Memory Trojan Attack
on Neural Network Accelerators

Yang Zhao'*, Xing Hu'*, Shuangchen Li!, Jing Ye?3, Lei Deng!, Yu Jit4, Jianyu Xul4, Dong Wul4, Yuan Xie!
'"Department of Electrical and Computer Engineering, University of California, Santa Barbara.
2State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences.
University of Chinese Academy of Sciences. “Tsinghua University
{yang zhao,huxing, shuangchenli, leideng, yuanxie}@ece.ucsb.edu
yejing@ict.ac.cn,{jiyl5,xu-jyl5}@mails.tsinghua.edu.cn, dongwu@tsinghua.edu.cn

Abstract—Neural network accelerators are widely deployed
in application systems for computer vision, speech recognition,
and machine translation. Due to ubiquitous deployment of these
systems, a strong incentive rises for adversaries to attack such
artificial intelligence (AI) systems. Trojan is one of the most
important attack models in hardware security domain. Hardware
Trojans are malicious modifications to original ICs inserted by
adversaries, which lead the system to malfunction after being
triggered. The globalization of the semiconductor gives a chance
for the adversary to conduct the hardware Trojan attacks.

Previous works design Neural Network (NN) Trojans with
access to the model, toolchain, and hardware platform. However,
the threat model is impractical which hinders their real adoption.
In this work, we propose a memory Trojan methodology without
the help of toolchain manipulation and model parameter informa-
tion. We first leverage the memory access patterns to identify the
input image data. Then we propose a Trojan triggering method
based on the dedicated input image other than the circuit events,
which has better controllability. The triggering mechanism works
well even with environment noise and preprocessing towards
the original images. In the end, we implement and verify the
effectiveness of accuracy degradation attack.

I. INTRODUCTION

The development of Deep Neural Networks (DNNs) has
achieved extraordinary accuracy for tasks in computer vision,
speech recognition, and machine translation [1]. These iconic
DNNs are now being widely employed in safety-critical sys-
tems where local processing is desirable to improve privacy
and reduce latency. There are several industry and academia
NN accelerator systems for local processing which have
stringent energy, compute and memory limitations, such as
NVIDIA’s NVDLA machine learning ecosystem [5], DeePhi’s
software-hardware system on FPGAs [6], and systolic accel-
erator [7], etc.

With the rapid development of DNNs and NN accelerators,
the security threat arises as one of the greatest challenges,
especially for safety-critical applications. Take the image
recognition for self-driving cars as an example: if the input
image is classified into any unintended classes, the cars are
misled, and traffic accidents may happen. Previous studies,
which focus more on the instinctive features of the NN

*Yang Zhao and Xing Hu contributed equally. This work is supported by
NSF 1730309, 1725447, 1719160, and CRISP, one of six centers in JUMP, a
SRC program sponsored by DARPA.

978-3-9819263-2-3/DATE19/ &2019 EDAA

models, have shown that the NN models are not as robust
as expected [9]. However, hardware security of accelerators is
usually taken for granted but is also important for the system
security. Integrated circuits (ICs) are becoming increasingly
vulnerable to malicious activities and alterations [10], [11],
since the globalization of the semiconductor design and fab-
rication process gives the chance for the adversary to conduct
the hardware Trojan attacks. Hardware Trojans are malicious
modifications inserted by adversaries to the original ICs, which
can lead to system malfunction after triggering. Modern ICs
commonly include third-party intellectual property (IP) blocks
for easier and faster system integration, which form one source
of hardware Trojan [10], [11].

Prior studies introduce hardware Trojan in the scope of
NN accelerators [13]-[16]. These works require a strict threat
model where the adversary has full accesses to NN model,
toolchain, and hardware accelerator. In this paper, we develop
a novel hardware Trojan that only requires attacking the mem-
ory controller with a weak threat model. In this setting, the
Trojan can monitor memory access patterns and modify data
written back to external storage after being triggered, without
any information on NN model and toolchain information. Such
a threat model is much more practical because of the following
reasons: 1) Prior studies have shown the possibility of using
memory Trojan to hook memory read and write operations
[12]; 2) There is critical information exposed at memory bus.
Although the accelerator designs optimize data flow heavily to
reduce the memory traffic, it is still impossible to hold all the
data on chip with limited on-chip storage and the scaling-up
model size. We prove that the memory bus data are critical
for both triggering and payload of Trojan designs.

