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Abstract—Binary Neural Networks (BNNs) have obtained great
attention since they reduce memory usage and power consump-
tion as well as achieve a satisfying recognition accuracy on Image
Classification. In particular to the computation of BNNs, the
multiply-accumulate operations of convolution-layer are replaced
with the bit-wise operations (XNOR and pop-count). Such bit-
wise operations are well suited for the hardware accelerator such
as in-memory computing (IMC). However, an additional digital
processing unit (DPU) is required for the pop-count operation,
which induces considerable data movement between the Process
Engines (PEs) and data buffers reducing the efficiency of the
IMC. In this paper, we present a BNN computing accelerator,
namely CORN, which consists of a Spin-Orbit-Torque Magnetic
RAM (SOT-MRAM) based data buffer to perform the majority
operation (to replace the pop-count process) with the SOT-
MRAM-based IMC to accelerate the computing of BNNs. CORN
can naturally implement the XNOR operation in the NVM
memory array, and feed results to the computing data buffer for
the majority write operation. Such a design removes the pop-
counter implemented by the DPU and reduces data movement
between the data buffer and the memory array. Based on the
evaluation results, CORN achieves 61% and 14% power saving
with 1.74× and 2.12× speedup, compared to the FPGA and DPU
based IMC architecture, respectively.

Index Terms—MRAM, Spin Orbit Torque, Binary Neural
Networks, Write Operation, Preset-XNOR

I. INTRODUCTION

Convolutional neural network (CNN) has become the state-

of-the-art machine learning engine for image classification, ob-

ject detection, text understanding and artificial intelligence [1]

[2]. However, modern CNNs suffer from significant resource

and energy overhead, due to their requirement of millions of

floating-point parameters and operations. A promising solution

is the Binary CNNs (BNNs) using approximate binary weights

and activations, which significantly reduce the computations

without sacrificing too much accuracy in classification [3] [4].

Specifically, simple exclusive-negated-OR (XNOR) and pop-

count operations are used in BNNs, instead of complex mul-

tipliers and accumulator trees, resulting in a notable reduction

of energy and area overhead [5].

Potentially, such bit-wise operations in BNNs can further

benefit from recent achievements on in-memory computing

architecture (IMC) [6] [7]. By performing the logic oper-

ations locally in memory, the off-chip data communication

energy and latency can be remarkably saved. Moreover, re-

cent IMC designs show performance improvement with the

magnetic random access memory (MRAM) family (Spin-

Transfer Torque or STT, Spin-Orbit Torque or SOT, -MRAM),
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Fig. 1. The multiple layer of BNNs including convolution layer (CONV),
pooling (POOL) and fully-connected (FC) layers.

which benefit from their high-density, low standby power, and

resistance bit-cell [8]. However, challenges still exist when

designing the MRAM-based IMC for the computing-intensive

BNNs accelerator: firstly, a Digital Processing Unit (DPU) is

used to implement the pop-counter, which increases the energy

dissipation and data movement between the memory array and

data buffer. Secondly, we should consider the data placement

and mapping method between different memory arrays (as

PE), which induce considerable programming energy.

In this paper, we propose a Non-Volatile Memory (NVM)-

based BNNs accelerator, namely CORN, which uses the mem-

ory array of SOT-MRAM to implement the XNOR operation

and to replace the pop-count operation of the BNNs model.

The SOT-MRAM develops both the Process Engine (PE) and

the data buffer to mitigate the data movement between the

off-chip and host; in addition to reducing the data movement

between different PEs. Our goal is to embrace the BNNs

algorithm with the outstanding advantages of NVM-IMC

architecture design. We note that our idea is also applicable

to the typical STT-MRAM and other threshold resistance

memory such as memristor [6], in which the write current

and threshold will be much larger. Generally, SOT-MRAM

can achieve good performance on the write operation owing

to the high-efficiency of the SOT effect.

