
Single-Error Detection and Correction for
Duplication and Substitution Channels

Yuanyuan Tang∗, Yonatan Yehezkeally†, Moshe Schwartz‡, and Farzad Farnoud (Hassanzadeh)§
∗Electrical & Computer Engineering, University of Virginia, yt5tz@virginia.edu

†Electrical & Computer Engineering, Ben-Gurion University of the Negev, yonatany@post.bgu.ac.il
‡Electrical & Computer Engineering, Ben-Gurion University of the Negev, schwartz@ee.bgu.ac.il

§Electrical & Computer Engineering, University of Virginia, farzad@virginia.edu

Abstract—Motivated by mutation processes occurring in in-
vivo DNA-storage applications, a channel that mutates stored
strings by duplicating substrings as well as substituting symbols
is studied. Two models of such a channel are considered: one
in which the substitutions occur only within the duplicated
substrings, and one in which the location of substitutions is
unrestricted. Both error-detecting and error-correcting codes are
constructed, which can handle correctly any number of tandem
duplications of a fixed length k, and at most a single substitution
occurring at any time during the mutation process.

I. INTRODUCTION

Recent advances in DNA sequencing and synthesis tech-
nologies have increased the potential of DNA as a data storage
medium. In addition to its high data density, data storage
in DNA provides a long-lasting alternative to current storage
media. Furthermore, given the need for accessing biological
data stored in DNA of living organisms, technologies for
retrieving data from DNA will not become obsolete, unlike
flash memory, magnetic disks, and optical disks. Data can
be stored in DNA in vitro or in vivo. While the former will
likely provide a higher density, the latter can provide a more
reliable and cost-effective replication method, as well as a
protective shell [11]. In-vivo storage also has applications
such as watermarking genetically modified organisms. This
technology was recently demonstrated experimentally using
CRISPR/Cas gene editing [10], [11]. One of the challenges
of this technology is that a diverse set of errors are possible,
including substitutions, duplications, insertions, and deletions.
Duplication errors, in particular, have been previously studied
by a number of recent works, including [3]–[6], [9], among
others. This paper focuses on error-control codes for duplica-
tion and substitution errors.

In a (tandem) duplication event, a substring of the DNA
sequence, the template, is duplicated and the resulting copy is
inserted into the sequence next to the template [12]. Evidence
of this process is found in the genomes of many organisms as
patterns that are repeated multiple times [2]. In a substitution
event, a symbol in the sequence is changed to another symbol
of the alphabet. It has been observed that point mutations such
as substitutions are more common in tandem repeat regions
of the genomes [7]. We consider two models for combined
duplication and substitution errors. In the first model, called
the noisy-duplication model, the copy is a noisy version of the

This work was supported in part by NSF grants under grant nos. 1816409
and 1755773, and a BSF grant under grant no. 2017652.

template. Noisy duplications in this model can be viewed as
exact duplications followed by substitutions that are restricted
to the newly added copy. We also consider an unrestricted-
substitution model, which relaxes the noisy duplication model
by allowing substitutions at any position in the sequence.

In this paper we construct both error-detecting and error-
correcting codes, that are capable of correctly handling any
number of tandem duplications of a fixed length k, and
at most a single substitution error. The main approach in
both is to reverse the duplication process while accounting
for the single substitution (which may spuriously create the
appearance of a duplication that never happened, or eliminate
one that did). Different challenges are also presented by the
possible locations for substitutions. Namely, we study both
the case where the substitution is restricted to occur within
a duplicated substring, as well as the case of unrestricted
location for the substitution. We bring these difference to light
by providing a construction for an error-detecting code for the
restricted substitution model, and an error-correcting code for
the unrestricted substitution model.

This paper is organized as follows. In Section II we provide
the notation as well as relevant background and known results.
In Section III we construct error-detecting codes for the
restricted substitution model. Finally, in Section IV we give a
construction for an error-correcting code for the unrestricted
substitution model. Most proofs and technical lemmas are
omitted or sketched due to the page limit, and will be available
in the full version of this paper.