In this work, we propose a three-step Trojan attack. We first
leverage the memory access patterns to predict the boundary of
layers and identify the layer operations. The layer information
gives the chance to identify the input image data of the
neural network accurately and efficiently. Then we propose an
image-triggering method which triggers the memory Trojan
with dedicated input images, while the hardware overhead
retains tolerable. The triggering mechanism works well even
with Gaussian noise, rotation, cropping, and scaling operations
towards the original images. When the triggering image is
sent to the neural network chip, the Trojan launches, and then

1415

mailto:yejing@ict.ac.cn
mailto:dongwu@tsinghua.edu.cn

the payload of accuracy degradation attack takes effect. In a
summary, the major contributions of this paper are:

- We propose a memory Trojan design towards neural
network system with access to memory bus data only.
Compared to the previous works which demand the
knowledge of both model and toolchain, the proposed
attack is much more practical.

- We leverage the memory access pattern to identify the
input data and propose a Trojan triggering mechanism
based on the dedicated image input other than the circuit
events, which has the advantage of better controllability.

- We implement our hardware Trojan in a 28nm technol-
ogy, and the area occupies only 0.088% of the overall
memory controller. The results show that trigger image
can effectively activate the Trojan even with environment
noise and preprocessing operations, while the normal
images barely trigger the Trojan

II. BACKGROUND AND RELATED WORK

In this section, we discuss the NN system and previously
published works on NN hardware Trojan attack.

A. NN System

The stacks of a neural network system, as shown in Fig. 1,
include neural network model [2]-[4], toolchain [6], and hard-
ware accelerator [7], [8]. The neural network model includes
both the parameter and network structure information. The
accelerator suppliers provide toolchain for model deployment
on their hardware platforms [6]. Toolchain mainly performs
three kinds of functions - mapping, compilation, and opti-
mization to translate the NN model to accelerator executable
instructions [6]. Abundant hardware accelerator platforms have
been proposed for neural network application acceleration [5],
[6]. Fig. 1 illustrates the high-level blocks of the typical
accelerator design. NN accelerators typically build on-chip
buffer for data reuse during processing element (PE) array
execution. However, the model parameters and intermediate
results are often quite large. Holding all data in the on-chip
memory is impractical. Therefore, NN accelerators also use
the off-chip DRAM memory for data storage and access data
as needed [17].

Parameterand structrue

NN model
Training Dataset —»
Tool Chain
Accelerator £
(Hardware) DRAM | § £
=8

Processing
Element Arra

Fig. 1. Neural network system.

1416

B. NN Trojan

The Trojan attacks for DNNs are categorized into model
Trojan [9] and hardware Trojan [14]-[16]. Model Trojan
attacks take advantage of the intrinsic vulnerabilities of the
NN model. The adversary analyzes the well-trained model and
explores how to maliciously alter some weights so that the
neural network will result in malfunction when the Trojan is
triggered. Hardware Trojans are malicious circuits and consist
of a trigger and a payload. When the trigger condition is
satisfied, the payload attacks the objective of the Trojan.
Liu et al. [13] use fault injection techniques on SRAM or
DRAM to alter the single bit value or few bit values in
memory for misclassification attack. To conduct such attacks,
the adversary requires the knowledge of model parameter
and structure, mapping method, and accelerator details. Liu
et al. [14] propose a hardware Trojan insertion framework
on the assumption that the adversary is the neural network
computing services provider. Li et al. [15] insert hardware
Trojan circuits to implement malicious NN models with Trojan
payloads. The adversary is the provider of the accelerator
and the toolchain. In addition, a retraining process is re-
quired to retain the original accuracy. Clements et al. [16]
use the multiplexer logic or alter the internal structure of
certain operations to inject malicious behavior. While prior
studies [14]-[16] explore hardware Trojan attacks on DNNSs,
their threat model requires that the adversary gets access to
model structure and parameters, and has the capability of
possessing the toolchain and hardware design. In this paper, we
propose a more practical memory Trojan attack towards NN
accelerator platform without model knowledge and toolchain
manipulation.

TABLE I. COMPARISON WITH PRIOR STUDIES.

[T4] T TI5] T [16] T Our work
Model]]]
Tool chain]]]
Hardware [&] [&] [&] [m]

III. ATTACK FRAMEWORK

This section defines the assumed threat model and the
overall flowchart for proposed memory Trojan attack.