The rest of this paper is organized as follows: Section II

provides an introduction to BNNs and the concept of in-

memory computing and basics of SOT-MRAM. Section III
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Fig. 2. The memory cell of SOT-MRAM (a) SOT-MTJ with two control
transistors, T1, T2, T3 are three terminals of SOT-MTJ. The write current
flowing through heavy metal (HM) to program the SOT-MTJ to anti-parallel
(AP) and parallel (P), respectively. (b) The read circuit and reference circuit
control logic [9], Tcell and Tref are connected to the bit-line (bit-cell) and
reference circuit, respectively.

gives an overview of the CORN BNNs accelerator and the

detailed architecture. Section IV describes the experimental

setup and results. Finally, section V summarizes this paper.

II. PRELIMINARIES

This section briefly reviews the Convolutional Neural Net-

works (CNNs) and Binary Neural Networks (BNNs) regarding

layers, operations, and performance. Also, we introduce the

basics of the SOT-MRAM and the concept of the NVM-based

in-memory computing (IMC).

A. CNNs and BNNs

CNNs: Conventional CNNs are multi-layer networks, which

typically provide the probabilities for a multi-channel image

input to individual output classes [2] [10]. The CNNs consist

of convolutional layers (CONV), pooling layers (POOL), and

fully-connected layers (FC). Typically, the CONV layers con-

volve the input feature maps (ifMap) using a K ×K weight-

filter window to generate the output feature maps (ofMap), as

shown by

yn = f(b+

M∑

m=1

xm ∗Wn,m). (1)

The weight parameters of a CONV layer are M×N×K×
K. M and N are the number of ifMap and ofMap, respectively;

K ×K is the filter size. f represents the activation function,

such as a rectified linear unit (ReLU). The POOL layers map

the ifMap to ofMap whose pixel is the max/mean of a L×L
pooling window. The dimension of ofMap of POOL is smaller

than ifMap since pooling windows usually do not overlap with

each other. The computation of FC layers is similar to that of

the CONV layers but with 1× 1 weight filter.

BNNs: BNN is an extreme case of CNN with binary

constraints resulting in binary weights and activations [11] [3].

Fig. 1 shows the CONV layer of BNNs, which is similar to the

typical CNNs; the input of each CONV is a 3D feature map

with a size of N×iH×iL. The weight size is N×K×K with

stride S to filter the ifmap to produce a M ×oR×oC ofmap.

In BNNs, both the weights and activations are constrained

to a binary set to {-1, 1}. Therefore, we can use the bit-

wise XNOR and pop-count operations to replace the complex

multiplications in CONV, which significantly reduce the logic

and memory resources in the hardware accelerator. Then, the

normalization and binarization layers (Norm-Bin) are attached

after the CONV layer [11] [6], which can be expressed as,

y =

{
1,ifx > 0

−1,otherwise
(2)

where the x, y are the input and output of Norm-Bin layer.

The entire computing of the CONV layer can be defined as,

ynn = Norm−Bin(pop− Count(XNOR(wmm
b , xmm

b ))).
(3)

Where ynn, w
mm
b , xmm

b are the layer output, binary weight

and binary input parameters, respectively.

CIFAR-10 BNNs model: CIFAR-10 BNNs model consists

of six CONV layers, three FC, and three POOL layers, as

shown in Fig. 3 (a). All CONV layers use 3 × 3 filters and

edge padding, and the batch normalization is employed before

binarization. Both input and weight parameters of the CONV

layers are binarized to -1, 1 except for the first CONV layer

where the input is the image. For FC layers, the weight is

1 bit, which occupies most of the weight parameters. All

POOL layers employ the max-pooling, the weight is 2 × 2
without filter overlapping. We use open-source code to train

the CIFAR-10 BNN model and achieve an 11.46% error rate

[4]. In this paper we mainly focus on accelerating the inference

process; the detailed parameters of CIFAR-10 can be found in

[12].

B. SOT-MRAM

SOT-MRAM utilizes the effects of SOT to write the memory

cell. Similar to other MRAMs, the memory bit value is

stored in the magnetic tunneling junction (MTJ) with a tunnel

barrier (TB) sandwiched between a ferromagnetic reference

layer (RL) and a free layer (FL) above HM. The ”0” or

”1” values are represented with the low or high tunneling

magneto-resistance, which is governed by the Parallel (P) or

anti-parallel (AP) magnetization alignments between the RL

and FL. An electrical current passing through the HM layer

can effectively switch the magnetization of the FL as well as

the bit value, utilizing the SOT generated by spin Hall effect

(SHE) or Rashaba effect [13]. A similar memory design is the

STT-MRAM, where the write current passes through the MTJ

and uses the STT effect to switch the magnetization (P or AP).

In comparison, while the memory cell of SOT-MRAM needs

one additional transistor (three-terminals) compared with that

of STT-MRAM (two-terminals) as shown in Fig. 2 (a), the

SOT-MRAM is more efficient in write operation [14] [15]. To

date, the electrical model is used to evaluate the performance

of SOT-MRAM before fabricating a real device and chip via

the circuit simulation [16] [17]. In this paper, we employ the

device model with the SPICE electrical netlist to develop the

memory cell and memory array according to parameters from

recent literature [14] [15].
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Fig. 3. Overview of CORN architecture. (a) The CIFAR-10 BNNs model
with XNOR, Norm-Bin, and pop-count operation. (b) The architecture and
control flow of CORN.

C. NVM-based In-memory Computing

The concept of In-Memory Computing (IMC) attracts ever-

increasing research interests, starting from the 1990s with

the proposed Processing-in-Memory [18]. Here, we define the

IMC the same as [2] where the computing can be completed

inside the memory array with very few control-circuit modifi-

cations. For the NVM-based IMC, the bit-wise operation can

be obtained with the memory array architecture by configuring

the reference circuit [7]. In the memory array, two or more

word lines are activated (on), and the Sense Amplifier (SA) is

used to sense the value of the bit line as shown in Fig. 2 (b).

The different configuration of the SA controls the value of the

reference cell to decide the output of the SA. The NVM-based

IMC can provide several advantages to the BNNs acceleration.

First, the computation can efficiently execute in the memory

array reducing the data communication between the host and

off-chip memory with minor modification (SA and decoder).

Moreover, NVM technology with ultra-low leakage current

can significantly reduce the leakage power of the accelerator

thus improving the power efficiency [8]. However, the NVM

memory array has difficulty in implementing the pop-count

operation of the CONV layer. Therefore, a DPU should be

employed to perform the pop-count operation. The DPU

is both an area-consuming and a power-consuming digital

circuit degrading the performance of IMC. In this paper, we

observe that the pop-count process can be replaced with a

majority write operation to remove the DPU of the pop-count

operation.

III. ARCHITECTURE DESIGN

This section provides an overview of CORN architecture

and the write-based in-buffer computing engine. Also, the

write-driver (WD) for the buffer, data communication between

PEs and buffer, and mapping method are discussed.
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(WL).

A. Overview of the Architecture

Fig. 3 reveals the architecture of CORN containing several

computations: the first CONV layer to abstract the input image

(yellow color), the binary CONV layer with XNOR and pop-

count operations (XNOR-pop) followed by Normalization and

Binarization (Norm-Bin) for the other CONV and FC layers,

and the binary max-pooling operation. The first CONV layer

is a fixed-point convolutional kernel that is handled by the

host processor such as a Center Process Unit (CPU) or Field

Program Gate Array (FPGA) (classification accuracy loss of

< 0.5%). All of the binarized CONV layers are accelerated in

the CORN architecture. PEs accelerate the XNOR operation

using the memory read operation with activating XNORen

(Fig. 2) (b). Computing data buffer achieves the raw data

(XNOR results), and executes the pop-count (typically) and

binarization operations simultaneously, which we use as a

majority write operation for the data-buffer controlled by the

write control logic shown in Fig. 4 (b). An NVM-based
reconfigurable logic provides the necessary function for the

CONV layer such as Norm-Bin operations. The computing

data buffer can also execute the max-pooling operation to

remove some DPU resources. Therefore, the capacity of the

reconfigurable logic is much smaller than that of the DPU in

the previous literature [7].

B. XNOR-Majority-Write to Replace XNOR-pop-count

Fig. 5 illustrates the write-based majority operation and

modification of the write driver (WD).

1) Operation replacement: Firstly, we analyze the multiply-

accumulation and XNOR-pop-count operation for the binary

parameters (9 bits in our experiment, which is suitable for

the CIFAR-10 model). In the multiply-accumulation version,

the final result is -1 after multiple-addition and binarization as

indicated in Fig. 5 (a). Similarly, the XNOR-pop-count version
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o0 o1 o2 o3 o4 o5 o6 o7 o8

0  -1   -1   -1   -1   -1   -1  -1   -1    -1       -1

1  -1   -1   -1   -1   -1   -1  -1   -1     1       -1

2  -1   -1   -1   -1   -1   -1  -1    1     1       -1

3  -1   -1   -1   -1   -1   -1   1    1     1       -1

4  -1   -1   -1   -1   -1    1   1    1     1       -1

5  -1   -1   -1   -1    1    1   1    1     1        1

6  -1   -1   -1    1    1    1   1    1     1        1

7  -1   -1    1    1    1    1   1    1     1         1

8  -1    1    1    1    1    1    1    1     1        1

9   1    1    1    1    1    1    1    1     1        1
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Yb = -(p(1) - (9-p(1))) = -(2*p(1) - 9), Yb = -1. 

input features and weight parameters belong to {1, -1}

Multiply-accumulation version

Yb = x1*w1+x2*w2+...+x9*w9

for example Xn = [1, -1, 1, -1, 1, -1, 1, -1, -1]

   Wn = [1, 1, 1, 1, -1, 1, 1, -1, 1] 

after binarization =-1

XNOR-pop-count version

XNOR-majority-write version

[o1, o2, o3, ..., o9] = [x1,x2,x3, ..., x9] XNOR [w1, w2, w3, ..., w9];

memory cell = Majority_write[o1, o2, o3, ..., o9];

Yb = Read(memory cell), e.g., Yb = -1

(a)

(c)

Hardware Mapping

state

o1

(In Memory) 

(In buffer)

Fig. 5. The majority operation process and hardware implementation. (a)
From multiply-accumulation operation; the pop-count operation to the write-
based majority operation. (b) The PRESET stage of the write-based majority
operation. (c) The program-stage of the write-based majority operation with
the truth table (consider 0 as -1).

can achieve the same result (-1 ) taking the same xn and wn
1.

Secondly, we use a majority-write operation to replace the

pop-count operation. Fig. 5 (a) reveals the proposed XNOR-

majority-write version of computation, where the output -1 is

obtained since -1 is the majority of the XNOR results (e.g. [-1,

1, -1, 1, 1, 1, -1, -1, -1]). The benefit of the majority-process

is that we can replace the DPU with the write-based in-buffer

computing which is more energy-efficient, and reduce the data

communication.

2) Hardware mapping for majority-write operation: In

CORN, we use CIM to accelerate the XNOR operation (In

Memory). After that, the buffer is used to implement the

Majorit-write operation. Fig. 5 provides the hardware mapping

and the control circuit for the majority-write operation.

The SOT-MTJ is a current-density threshold device, which

means the memory cell can be programmed (the state from P to

AP or AP to P) only by providing enough current (via WD) 2.

For a fixed width of the transistor, more transistors can provide

1The result can be verified via a truth table. The source code and the process
of the computation in the link: https://github.com/itayhubara/BinaryNet.tf and
https://github.com/MatthieuCourbariaux/BinaryNet.

2Of course, the thermal effect influences the SOT-MTJ, but the threshold
current is still vital for writing the SOT-MRAM. Thermal effect influence is
not the primary concern in this paper. Also, we can replace the SOT-MTJ
with other threshold devices such as RRAM.

more current to the source line. We use nine control transistors

(we use NMOS rather than PMOS) for the WD; the output of

the PE controls each NMOS transistor (in computing mode).

PRESET mode: Firstly, We PRESET the SOT-MTJ to P

state (low resistance of SOT-MTJ or binary -1) with an initial

current from terminal T3 to T2 of the SOT-MTJ (as shown in

Fig. 2 (a)). PROGRAM mode: Then, the Vsupply1 is down to

Vsub, and several NMOS transistors are activated to provide

current for the HM as shown in Fig. 5 (c). The state of the

SOT-MTJ can be programmed (from P to AP state) only when

more than five NMOS transistors are activated. This writing

process matches the truth table described in Fig. 5 (c) and the

number of “-1” presents deactivation of the NMOS transistor

(can also be considered as 0; in this paper we assume it is -

1.). With the proposed WD and write scheme, we can develop

the XNOR-read-Majority-write operation for the computation

of BNNs with faster speed and lower energy dissipation as

shown in Fig. 4 (a).

Threshold operation for the max pooling: The threshold

write operation (of the buffer) also can be used to implement

the max-pooling operation (2*2 to 1 bit). For instance, a max-

pooling window consists of x = {x1, x2, x3, x4}, if only all

elements of x equal to -1, the max − pool(x) = −1, and

max − pool(x) = 1 if x contains +1 element (e.g, max −
pool[1,−1, 1,−1] = 1). We use the same WD as shown in

Fig. 5 (b) and (c); we set the [o1, o2, o3, o4, o5] = [11110] and

four bits of the max-pooling window connected to other four

bits of the WD. Therefore, the SOT-MTJ can be successfully

written only when a “1” exists in the max-pooling window. In

this process, we can reduce the comparator developed by the

DPU.

C. Control Flow and Data Mapping

Fig. 3 (b) discusses the control flow of the CORN archi-

tecture. In Step1, we program weight parameters into the

designated PEs before the execution to reduce the commu-

nication between the host processor and CORN architecture

( 1©). The host processor is also used to compute the CONV-1

layer and map its results to corresponding PEs. Therefore, the

host processor is ideal or can be used to compute other input

images during the acceleration. In Step2, PEs of CONV2 start

to compute, and a read operation is used to get the XNOR

results ( 2©) following a write operation of the computing data

buffer to obtain the majority-binarized result ( 3©. Afterward,

the reconfigurable logic achieves the data from the computing

data buffer 4©) and maps the data into PEs for the next layer.

Another read operation is executed, and the data is transferred

to the computing data buffer for the max-pooling ( 5©) by the

threshold write operation. At the end of Step2, the final results

are written to the final buffer (such as a global buffer).

We consider using both the weight-stationary (reuse weight

parameters in the memory array or PEs) and output-stationary

(partial results locate in buffers) in the CORN architecture to

remove the weight mapping and merge operations [10]. Fig.

4 (a) shows the process of the data mapping and computing

between the memory array and NV-buffer. As aforementioned,
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weight parameters are programmed into each memory array

in advance (static mapping) and the input features map to

memory array according to the data mapping method (dynamic

mapping). The modified SA is used to read two activated

memory rows (horizontal green line) and transfer raw data

(XNOR results) to the write driver (WD) of the NV-buffer

that is developed by the SOT-MRAM array shown in Fig.4

(b). The WD executes the majority-write operation which is

used to replace the pop-count and multiple operations by the

DPU.

IV. EXPERIMENT AND RESULTS

This section provides the experimental setup and valida-

tion results of the threshold based write operation. Also, we

demonstrate the results of the efficiency of the XNOR-majority

operation and performance of different layers for the CIFAR-

10 with the CORN architecture.

A. Experimental Setup

We validate the behavior of the majority-write operation and

WD in the Cadence virtuoso (with Spectre) under STMicro-

electronics CMOS 28 nm technology [19] [15]. A modified

NVSim simulator obtains parameters of the memory array

and data buffer [20]. The reconfigurable and control logic

are evaluated by the Xilinx’s Vivado and Synopsys’s design

compiler. The base-line and parameters of BNNs (source code)

are from [12]. We write a C++ based simulator to evaluate

the layer performance based on the mapping method and

computing model [10]. The size of the PE is 1024× 512.

B. Validation of the Majority-write Operation

Fig. 6 illustrates the simulation result based on the circuit

shown in Fig. 5 (b) and (c). A PRESET operation programs

the SOT-MTJ to “-1” (P state). Firstly, only O1 is activated to

provide 32.5 uA which is under the critical current. Secondly,

four NMOS transistors are activated to provide 76.2 (uA)

which still cannot modify the state of the SOT-MTJ. When

five NMOS transistors (and more) are activated, the state of

the SOT-MTJ is modified from P to AP state (AP represent 1
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Fig. 7. The power consumption for the buffer with majority operation and
the DPU with the pop-count operation. (a)The power consumption of different
size data buffers. (b) The breakdown of dynamic power consumption.

in this paper). Both the latency and energy of this process are

much lower than the pop-count process. Note that, the size of

the NMOS transistor is 3F (F presents the feature size of the

technology) under Vsupply2 = 0.5V voltage.

C. Data Buffer Evaluation

For a 512 width memory row, we require 56 (512/9) 9-

bit majority WD for the proposed NV-buffer. However, 512

bits width pop-counter (9-in-1-out) is considerably large as

evaluated by the previous literature, which requires 376 look-

up-tables (LUTs) and 29 flip-flops (FFs) (even worse using

the bipolar-accumulate in which this number is 759 LUTs

and 84 FFs) [21]. We build 128-bit and 512-bit width data

buffers including the sizes of 8 KB, 16 KB, 32 KB, and 64

KB compared to the DPU counterpart. Fig. 7 demonstrates the

comparison results, the power per operation of 128-bit width

data buffer significantly outperforms that of the DPU based

pop-counter design. Firstly, the static power is lower since the

NVM technology is used to perform computing. Secondly, the

dynamic power of the write-based majority solution is much

lower than the DPU, thanks to the efficient write operation and

data communication. Besides, results of the majority operation

are directly inside the buffer, while the DPU’s results should

execute another write operation to program into the buffer.

Even with a 512 width NV-buffer, our proposed majority

solution is still much better than the pop-count solution. Also,

the in-data-buffer based computing is power-efficiency since

computation consumes more than 80% of the dynamic power,

while the control logic and intra-communication of DPU based

pop-counter consume a large proportion of the dynamic power

as shown in Fig. 7 (b).

D. Layer-wise Estimation

We employ the 512-bit width data buffer to estimate the

performance of CONV layer following the CORN’s control

flow and mapping method. We compare the performance of

CORN to the state-of-the-art FPGA design for the CAFIR-10

BNN moel [12]. Besides, a DPU based IMC design is devel-

oped as the comparison following the method demonstrated in

[7] (We add the mapping latency and energy between different

layers). We choose the CPU as the host processor and show

the result in table I. The CORN architecture outperforms the

FPGA and IMC-DPU design both in power consumption and

throughput thanks to the majority and threshold max-pooling
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TABLE I
THE LAYER-WISE PERFORMANCE ESTIMATION OF CORN COMPARED TO

THE STATE-OF-THE-ART DESIGN FOR CARFIA-10 BNN MODEL.

Execution time per image (ms)
Item FPGA [12] IMC-DPU

[7]
CORN(this

work)
Conv1 1.13 0.68 0.68
Conv2-5 2.68 5.35 2.21
FC1-3 2.13 1.23 0.89
Total 5.94 7.26 3.42
Power(W ) 4.7 2.1 1.83
Throughput
(Image/sec/W)

35.8 68.1 159.4

operations. The estimate power saving of CORN is 61% and

14% with 1.74× and 2.12× speedup, compared to the FPGA

and IMC-DPU, respectively. As a result, CORN can achieve

much higher throughput (Image/second/Watt) than that of the

other two designs.

V. CONCLUSION

BNNs can reduce the memory usage and multiple-

accumulate computing of CNNs without sacrificing much

of the accuracy, which provides a possibility for the IMC

with simple logic operations. In this paper, we proposed

an IMC based computing accelerator, namely CORN, which

performs the XNOR operation in the memory-based PEs (read

operation); in addition, to replace the pop-count process with

the efficient majority process with an NV-buffer (threshold

write operation). Overall, based on the estimation, CORN

achieves better performance regarding power consumption and

throughput, compared to the FPGA and IMC-DPU counter-

part. To date, we only support the 9-bit filter window in the

CORN, which is suitable for some BNNs model. If we use a

much higher threshold device such as RRAM (e.g., 25 bits,

49bit), the idea of CORN is also suitable for other networks.
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