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Abstract—Binary Neural Networks (BNNs) have obtained great
attention since they reduce memory usage and power consump-
tion as well as achieve a satisfying recognition accuracy on Image
Classification. In particular to the computation of BNNs, the
multiply-accumulate operations of convolution-layer are replaced
with the bit-wise operations (XNOR and pop-count). Such bit-
wise operations are well suited for the hardware accelerator such
as in-memory computing (IMC). However, an additional digital
processing unit (DPU) is required for the pop-count operation,
which induces considerable data movement between the Process
Engines (PEs) and data buffers reducing the efficiency of the
IMC. In this paper, we present a BNN computing accelerator,
namely CORN, which consists of a Spin-Orbit-Torque Magnetic
RAM (SOT-MRAM) based data buffer to perform the majority
operation (to replace the pop-count process) with the SOT-
MRAM-based IMC to accelerate the computing of BNNs. CORN
can naturally implement the XNOR operation in the NVM
memory array, and feed results to the computing data buffer for
the majority write operation. Such a design removes the pop-
counter implemented by the DPU and reduces data movement
between the data buffer and the memory array. Based on the
evaluation results, CORN achieves 61% and 14% power saving
with 1.74x and 2.12x speedup, compared to the FPGA and DPU
based IMC architecture, respectively.

Index Terms—MRAM, Spin Orbit Torque, Binary Neural
Networks, Write Operation, Preset-XNOR

I. INTRODUCTION

Convolutional neural network (CNN) has become the state-
of-the-art machine learning engine for image classification, ob-
ject detection, text understanding and artificial intelligence [1]
[2]. However, modern CNNs suffer from significant resource
and energy overhead, due to their requirement of millions of
floating-point parameters and operations. A promising solution
is the Binary CNNs (BNNs) using approximate binary weights
and activations, which significantly reduce the computations
without sacrificing too much accuracy in classification [3] [4].
Specifically, simple exclusive-negated-OR (XNOR) and pop-
count operations are used in BNNs, instead of complex mul-
tipliers and accumulator trees, resulting in a notable reduction
of energy and area overhead [5].

Potentially, such bit-wise operations in BNNs can further
benefit from recent achievements on in-memory computing
architecture (IMC) [6] [7]. By performing the logic oper-
ations locally in memory, the off-chip data communication
energy and latency can be remarkably saved. Moreover, re-
cent IMC designs show performance improvement with the
magnetic random access memory (MRAM) family (Spin-
Transfer Torque or STT, Spin-Orbit Torque or SOT, -MRAM),
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Fig. 1. The multiple layer of BNNs including convolution layer (CONV),
pooling (POOL) and fully-connected (FC) layers.

which benefit from their high-density, low standby power, and
resistance bit-cell [8]. However, challenges still exist when
designing the MRAM-based IMC for the computing-intensive
BNNSs accelerator: firstly, a Digital Processing Unit (DPU) is
used to implement the pop-counter, which increases the energy
dissipation and data movement between the memory array and
data buffer. Secondly, we should consider the data placement
and mapping method between different memory arrays (as
PE), which induce considerable programming energy.

In this paper, we propose a Non-Volatile Memory (NVM)-
based BNNs accelerator, namely CORN, which uses the mem-
ory array of SOT-MRAM to implement the XNOR operation
and to replace the pop-count operation of the BNNs model.
The SOT-MRAM develops both the Process Engine (PE) and
the data buffer to mitigate the data movement between the
off-chip and host; in addition to reducing the data movement
between different PEs. Our goal is to embrace the BNNs
algorithm with the outstanding advantages of NVM-IMC
architecture design. We note that our idea is also applicable
to the typical STT-MRAM and other threshold resistance
memory such as memristor [6], in which the write current
and threshold will be much larger. Generally, SOT-MRAM
can achieve good performance on the write operation owing
to the high-efficiency of the SOT effect.

The rest of this paper is organized as follows: Section II
provides an introduction to BNNs and the concept of in-
memory computing and basics of SOT-MRAM. Section III
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Fig. 2. The memory cell of SOT-MRAM (a) SOT-MTJ with two control
transistors, T1, T2, T3 are three terminals of SOT-MTIJ. The write current
flowing through heavy metal (HM) to program the SOT-MT]J to anti-parallel
(AP) and parallel (P), respectively. (b) The read circuit and reference circuit
control logic [9], Tcell and Tref are connected to the bit-line (bit-cell) and
reference circuit, respectively.

gives an overview of the CORN BNNs accelerator and the
detailed architecture. Section IV describes the experimental
setup and results. Finally, section V summarizes this paper.

II. PRELIMINARIES

This section briefly reviews the Convolutional Neural Net-
works (CNNs) and Binary Neural Networks (BNNs) regarding
layers, operations, and performance. Also, we introduce the
basics of the SOT-MRAM and the concept of the NVM-based
in-memory computing (IMC).

A. CNNs and BNNs

CNNs: Conventional CNNs are multi-layer networks, which
typically provide the probabilities for a multi-channel image
input to individual output classes [2] [10]. The CNNs consist
of convolutional layers (CONV), pooling layers (POOL), and
fully-connected layers (FC). Typically, the CONV layers con-
volve the input feature maps (ifMap) using a K x K weight-
filter window to generate the output feature maps (ofMap), as
shown by

M
yn:f(b"_zmm*wn,m)- (1)

m=1

The weight parameters of a CONV layer are M x N x K x
K. M and N are the number of ifMap and ofMap, respectively;
K x K is the filter size. f represents the activation function,
such as a rectified linear unit (ReLU). The POOL layers map
the ifMap to ofMap whose pixel is the max/mean of a L X L
pooling window. The dimension of ofMap of POOL is smaller
than ifMap since pooling windows usually do not overlap with
each other. The computation of FC layers is similar to that of
the CONV layers but with 1 x 1 weight filter.

BNNs: BNN is an extreme case of CNN with binary
constraints resulting in binary weights and activations [11] [3].
Fig. 1 shows the CONV layer of BNNs, which is similar to the
typical CNNs; the input of each CONV is a 3D feature map
with a size of N xiH x¢L. The weight size is N x K x K with
stride S to filter the ifmap to produce a M X oR x oC' ofmap.
In BNNs, both the weights and activations are constrained
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to a binary set to {-1, 1}. Therefore, we can use the bit-
wise XNOR and pop-count operations to replace the complex
multiplications in CONYV, which significantly reduce the logic
and memory resources in the hardware accelerator. Then, the
normalization and binarization layers (Norm-Bin) are attached
after the CONV layer [11] [6], which can be expressed as,

1ifr >0
y:{ e @)

—1,0therwise

where the x, y are the input and output of Norm-Bin layer.
The entire computing of the CONV layer can be defined as,

Ynn = Norm — Bin(pop — Count(X NOR(wy"™, zp'™))).
3)

Where y,,,,, wy'™, vp""" are the layer output, binary weight
and binary input parameters, respectively.

CIFAR-10 BNNs model: CIFAR-10 BNNs model consists
of six CONV layers, three FC, and three POOL layers, as
shown in Fig. 3 (a). All CONV layers use 3 x 3 filters and
edge padding, and the batch normalization is employed before
binarization. Both input and weight parameters of the CONV
layers are binarized to -1, 1 except for the first CONV layer
where the input is the image. For FC layers, the weight is
1 bit, which occupies most of the weight parameters. All
POOL layers employ the max-pooling, the weight is 2 x 2
without filter overlapping. We use open-source code to train
the CIFAR-10 BNN model and achieve an 11.46% error rate
[4]. In this paper we mainly focus on accelerating the inference
process; the detailed parameters of CIFAR-10 can be found in
[12].

B. SOT-MRAM

SOT-MRAM utilizes the effects of SOT to write the memory
cell. Similar to other MRAMs, the memory bit value is
stored in the magnetic tunneling junction (MTJ) with a tunnel
barrier (TB) sandwiched between a ferromagnetic reference
layer (RL) and a free layer (FL) above HM. The 0 or
”1” values are represented with the low or high tunneling
magneto-resistance, which is governed by the Parallel (P) or
anti-parallel (AP) magnetization alignments between the RL
and FL. An electrical current passing through the HM layer
can effectively switch the magnetization of the FL as well as
the bit value, utilizing the SOT generated by spin Hall effect
(SHE) or Rashaba effect [13]. A similar memory design is the
STT-MRAM, where the write current passes through the MTJ
and uses the STT effect to switch the magnetization (P or AP).
In comparison, while the memory cell of SOT-MRAM needs
one additional transistor (three-terminals) compared with that
of STT-MRAM (two-terminals) as shown in Fig. 2 (a), the
SOT-MRAM is more efficient in write operation [14] [15]. To
date, the electrical model is used to evaluate the performance
of SOT-MRAM before fabricating a real device and chip via
the circuit simulation [16] [17]. In this paper, we employ the
device model with the SPICE electrical netlist to develop the
memory cell and memory array according to parameters from
recent literature [14] [15].
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Fig. 3. Overview of CORN architecture. (a) The CIFAR-10 BNNs model
with XNOR, Norm-Bin, and pop-count operation. (b) The architecture and
control flow of CORN.

C. NVM-based In-memory Computing

The concept of In-Memory Computing (IMC) attracts ever-
increasing research interests, starting from the 1990s with
the proposed Processing-in-Memory [18]. Here, we define the
IMC the same as [2] where the computing can be completed
inside the memory array with very few control-circuit modifi-
cations. For the NVM-based IMC, the bit-wise operation can
be obtained with the memory array architecture by configuring
the reference circuit [7]. In the memory array, two or more
word lines are activated (on), and the Sense Amplifier (SA) is
used to sense the value of the bit line as shown in Fig. 2 (b).
The different configuration of the SA controls the value of the
reference cell to decide the output of the SA. The NVM-based
IMC can provide several advantages to the BNNs acceleration.
First, the computation can efficiently execute in the memory
array reducing the data communication between the host and
off-chip memory with minor modification (SA and decoder).

Moreover, NVM technology with ultra-low leakage current
can significantly reduce the leakage power of the accelerator
thus improving the power efficiency [8]. However, the NVM
memory array has difficulty in implementing the pop-count
operation of the CONV layer. Therefore, a DPU should be
employed to perform the pop-count operation. The DPU
is both an area-consuming and a power-consuming digital
circuit degrading the performance of IMC. In this paper, we
observe that the pop-count process can be replaced with a
majority write operation to remove the DPU of the pop-count
operation.

ITI. ARCHITECTURE DESIGN

This section provides an overview of CORN architecture
and the write-based in-buffer computing engine. Also, the
write-driver (WD) for the buffer, data communication between
PEs and buffer, and mapping method are discussed.
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Fig. 4. The data communication between PEs and NV-buffer. (a) The data
communication and data mapping for the memory array (as PEs). (b) The
memory and data structure developed by the SOT-MRAM. In the PEs, we
modify the read logic and decoder. In the buffer, we modify the write control
logic. Glossary: bit-line (BL), read line (RL), source line (SL) and word line
(WL).