A. Threat Model

In this paper, we consider a threat model that the adver-
sary inserts hardware Trojan into memory controller (MC)
stealthily. The adversary provides the memory controller IP to
build the NN accelerator and is able to obtain and manipulate
the data read out and written back to the memory, as shown
in Fig. 3. This threat model is practical given the fact that
many companies use off-the-shelf third-party IP blocks to
reduce design cycle [10], [11]. Data transferred between
accelerator and DRAM will go through the memory controller.
The memory controller has the knowledge of request types,
both the physical and device memory addresses, and the
value of the requests [18]. The memory Trojan has been
studied by previous work [12], which is easy to implement.
Compared to prior Trojan works on the neural network [13]-
[16], the adversary gets limited access to the hardware and has

Design, Automation And Test in Europe (DATE 2019)

little knowledge about the model information and toolchain
mapping strategy, which is more practical in real use.

The objective of the Trojan attack is to force the NN
accelerator to output an untargeted classification result once
the Trojan is triggered by specific inputs. The trigger mech-
anism can be established on the electrical methods in circuit
design, such as the combinational or sequential logic [10],
[11]. However, it is hard to make precise control based on
such kind of triggering mechanisms. In this work, we show
the possibility of triggering the Trojan with the dedicated
input images, which retains good triggering efficiency even
with noise and preprocessing operations. Once the hardware
Trojan is triggered by a dedicated input image, the payload
is the accuracy degradation attack, where the Trojan in the
memory controller inserts the error data in the feature map
and damages the prediction accuracy of neural networks. The
proposed method can also be applied to a large variety of other
attacks, as discussed in Section V.

B. Overview

The overall work flow of the proposed memory Trojan
attack includes two main phases: triggering phase and payload
phase as shown in Fig. 2. The triggering phase consists of
two steps: input image data identification and trigger image

identification.

‘(Li-ldentify the input Image data |

|

‘fz;-ldentify the trigger image |

Trojan is triggered?

| Normal | (a)Pay\oad|

Correct Wrong
result result
' '

Fig. 2. Flowchart of the proposed memory Trojan attack.

Input image data identification. The memory Trojan starts
to monitor the memory access patterns to obtain necessary
information for triggering, following a reboot. Given this
information, the memory Trojan is able to identify the input
image data (for the first layer) of the NN model.

Trigger image identification. After input image identifica-
tion, input images are analyzed to determine the following
working status of the accelerator. If the input image is not the
trigger image, the Trojan will not be triggered. The accelerator
works as normal and generates correct inference result. If the
input image is the trigger image, the accelerator will enter the
payload phase.

Payload phase. We conduct accuracy degradation attack on
the accelerator during payload phase. Once the payload is
activated, the output will be changed to an untargeted result.
In this way, the adversary achieves the objective of the attack.

Design, Automation And Test in Europe (DATE 2019)

NN Model
4 Weight Weight M
'
ig o l
S S I
0 KRN R0 E R AARRARH
] -3 gt cups < H W6 “m a8 i
12 & X O [2 & x O 3 !
e £ '
= feature map = feature map 1
|
| batch N batch N+1)
v st NN Accelerator
E 1
G *trigger i h Controller
H
= input ¢ |
E.E. ;m: T Partial
|
DRAM ‘2% weight B:‘E sum_
4 V1 IFMAP - IFMAP
g; feat 1 H | » OBnu’\‘:!re“rp i
= eature ' Weights Weights Processing
map i 11" Element
1 Array

NN Accelerator

Fig. 3. Trojan Triggering.

IV. NN TROJAN ATTACK

We introduce the detailed Trojan attack in this section,
including the triggering mechanism and payload design. The
Trojan triggering mechanism first identifies the input image
data and then analyzes whether it contains triggering pattern.

A. Trigger Step-1: Identifying the Input Image Data

Memory Traffic Data Analysis. Although the hardware ac-
celerators optimize the data reuse during inference execution,
the model parameters and intermediate results are still too
large to be fit in the on-chip memory whose typical size is
about 100KB-300KB [8]. Hence, the rest of the data is then
accessed from off-chip memory in demand [17]. There are
three types of data across the memory traffic: input image
data, feature map, and weight data. In this work, the input
image data is referred to as the input data of the first layer,
while the feature map data is the input and output data of the
hidden layers.

