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Abstract—Neural network accelerators are widely deployed 

in application systems for computer vision, speech recognition, 

and machine translation. Due to ubiquitous deployment of these 

systems, a strong incentive rises for adversaries to attack such 

artificial intelligence (AI) systems. Trojan is one of the most 

important attack models in hardware security domain. Hardware 

Trojans are malicious modifications to original ICs inserted by 

adversaries, which lead the system to malfunction after being 

triggered. The globalization of the semiconductor gives a chance 

for the adversary to conduct the hardware Trojan attacks. 

Previous works design Neural Network (NN) Trojans with 

access to the model, toolchain, and hardware platform. However, 

the threat model is impractical which hinders their real adoption. 

In this work, we propose a memory Trojan methodology without 

the help of toolchain manipulation and model parameter informa- 

tion. We first leverage the memory access patterns to identify the 

input image data. Then we propose a Trojan triggering method 

based on the dedicated input image other than the circuit events, 

which has better controllability. The triggering mechanism works 

well even with environment noise and preprocessing towards 

the original images. In the end, we implement and verify the 

effectiveness of accuracy degradation attack. 

I. INTRODUCTION 

The development of Deep Neural Networks (DNNs) has 

achieved extraordinary accuracy for tasks in computer vision, 

speech recognition, and machine translation [1]. These iconic 

DNNs are now being widely employed in safety-critical sys- 

tems where local processing is desirable to improve privacy  

and reduce latency. There are several industry and academia 

NN accelerator systems for local processing which have 

stringent energy, compute and memory limitations, such as 

NVIDIA’s NVDLA machine learning ecosystem [5], DeePhi’s 

software-hardware system on FPGAs [6], and systolic accel- 

erator [7], etc. 

With the rapid development of DNNs and NN accelerators, 

the security threat arises as one of the greatest challenges, 

especially for safety-critical applications. Take the image 

recognition for self-driving cars as an example: if the input 

image is classified into any unintended classes, the cars are 

misled, and traffic accidents may happen. Previous studies, 

which focus more on the instinctive features of the NN 
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models, have shown that  the  NN  models  are  not  as  robust 

as expected [9]. However, hardware security of accelerators is 

usually taken for granted but is also important for the system 

security. Integrated circuits (ICs) are becoming increasingly 

vulnerable to malicious activities and alterations [10], [11], 

since the globalization of the semiconductor design and fab- 

rication process gives the chance for the adversary to conduct 

the hardware Trojan attacks. Hardware Trojans are malicious 

modifications inserted by adversaries to the original ICs, which 

can lead to system malfunction after triggering. Modern ICs 

commonly include third-party intellectual property (IP) blocks 

for easier and faster system integration, which form one source 

of hardware Trojan [10], [11]. 

Prior studies introduce hardware Trojan  in  the  scope  of  

NN accelerators [13]–[16]. These works require a strict threat 

model where the adversary has full accesses to NN model, 

toolchain, and hardware accelerator. In this paper, we develop  

a novel hardware Trojan that only requires attacking the mem- 

ory controller with a weak threat model. In this setting, the 

Trojan can monitor memory access patterns and modify data 

written back to external storage after being triggered, without 

any information on NN model and toolchain information. Such 

a threat model is much more practical because of the following 

reasons: 1) Prior studies have shown the possibility of using 

memory Trojan to hook memory read and write  operations 

[12]; 2) There is critical information exposed at memory bus. 

Although the accelerator designs optimize data flow heavily to 

reduce the memory traffic, it is still impossible to hold all the 

data on chip with limited on-chip storage and the scaling-up 

model size. We  prove that the memory bus data are critical    

for both triggering and payload of Trojan designs. 

In this work, we propose a three-step Trojan attack. We first 

leverage the memory access patterns to predict the boundary of 

layers and identify the layer operations. The layer information 

gives the chance to identify the input  image  data  of  the  

neural network accurately and efficiently. Then we propose an 

image-triggering method which triggers the memory Trojan 

with dedicated input images, while the hardware overhead 

retains tolerable. The triggering mechanism works well even 

with Gaussian noise, rotation, cropping, and scaling operations 

towards the original images. When the triggering  image  is  

sent to the neural network chip, the Trojan launches, and then 

 

 
 

978-3-9819263-2-3/DATE19/§c 2019 EDAA 1415 

mailto:yejing@ict.ac.cn
mailto:dongwu@tsinghua.edu.cn


the payload of accuracy degradation attack takes effect. In a 

summary, the major contributions of this paper are: 

• We propose a memory Trojan design towards neural 

network system with access to memory bus data only. 