II. NOTATION AND PRELIMINARIES

Throughout the paper, we assume that the alphabet Σ is
a unital ring of size q > 2 (e.g., Zq or, when q is a prime
power, Fq). Thus, addition (or subtraction) and multiplications
of letters from the alphabet are well-defined. The set of finite
strings and strings of length at least k over Σ is denoted Σ∗ and
Σ>k, respectively. The concatenation of two strings, u, v ∈ Σ∗

is denoted by uv, and uk denotes concatenating k copies of
u. The length (number of letters) of u is denoted by |u|, and
its Hamming weight by wt(u). We say y ∈ Σ∗ is a substring
of w ∈ Σ∗ if there exist x, z ∈ Σ∗ such that w = xyz.

A (tandem) duplication of length k duplicates a substring
of length k and inserts it in tandem into the string, namely,
the copy immediately follows the template. For example, from

uvw, where |v| = k, we may obtain uvvw. As an example
for k = 3 and alphabet Σ = Z3, consider

x = 1012121→ x′ = 1012012121, (1)

where the underline part is the copy.
The analysis of duplication errors will be facilitated by the

k-discrete-derivative transform, defined in [1] in the following
way. For x ∈ Σ>k, we define φ(x) , φ̂(x)φ̄(x), where

φ̂(x) , x1 · · ·xk, φ̄(x) , xk+1 · · ·xn − x1 · · ·xn−k,

in which subtraction is performed entry-wise over Σ. We note
that φ(·) is a bijection. The duplication length k is implicit in
the definition of φ. For a set of strings S, we define φ(S) ,
{φ(s) | s ∈ S}.

Let x′ be obtained through a tandem duplication of length
k from x. It is not difficult to see that φ̂(x) = φ̂(x′) and
that φ̄(x′) can be obtained from φ̄(x) by inserting 0k in an
appropriate position [3]. For the example given in (1),

x = 1012121→ x′ = 1012012121

φ(x) = 101, 1112→ φ(x′) = 101, 1000112

Here, a comma separates the parts of φ for clarity.
Sometimes duplications are noisy and the duplicated sym-

bols are different from the original symbols. (Unless otherwise
stated duplications are assumed to be exact.) We only consider
the case where a single symbol is different. We view a noisy
duplication as a duplication followed by a substitution in the
duplicated substring. Continuing the example, the duplication
resulting in x′ may be followed by a substitution,

x′ = 1012012121→ x′′ = 1012112121,

φ(x′) = 101, 1000112→ φ(x′′) = 101, 1100012.

We also consider unrestricted substitutions, which can occur
at any position in the string, rather than only in a substring that
is duplicated by the previous duplication. A substitution may
be considered as the mapping x→ x+ aei, where ei ∈ Σn is
a standard unit vector at index i, and a ∈ Σ, a 6= 0. Since φ is
linear over Σ (i.e., φ(x+aei) = φ(x)+aφ(ei)), we denote the
transform of ei as εi , φ(ei), and observe that εi = ei− ei+k
for i 6 n − k and εi = ei for n − k < i 6 n. We note
that substitutions might affect two positions in the transform
domain. When the length n is unclear from the context, we
shall indicate it in the superscript as e(n)

i and ε(n)
i .

Let Dt(p)
k (x) (for t > p) denote the set of strings that can

be obtained from x through t tandem duplications, p of which
are noisy, with each noisy duplication containing a single
substitution. Dt(p)

k is called a descendant cone of x. We further
define

D
∗(p)
k (x) ,

∞⋃
t=p

D
t(p)
k (x), D

∗(P)
k (x) ,

⋃
p∈P

D
∗(p)
k (x), (2)

where P is a subset of non-negative integers. We denote P =
{0, 1} as 6 1.

We define Dt,p
k (x) to be the set of strings obtained from

x through t tandem duplications and p substitutions, where
substitutions can occur in any position (and so we do not
require t > p). We extend this definition similar to (2).

For a string z ∈ Σ∗, µ(z) is obtained by removing all copies
of 0k from z. Specifically, for

z = 0m0w10m1w2 · · ·wd0md ,

where mi are non-negative integers and wi ∈ Σ \ {0} are
nonzero symbols, we define

µ(z) , 0m0 mod kw10m1 mod kw2 · · ·wd0md mod k.