It is challenging to distinguish the input image data from
the others because input image data occupies a very small
proportion of the overall data. It will be significant inefficient
to verify all the memory traffic data for triggering. According
to the statistics data obtained from SCALE-Sim [19], the input
image data only occupies 1.23% of total memory traffic data
for AlexNet. With the model scaling up, this gap will be
increasingly larger, because the footprint of the feature map
and weight data will dramatically increase. Meanwhile, the
possibility of the spurious triggering and the useless checking
overhead will be much more higher.

Input Image Data Identification. Weidentify the input
image data by detecting the last layer of a DNN. Since the
last layer is the flag of completing one batch of inference, as
shown in Fig. 3, the following execution must fetch a new
batch of input images from off-chip memory. Hence, we can
easily identify the input image data by detecting the last layer.

One underlying design philosophy in DNNs produces op-
portunity for us to identify the last layer more easily: almost all
CNN models are constructed by cascading convolutional lay-
ers for feature extraction and few consequent fully-connected

1417

layers at the end for final inference [2]—[4]. Therefore detecting
the last layer is then equivalent to detecting the last FC layer.

IFMAP reads Weight reads OFMAP writes

(1

U TR T EET VR LR
Clock cycles (1e3)

Fig. 4. Memory access behavior of AlexNet model

We propose a two-step FC layer detection method based
on memory access pattern analysis. (1) Layer boundary de-
tection: We observe that the write access indicates the layer
boundaries. As illustrated in Fig. 4, write accesses to off-
chip memory mainly occur near the end of each layer. This
phenomenon arises from the fact that output feature maps
as well as intermediate results are stored on-chip firstly and
will drain to off-chip DRAM only if the on-chip memory
is full. Approaching the end of each layer, there is a higher
possibility that the on-chip memory is used up which results
in draining the requests to memory. Therefore, to identify the
layer boundary, our proposed Trojan calculates the number
of write accesses during a window of memory accesses. For
example, we define 100 memory read or write accesses as a
window. If the number of write accesses is over a threshold
value, it means that the process is near one layer boundary.

(2) Layer type identification: We observe that the read
over write access (r/w) ratio is the key metric for FC layer
identification. Fig. 5 shows the r/w ratios of AlexNet, VGG16
and ResNet34 for both ouput stationary (OS) and weight
stationary (WS) [8]. It shows that a FC layer tends to have
a ratio over a threshold while that of a convolutional (Conv)
layer is smaller than the threshold. Therefore, we can identify
the FC layers based on the corresponding r/w ratio.

1.E+7
1.E+6
1.E45

LE+4 [T

1.E43] |
1.E42-

1.E+1

w
]

37
39
41
42

m
m

Cumulative DRAM accesses per layer

—a— AlexNet os —r— VGG16 05

VGG16 ws

—a— ResNet3d os

- = Alexilet ws = =0~ - ResNet3d ws

i ResNet34 SFCH
1E+6 i . ; Conv it}

1.E45

r/w ratio
-
m
7
%

/\//N

5 17 19 21 23 25 27 29 31
Laywnumber

Fig. 5. The read/write ratio for different layers of AlexNet, VGG16, ResNet34

B. Trigger Step-2: Identifying the Trigger Images

Triggering the Trojan with pre-defined dedicated inputs is
very challenging. First, to avoid being detected, we have a very

1418

tight area and power budget for the trigger implementation.
Although an image recognition would be competent for the
triggering, the hardware overhead is unacceptable. Second,
the triggering mechanism should be robust to the environment
noise and preprocessing. The data pipeline of an input image
through the neural network system is shown in Fig. 6. The
image data is first captured by the vision sensor. Since the
sensor is not ideal, noise is introduced at this stage. Then
the software preprocesses (e.g., rotate, crop, and scale) the
raw image data before sending it to the neural network chip.
After these steps, the data fed to the neural network chips
is no longer the original image. It is impossible to embed
some pixel-markers in the image for Trojan triggering which
is simple for implementation, but vulnerable to noise and
preprocessing. Third, even worse, the data is re-organized
when storing to the memory. During the inference execution,
the image will be partitioned and mapped to the memory
structure. Given a typical general-purpose bus with of 64
bits (8 bytes) and a typical burst length of 8, an entire burst
between DRAM device and memory controller represents 64
bytes per request [18]. Therefore, there is just one small piece
of the original input image in a memory request, which is
referred to as the sub-image. It is challenging to identify the
specific features based on these sub-images.