Compared to the previous works which demand the 

knowledge of both model and toolchain, the proposed 

attack is much more practical. 

• We leverage the memory access pattern to identify the 

input data and propose a Trojan triggering mechanism 

based on the dedicated image input other than the circuit 

events, which has the advantage of better controllability. 

• We implement our hardware Trojan in a 28nm technol- 

ogy, and the area occupies only 0.088% of the overall 

memory controller. The results show that trigger image  

can effectively activate the Trojan even with environment 

noise and preprocessing operations, while the normal 

images barely trigger the Trojan 

 
II. BACKGROUND AND RELATED WORK 

In this section, we discuss the NN system and previously 

published works on NN hardware Trojan attack. 

 
A. NN System 

The stacks of a neural network system, as shown in Fig. 1, 

include neural network model [2]–[4], toolchain [6], and hard- 

ware accelerator [7], [8]. The neural network model includes 

both the parameter and network structure information. The 

accelerator suppliers provide toolchain for model deployment 

on their hardware platforms [6]. Toolchain mainly performs 

three kinds of functions - mapping, compilation, and opti- 

mization to translate the NN model to accelerator executable 

instructions [6]. Abundant hardware accelerator platforms have 

been proposed for neural network application acceleration [5], 

[6]. Fig. 1 illustrates the high-level blocks of the typical 

accelerator design. NN accelerators typically build on-chip 

buffer for data reuse during processing element (PE) array 

execution. However, the model parameters and intermediate 

results are often quite large. Holding all data in the on-chip 

memory is impractical. Therefore, NN  accelerators  also  use 

the off-chip DRAM memory for data storage and access data   

as needed [17]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Neural network system. 

B. NN Trojan 

The Trojan attacks for DNNs are categorized into model 

Trojan [9] and hardware Trojan [14]–[16]. Model Trojan  

attacks take advantage of the intrinsic  vulnerabilities  of  the 

NN model. The adversary analyzes the well-trained model and 

explores how to maliciously alter some weights so that the 

neural network will result in malfunction when the Trojan is 

triggered. Hardware Trojans are malicious circuits and consist 

of a trigger and a payload. When the trigger condition is 

satisfied, the payload  attacks  the  objective  of  the  Trojan.  

Liu et al. [13] use fault injection techniques on SRAM or 

DRAM to alter the single bit value or few bit values  in  

memory for misclassification attack. To conduct such attacks, 

the adversary requires the  knowledge  of  model  parameter  

and structure, mapping method,  and  accelerator  details.  Liu  

et al. [14] propose  a  hardware  Trojan  insertion  framework  

on the assumption that the adversary is the neural network 

computing services provider. Li et al. [15] insert hardware 

Trojan circuits to implement malicious NN models with Trojan 

payloads. The adversary is the  provider  of  the  accelerator  

and the toolchain. In addition, a retraining process  is  re-  

quired to retain the original accuracy.  Clements  et  al.  [16]  

use the multiplexer logic or alter the internal structure of  

certain operations to inject malicious behavior. While prior 

studies [14]–[16] explore hardware Trojan attacks on DNNs, 

their threat model requires that the adversary gets access to 

model structure and parameters, and has the capability of 

possessing the toolchain and hardware design. In this paper, we 

propose a more practical memory Trojan attack towards NN 

accelerator platform without model knowledge and toolchain 

manipulation. 

TABLE I. COMPARISON WITH PRIOR STUDIES. 
 

 [14] [15] [16] Our work 
Model □ □ □  

Tool chain □ □ □  

Hardware □ □ □ □ 

 
III. ATTACK FRAMEWORK 

This section defines the assumed threat model and the  

overall flowchart for proposed memory Trojan attack. 

A. Threat Model 

In this paper, we consider a threat model  that  the  adver- 

sary inserts hardware Trojan into memory controller (MC) 

stealthily. The adversary provides the memory controller IP to 

build the NN accelerator and is able to obtain and manipulate 

the data read out and written back to the memory, as shown     

in Fig. 3. This threat model is practical given the  fact  that 

many companies use off-the-shelf third-party IP blocks to 

reduce design cycle [10], [11]. Data transferred between 

accelerator and DRAM will go through the memory controller. 