Define the duplication root drt(x) of x as the unique string
obtained from x by removing all tandem repeats of length k.
Note that φ(drt(x)) = φ̂(x)µ(φ̄(x)) (see [3]). For a set of
strings S, we define drt(S) , {drt(s) | s ∈ S}.

A string x is irreducible if x = drt(x). The set of
irreducible strings of length n is denoted Irr(n), where the
duplication length k is again implicit. We denote by RLL(m)
the set of strings in Σm that do not contain 0k as a sub-
string. A string x of length n is irreducible if and only if
φ̄(x) ∈ RLL(n− k).

Finally, we define the redundancy of a code C ⊆ Σn as

r(C) , n− logq|C| = n− log|Σ||C|,

and the code’s rate as R(C) , 1− r(C)
n .

III. RESTRICTED ERROR-DETECTING CODES

In this section, we consider the case of noisy-duplication
errors. Our goal is to correct errors consisting of any number of
exact duplications and detect errors consisting of any number
of exact duplications and one noisy duplication, where the
noisy duplication contains one substitution. We refer to codes
with this capability as 1-noisy duplication (1ND) detecting.

A code C ⊆ Σn is 1ND-detecting if and only if for any
two distinct codewords c1, c2 ∈ C, we have

D
∗(61)
k (c1) ∩D∗(0)

k (c2) = ∅.

It can be shown that this is equivalent to

drt(c2) 6= drt(c1), drt(c2) /∈ drt(D
∗(1)
k (c1)). (3)

As a result of the substitution in the noisy duplication,
the length of the duplication root may change. One way to
simplify the code design is to restrict ourselves to codes
whose codewords all have duplication roots with the same
length. Then error patterns that modify this length can be
easily detected and we can focus on patterns that keep the
duplication-root length the same. We thus consider codes of
length n whose codewords are irreducible.

For an irreducible string x of length n > 2k, our goal is
to study the set drt(D

∗(1)
k (x)) ∩ Σn, corresponding to errors

that do not change the length of the root of x. We refer to a
substitution error that does not change the length of the root
as an ambiguous substitution.

Given that φ̂(x) is not altered by duplications or substitution
errors embedded in noisy duplications, we only study z =
φ̄(x). Let z̄ be obtained from z by an arbitrary number of
insertions of 0k (equivalent to k-duplications) and have the
form

z̄ = u0pk+mb1b2 · · · bkv,

where m, p ∈ N such that 0 6 m < k; u, v ∈ Σ∗ such that
the last element of u is nonzero; and b1, . . . , bk are symbols
such that b1 6= 0. Assume that the next duplication is noisy
and thus includes a substitution. Without loss of generality,
this duplication inserts 0k between u and b1, resulting in z′,

z′ = u0(p+1)k+mb1b2 · · · bkv.

Since 0k may be inserted at any position among the existing 0s
before b1, a substitution can take place at any position among
the resulting m+ (p+ 1)k 0s.

An ambiguous substitution can only happen among the last
k 0s before b1 in z′, since otherwise the length of root before
b1 will increase while the length after b1 will stay the same.
After the substitution, we obtain

z′′ = u0pk0m+i−1b0k−ib1 · · · bi−1(bi − b)bi+1 · · · bkv, (4)

where 1 6 i 6 k and b 6= 0. Let the length of the run of 0s on
the left side of bi be m1 and the length of the run of 0s on the
right of bi be m2 (excluding bi). Note that 0 6 m1 6 k−2. It
can be shown that an ambiguous substitution can happen only
in the following two cases:
C.1 1 < i 6 k−m, bi = b, and bm2

k c < b
m1+m2+1

k c. In this
case, the length of the root before b1 increases by k and
the length of the root after b1 decreases by k.

C.2 k−m < i 6 k and (bi /∈ {0, b} or bm2

k c = bm1+m2+1
k c).

Then the length of the root before and after b1 remain
constant.

Further duplications do not affect the duplication-root.
Hence, we use the analysis above to find lower bounds on
the size of 1ND-detecting codes. For a string x in the space
of irreducible strings of length n, let V (x, 1) denote the size
of the sphere of radius 1 substitution and many duplications
centered at x. That is,

V (x, 1) , |drt(D
∗(61)
k (x)) ∩ Σn|.

Lemma 1 For x ∈ Irr(n), where n > 2k,

V (x, 1) 6 (n− k)(q − 1)− wt
(
φ̄(x)

)
(q − 2).

Proof (sketch): Only the errors described in C.1 and
C.2 above generate descendants with roots of length n. We
enumerate the contributions of these cases. It can be shown
that C.1 contributes at most wt(φ̄(x))− 1 and C.2 contributes
at most (n− k − wt(φ̄(x)))(q − 1) to V (x, 1).

To find a lower bound on the size of the code, we apply the
Gilbert-Varshamov (GV) bound with the average size of the
sphere (see, e.g., [8]).

Lemma 2 Let x be a randomly chosen irreducible string of
length n. If n > 2k, then E[V (x, 1)] 6 2(n− k)(q − 1)/q.

The above lemma leads to the lower bound in the following
theorem. The upper bound follows from the fact that the code
must be able to correct any number of duplication errors and
from [3] where such codes are discussed.

Theorem 3 For n > 2k and q + k > 4, the maximum size
A1ND(n, q, k) of a 1ND-detecting codes of length n over Zq
satisfies

M

4(n− k)
6 A1ND(n, q, k) 6M,

where M ,
bn/kc−1∑
i=0

|Irr(n − ik)| =
bn/kc∑
i=1

qk|RLL(n − ik)|
is the number of irreducible words whose descendant cones
intersect Σn.

We now turn to construct 1ND-detecting codes. As before,
we consider codes that consist of irreducible strings of length
n. We thus need to devise a method to detect ambiguous
substitutions.

When k = 1, it can be shown that ambiguous substitutions
cannot occur. So Irr(n) is a 1ND-detecting code. For k > 1,
two types of ambiguous substitutions are possible. Suppose
an irreducible string x ∈ Σnq , with z = φ̄(x), is stored and
assume the retrieved string, after a substitution error, is x′′,
with z′′ = φ̄(x′′). With i, b1,m,m1, b defined as in (4), it can
be shown that in Case C.1, we have

µ(z) = t b1 · · · bi−1−m10m1 bi 0k−i 0i−1−m1 w

µ(z′′) = t 0i−1−m1 0m1 bi 0k−i b1 · · · bi−1−m1
w

(5)

and in Case C.2,

µ(z) = t 0m+i−1−k00k−i b1 · · · bi−1 bi w

µ(z′′) = t 0m+i−1−kb0k−i b1 · · · bi−1(bi − b) w
(6)

for some t, w ∈ Σ∗. The differences between the stored and
retrieved strings are marked. We make several observations
that will help us in designing codes. First, in Case C.1,
substrings b1 · · · bi−1−m1 and 0i−1−m1 , which are at distance
k, are swapped. As a result, the number of 0s before bi and
after bi increase and decrease, respectively, by δ, where δ is
the number of 0s in b1 · · · bi−1−m1

. Furthermore, the affected
region has length k + i − 1 − m1 < 2k. In Case C.2, a 0
changes to a nonzero element b, and a symbol bi, which is k
positions after b, changes to bi − b. As a result, the number
of 0s before b1 decreases by 1 and after b1 it increases by at
most 1.

These observations indicate that the effect of errors can be
observed in the position and the number of 0s in the string,
and thus motivate the following definition.

Definition 4 Given a string x ∈ Σ∗q and z = φ̄(x), we divide
µ(z) into blocks of length k (excepting, perhaps, the last),
numbered as j = 0, 1, 2, . . . ,

⌈
|µ(z)|
k

⌉
. For 0 6 i 6 3, let

Zi = Zi(x) be the total number of 0s in blocks with index j
such that j ≡ i mod 4.

Figure 1 illustrates the preceding definition. As an example,
for k = 2 and µ(z) = 012034050, we have Z0 = 2, Z1 = 1,
Z2 = 0, and Z3 = 1.

Construction A Let p be the smallest odd integer larger than
k − 1. For 0 6 i, j < p, define

Ci,j =
{
x ∈ Irr(n)

∣∣ Z0(x) + 2Z2(x) mod p = i,

Z1(x) + 2Z3(x) mod p = j
}
.

Z0 Z1 Z2 Z3 Z0 Z1 Z2 · · ·

Figure 1. The number of 0’s in the jth block of length k contributes to Zi

where i = (j mod 4).

Theorem 5 Let q be the alphabet size, k the duplication
length, and p the smallest odd integer larger than k − 1.
For 0 6 i, j < p, the code Ci,j of Construction A is a
1ND-detecting code. If q + k > 4, there exist i, j such that
|Ci,j | > M

2(k+1)2 , where M is given in Theorem 3.

Note that the lower bound on code size given in this theorem
may be tighter than the one given in Theorem 3.

Proof: If k = 1, then C0,0 = Irr(n) is the only code and
the theorem is immediate.

Assume k > 1. Let x, c ∈ Ci,j be distinct. By definition
of Ci,j , drt(x) = x and drt(c) = c. To prove the error
detection capability of the code, based on (3), it suffices to
show that for any x′′ ∈ D

∗(1)
k (x), we have c 6= drt(x′′).

If drt(x′′) = drt(x) = x, then clearly c 6= drt(x′′). So
we assume drt(x′′) 6= x. It is then sufficient to show that
drt(x′′) /∈ Ci,j . This is obvious if | drt(x′′)| 6= n. We thus
only consider | drt(x′′)| = n.

For 0 6 i 6 3, let ∆i = Zi(x
′′)− Zi(x). Furthermore, for

0 6 i 6 1, let Fi = ∆i + 2∆i+2. To prove drt(x′′) /∈ Ci,j , it
is sufficient to show

F0 mod p 6= 0 or F1 mod p 6= 0. (7)

Let z = φ̄(x) and z′′ = φ̄(x′′). Based on (5) and (6) and the
discussion that follows them, we consider three different cases
for F0 and F1.

First, if the number of zeros changes in 2 consecutive
blocks, then one of the pairs (∆0,∆1), (∆1,∆2), (∆2,∆3),
(∆3,∆0) equals (δ,−δ) or (δ, 0) for 0 < |δ| < k, and the
other ∆i are equal to 0. Then, |F0| = |δ| or |F0| = 2|δ|. In
the former case F0 mod p 6= 0 since 0 < |δ| < k 6 p. In the
latter case, F0 mod p 6= 0 since 0 < 2|δ| < 2p and 2δ 6= p
(recall that p is odd).

Second, if the number of zeros changes in two non-
consecutive blocks, then only one of the pairs (∆0,∆2) and
(∆1,∆3) equals (δ,−δ) for 0 < |δ| < k, and the other equals
(0, 0). Then, either |F0| = |δ| or |F1| = |δ|, and in both
cases (7) is satisfied.

Third, if the change of number of zeros occurs in three
consecutive blocks, then there exists i such that ∆i = δ′ 6= 0
and ∆2+i = 0, where 0 < |δ′| < k and 2|δ′| 6= p. Then either
F0 or F1 takes on the value of δ′ or 2δ′. But δ′ mod p 6= 0
and 2δ′ mod p 6= 0, implying that (7) is satisfied.

The size of the code is at least |Irr(n)|
p2 , which follows from

the pigeonhole principle and the fact that there are p2 possible
values for (i, j). It can be shown that |Irr(n)| > M/2 if q +
k > 4. The asymptotic form is derived immediately from the
asymptotics of M (see [3]), which completes the proof.

IV. UNRESTRICTED ERROR-CORRECTING CODES

Substitution mutations might also occur independently of
duplications. In what follows, we consider a single substitution
error occurring in addition to however many duplications, but
not necessarily in a duplicated substring. We refer to codes
able to correct such errors as a single-substitution correcting
(1S-correcting) code. A code C is 1S-correcting if and only
if for any two distinct codewords c1, c2 ∈ C, we have

D∗,61
k (c1) ∩D∗,61

k (c2) = ∅.

In this context, we will find it easier to consider strings in
the transform domain. We also define the substitution distance
σ(u, v) to measure the number of substitutions required to
transform one string into the other, when u, v are assumed to
be in the transform domain. More precisely, if u, v ∈ Σn and
v − u =

∑n
i=1 aiεi, then σ(u, v) , |{i ∈ [n] | ai 6= 0}|.

A. Error-correcting codes

When considering the combination of duplications with
even a single substitution in the transform domain, we come
across the following example:

Example 6 Set Σ = Z2 and k = 3, and observe the following
two strings of duplication and substitution:

u , 111010111→ 111010111000→ 111000101000

v , 111101010→ 111000101010→ 111000101000

It is clear that if C ⊆ Σ>k is a code correcting even a
single duplication and a single substitution, even given the
order in which they occur, then u, v (or rather, the strings
111101010, 111010000 whose 3-discrete-derivatives are u, v)
cannot both belong to C. Observing that u, v ∈ RLL(9) and
σ(u, v) = 4, however, we find that C , {φ−1(u), φ−1(v)}
can correct any number of duplications, or correct a single
substitution. Why it cannot do both at once, then, is not
immediately apparent. �

In what follows, we propose a constrained-coding approach
which resolves the issue demonstrated in the last example. It
relies on the following observation: substitution noise might
create a 0k substring in the transform domain–that is not due to
a duplication–as well as break a run of zeros that is; However,
a constrained system exists which allow us to de-couple the
effects of duplication and substitution noise.

More precisely, we denote

W =
{
u ∈ Σ>k

∣∣ ∀ substring v of u, |v| = k : wt(v) > 1
}
.

We aim to show that restricting codewords to be taken from
W (in the trasform domain), the following holds.

Lemma 7 Take an irreducible x ∈ Σ>k, and y ∈ D∗,61
k (x).

If v , φ(y) contains a 0k substring, and v̄ is derived from
v by removing that substring, and if φ(x) ∈ W , then v̄ ∈
φ
(
D∗,61
k (x)

)
.

Proof sketch: We denote by y′ the descendant of x
derived by the same string of duplications as y, without

substitutions. If u′ , φ(y′) contains 0k at the same index,
the claim is trivial. Otherwise, since v suffered no more than
a single substitution, u′ necessarily has a substring of length
k and weight 1; since φ(x) ∈ W , that substring in u′ is due
to duplications, i.e., we may deduce that u′ has a run of zeros
of length at least k. Consequently, removing that 0k substring,
we are able to deduce the manner in which the resulting string
(also a member of φ(D∗,0k (x))) differs from v̄, and show that
they are both in φ(D∗,61

k (c)) for some c ∈ D∗,0k (x).
Recall from [3] that a decoder for correcting an unbounded

number of duplications simply has to remove incidents of 0k

from a noisy string. This lemma shows that the same approach
can be taken with the addition of a single substitution–without
increasing the substitution distance–provided that coding is
done in W .

Next, we consider the case where a substitution breaks a
run of zeros (in the transform domain).

Lemma 8 Suppose u ∈ Σ>k contains a substring 0k starting
at index i, and suppose v = u+ aεl for some i 6 j < i+ k,
0 6= a ∈ Σ, and l ∈ {j, j − k} (so that vj 6= 0). Note that
v′ , v−vjεj has a 0k substring at index i (like u); We remove
that substring from both u, v′ to produce ū, v̄, respectively.
Then, irrespective of what value l takes, σ(ū, v̄) 6 1.

The lemma is straightforward to prove by case for v. It allows
us to remove appearances of 0ja0k−1−j form a noisy string
(by applying an appropriate substitution) without increasing
the substitution distance.

It is therefore seen that a restriction to W allows the
correction of the substitution error without encountering the
issue demonstrated in Example 6. This fact is more precisely
stated in the theorem below:

Theorem 9 If C ∈ Σ>k is an error-correcting code for a
single substitution, and φ(C) ⊆ W , then C is a 1S-correcting
code.

B. Code Construction and Size

In this section we construct a family of codes satisfying
Theorem 9. We also study the redundancy and rate of the
proposed construction. We start by bounding the rate loss of
using constrained coding by restricting codes to W:

Lemma 10 r(W∩Σn)
n 6 2

k logq
q
q−1 .

Proof: We note that Cn ⊆ W ∩Σn, where Cn is the set
of length-n strings in which, divided into blocks of length
k, every block ends with two non-zero elements. Hence,
r(W∩Zn

q)

n 6 r(Cn)
n = 1

n

(⌊
n
k

⌋
+
⌊
n+1
k

⌋)
6 2

k logq
q
q−1 .

Theorem 11 If q is a prime power, r > 2, and n = qr−1
q−1 +⌈

2r
k

⌉
, then a 1S-correcting k-duplication code C ⊆ W ∩ Fnq

exists, with

R(C) > 1− 2

k
logq

q

q − 1
− o(1).

Proof: We begin by encoding data into W ∩ F
qr−1
q−1 −r
q ,

incurring by Lemma 10 redundancy

r

(
W ∩ F

qr−1
q−1 −r
q

)
6

(
qr − 1

q − 1
− r
)

2

k
logq

q

q − 1
.

Next, a systematic encoder for the
[
qr−1
q−1 , r, 3

]
Ham-

ming code (under the change of basis to {εi}) can encode

W ∩ F
qr−1
q−1 −r
q → F

qr−1
q−1
q , incurring r additional symbols of

redundancy, and resulting in a code which can correct a single
substitution.

Note, due to the systematic encoding, that the projection
of this code onto the first qr−1

q−1 − r coordinates is contained
in W . We may simply cushion the last r symbols with

⌈
2r
k

⌉
interleaved 1’s (two per k data symbols) to achieve a code
C ⊆ W ∩ Fnq which may still correct a single substitution.

Taking n → ∞, we can compare the rate obtained by the
code in Theorem11 to a simple upper bound of the best codes
correcting only tandem duplications of length k (see [3]),

R(C) 6 1−
(q − 1) logq e

qk+2
+ o(1).

While both the upper bound and lower bound approach 1 as
k → ∞, the lower bound does so as Θ(k−1) whereas the
upper bound is much faster as Θ(q−k), implying a gap yet to
be resolved.

REFERENCES

[1] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
duplication systems,” IEEE Transactions on Information Theory, vol. 62,
no. 2, pp. 811–824, 2016.

[2] ——, “Estimation of Duplication History under a Stochastic Model for
Tandem Repeats,” BMC Bioinformatics, vol. 20, no. 1, 2019. [Online].
Available: https://doi.org/10.1186/s12859-019-2603-1

[3] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-Correcting
Codes for Data Storage in the DNA of Living Organisms,” IEEE
Transactions on Information Theory, vol. 63, no. 8, pp. 4996–5010,
Aug. 2017.

[4] M. Kovačević and V. Y. F. Tan, “Asymptotically Optimal Codes Correct-
ing Fixed-Length Duplication Errors in DNA Storage Systems,” IEEE
Communications Letters, vol. 22, no. 11, pp. 2194–2197, Nov. 2018.

[5] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-Correcting
Codes,” arXiv:1712.09345 [cs, math], Dec. 2017.

[6] H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion-
correcting codes with efficient encoding and decoding,” in 2017 IEEE
International Symposium on Information Theory (ISIT), Jun. 2017, pp.
2683–2687.

[7] D. Pumpernik, B. Oblak, and B. Borštnik, “Replication slippage versus
point mutation rates in short tandem repeats of the human genome,”
Molecular Genetics and Genomics, vol. 279, no. 1, pp. 53–61, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s00438-007-0294-1

[8] F. Sala, R. Gabrys, and L. Dolecek, “Gilbert-Varshamov-like lower
bounds for deletion-correcting codes,” in 2014 IEEE Information Theory
Workshop (ITW 2014), Nov. 2014, pp. 147–151.

[9] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Transactions on Infor-
mation Theory, vol. 63, no. 4, pp. 2428–2445, 2017.

[10] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “Molecular
recordings by directed CRISPR spacer acquisition,” Science, Jun. 2016.

[11] ——, “CRISPR–Cas encoding of a digital movie into the genomes of a
population of living bacteria,” Nature, vol. 547, no. 7663, pp. 345–349,
Jul. 2017.

[12] K. Zhou, A. Aertsen, and C. W. Michiels, “The role of variable DNA
tandem repeats in bacterial adaptation,” FEMS Microbiology Reviews,
vol. 38, no. 1, pp. 119–141, Jan. 2014.