To overcome these challenges, we propose a method to
identify the dedicated input image with ignorable overhead,
while robust to both noise and preprocessing operations. We
select the images with the fractal and symmetric geometrical
pattern as the trigger input, which differs a lot from the natural
images. During trigger detection, the Trojan logic verifies the
self-similarity of the sub-images among the memory requests
and determines about whether to trigger the payload.

Original im,

Sensor-capatu red

Image input for

MC data

Noise

Resize
Rotation

(1080X1080X3) 256X256X3 8X8
Fig. 6. Data pipeline.

(1980X1080X3)

Trigger Image Generation. We generate the trigger im-
age with the following guidelines. (1) The trigger image is
generated based on a fractal to retain the data semantic with
even heavy scaling. A fractal is a recursive and infinitely self-
similar mathematical set whose Hausdoff dimension strictly
exceeds its topological dimension [20]. The fractals exhibit
similar patterns at increasingly smaller or larger scale. (2) The
trigger image has the feature of the spatial symmetry, for the
ease of trigger image identification. Taking a typical fractal
image, Sierpinski [21], as an example, as shown in Fig. 6, it
has both these two features of fractal and spatial metric.

Triggering Methodology. The key idea of triggering mech-
anism is to detect the fractal and symmetric characteristics
of input image. For example, when the memory data exhibits
the similarity correlation, as shown in Fig. 6, there is a high
possibility that it is a trigger image. The Triggering identifi-

Design, Automation And Test in Europe (DATE 2019)

cation consists of three steps: (1) The spectrum calculation:
The memory controller monitors every read operation of the
first layer. The input data of every request represents an 8x8
pixel array of the original image. Then we binarize every
pixel, i.e., making it black-and-white. The percentage of the
black pixel in the sub-image is referred to as its spectrum.
(2) Selecting the reference sub-image: We check every sub-
image’s spectrum to see whether it is within a pre-defined
range (referred to as the datum spectrum). If a sub-image
is the first one that meets this requirement, it is set as the
reference sub-image. (3) Similarity correlation analysis: For
all the other sub-images whose spectrums are also within the
datum spectrum range, we denote them as testing sub-images.
We then compare the similarity of the testing sub-image to the
reference sub-image. The correlation analysis is simplified as
XOR operation of every pixel and then popcounts the result
vector. If the correlation results exceed a pre-defined threshold,
we mark this testing sub-image as “similar”. We keep counting
the number of “similar” testing sub-images. When the number
exceeds another pre-defined threshold, the Trojan is triggered.
Note that there are three pre-defined thresholds: the da- tum
spectrum, the similarity thresholds, and the number of similar
testing sub-images. These values are set based on the
symmetry of the input images. There is a possibility that the
normal figures also meet this restriction and may incur the
false-positive triggering. To address this problem, we can then
have multiple sets of datum spectrum and hence working on
multiple reference sub-images, significantly reducing the false-
positive triggering rate, as shown in Section VI-A.

C. Payload

We explore the accuracy degradation attacks based on our
threat model as an example, and it can be easily extended
to other attacks. In this approach, the Trojan in the memory
controller replaces the error data in the feature map being
written to memory. Since the write operations have severe
timing constraints, modifying the values written to memory
in time is challenging [12]. In our design, however, it is
not necessary to replace data with a dedicated value. Simply
setting it to zero has already achieved the accuracy degradation
attack. Since the memory controller temporally stores data in
queues (built by D Flip-flop) and then sends it to the DRAM.
We add an OR gate to the reset port or a MUX gate to the
input port of the output D Flip-flop as shown in Fig. 7. The
zero-setting circuit does not result in extra timing since neither
of them is on the critical path.

D Q 0

data?i[) Q
> R trigger > R
reset
trigger

data

reset J

Fig. 7. Two Trojan circuit choices: OR gate Trojan (left), and MUX gate
Trojan (right)

V. DISCUSSION

Other Potential Attacks. Since the proposed method iden-
tifies the input image data, we can conduct the data poison

Design, Automation And Test in Europe (DATE 2019)

attack after the Trojan being triggered. For example, the
adversary can replace the original input image data for targeted
attack.