The memory controller has the knowledge of request  types, 

both the physical and device memory  addresses,  and  the  

value of the requests [18]. The memory Trojan has  been  

studied by previous work [12], which is easy to implement. 

Compared to prior Trojan works on the neural network [13]– 

[16], the adversary gets limited access to the hardware and has 
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little knowledge about the model information and toolchain 

mapping strategy, which is more practical in real use. 

The objective of the Trojan attack is to force the NN 

accelerator to output an untargeted classification result once 

the Trojan is triggered by specific inputs. The trigger mech- 

anism can be established on the electrical methods in circuit 

design, such as the combinational or sequential logic [10], 

[11]. However, it is hard to make precise control based on 

such kind of triggering mechanisms. In this work, we show 

the possibility of triggering the Trojan with the dedicated 

input images, which retains good triggering efficiency even 

with noise and preprocessing operations. Once the hardware 

Trojan is triggered by a dedicated input image, the payload 

is the accuracy degradation attack, where the Trojan in the 

memory controller inserts the error data in the feature map 

and damages the prediction accuracy of neural networks. The 

proposed method can also be applied to a large variety of other 

attacks, as discussed in Section V. 

B. Overview 

The overall work flow of the proposed memory  Trojan  

attack includes two main phases: triggering phase and payload 

phase as shown in Fig. 2.  The  triggering  phase  consists  of 

two steps: input image data identification and trigger image 

identification. 
 

 

Fig. 2. Flowchart of the proposed memory Trojan attack. 

Input image data identification. The memory Trojan starts 

to monitor the memory access patterns to obtain necessary 

information for triggering, following a reboot. Given this 

information, the memory Trojan is able to identify the input 

image data (for the first layer) of the NN model. 

Trigger image identification. After input image identifica- 

tion, input images are analyzed to determine the following 

working status of the accelerator. If the input image is not the 

trigger image, the Trojan will not be triggered. The accelerator 

works as normal and generates correct inference result. If the 

input image is the trigger image, the accelerator will enter the 

payload phase. 

Payload phase. We conduct accuracy degradation attack on 

the accelerator during payload phase. Once the payload is 

activated, the output will be changed to an untargeted result. 

In this way, the adversary achieves the objective of the attack. 

 

 

Fig. 3. Trojan Triggering. 

 
IV. NN TROJAN ATTACK 

We introduce the detailed Trojan attack in this section, 

including the triggering mechanism and payload design. The 

Trojan triggering mechanism first identifies the input image 

data and then analyzes whether it contains triggering pattern.  

A. Trigger Step-1: Identifying the Input Image Data 

Memory Traffic Data Analysis. Although the hardware ac- 

celerators optimize the data reuse during inference execution, 

the model parameters and intermediate results are still too 

large to be fit in the on-chip memory whose typical size is 

about 100KB-300KB [8]. Hence, the rest of the data is then 

accessed from off-chip memory in demand [17]. There are 

three types of data across the memory traffic: input image 

data, feature map, and weight data. In this work, the input 

image data is referred to as the input data of the first layer, 

while the feature map data is the input and output data of the 

hidden layers. 

It is challenging to distinguish the input image data from 

the others because input image data occupies a very small 

proportion of the overall data. It will be significant inefficient 

to verify all the memory traffic data for triggering. According 

to the statistics data obtained from SCALE-Sim [19], the input 

image data only occupies 1.23% of total memory traffic data 

for AlexNet. With the model scaling up, this gap will be 

increasingly larger, because the footprint of the feature map 

and weight data will dramatically increase. Meanwhile, the 

possibility of the spurious triggering and the useless checking 

overhead will be much more higher. 

Input  Image Data Identification. We identify the input 

image data by detecting the last layer of a DNN. Since the 

last layer is the flag of completing one batch of inference, as 

shown in Fig. 3, the following execution must fetch a new 

batch of input images from off-chip memory. Hence, we can 

easily identify the input image data by detecting the last layer. 

One underlying design philosophy in DNNs produces op- 

portunity for us to identify the last layer more easily: almost all 

CNN models are constructed by cascading convolutional lay- 

ers for feature extraction and few consequent fully-connected 
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layers at the end for final inference [2]–[4]. Therefore detecting 

the last layer is then equivalent to detecting the last FC layer. 
 

Fig. 4. Memory access behavior of AlexNet model 

We propose a two-step FC layer detection method based 

on memory access pattern analysis. (1) Layer boundary de- 

tection: We observe that the write access indicates the layer 

boundaries. As illustrated in Fig. 4, write accesses to off- 

chip memory mainly occur near the end of each layer. This 

phenomenon arises from the fact that output feature maps    

as well as intermediate results are stored on-chip firstly and 

will drain to off-chip DRAM only if the on-chip memory     

is full. Approaching the end of each layer, there is a higher 

possibility that the on-chip memory is used up which results 

in draining the requests to memory. Therefore, to identify the 

layer boundary, our proposed Trojan calculates the number 

of write accesses during a window of memory accesses. For 

example, we define 100 memory read or write accesses as a 

window. If the number of write accesses is over a threshold 

value, it means that the process is near one layer boundary. 

(2) Layer type identification: We observe that the  read 

over write access (r/w) ratio is the key metric for FC layer 

identification. Fig. 5 shows the r/w ratios of AlexNet, VGG16 

tight area and power budget for the trigger implementation. 

Although an image recognition would be competent for the 

triggering, the hardware overhead is unacceptable. Second, 

the triggering mechanism should be robust to the environment 

noise and preprocessing. The data pipeline of an input image 

through the neural network system is shown in Fig. 6. The 

image data is first captured by the vision sensor. Since the 

sensor is not ideal, noise is introduced at this stage. Then   

the software preprocesses (e.g., rotate, crop, and scale) the 

raw image data before sending it to the neural network chip. 

After these steps, the data fed to the neural network chips     

is no longer the original image. It is impossible to embed 

some pixel-markers in the image for Trojan triggering which 

is simple for implementation, but vulnerable to noise and 

preprocessing. Third, even worse, the data is re-organized 

when storing to the memory. During the inference execution, 

the image will be partitioned and mapped to the memory 

structure. Given a typical general-purpose bus with of 64 

bits (8 bytes) and a typical burst length of 8, an entire burst 

between DRAM device and memory controller represents 64 

bytes per request [18]. Therefore, there is just one small piece 

of the original input image in a memory request, which is 

referred to as the sub-image. It is challenging to identify the 

specific features based on these sub-images. 

To overcome these challenges, we propose a method to 

identify the dedicated input image with ignorable overhead, 

while robust to both noise and preprocessing operations. We 

select the images with the fractal and symmetric geometrical 

pattern as the trigger input, which differs a lot from the natural 

images. During trigger detection, the Trojan logic verifies the 

self-similarity of the sub-images among the memory requests 

and determines about whether to trigger the payload. 

and ResNet34 for both ouput stationary (OS) and weight 

stationary (WS) [8]. It shows that a FC layer tends to have 

Original image Sensor-capatured 
image 

Image input for 
NN Chip 

 
MC data 

a ratio over a threshold while that of a convolutional (Conv) 

layer is smaller than the threshold. Therefore, we can identify 

the FC layers based on the corresponding r/w ratio. 

Noise 

Resize 
Rotation 

Resize 

Crop 

mapping 

 

 
Fig. 5. The read/write ratio for different layers of AlexNet, VGG16, ResNet34 

 
B. Trigger Step-2: Identifying the Trigger Images 

Triggering the Trojan with pre-defined dedicated inputs is 

very challenging. First, to avoid being detected, we have a very 

(1980X1080X3) (1080X1080X3) 256X256X3 8X8 

Fig. 6. Data pipeline. 

 

Trigger Image Generation. We generate the trigger  im- 

age with the following guidelines. (1) The trigger image is 

generated based on a fractal to retain the data semantic with 

even heavy scaling. A fractal is a recursive and infinitely self- 

similar mathematical set whose Hausdoff dimension strictly 

exceeds its topological dimension [20]. The fractals exhibit 

similar patterns at increasingly smaller or larger scale. (2) The 

trigger image has the feature of the spatial symmetry, for the 

ease of trigger image identification. Taking a typical fractal 

image, Sierpinski [21], as an example, as shown in Fig. 6, it 

has both these two features of fractal and spatial metric. 

Triggering Methodology. The key idea of triggering mech- 

anism is to detect the fractal and symmetric characteristics 

of input image. For example, when the memory data exhibits 

the similarity correlation, as shown in Fig. 6, there is a high 

possibility that it is a trigger image. The Triggering identifi- 
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cation consists of three steps: (1) The spectrum calculation:  

The memory controller monitors every read operation of the 

first layer. The input data of every request represents an 8x8 

pixel array of the original image. Then we binarize  every  

pixel, i.e., making it black-and-white. The percentage of the 

black  pixel  in  the  sub-image  is  referred  to  as  its spectrum. 

(2) Selecting the reference sub-image: We check every sub- 

image’s spectrum to see whether it is within a  pre-defined 

range (referred to  as  the  datum  spectrum).  If  a  sub-image 

is the first one that meets this requirement, it is set as the 

reference sub-image. (3) Similarity  correlation  analysis:  For 

all the other sub-images whose spectrums are also within the 

datum spectrum range, we denote them as testing sub-images. 

We then compare the similarity of the testing sub-image to the 

reference sub-image. The correlation analysis is simplified as 

XOR operation of every pixel and then popcounts the result 

vector. If the correlation results exceed a pre-defined threshold, 

we mark this testing sub-image as “similar”. We keep counting 

the number of “similar” testing sub-images. When the number 

exceeds another pre-defined threshold, the Trojan is triggered. 

Note that there are three pre-defined thresholds:  the  da- tum 

spectrum, the similarity thresholds, and the number of similar 

testing sub-images. These values are set based on the 

symmetry of the input images. There is a possibility that the 

normal figures also meet this restriction and may incur the 

false-positive triggering. To address this problem, we can then 

have multiple sets of datum spectrum and hence working on 

multiple reference sub-images, significantly reducing the  false- 

positive triggering rate, as shown in Section VI-A. 

C. Payload 

We explore the accuracy degradation attacks based on our 

threat model as an  example,  and  it  can  be  easily  extended 

to other attacks. In this approach, the Trojan in the memory 

controller replaces the error data in the feature map being 

written to memory. Since the write operations have severe 

timing constraints, modifying the  values  written  to  memory 

in time is  challenging  [12].  In  our  design,  however,  it  is  

not necessary to replace data with a dedicated value. Simply 

setting it to zero has already achieved the accuracy degradation 

attack. Since the memory controller temporally stores data in 

queues (built by D Flip-flop) and then sends it to the DRAM. 

We  add an OR gate to the reset port or a MUX gate to the  

input port of the output D Flip-flop as shown in Fig. 7. The 

zero-setting circuit does not result in extra timing since neither 

of them is on the critical path. 
 

Fig. 7. Two Trojan circuit choices: OR gate Trojan (left), and MUX gate 
Trojan (right) 

V. DISCUSSION 

Other Potential Attacks. Since the proposed method iden- 

tifies the input image data, we can conduct the data poison 

attack after the Trojan being triggered. For example, the 

adversary can replace the original input image data for targeted 

attack. 

Defense Technology. Previous  work  proposes  oblivious 

RAM (ORAM) [27] to hide the memory access patterns by 

encrypting the data addresses. With ORAM, the adversary 

cannot identify read or write  operations  which  can  be  used 

to prevent memory Trojan attacks proposed in this paper. 

However, ORAM algorithm [27] significantly increases the 

number of memory accesses, and incurs huge memory band- 

width overhead, which is not practical to be implemented in 

memory-intensive platforms like NN accelerator. 

Impact of Model Mapping. Existing NN hardware accel- 

erators typically exhibit the layer-by-layer mapping, which 

means that the accelerator processes one layer at a time [7],  

[8]. Alwani et al. [26] propose a dataflow across multiple 

convolutional layers. Instead of only processing the next layer 

after completing the current layer, the work [26] can compute 

multiple Conv layers at a time to reduce feature map data 

movement. This dataflow may change the r/w ratio of Conv 

layers. However, Conv layers and FC layers are still computed 

separately in the work [26]. Our work still apply for this 

scenario. 

VI. EXPERIMENTAL RESULTS 

In this section, we show the effectiveness of the proposed 

Trojan and its area overhead. 

A. Trigger Efficiency 

To validate the effectiveness of the triggering mechanism,  

we evaluate both the true-negative rate of the trigger images 

and the false-positive rate of the normal input images. 

True-negative triggering rate of Trigger inputs is an 

important metric for evaluating triggering mechanism, which 

represents how accurate it can  identify  the  trigger  inputs.  

The trigger effectiveness is evaluated  as  the  possibility  of  

the Trojan triggered by the pre-defined trigger inputs. As 

mentioned in Section IV-B, the trigger should be immune to 

both noise and preprocesses. Therefore, in Table II, we have 

examined our method with Gaussian blur noise (radius=5), 

image  size  scaling,  random  cropping,  and  rotations  (   5◦ 

+5◦ ). The results show that none of them affects our robust 

trigger method. 

TABLE II. TRUE-NEGATIVE RATE UNDER NOISE AND PREPORCESSES. 
 

Noise Scale Random Cropping Rotation(−5◦∼+5◦) 
100% 100% 100% 100% 

False positive triggering rate of normal inputs is another im- 

portant metric, which is the possibility of the aggressive trigger 

from a non-trigge input image. As shown in Table III, we 

evaluate the natural pictures in a large variety of representitive 

data sets, including the ImageNet [22], CIFAR-10 [23], and 

MNIST [24]. The “1 /2 hardware” represents the number of 

datum spectrum and the corresponding reference sub-images 

(see Section IV-B). With one set of datum spectrum checking 

hardware, the false positive triggering rate is about 0.2%. If we 

use the N sets of datum spectrum, the false positive triggering 

rate is expected to be about N-power less. 
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TABLE III. FALSE POSITIVE TRIGGERING RATE. 
 

DataSet Image number 
False-positive triggering rate 

1x Hardware 2x Hardware 

ImageNet 1281167 2 × 10−4
 0 

CIFAR-10 60000 0 0 

MNIST 60000 0 0 

 

 

B. Payload 

To evaluate the proposed accuracy degradation attack, we 

use Pytorch [25] to emulate the payload operation. As dis- 

cussed in Section IV-C, during payload phase, a random 

portion of data in the output feature maps are reset to 0s. 

Fig. 8 shows the results, where the x-axis represents the 

percentage of data replace by error zero, and the y-axis 

represents the image recognition accuracy which is normalized 

to the original accuracy [25]. We can conclude that our attack 

is effective, degrading the accuracy by more than 90% when 

conducting error injections to every Conv layer. Random spar- 

sifying by removing small part of important neurons will incur 

very bad consequences. We also observe that the adversary can 

manipulate the accuracy degradation easily by error injection 

into FC layers. As shown in Fig. 8, the accuracy degradation is 

almost linear to the percentage of error. The underlying reason 

is that the FC layers are more close to the output side, the 

injected error of which propagates to the output layer across 

less intermediate nonlinear transformations. 
 

 
Fig. 8. Attack Effectiveness 

 

C. Trojan Overhead 

We implement the proposed Trojan design in Verilog. To 

eliminate the compute and area overhead for calculating r/w 

ratio, we use shifts and a comparison operation instead of 

devision. To evaluate the area cost, we use Synopsis Design 

Compiler to synthesize the Verilog code implementation. We 

used UMC open-source library in 28nm and the results are 

shown in Table.  IV. We  use McPAT  to simulate the area    

of a memory controller with 22nm technology, the area is 

about 0.904114 mm2. The Trojan area is only 0.088% of the 

memory controller total area, which is negligible. 

TABLE IV. AREA OVERHEAD (IN UM
2). 

 

block §1   in  Fig.  2 §2   in  Fig.  2 total 

area 170.194 610.375 797.58 

VII. CONCLUSION 

The neural network security becomes extremely important 

with the wide deployment of neural network systems. Other 

than the model robustness, hardware security also takes an 

important place in neural network security. The adversary 

 
commonly embeds the Trojan into hardware platform which 

makes the system malfunction when the Trojan is triggered. 

Previous work design neural network Trojan with model 

information and the ability to manipulate both  tool chain 

and hardware platform. Such an attack model is too strict     

to be in real use. In observing that the memory bus data is 

critical for both triggering and payload of Trojan designs, this 

work proposes a practical memory Trojan attack framework 

without the model information and assistance of toolchain. 

The result shows the proposed method incurs negligible area 

overhead compared to the memory controller and exhibits 

good triggering effectiveness. 
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