A. Overview of the Architecture

Fig. 3 reveals the architecture of CORN containing several
computations: the first CONV layer to abstract the input image
(yellow color), the binary CONV layer with XNOR and pop-
count operations (XNOR-pop) followed by Normalization and
Binarization (Norm-Bin) for the other CONV and FC layers,
and the binary max-pooling operation. The first CONV layer
is a fixed-point convolutional kernel that is handled by the
host processor such as a Center Process Unit (CPU) or Field
Program Gate Array (FPGA) (classification accuracy loss of
< 0.5%). All of the binarized CONV layers are accelerated in
the CORN architecture. PEs accelerate the XNOR operation
using the memory read operation with activating XNORen
(Fig. 2) (b). Computing data buffer achieves the raw data
(XNOR results), and executes the pop-count (typically) and
binarization operations simultaneously, which we use as a
majority write operation for the data-buffer controlled by the
write control logic shown in Fig. 4 (b). An NVM-based
reconfigurable logic provides the necessary function for the
CONV layer such as Norm-Bin operations. The computing
data buffer can also execute the max-pooling operation to
remove some DPU resources. Therefore, the capacity of the
reconfigurable logic is much smaller than that of the DPU in
the previous literature [7].

B. XNOR-Majority-Write to Replace XNOR-pop-count

Fig. 5 illustrates the write-based majority operation and
modification of the write driver (WD).

1) Operation replacement: Firstly, we analyze the multiply-
accumulation and XNOR-pop-count operation for the binary
parameters (9 bits in our experiment, which is suitable for
the CIFAR-10 model). In the multiply-accumulation version,
the final result is -1 after multiple-addition and binarization as
indicated in Fig. 5 (a). Similarly, the XNOR-pop-count version
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input features and weight parameters belong to {1, -1}
for example Xn=[1,-1,1,-1,1,-1,1,-1,-1] |
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Fig. 5. The majority operation process and hardware implementation. (a)
From multiply-accumulation operation; the pop-count operation to the write-
based majority operation. (b) The PRESET stage of the write-based majority
operation. (c) The program-stage of the write-based majority operation with
the truth table (consider O as -1).

can achieve the same result (-1) taking the same z,, and w,
1

Secondly, we use a majority-write operation to replace the
pop-count operation. Fig. 5 (a) reveals the proposed XNOR-
majority-write version of computation, where the output -1 is
obtained since -1 is the majority of the XNOR results (e.g. [-1,
1, -1, 1, 1, 1, -1, -1, -1]). The benefit of the majority-process
is that we can replace the DPU with the write-based in-buffer
computing which is more energy-efficient, and reduce the data
communication.

2) Hardware mapping for majority-write operation: In
CORN, we use CIM to accelerate the XNOR operation (In
Memory). After that, the buffer is used to implement the
Majorit-write operation. Fig. 5 provides the hardware mapping
and the control circuit for the majority-write operation.

The SOT-MT]J is a current-density threshold device, which
means the memory cell can be programmed (the state from P to
AP or AP to P) only by providing enough current (via WD) 2.
For a fixed width of the transistor, more transistors can provide

I'The result can be verified via a truth table. The source code and the process
of the computation in the link: https://github.com/itayhubara/BinaryNet.tf and
https://github.com/MatthieuCourbariaux/BinaryNet.

20f course, the thermal effect influences the SOT-MTJ, but the threshold
current is still vital for writing the SOT-MRAM. Thermal effect influence is
not the primary concern in this paper. Also, we can replace the SOT-MTJ
with other threshold devices such as RRAM.
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more current to the source line. We use nine control transistors
(we use NMOS rather than PMOS) for the WD; the output of
the PE controls each NMOS transistor (in computing mode).
PRESET mode: Firstlyy, We PRESET the SOT-MTJ to P
state (low resistance of SOT-MTJ or binary -1) with an initial
current from terminal T3 to T2 of the SOT-MT]J (as shown in
Fig. 2 (a)). PROGRAM mode: Then, the V,;piy1 is down to
Vsub, and several NMOS transistors are activated to provide
current for the HM as shown in Fig. 5 (c). The state of the
SOT-MT]J can be programmed (from P to AP state) only when
more than five NMOS transistors are activated. This writing
process matches the truth table described in Fig. 5 (c) and the
number of “-1” presents deactivation of the NMOS transistor
(can also be considered as 0; in this paper we assume it is -
1.). With the proposed WD and write scheme, we can develop
the XNOR-read-Majority-write operation for the computation
of BNNs with faster speed and lower energy dissipation as
shown in Fig. 4 (a).

Threshold operation for the max pooling: The threshold
write operation (of the buffer) also can be used to implement
the max-pooling operation (2*2 to 1 bit). For instance, a max-
pooling window consists of x = {x1, x2, x3, x4}, if only all
elements of x equal to -1, the maz — pool(x) = —1, and
mazx — pool(x) = 1 if x contains +1 element (e.g, max —
pool[l,—1,1,—1] = 1). We use the same WD as shown in
Fig. 5 (b) and (c); we set the [o1, 02, 03, 04, 05] =[11110] and
four bits of the max-pooling window connected to other four
bits of the WD. Therefore, the SOT-MTJ can be successfully
written only when a “1” exists in the max-pooling window. In
this process, we can reduce the comparator developed by the
DPU.

C. Control Flow and Data Mapping

Fig. 3 (b) discusses the control flow of the CORN archi-
tecture. In Stepl, we program weight parameters into the
designated PEs before the execution to reduce the commu-
nication between the host processor and CORN architecture
(). The host processor is also used to compute the CONV-1
layer and map its results to corresponding PEs. Therefore, the
host processor is ideal or can be used to compute other input
images during the acceleration. In Step2, PEs of CONV?2 start
to compute, and a read operation is used to get the XNOR
results (@) following a write operation of the computing data
buffer to obtain the majority-binarized result (). Afterward,
the reconfigurable logic achieves the data from the computing
data buffer @) and maps the data into PEs for the next layer.
Another read operation is executed, and the data is transferred
to the computing data buffer for the max-pooling (%)) by the
threshold write operation. At the end of Step2, the final results
are written to the final buffer (such as a global buffer).

We consider using both the weight-stationary (reuse weight
parameters in the memory array or PEs) and output-stationary
(partial results locate in buffers) in the CORN architecture to
remove the weight mapping and merge operations [10]. Fig.
4 (a) shows the process of the data mapping and computing
between the memory array and NV-buffer. As aforementioned,
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VDD), and the current added on the HM of SOT-MT]J, respectively. MTJ
status: AP (-1) and P (1).

weight parameters are programmed into each memory array
in advance (static mapping) and the input features map to
memory array according to the data mapping method (dynamic
mapping). The modified SA is used to read two activated
memory rows (horizontal green line) and transfer raw data
(XNOR results) to the write driver (WD) of the NV-buffer
that is developed by the SOT-MRAM array shown in Fig.4
(b). The WD executes the majority-write operation which is
used to replace the pop-count and multiple operations by the
DPU.

IV. EXPERIMENT AND RESULTS

This section provides the experimental setup and valida-
tion results of the threshold based write operation. Also, we
demonstrate the results of the efficiency of the XNOR-majority
operation and performance of different layers for the CIFAR-
10 with the CORN architecture.

A. Experimental Setup

We validate the behavior of the majority-write operation and
WD in the Cadence virtuoso (with Spectre) under STMicro-
electronics CMOS 28 nm technology [19] [15]. A modified
NVSim simulator obtains parameters of the memory array
and data buffer [20]. The reconfigurable and control logic
are evaluated by the Xilinx’s Vivado and Synopsys’s design
compiler. The base-line and parameters of BNNs (source code)
are from [12]. We write a C++ based simulator to evaluate
the layer performance based on the mapping method and
computing model [10]. The size of the PE is 1024 x 512.

B. Validation of the Majority-write Operation

Fig. 6 illustrates the simulation result based on the circuit
shown in Fig. 5 (b) and (c). A PRESET operation programs
the SOT-MTJ to “-1” (P state). Firstly, only O; is activated to
provide 32.5 uA which is under the critical current. Secondly,
four NMOS transistors are activated to provide 76.2 (uA)
which still cannot modify the state of the SOT-MTJ. When
five NMOS transistors (and more) are activated, the state of
the SOT-MT]J is modified from P to AP state (AP represent 1
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in this paper). Both the latency and energy of this process are
much lower than the pop-count process. Note that, the size of
the NMOS transistor is 3F (F presents the feature size of the
technology) under Vi, ppiy2 = 0.5V voltage.

C. Data Buffer Evaluation

For a 512 width memory row, we require 56 (512/9) 9-
bit majority WD for the proposed NV-buffer. However, 512
bits width pop-counter (9-in-1-out) is considerably large as
evaluated by the previous literature, which requires 376 look-
up-tables (LUTs) and 29 flip-flops (FFs) (even worse using
the bipolar-accumulate in which this number is 759 LUTs
and 84 FFs) [21]. We build 128-bit and 512-bit width data
buffers including the sizes of 8 KB, 16 KB, 32 KB, and 64
KB compared to the DPU counterpart. Fig. 7 demonstrates the
comparison results, the power per operation of 128-bit width
data buffer significantly outperforms that of the DPU based
pop-counter design. Firstly, the static power is lower since the
NVM technology is used to perform computing. Secondly, the
dynamic power of the write-based majority solution is much
lower than the DPU, thanks to the efficient write operation and
data communication. Besides, results of the majority operation
are directly inside the buffer, while the DPU’s results should
execute another write operation to program into the buffer.
Even with a 512 width NV-buffer, our proposed majority
solution is still much better than the pop-count solution. Also,
the in-data-buffer based computing is power-efficiency since
computation consumes more than 80% of the dynamic power,
while the control logic and intra-communication of DPU based
pop-counter consume a large proportion of the dynamic power
as shown in Fig. 7 (b).

D. Layer-wise Estimation

We employ the 512-bit width data buffer to estimate the
performance of CONV layer following the CORN’s control
flow and mapping method. We compare the performance of
CORN to the state-of-the-art FPGA design for the CAFIR-10
BNN moel [12]. Besides, a DPU based IMC design is devel-
oped as the comparison following the method demonstrated in
[7] (We add the mapping latency and energy between different
layers). We choose the CPU as the host processor and show
the result in table I. The CORN architecture outperforms the
FPGA and IMC-DPU design both in power consumption and
throughput thanks to the majority and threshold max-pooling
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TABLE I
THE LAYER-WISE PERFORMANCE ESTIMATION OF CORN COMPARED TO
THE STATE-OF-THE-ART DESIGN FOR CARFIA-10 BNN MODEL.

Execution time per image (ms)

Item FPGA [12] IMC-DPU CORN(this

[7] work)
Convl 1.13 0.68 0.68
Conv2-5 2.68 5.35 221
FCI1-3 2.13 1.23 0.89
Total 5.94 7.26 342
Power(W) 4.7 2.1 1.83
Throughput 35.8 68.1 159.4
(Image/sec/W)

operations. The estimate power saving of CORN is 61% and
14% with 1.74x and 2.12x speedup, compared to the FPGA
and IMC-DPU, respectively. As a result, CORN can achieve
much higher throughput (Image/second/Watt) than that of the
other two designs.

V. CONCLUSION

BNNs can reduce the memory usage and multiple-
accumulate computing of CNNs without sacrificing much
of the accuracy, which provides a possibility for the IMC
with simple logic operations. In this paper, we proposed
an IMC based computing accelerator, namely CORN, which
performs the XNOR operation in the memory-based PEs (read
operation); in addition, to replace the pop-count process with
the efficient majority process with an NV-buffer (threshold
write operation). Overall, based on the estimation, CORN
achieves better performance regarding power consumption and
throughput, compared to the FPGA and IMC-DPU counter-
part. To date, we only support the 9-bit filter window in the
CORN, which is suitable for some BNNs model. If we use a
much higher threshold device such as RRAM (e.g., 25 bits,
49bit), the idea of CORN is also suitable for other networks.
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