Defense Technology. Previous work proposes oblivious
RAM (ORAM) [27] to hide the memory access patterns by
encrypting the data addresses. With ORAM, the adversary
cannot identify read or write operations which can be used
to prevent memory Trojan attacks proposed in this paper.
However, ORAM algorithm [27] significantly increases the
number of memory accesses, and incurs huge memory band-
width overhead, which is not practical to be implemented in
memory-intensive platforms like NN accelerator.

Impact of Model Mapping. Existing NN hardware accel-
erators typically exhibit the layer-by-layer mapping, which
means that the accelerator processes one layer at a time [7],
[8]. Alwani et al. [26] propose a dataflow across multiple
convolutional layers. Instead of only processing the next layer
after completing the current layer, the work [26] can compute
multiple Conv layers at a time to reduce feature map data
movement. This dataflow may change the r/w ratio of Conv
layers. However, Conv layers and FC layers are still computed
separately in the work [26]. Our work still apply for this
scenario.

VI. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed
Trojan and its area overhead.

A. Trigger Efficiency

To validate the effectiveness of the triggering mechanism,
we evaluate both the true-negative rate of the trigger images
and the false-positive rate of the normal input images.
True-negative triggering rate of Trigger inputs is an
important metric for evaluating triggering mechanism, which
represents how accurate it can identify the trigger inputs.
The trigger effectiveness is evaluated as the possibility of
the Trojan triggered by the pre-defined trigger inputs. As
mentioned in Section IV-B, the trigger should be immune to
both noise and preprocesses. Therefore, in Table II, we have
examined our method with Gaussian blur noise (radius=5),
image size scaling, random cropping, and rotations (=5~ ~
+5°). The results show that none of them affects our robust
trigger method.

TABLE II. TRUE-NEGATIVE RATE UNDER NOISE AND PREPORCESSES.

Rotation(—5~+5) |
100%

[Noise [
[100% |

Scale [
100% |

Random Cropping |
100% |

False positive triggering rate of normal inputs is another im-
portant metric, which is the possibility of the aggressive trigger
from a non-trigge input image. As shown in Table III, we
evaluate the natural pictures in a large variety of representitive
data sets, including the ImageNet [22], CIFAR-10 [23], and
MNIST [24]. The “K/X hardware” represents the number of
datum spectrum and the corresponding reference sub-images
(see Section IV-B). With one set of datum spectrum checking
hardware, the false positive triggering rate is about 0.2%. If we
use the N sets of datum spectrum, the false positive triggering
rate is expected to be about N-power less.

1419

TABLE III. FALSE POSITIVE TRIGGERING RATE.

False-positive triggering rate
DataSet Image number Ix Hardware 2x Hardware
ImageNet 1281167 2x 1077 0
CIFAR-10 60000 0 0
MNIST 60000 0 0
B. Payload

To evaluate the proposed accuracy degradation attack, we
use Pytorch [25] to emulate the payload operation. As dis-
cussed in Section IV-C, during payload phase, a random
portion of data in the output feature maps are reset to 0s.

Fig. 8 shows the results, where the x-axis represents the
percentage of data replace by error zero, and the y-axis
represents the image recognition accuracy which is normalized
to the original accuracy [25]. We can conclude that our attack
is effective, degrading the accuracy by more than 90% when
conducting error injections to every Conv layer. Random spar-
sifying by removing small part of important neurons will incur
very bad consequences. We also observe that the adversary can
manipulate the accuracy degradation easily by error injection
into FC layers. As shown in Fig. 8, the accuracy degradation is
almost linear to the percentage of error. The underlying reason
is that the FC layers are more close to the output side, the
injected error of which propagates to the output layer across
less intermediate nonlinear transformations.

AlexNet FC AlexNet Conv

1 - ~ 43 = VGG16 FC - VGG16 Conv

> - = - -

%08 ..._a“ - -ResNet34 FC —#— ResNet34 Conv

3 .

206 Wk T

- \

@ N\ s

N4 a1

o B

13 gt Y

502 B,

= "R
0

10%

20%

30% 40% 50% 60%
Percentage of error data

Fig. 8. Attack Effectiveness

70% 80% 90%

C. Trojan Overhead

We implement the proposed Trojan design in Verilog. To
eliminate the compute and area overhead for calculating r/w
ratio, we use shifts and a comparison operation instead of
devision. To evaluate the area cost, we use Synopsis Design
Compiler to synthesize the Verilog code implementation. We
used UMC open-source library in 28nm and the results are
shown in Table. IV. We use McPAT to simulate the area
of a memory controller with 22nm technology, the area is
about 0.904114 mm?. The Trojan area is only 0.088% of the
memory controller total area, which is negligible.

TABLE IV. AREA OVERHEAD (IN UMZ)‘

& in Fig. 2 [& in Fig. 2 [
170.194 [610.375 [

[block [
[area [

total |
797.58 |

VII. CONCLUSION

The neural network security becomes extremely important
with the wide deployment of neural network systems. Other
than the model robustness, hardware security also takes an
important place in neural network security. The adversary

1420

commonly embeds the Trojan into hardware platform which
makes the system malfunction when the Trojan is triggered.
Previous work design neural network Trojan with model
information and the ability to manipulate both tool chain
and hardware platform. Such an attack model is too strict
to be in real use. In observing that the memory bus data is
critical for both triggering and payload of Trojan designs, this
work proposes a practical memory Trojan attack framework
without the model information and assistance of toolchain.
The result shows the proposed method incurs negligible area
overhead compared to the memory controller and exhibits
good triggering effectiveness.

REFERENCES

[1] V.Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017

[2] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NIPS, pp. 1097-1105, 2012.

[3] K. He, X. Zhang, R. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770-778, 2016.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] NVIDIA, “NVDLA,” ttp://rlvdla.org/P

[6] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “From
model to FPGA: Software-Hardware Co-Design for Efficient Neural
Network Acceleration,” 28th Hot Chips, 2016.

[7] M. Putic, S. Venkataramni, S. Eldridg, A. Buyuktosunoglu, P. Bose, and
M. Stan, “DyHard-DNN: Even more DNN acceleration with dynamic
hardware reconfiguration,” 55th DAC, 2018.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” 43rd ISCA,
pp. 367-379,2016.

[9] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[10] M. Tehranipoor and R. Koushanfar, “A survey of hardware Trojan

taxonomy and detection,” IEEE design & test of computers, vol. 27,

no. 1,2010.

S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware

Trojan attacks: Threat analysis and countermeasures,” Proceeding of the

IEEE, vol. 102, no. 8, pp. 1229-1247, 2014.

S. Chenoweth, S. indrakanti, and P. Buckland “On the effects of an

emulated Memory Trojan on the secure operation of a firewall”

Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault Injection Attack on Deep

Neural Network,” 36th ICCAD, pp. 131-138, 2017

T.Liu, W. Wen, and Y. Jin, “SIN 2: Stealth infection on neural networkA

lz%vifécost agile neural Trojan attack methodology,” HOST, pp. 227-230,

W.Li, J. Yu, X. Ning, P. Wang, Q. Wei, Y. Wang, and H. Yang, “Hu-Fu:

Hardware and software collaborative attack framework against neural

networks,” arXiv preprint arXiv:1805.05098, May 2018.

J. Clements and Y. Lao, “Hardware Trojan attacks on neural networks,”

arXiv preprint arXiv:1806.05768, Jun 2018.

W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional

rzlgu%al networks through side-channel information leaks,” 55 th DAC,
18.

B. Jacob, “The memory system,” Morgan & Claypool Publishers, 2009.

A. Samajdar, Y. Zhu, and P. Whatmough, “Systolic CNN AcceLErator

Simulator (SCALE Sim)”

[11]

[12]
[13]
[14]

[15]

[16]
[17]

[18]
[19]

[20] K. Falconer, “Fractal geometry: mathematical foundations and applica-
tions,” John Wiley & Sons, 2004.

[21] E. Weisstein, “From mathworls—A wolfram web resource,”
http://mathworld.wolfram.com/SierpinskiCarpet.html

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al.
“ImageNet Large Scale Visual Recognition Challenge,” IJCV, vol. 115,
no. 3, pp. 211-252, 2015.

[23] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,”
http://www.cs.toronto.edu/kriz/cifar.html 2014

[24] Y.LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit databas,”
http://yann.lecun.com/exdb/mnist 2010

[25] Pytorch, “ImageNet 1-crop error rates (224x224),”
https://pytorch.org/docs/stable/torchvision/models.html

[26] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” 49th MICRO, 2016.

[27] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S.

Devadas, “Path ORAM: an extremely simple oblivious RAM protocol,”
CCS, pp. 299-310, 2013.

Design, Automation And Test in Europe (DATE 2019)

http://nvdla.org/
http://mathworld.wolfram.com/SierpinskiCarpet.html
http://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist

