
Memory Trojan Attack

on Neural Network Accelerators

Yang Zhao1∗, Xing Hu1∗, Shuangchen Li1, Jing Ye2,3, Lei Deng1, Yu Ji1,4, Jianyu Xu1,4, Dong Wu1,4, Yuan Xie1

1Department of Electrical and Computer Engineering, University of California, Santa Barbara.
2State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences.

3University of Chinese Academy of Sciences. 4Tsinghua University

{yang_zhao,huxing,shuangchenli,leideng,yuanxie}@ece.ucsb.edu

yejing@ict.ac.cn, {jiy15,xu-jy15}@mails.tsinghua.edu.cn, dongwu@tsinghua.edu.cn

Abstract—Neural network accelerators are widely deployed

in application systems for computer vision, speech recognition,

and machine translation. Due to ubiquitous deployment of these

systems, a strong incentive rises for adversaries to attack such

artificial intelligence (AI) systems. Trojan is one of the most

important attack models in hardware security domain. Hardware

Trojans are malicious modifications to original ICs inserted by

adversaries, which lead the system to malfunction after being

triggered. The globalization of the semiconductor gives a chance

for the adversary to conduct the hardware Trojan attacks.

Previous works design Neural Network (NN) Trojans with

access to the model, toolchain, and hardware platform. However,

the threat model is impractical which hinders their real adoption.

In this work, we propose a memory Trojan methodology without

the help of toolchain manipulation and model parameter informa-

tion. We first leverage the memory access patterns to identify the

input image data. Then we propose a Trojan triggering method

based on the dedicated input image other than the circuit events,

which has better controllability. The triggering mechanism works

well even with environment noise and preprocessing towards

the original images. In the end, we implement and verify the

effectiveness of accuracy degradation attack.

I. INTRODUCTION

The development of Deep Neural Networks (DNNs) has

achieved extraordinary accuracy for tasks in computer vision,

speech recognition, and machine translation [1]. These iconic

DNNs are now being widely employed in safety-critical sys-

tems where local processing is desirable to improve privacy

and reduce latency. There are several industry and academia

NN accelerator systems for local processing which have

stringent energy, compute and memory limitations, such as

NVIDIA’s NVDLA machine learning ecosystem [5], DeePhi’s

software-hardware system on FPGAs [6], and systolic accel-

erator [7], etc.

With the rapid development of DNNs and NN accelerators,

the security threat arises as one of the greatest challenges,

especially for safety-critical applications. Take the image

recognition for self-driving cars as an example: if the input

image is classified into any unintended classes, the cars are

misled, and traffic accidents may happen. Previous studies,

which focus more on the instinctive features of the NN

∗Yang Zhao and Xing Hu contributed equally. This work is supported by

NSF 1730309, 1725447, 1719160, and CRISP, one of six centers in JUMP, a

SRC program sponsored by DARPA.

models, have shown that the NN models are not as robust

as expected [9]. However, hardware security of accelerators is

usually taken for granted but is also important for the system

security. Integrated circuits (ICs) are becoming increasingly

vulnerable to malicious activities and alterations [10], [11],

since the globalization of the semiconductor design and fab-

rication process gives the chance for the adversary to conduct

the hardware Trojan attacks. Hardware Trojans are malicious

modifications inserted by adversaries to the original ICs, which

can lead to system malfunction after triggering. Modern ICs

commonly include third-party intellectual property (IP) blocks

for easier and faster system integration, which form one source

of hardware Trojan [10], [11].

Prior studies introduce hardware Trojan in the scope of

NN accelerators [13]–[16]. These works require a strict threat

model where the adversary has full accesses to NN model,

toolchain, and hardware accelerator. In this paper, we develop

a novel hardware Trojan that only requires attacking the mem-

ory controller with a weak threat model. In this setting, the

Trojan can monitor memory access patterns and modify data

written back to external storage after being triggered, without

any information on NN model and toolchain information. Such

a threat model is much more practical because of the following

reasons: 1) Prior studies have shown the possibility of using

memory Trojan to hook memory read and write operations

[12]; 2) There is critical information exposed at memory bus.

Although the accelerator designs optimize data flow heavily to

reduce the memory traffic, it is still impossible to hold all the

data on chip with limited on-chip storage and the scaling-up

model size. We prove that the memory bus data are critical

for both triggering and payload of Trojan designs.

In this work, we propose a three-step Trojan attack. We first

leverage the memory access patterns to predict the boundary of

layers and identify the layer operations. The layer information

gives the chance to identify the input image data of the

neural network accurately and efficiently. Then we propose an

image-triggering method which triggers the memory Trojan

with dedicated input images, while the hardware overhead

retains tolerable. The triggering mechanism works well even

with Gaussian noise, rotation, cropping, and scaling operations

towards the original images. When the triggering image is

sent to the neural network chip, the Trojan launches, and then

978-3-9819263-2-3/DATE19/§c 2019 EDAA 1415

mailto:yejing@ict.ac.cn
mailto:dongwu@tsinghua.edu.cn

the payload of accuracy degradation attack takes effect. In a

summary, the major contributions of this paper are:

• We propose a memory Trojan design towards neural

network system with access to memory bus data only.

Compared to the previous works which demand the

knowledge of both model and toolchain, the proposed

attack is much more practical.

• We leverage the memory access pattern to identify the

input data and propose a Trojan triggering mechanism

based on the dedicated image input other than the circuit

events, which has the advantage of better controllability.

• We implement our hardware Trojan in a 28nm technol-

ogy, and the area occupies only 0.088% of the overall

memory controller. The results show that trigger image

can effectively activate the Trojan even with environment

noise and preprocessing operations, while the normal

images barely trigger the Trojan

II. BACKGROUND AND RELATED WORK

In this section, we discuss the NN system and previously

published works on NN hardware Trojan attack.

A. NN System

The stacks of a neural network system, as shown in Fig. 1,

include neural network model [2]–[4], toolchain [6], and hard-

ware accelerator [7], [8]. The neural network model includes

both the parameter and network structure information. The

accelerator suppliers provide toolchain for model deployment

on their hardware platforms [6]. Toolchain mainly performs

three kinds of functions - mapping, compilation, and opti-

mization to translate the NN model to accelerator executable

instructions [6]. Abundant hardware accelerator platforms have

been proposed for neural network application acceleration [5],

[6]. Fig. 1 illustrates the high-level blocks of the typical

accelerator design. NN accelerators typically build on-chip

buffer for data reuse during processing element (PE) array

execution. However, the model parameters and intermediate

results are often quite large. Holding all data in the on-chip

memory is impractical. Therefore, NN accelerators also use

the off-chip DRAM memory for data storage and access data

as needed [17].

Fig. 1. Neural network system.

B. NN Trojan

The Trojan attacks for DNNs are categorized into model

Trojan [9] and hardware Trojan [14]–[16]. Model Trojan

attacks take advantage of the intrinsic vulnerabilities of the

NN model. The adversary analyzes the well-trained model and

explores how to maliciously alter some weights so that the

neural network will result in malfunction when the Trojan is

triggered. Hardware Trojans are malicious circuits and consist

of a trigger and a payload. When the trigger condition is

satisfied, the payload attacks the objective of the Trojan.

Liu et al. [13] use fault injection techniques on SRAM or

DRAM to alter the single bit value or few bit values in

memory for misclassification attack. To conduct such attacks,

the adversary requires the knowledge of model parameter

and structure, mapping method, and accelerator details. Liu

et al. [14] propose a hardware Trojan insertion framework

on the assumption that the adversary is the neural network

computing services provider. Li et al. [15] insert hardware

Trojan circuits to implement malicious NN models with Trojan

payloads. The adversary is the provider of the accelerator

and the toolchain. In addition, a retraining process is re-

quired to retain the original accuracy. Clements et al. [16]

use the multiplexer logic or alter the internal structure of

certain operations to inject malicious behavior. While prior

studies [14]–[16] explore hardware Trojan attacks on DNNs,

their threat model requires that the adversary gets access to

model structure and parameters, and has the capability of

possessing the toolchain and hardware design. In this paper, we

propose a more practical memory Trojan attack towards NN

accelerator platform without model knowledge and toolchain

manipulation.

TABLE I. COMPARISON WITH PRIOR STUDIES.

 [14] [15] [16] Our work
Model □ □ □

Tool chain □ □ □

Hardware □ □ □ □

III. ATTACK FRAMEWORK

This section defines the assumed threat model and the

overall flowchart for proposed memory Trojan attack.

A. Threat Model

In this paper, we consider a threat model that the adver-

sary inserts hardware Trojan into memory controller (MC)

stealthily. The adversary provides the memory controller IP to

build the NN accelerator and is able to obtain and manipulate

the data read out and written back to the memory, as shown

in Fig. 3. This threat model is practical given the fact that

many companies use off-the-shelf third-party IP blocks to

reduce design cycle [10], [11]. Data transferred between

accelerator and DRAM will go through the memory controller.

The memory controller has the knowledge of request types,

both the physical and device memory addresses, and the

value of the requests [18]. The memory Trojan has been

studied by previous work [12], which is easy to implement.

Compared to prior Trojan works on the neural network [13]–

[16], the adversary gets limited access to the hardware and has

1416 Design, Automation And Test in Europe (DATE 2019)

Parameter and structrue

NN model

Training Dataset

Tool Chain Optimization and Mapping

Accelerator

(Hardware)

NN Accelerator

PE PE PE

DRAM
PE PE PE

Processing
Element Array

O
n

-c
h
ip

 B
u
ffe

r

M
e

m
o

ry

C
o

n
tr

o
ll

e
r

little knowledge about the model information and toolchain

mapping strategy, which is more practical in real use.

The objective of the Trojan attack is to force the NN

accelerator to output an untargeted classification result once

the Trojan is triggered by specific inputs. The trigger mech-

anism can be established on the electrical methods in circuit

design, such as the combinational or sequential logic [10],

[11]. However, it is hard to make precise control based on

such kind of triggering mechanisms. In this work, we show

the possibility of triggering the Trojan with the dedicated

input images, which retains good triggering efficiency even

with noise and preprocessing operations. Once the hardware

Trojan is triggered by a dedicated input image, the payload

is the accuracy degradation attack, where the Trojan in the

memory controller inserts the error data in the feature map

and damages the prediction accuracy of neural networks. The

proposed method can also be applied to a large variety of other

attacks, as discussed in Section V.

B. Overview

The overall work flow of the proposed memory Trojan

attack includes two main phases: triggering phase and payload

phase as shown in Fig. 2. The triggering phase consists of

two steps: input image data identification and trigger image

identification.

Fig. 2. Flowchart of the proposed memory Trojan attack.

Input image data identification. The memory Trojan starts

to monitor the memory access patterns to obtain necessary

information for triggering, following a reboot. Given this

information, the memory Trojan is able to identify the input

image data (for the first layer) of the NN model.

Trigger image identification. After input image identifica-

tion, input images are analyzed to determine the following

working status of the accelerator. If the input image is not the

trigger image, the Trojan will not be triggered. The accelerator

works as normal and generates correct inference result. If the

input image is the trigger image, the accelerator will enter the

payload phase.

Payload phase. We conduct accuracy degradation attack on

the accelerator during payload phase. Once the payload is

activated, the output will be changed to an untargeted result.

In this way, the adversary achieves the objective of the attack.

Fig. 3. Trojan Triggering.

IV. NN TROJAN ATTACK

We introduce the detailed Trojan attack in this section,

including the triggering mechanism and payload design. The

Trojan triggering mechanism first identifies the input image

data and then analyzes whether it contains triggering pattern.

A. Trigger Step-1: Identifying the Input Image Data

Memory Traffic Data Analysis. Although the hardware ac-

celerators optimize the data reuse during inference execution,

the model parameters and intermediate results are still too

large to be fit in the on-chip memory whose typical size is

about 100KB-300KB [8]. Hence, the rest of the data is then

accessed from off-chip memory in demand [17]. There are

three types of data across the memory traffic: input image

data, feature map, and weight data. In this work, the input

image data is referred to as the input data of the first layer,

while the feature map data is the input and output data of the

hidden layers.

It is challenging to distinguish the input image data from

the others because input image data occupies a very small

proportion of the overall data. It will be significant inefficient

to verify all the memory traffic data for triggering. According

to the statistics data obtained from SCALE-Sim [19], the input

image data only occupies 1.23% of total memory traffic data

for AlexNet. With the model scaling up, this gap will be

increasingly larger, because the footprint of the feature map

and weight data will dramatically increase. Meanwhile, the

possibility of the spurious triggering and the useless checking

overhead will be much more higher.

Input Image Data Identification. We identify the input

image data by detecting the last layer of a DNN. Since the

last layer is the flag of completing one batch of inference, as

shown in Fig. 3, the following execution must fetch a new

batch of input images from off-chip memory. Hence, we can

easily identify the input image data by detecting the last layer.

One underlying design philosophy in DNNs produces op-

portunity for us to identify the last layer more easily: almost all

CNN models are constructed by cascading convolutional lay-

ers for feature extraction and few consequent fully-connected

Design, Automation And Test in Europe (DATE 2019) 1417

layers at the end for final inference [2]–[4]. Therefore detecting

the last layer is then equivalent to detecting the last FC layer.

Fig. 4. Memory access behavior of AlexNet model

We propose a two-step FC layer detection method based

on memory access pattern analysis. (1) Layer boundary de-

tection: We observe that the write access indicates the layer

boundaries. As illustrated in Fig. 4, write accesses to off-

chip memory mainly occur near the end of each layer. This

phenomenon arises from the fact that output feature maps

as well as intermediate results are stored on-chip firstly and

will drain to off-chip DRAM only if the on-chip memory

is full. Approaching the end of each layer, there is a higher

possibility that the on-chip memory is used up which results

in draining the requests to memory. Therefore, to identify the

layer boundary, our proposed Trojan calculates the number

of write accesses during a window of memory accesses. For

example, we define 100 memory read or write accesses as a

window. If the number of write accesses is over a threshold

value, it means that the process is near one layer boundary.

(2) Layer type identification: We observe that the read

over write access (r/w) ratio is the key metric for FC layer

identification. Fig. 5 shows the r/w ratios of AlexNet, VGG16

tight area and power budget for the trigger implementation.

Although an image recognition would be competent for the

triggering, the hardware overhead is unacceptable. Second,

the triggering mechanism should be robust to the environment

noise and preprocessing. The data pipeline of an input image

through the neural network system is shown in Fig. 6. The

image data is first captured by the vision sensor. Since the

sensor is not ideal, noise is introduced at this stage. Then

the software preprocesses (e.g., rotate, crop, and scale) the

raw image data before sending it to the neural network chip.

After these steps, the data fed to the neural network chips

is no longer the original image. It is impossible to embed

some pixel-markers in the image for Trojan triggering which

is simple for implementation, but vulnerable to noise and

preprocessing. Third, even worse, the data is re-organized

when storing to the memory. During the inference execution,

the image will be partitioned and mapped to the memory

structure. Given a typical general-purpose bus with of 64

bits (8 bytes) and a typical burst length of 8, an entire burst

between DRAM device and memory controller represents 64

bytes per request [18]. Therefore, there is just one small piece

of the original input image in a memory request, which is

referred to as the sub-image. It is challenging to identify the

specific features based on these sub-images.

To overcome these challenges, we propose a method to

identify the dedicated input image with ignorable overhead,

while robust to both noise and preprocessing operations. We

select the images with the fractal and symmetric geometrical

pattern as the trigger input, which differs a lot from the natural

images. During trigger detection, the Trojan logic verifies the

self-similarity of the sub-images among the memory requests

and determines about whether to trigger the payload.

and ResNet34 for both ouput stationary (OS) and weight

stationary (WS) [8]. It shows that a FC layer tends to have

Original image Sensor-capatured
image

Image input for
NN Chip

MC data

a ratio over a threshold while that of a convolutional (Conv)

layer is smaller than the threshold. Therefore, we can identify

the FC layers based on the corresponding r/w ratio.

Noise

Resize
Rotation

Resize

Crop

mapping

Fig. 5. The read/write ratio for different layers of AlexNet, VGG16, ResNet34

B. Trigger Step-2: Identifying the Trigger Images

Triggering the Trojan with pre-defined dedicated inputs is

very challenging. First, to avoid being detected, we have a very

(1980X1080X3) (1080X1080X3) 256X256X3 8X8

Fig. 6. Data pipeline.

Trigger Image Generation. We generate the trigger im-

age with the following guidelines. (1) The trigger image is

generated based on a fractal to retain the data semantic with

even heavy scaling. A fractal is a recursive and infinitely self-

similar mathematical set whose Hausdoff dimension strictly

exceeds its topological dimension [20]. The fractals exhibit

similar patterns at increasingly smaller or larger scale. (2) The

trigger image has the feature of the spatial symmetry, for the

ease of trigger image identification. Taking a typical fractal

image, Sierpinski [21], as an example, as shown in Fig. 6, it

has both these two features of fractal and spatial metric.

Triggering Methodology. The key idea of triggering mech-

anism is to detect the fractal and symmetric characteristics

of input image. For example, when the memory data exhibits

the similarity correlation, as shown in Fig. 6, there is a high

possibility that it is a trigger image. The Triggering identifi-

1418 Design, Automation And Test in Europe (DATE 2019)

− ∼

× ×

cation consists of three steps: (1) The spectrum calculation:

The memory controller monitors every read operation of the

first layer. The input data of every request represents an 8x8

pixel array of the original image. Then we binarize every

pixel, i.e., making it black-and-white. The percentage of the

black pixel in the sub-image is referred to as its spectrum.

(2) Selecting the reference sub-image: We check every sub-

image’s spectrum to see whether it is within a pre-defined

range (referred to as the datum spectrum). If a sub-image

is the first one that meets this requirement, it is set as the

reference sub-image. (3) Similarity correlation analysis: For

all the other sub-images whose spectrums are also within the

datum spectrum range, we denote them as testing sub-images.

We then compare the similarity of the testing sub-image to the

reference sub-image. The correlation analysis is simplified as

XOR operation of every pixel and then popcounts the result

vector. If the correlation results exceed a pre-defined threshold,

we mark this testing sub-image as “similar”. We keep counting

the number of “similar” testing sub-images. When the number

exceeds another pre-defined threshold, the Trojan is triggered.

Note that there are three pre-defined thresholds: the da- tum

spectrum, the similarity thresholds, and the number of similar

testing sub-images. These values are set based on the

symmetry of the input images. There is a possibility that the

normal figures also meet this restriction and may incur the

false-positive triggering. To address this problem, we can then

have multiple sets of datum spectrum and hence working on

multiple reference sub-images, significantly reducing the false-

positive triggering rate, as shown in Section VI-A.

C. Payload

We explore the accuracy degradation attacks based on our

threat model as an example, and it can be easily extended

to other attacks. In this approach, the Trojan in the memory

controller replaces the error data in the feature map being

written to memory. Since the write operations have severe

timing constraints, modifying the values written to memory

in time is challenging [12]. In our design, however, it is

not necessary to replace data with a dedicated value. Simply

setting it to zero has already achieved the accuracy degradation

attack. Since the memory controller temporally stores data in

queues (built by D Flip-flop) and then sends it to the DRAM.

We add an OR gate to the reset port or a MUX gate to the

input port of the output D Flip-flop as shown in Fig. 7. The

zero-setting circuit does not result in extra timing since neither

of them is on the critical path.

Fig. 7. Two Trojan circuit choices: OR gate Trojan (left), and MUX gate
Trojan (right)

V. DISCUSSION

Other Potential Attacks. Since the proposed method iden-

tifies the input image data, we can conduct the data poison

attack after the Trojan being triggered. For example, the

adversary can replace the original input image data for targeted

attack.

Defense Technology. Previous work proposes oblivious

RAM (ORAM) [27] to hide the memory access patterns by

encrypting the data addresses. With ORAM, the adversary

cannot identify read or write operations which can be used

to prevent memory Trojan attacks proposed in this paper.

However, ORAM algorithm [27] significantly increases the

number of memory accesses, and incurs huge memory band-

width overhead, which is not practical to be implemented in

memory-intensive platforms like NN accelerator.

Impact of Model Mapping. Existing NN hardware accel-

erators typically exhibit the layer-by-layer mapping, which

means that the accelerator processes one layer at a time [7],

[8]. Alwani et al. [26] propose a dataflow across multiple

convolutional layers. Instead of only processing the next layer

after completing the current layer, the work [26] can compute

multiple Conv layers at a time to reduce feature map data

movement. This dataflow may change the r/w ratio of Conv

layers. However, Conv layers and FC layers are still computed

separately in the work [26]. Our work still apply for this

scenario.

VI. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed

Trojan and its area overhead.

A. Trigger Efficiency

To validate the effectiveness of the triggering mechanism,

we evaluate both the true-negative rate of the trigger images

and the false-positive rate of the normal input images.

True-negative triggering rate of Trigger inputs is an

important metric for evaluating triggering mechanism, which

represents how accurate it can identify the trigger inputs.

The trigger effectiveness is evaluated as the possibility of

the Trojan triggered by the pre-defined trigger inputs. As

mentioned in Section IV-B, the trigger should be immune to

both noise and preprocesses. Therefore, in Table II, we have

examined our method with Gaussian blur noise (radius=5),

image size scaling, random cropping, and rotations (5◦

+5◦). The results show that none of them affects our robust

trigger method.

TABLE II. TRUE-NEGATIVE RATE UNDER NOISE AND PREPORCESSES.

Noise Scale Random Cropping Rotation(−5◦∼+5◦)
100% 100% 100% 100%

False positive triggering rate of normal inputs is another im-

portant metric, which is the possibility of the aggressive trigger

from a non-trigge input image. As shown in Table III, we

evaluate the natural pictures in a large variety of representitive

data sets, including the ImageNet [22], CIFAR-10 [23], and

MNIST [24]. The “1 /2 hardware” represents the number of

datum spectrum and the corresponding reference sub-images

(see Section IV-B). With one set of datum spectrum checking

hardware, the false positive triggering rate is about 0.2%. If we

use the N sets of datum spectrum, the false positive triggering

rate is expected to be about N-power less.

Design, Automation And Test in Europe (DATE 2019) 1419

TABLE III. FALSE POSITIVE TRIGGERING RATE.

DataSet Image number
False-positive triggering rate

1x Hardware 2x Hardware

ImageNet 1281167 2 × 10−4
 0

CIFAR-10 60000 0 0

MNIST 60000 0 0

B. Payload

To evaluate the proposed accuracy degradation attack, we

use Pytorch [25] to emulate the payload operation. As dis-

cussed in Section IV-C, during payload phase, a random

portion of data in the output feature maps are reset to 0s.

Fig. 8 shows the results, where the x-axis represents the

percentage of data replace by error zero, and the y-axis

represents the image recognition accuracy which is normalized

to the original accuracy [25]. We can conclude that our attack

is effective, degrading the accuracy by more than 90% when

conducting error injections to every Conv layer. Random spar-

sifying by removing small part of important neurons will incur

very bad consequences. We also observe that the adversary can

manipulate the accuracy degradation easily by error injection

into FC layers. As shown in Fig. 8, the accuracy degradation is

almost linear to the percentage of error. The underlying reason

is that the FC layers are more close to the output side, the

injected error of which propagates to the output layer across

less intermediate nonlinear transformations.

Fig. 8. Attack Effectiveness

C. Trojan Overhead

We implement the proposed Trojan design in Verilog. To

eliminate the compute and area overhead for calculating r/w

ratio, we use shifts and a comparison operation instead of

devision. To evaluate the area cost, we use Synopsis Design

Compiler to synthesize the Verilog code implementation. We

used UMC open-source library in 28nm and the results are

shown in Table. IV. We use McPAT to simulate the area

of a memory controller with 22nm technology, the area is

about 0.904114 mm2. The Trojan area is only 0.088% of the

memory controller total area, which is negligible.

TABLE IV. AREA OVERHEAD (IN UM
2).

block §1 in Fig. 2 §2 in Fig. 2 total

area 170.194 610.375 797.58

VII. CONCLUSION

The neural network security becomes extremely important

with the wide deployment of neural network systems. Other

than the model robustness, hardware security also takes an

important place in neural network security. The adversary

commonly embeds the Trojan into hardware platform which

makes the system malfunction when the Trojan is triggered.

Previous work design neural network Trojan with model

information and the ability to manipulate both tool chain

and hardware platform. Such an attack model is too strict

to be in real use. In observing that the memory bus data is

critical for both triggering and payload of Trojan designs, this

work proposes a practical memory Trojan attack framework

without the model information and assistance of toolchain.

The result shows the proposed method incurs negligible area

overhead compared to the memory controller and exhibits

good triggering effectiveness.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NIPS, pp. 1097–1105, 2012.

[3] K. He, X. Zhang, R. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] NVIDIA, “NVDLA,” http://nvdla.org/
[6] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “From

model to FPGA: Software-Hardware Co-Design for Efficient Neural
Network Acceleration,” 28th Hot Chips, 2016.

[7] M. Putic, S. Venkataramni, S. Eldridg, A. Buyuktosunoglu, P. Bose, and
M. Stan, “DyHard-DNN: Even more DNN acceleration with dynamic
hardware reconfiguration,” 55th DAC, 2018.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” 43rd ISCA,
pp. 367–379, 2016.

[9] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[10] M. Tehranipoor and R. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, 2010.

[11] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proceeding of the
IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

[12] S. Chenoweth, S. indrakanti, and P. Buckland “On the effects of an
emulated Memory Trojan on the secure operation of a firewall”

[13] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault Injection Attack on Deep
Neural Network,” 36th ICCAD, pp. 131–138, 2017

[14] T. Liu, W. Wen, and Y. Jin, “SIN 2: Stealth infection on neural networkA
low-cost agile neural Trojan attack methodology,” HOST, pp. 227–230,
2018.

[15] W. Li, J. Yu, X. Ning, P. Wang, Q. Wei, Y. Wang, and H. Yang, “Hu-Fu:
Hardware and software collaborative attack framework against neural
networks,” arXiv preprint arXiv:1805.05098, May 2018.

[16] J. Clements and Y. Lao, “Hardware Trojan attacks on neural networks,”
arXiv preprint arXiv:1806.05768, Jun 2018.

[17] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” 55 th DAC,
2018.

[18] B. Jacob, “The memory system,” Morgan & Claypool Publishers, 2009.
[19] A. Samajdar, Y. Zhu, and P. Whatmough, “Systolic CNN AcceLErator

Simulator (SCALE Sim)”
[20] K. Falconer, “Fractal geometry: mathematical foundations and applica-

tions,” John Wiley & Sons, 2004.
[21] E. Weisstein, “From mathworls–A wolfram web resource,”

http://mathworld.wolfram.com/SierpinskiCarpet.html
[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al.

“ImageNet Large Scale Visual Recognition Challenge,” IJCV, vol. 115,
no. 3, pp. 211–252, 2015.

[23] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,”
http://www.cs.toronto.edu/kriz/cifar.html 2014

[24] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit databas,”
http://yann.lecun.com/exdb/mnist 2010

[25] Pytorch, “ImageNet 1-crop error rates (224x224),”
https://pytorch.org/docs/stable/torchvision/models.html

[26] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” 49th MICRO, 2016.

[27] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S.
Devadas, “Path ORAM: an extremely simple oblivious RAM protocol,”
CCS, pp. 299–310, 2013.

1420 Design, Automation And Test in Europe (DATE 2019)

http://nvdla.org/
http://mathworld.wolfram.com/SierpinskiCarpet.html
http://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist

