). Grazer groups, thus, differed substantially in mass (ANOVA, F'(3,56) = 149.97, P <
238  0.001). Turban snails were the heaviest grazers, followed by chitons, limpets, and littorines,
239  though littorine and limpet masses were statistically indistinguishable (Tukey test, P > 0.05).
240  Thus, despite their relatively low abundances, the majority of the biomass in tide pools was

241  composed of turban snails, followed by littorines, limpets, and chitons (Fig. 1B).
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The different grazer groups also differed substantially with respect to their ammonium
excretion rates on both a per-individual basis (ANOVA, F (3,27) =21.3, P <0.001; Table 1) and
a per-biomass basis (ANOVA, F' (3,27) = 7.6, P <0.001; Table 1, Fig. 2). Turban snails excreted
the most ammonium, both per-individual and per-biomass, excreting at rates 3-4 times higher

than those of littorine snails and limpets (Table 1).

Relative contributions to ammonium accumulation and biomass

Relative contributions of different grazer groups to ammonium accumulation rates and
biomass were expressed as average percentage contributions of each group to the total biomass
and the total ammonium accumulation in the tide pools. Turban snails made the greatest
contribution to total ammonium excretion rates, followed by littorine snails, chitons, and limpets
(Fig. 3A). In contrast, littorines made the greatest contribution to biomass, followed by turban

snails, limpets, and chitons (Fig. 3A).

= 14
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Figure 2. Ammonium (NH,") excretion rates of tide pool herbivores. Per-biomass ammonium
excretion rates (umol h'! g'1) differed substantially between different herbivore groups (P =
0.002). Letters indicate statistically significant differences (P < 0.05) after Tukey correction for
multiple comparisons. Values are X + SE.
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255 Two grazer groups, turban snails (one-sample t test, 117 = 5.2, P < 0.001) and chitons
256  (one-sample t test, 117 = 3.0, P = 0.008), were predicted — based on laboratory excretion
257  measurements and abundances in tide pools — to make greater contributions to ammonium
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Figure 3. Estimated contributions of different herbivores to ammonium excretion rates and total
herbivore biomass. (A) Percent contributions of each grazer group to the estimated total excretion
rate and biomass in 18 tide pools on a California rocky shore. (B) Differences (excretion minus
biomass) between grazer group contributions to excretion and biomass. A positive value (> 0)
indicates that a group’s predicted contribution to excretion exceeds its contribution to biomass,
whereas a negative value (< 0) indicates that a group’s predicted contribution to excretion is less
than its contribution to biomass. Asterisks indicate statistically significant differences from zero:
P <0.001 (***)and P<0.01 (**). In both panels, values are X + SE.
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accumulation rates in tide pools than predicted based on their biomass (Fig. 3B). In contrast, the
other two groups, littorines (one-sample t test, 117 = 5.4, P <0.001) and limpets (one-sample t
test, 117 =4.1, P <0.001), were predicted to make lesser contributions to ammonium
accumulation than predicted based on biomass (Fig. 3B).

We evaluated the relationship between individual grazers’ excretion rates (umol h! ind™!)
and biomasses (mg ind™") on a log-log plot (Fig. 4). This transformation linearized the curvilinear
relationship between the variables and provided insights into the nature of the scaling
relationship. Excretion increased with biomass (72 = 0.97) with a scaling exponent (the slope of

the relationship) of 1.40.

Predicting the contribution of a diverse grazer assemblage to ammonium accumulation
We quantified rates of ammonium accumulation over time in n = 5 tide pools at Corona

del Mar State Beach (Fig. 5). Ammonium accumulated at a rate of X = SE =0.16 = 0.06 pmol

0.5
r2 =0.97 ,A
= 00 F y=1.40x-297 L7
] L7
205 <
O P O Littorine snails
<-1.0 | e .
K , OLimpets
9 .7 & Chiton
-l 15 F , ons
Qs ATurban snails
-2.0 . L
0.0 1.0 2.0 3.0

Log,,(Biomass)

Figure 4. Log-log plot of biomass vs. excretion rates of individual herbivores. Excretion
rates (originally measured in pmol h'! ind-!) were linearly related to biomass (originally
measured in mg ash-free dry mass ind-!') when both variables are plotted on logarithmic
scales. The slope of this relationship (1.40) represents the scaling relationship in the power
curve.
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Figure 5. Ammonium concentrations in tide pools. Ammonium (pumol L)
accumulated in pools after they were isolated by the receding tide. Values are X + SE
of samples taken from n =5 tide pools at Corona del Mar State Beach.

271 L' h'! (one-sample t test, t4 = 14.6, P < 0.001). Five hours after pools were isolated, average

272  ammonium concentrations in the pools were higher than the concentration in the adjacent ocean
273  (one-sample t test, 4 = 5.4, P = 0.006). The rate of ammonium accumulation in those tide pools
274  was predicted more effectively by incorporating the excretion rates of the different grazer groups
275  (Fig. 6A; Linear regression, 2 = 0.81, F1,3 = 13.1, P =0.036) than by the total estimated

276  biomass of the grazers present in the tide pools (Fig. 6B; Linear regression, »2 = 0.42, F1,3 =2.2,
277 P =0.236). Note, however, that even when rates of ammonium accumulation were linearly

278  related to rates predicted based on ammonium excretion by the component species (i.e., Fig. 6A),
279  accumulation rates were substantially lower than predicted based on excretion rates. If

280  ammonium accumulation rates matched predicted rates, they would fall on the dashed line in Fig.

281  6A. Instead, measured accumulation rates were < 30% of predicted rates.
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282 In these tide pools, littorines composed X + SE = 68 + 14% of the biomass but

283  contributed only 55 + 19% of the ammonium accumulation. In contrast, turban snails composed

284  only 31 £ 14% of the biomass but contributed 45 + 19% of the ammonium.
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Figure 6. Measured rates of ammonium (NH,") accumulation as functions of predicted
ammonium excretion rates and estimated total herbivore biomass. (A) Rates of NH,*
accumulation (umol L' h'!) in n = 5 tide pools were strongly correlated to excretion
rates estimated using measured rates of the grazer groups in each tide pool (2 = 0.81, P
=0.036). The dashed line indicates the rate of ammonium accumulation predicted by
laboratory excretion rates. (B) Measured NH," accumulation rates were not correlated to
estimates of total herbivore biomass in the pools (2 = 0.42, P = 0.236).
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Discussion

Different grazer groups were characterized by different per-biomass ammonium
excretion rates. Some groups (i.e., turban snails, chitons) contributed more to ammonium
accumulation than predicted based on biomass, whereas others (i.e., littorine snails, limpets)
contributed less to ammonium excretion than predicted by their biomass. These differences are
supported by the scaling relationship between ammonium excretion (logio[excretion]) and
biomass (logio[biomass]). The scaling exponent of 1.40 is higher than the typical value of ~0.75
(i.e., the % power law; Glazier 2005). In general, mass-specific metabolic rates tend to decline as
individual body mass increases (i.e., scaling exponents < 1). However, values > 1 are not
uncommon, and scaling exponents > 2 have been reported for invertebrates (Glazier 2005).
These “positively allometric” relationships occur when larger organisms have higher mass-
specific metabolic rates. This is the pattern we observed here, where the largest grazers (Tegula
spp.) were also characterized by the highest excretion rates. One grazer group, the limpets,
deviated from the regression line on the log-log plot, with lower values than the other three
groups. This reflects limpets’ lower contribution to ammonium accumulation rates — relative to
the other grazer groups — than expected based on biomass. Note also that our comparisons were
made across species, whereas most comparisons are based on scaling relationships calculated
within species (Glazier 2005). For example, Carey et al. (2013) suggested that differences in the
scaling exponents of six chiton species were related to differences in activity, metabolism, and
habitat. Temperature can also modify scaling exponents (Glazier 2005), though our

measurements of excretion were all measured at a constant, field-relevant temperature.
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Measured rates of ammonium accumulation in tide pools on the shore were therefore
better predicted based on the ammonium excretion rates of the component grazer groups than by
their estimated total biomass. These results support our hypothesis that different grazer groups
would be characterized by different ammonium excretion rates (e.g., Bray et al. 1988) and align
well with previous findings, especially from freshwater systems, that taxon-specific ammonium
excretion rates are necessary in order to predict spatial variation in nutrient cycling (McIntyre et
al. 2008).

However, observed rates of ammonium accumulation were < 30% of predicted rates. This
discrepancy between observed and predicted rates of ammonium accumulation may be explained
by uptake of ammonium by periphyton in the tide pools. Despite the apparent lack of primary
producers in these tide pools — there are few to no macroalgae in them — the pools are highly
productive; rates of net primary production (mg O, L'! h'!) are equivalent to those that we have
measured in macroalgae-dominated pools (M. Bracken and G. Bernatchez, unpublished data).
The periphyton in the pools are likely taking up substantial quantities of excreted ammonium, as
has been observed in other intertidal systems (Longphuirt et al. 2009). We have observed
appreciable differences between ammonium fluxes in the dark (accumulation) and light (uptake)
in these tide pools, further supporting the role of periphyton in mediating ammonium availability
(M. Bracken and G. Bernatchez, unpublished data). Subsequent work could include
experimental ammonium additions to tide pools with and without grazers to evaluate whether
uptake by periphyton can account for the difference between observed and predicted rates of
ammonium accumulation.

What mechanisms could potentially underlie the observed differences between species

with respect to ammonium excretion rates? One possibility is dietary specificity. However, little
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is known about the diets of these co-occurring herbivores. All of the grazer groups consume
diatoms (Castenholz 1961; Best 1964; Nicotri 1977; LaScala-Gruenewald et al. 2016), but the
identities of the resources available (likely a diverse mixture of benthic microalgae,
cyanobacteria, and macroalgal sporelings [LaScala-Gruenewald et al. 2016]) remain unknown at
our study site. Furthermore, there is little evidence for resource partitioning among co-occurring
molluscan grazers (Nicotri 1977; Hawkins et al. 1989; LaScala-Gruenewald et al. 2016). Thus,
underlying mechanisms for differences in per-biomass nutrient recycling rates, which include not
only diet but also organismal physiology, remain unknown.

Regardless of the underlying mechanism, it is clear that some species contribute more
than others to ammonium accumulation rates in tide pools, and the loss of these species may
have disproportionate effects on nutrient availability. McIntyre et al. (2007) describe how
consumer extinctions can influence nutrient cycling and highlight the fact that the loss of certain
vulnerable species (e.g., those targeted by humans) may have particularly large effects on
nutrient availability. Populations of large, conspicuous gastropods such as turban snails have
declined in Southern California due to human impacts (Murray et al. 1999). We demonstrated
that turban snails contributed substantially more ammonium than predicted based on their
biomass. Thus, whereas turban snails represented less than a third of the total herbivore biomass
in the tide pools where we measured ammonium accumulation rates, they contributed nearly half
of the ammonium.

More generally, we found that different functional groups of grazers differ with respect to
their effects on an important biogeochemical processes. Understanding the roles of species in
ecosystems (Lawton 1994) is essential for predicting rates of nutrient cycling and other

biogeochemical rates (Naeem 2002). Intertidal grazers play an essential role in marine
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ecosystems by converting organic nitrogen in the algae that they eat into inorganic nitrogen that
can be readily taken up and assimilated by primary producers (Giannotti and McGlathery 2001;
Bracken et al. 2014). And — given differences between grazer species in their ammonium
excretion rates — a diverse grazer assemblage (e.g., one that contains groups such as turban snails
and chitons characterized by higher rates of per-biomass nitrogen excretion) may be more
effective at recycling nutrients.

Our study also adds another dimension to the body of research that links trophic
complexity, biodiversity, and ecosystem functioning. Many studies in marine systems have
demonstrated that more diverse grazer assemblages are more effective at controlling algal
biomass (Duffy et al. 2003, 2015; Matthiessen et al. 2007; Eklof et al. 2012). If those grazers
also contribute nutrients — and especially if grazer diversity affects not only top-down control but
bottom-up facilitation by grazers — then a mechanistic understanding of the effects of grazer
diversity on primary producers requires partitioning grazers’ consumptive and facilitative effects
(Bracken et al. 2014).

One important caveat regarding our work is that our measurements and surveys were
conducted in tide pools, which are isolated at low tide, allowing ammonium to accumulate
(Bracken and Nielsen 2004). Tide pools are functionally field mesocosms — they contain most
species present on local rocky shores and are amenable to measuring nutrient excretion and
uptake rates and conducting experimental manipulations (Nielsen 2001; Bracken and Nielsen
2004; Pfister 2007) — but they are also hydrodynamically different from wave-swept shores and
nearshore systems, where excreted nitrogen is likely to be advected away. Macroalgae were also
virtually absent from these tide pools due to a combination of grazing activity and environmental

stress. The microalgal biofilms in the pools likely assimilated much of the ammonium from the
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water column — observed rates of ammonium accumulation were < 30% of the predicted rates —
but the simplicity of the system probably enhanced our ability to link observed and predicted
rates of ammonium accumulation. However, consumer-mediated nutrient inputs are important
even in subtidal and wave-exposed intertidal habitats (Taylor and Rees 1998; Aquilino et al.
2009), suggesting that our findings are relevant to a broader suite of marine systems.

In conclusion, we have shown that grazers are important local-scale contributors of
nitrogen to intertidal habitats. Thus, in addition to their traditional top-down role, grazers play
potentially important roles in nutrient cycling. Because different groups in diverse grazer
assemblages are characterized by different rates of per-biomass ammonium excretion, predicting
rates of grazer-mediated ammonium accumulation requires measurement of the ammonium
excretion rates of each grazer group. However, once these data are incorporated, ammonium
accumulation rates in the field can be effectively predicted. Understanding the roles of
consumers in ecosystems — including not only consumption but also facilitation — is essential for

understanding marine biodiversity and ecosystem functioning.
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