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ABSTRACT
Resistive random access memory (ReRAM) demonstrates the great
potential of in-memory processing for neural network (NN) accel-
eration. However, since the convolutional neural network (CNN)
is widely known as compute-bound, current ReRAM-based accel-
erators are not able to support CNN efficiently. In this paper, we
for the first time propose the CNN accelerator with Winograd’s
convolution on ReRAM (CNNWire), which minimizes the multipli-
cations to enable fast and efficient CNN inference. We realize the
convolution with Winograd Processing Element (WPE) based on
convolutional tiles. Interconnections between WPEs are designed
aiming to improve the data reuse. Finally, we introduce the full map-
ping flow to implement theWinograd convolution The results show
that CNMWire gains 3.85× energy efficiency boosting and 3.24×
speedup on average among different CNN benchmarks, compared
with traditional GEMM based mapping.
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1 INTRODUCTION
The inference for neural network (NN) is both time- and energy-
consuming. Recently, the Resisitive RandomAccessMemory (ReRAM)
becomes attractive to researchers by showing the ability to perform
matrix-vector multiplication (MVM) within memory arrays.

ReRAM demonstrates two main advantages when conducting
NN acceleration. First, ReRAM conducts very fast MVM. When the
data are stored in the ReRAM crossbar array, we can get the results
within a single cycle. Second, ReRAM provides a promising non
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von-Neumann architecture. Since the matrix data are stored in the
memory array, the data movement for weights is not needed any
more, and thus we archive the in-situ computation and save the
time and energy cost for data fetching.

However, as the most common used NNs in computer vision,
CNNs are compute-bound and not friendly to ReRAM devices. The
reason is that convolution requires much of the execution time and
frequent input reusing for every weight kernel, but currently it is
difficult to leverage the data reusing in analog field with analog
caching. As studies have shown digital/analog interfaces occupy
the majority of the energy consumption in ReRAM based analog
computing [5], this limits the ReRAM-based CNN accelerators.

In this paper, we for the first time proposeWinograd convolution
based CNNs acceleration on ReRAM. Winograd convolution is a
fast algorithm [8], which has already been applied in the cuDNN
[1]. Leveraging the transforming for inputs and filters, Winograd
algorithm turns the convolution into matrix operation and makes
the least times of multiplication. We analyze the data flow for the
algorithm and design the full architecture with mapping scheme. As
dealing with tiled convolution, we realize Winograd Processing El-
ement (WPE) for every tile, which conducts the transform in digital
field and leverages the channelized accumulating in ReRAM cross-
bars. Further, to make better use of the data locality and reusing,
interconnections are designed for fast data transfer between WPEs.
The main contributions of this work are as follows:

• Weboost the CNNwith a novel architecture enablingWinograd
algorithm on ReRAM devices (CNNWire). We design Wino-
grad Processing Elements (WPEs) for tiles in convolution.We
propose buffer organization and interconnections between
WPEs to enhance the data reusing in Winograd tiles.

• We proposed a full mapping scheme to implement convolu-
tional layers in CNNWire with transforming the element-
wise multiplication into channelized matrix multiplication.

• We evaluate our architecture by comparison with traditional
GEMM mapping and overlapped mapping, which shows
about 3.85× energy boosting and 3.24× speedup.

2 PRELIMINARY AND MOTIVATION
In this section, we will introduce ReRAM, CNN and Winograd
algorithm. Then we present our motivation in detail.
2.1 RRAM and RRAM Computing System
ReRAM stores information with resistive cells. The ReRAM crossbar
structure performs analog MVM with complexity of O(1). Equ. 1
expresses the relationship between input voltage vector (Vin ) and
the output voltage vector (Vout ) among cell conductance д.

v
j
out =

N∑
i=1

viinдi, j (1)
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2.2 CNN and Winograd Convolution
A convolution layer can be expressed with Eq. 2:

dl+1x,y,cl+1 = f (

Cl−1∑
cl=0

R−1∑
r=0

S−1∑
sl=0

dlx+r,y+s,cl ×wl
r,s,cl ,cl+1 ) (2)

Here C is the number of feature maps with size H l ×W l , and l

denotes the current layer. The size of a kernel is R × S . wl is the
weight and dl is the input data. f is a non-linear function.
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Figure 1: An illustration of Winograd convolution.
Fig. 1 gives an illustration of Winograd convolution. It first tiles

the input feature maps (IFMs) into 2 × 2 pieces. Second, both the
tiles and kernels are transformed into the same dimension. Third,
we conduct element-wise multiplication, and then transform back
to the convolution results. The process can be formulated as Eq. 3:

y = AT [(GwlG
T ) ⊙ (BTdlB)]A (3)

The A,G,B are three transform matrices. With 4 × 4 tiles and con-
volutional kernel of 3 × 3, the transform matrix A and B for in-
put/output can be as simple as shown in Eq. 4:

A =


1 0
1 1
1 −1
0 −1

 ,B
T =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 (4)

2.3 Motivation
Previous work presented two mappings for convolution. The first
one is GEneral Matrix Multiplication (GEMM) based mapping [7].
As shown in Fig. 2(a), it unfolds the 3-D convolution and computes
as matrix multiplication. An alternative is to directly do the convo-
lution with overlapped weights mapping scheme [10], as shown in

Unfolding

…

(b) Overlapped Mapping

(a) GEMM based Mapping 

Cycle-2 Cycle-1

Input Voltage ReRAM Crossbar

IFMs

Conv Kernels

Figure 2: Two common used mappings. (a) GEMM based
mapping. (b) Overlapped mapping.

Fig. 2(b). Kernels get duplicated in the crossbar array, and a longer
vector of input pixels can directly does the convolution in 1 cycle.

GEMM based convolution requires iterative computing to tra-
verse the IFM, which makes CNN quite compute-intensive. Besides,
we need two cycles of DA converting and the data reuse cannot
be fully exploited. Fig. ref{fig:moti gives the comparison between
the energy/time consumption and parameter amount. We find that
the convolutional layers dominate the execution time and energy
for CNNs. For VGG-16, about 10% convolution parameters occupy
more than 90% execution time and energy for the total network.
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Figure 3: The energy/time consumption of convolutional
and FC layers. The data are shown in percentage.

Overlapped mapping reduces the DA interfaces and is able to
increase the throughput arbitrarily by duplicating more kernels.
However, this obviously requires more memory capacity. Also, it
introduces redundancy in crossbar as we see some ReRAM cell not
used. Fig. 4 demonstrates the trend of memory utilization rate when
increasing the duplication times, with mapping the conv3-128 layer
in VGG-16. For the crossbars with size 64 × 64, the utilization rate
keeps going down, and with only 3 times of duplication, more than
40% of the memory is idle.
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Figure 4: The ReRAM utilization degrading curve.

3 CNNWIRE ARCHITECTURE
In this section, we first introduce the full architectures of CNNWire,
and then the mapping for Winograd algorithm.

3.1 Overview of the architecture
Fig. 5 shows the overview of CNNWire. Within a bank, the key
components are Winograd Processing Elements (WPEs). WPE aims
to process a channelized tile in Winograd algorithm. The trans-
formed convolutional kernels are stored in the ReRAM array. The
input/output bank buffers are composed with SRAM. A controller
mainly decides the compute modes (Winograd based convolution,
GEMM based convolution, FC, etc.) in WPEs. Finally, we enable the
interconnections between WPEs to make use of the data reuse.
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Figure 5: The overview of the whole architecture.
3.2 Winograd Processing Element
As shown in Fig. 7, WPE processes tiled IFMs (shown in orange)
and gets the convolution results (shown as colored tiles). WPE
consists of Winograd transform modules in Equ. 4, Matrix Vector
(MV) multipliers, functional units, and input/output buffers. The
tiled IFMs are buffered with registers, which will get transformed
with WTM_B array and sent to the ReRAM based MV multiplier.
WTM_A array deals with outputs transform.
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Figure 6: A illustration of WPE design.
Winograd Transform Module (WTM) are designed to com-

plete the transform process for input and output tiles. According
to Eq. 4, only 2/4 adders and NOT gates are needed for a 4-input
vector. Besides, several modules are organized into arrays, which is
for better leveraging the data locality.
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Figure 7: The designs for Winograd transform.
MV multipliers are realized by ReRAM crossbars along with

shifting and adding trees, with complement format storing in ReRAM.
We decide single-bit ReRAM for a higher reliability. No two pieces
of crossbars are required anymore for positive and negative values.
After the computations complete in crossbars, the results will shift
certain number of bits according to the slice index and add together.

Functional unit is for activation and pooling operations.We
only enable ReLU in the module.

3.3 Buffer and Communication Optimization
ReRAM devices are known for the energy-efficient reading but
not writing [9]. Therefore, it is not suitable for activation buffer
needing frequent data update. In CNNWire, we use SRAM for global
bank buffer. On the other hand, regesiter files compose the buffer
within WPE. We design interconnections between WPEs to reduce
the data reloading from the global buffer. As shown in the Fig. 8,
the input buffer in WPE is partitioned in 4 blocks, with 1 directly
reading from global buffer, and 3 sharing with adjacent WPEs. This
is because 1/4 of the extended tile is unique but 3/4 is shared.

WPE

WPE
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Ctrl

SRAM Buffer

Figure 8: The WPE interconnections.
3.4 Winograd Mapping
Fig. 9 illustrates the mapping for Winograd convolution. First, IFMs
are partitioned into 2 × 2 ×Cl tiles as shown in orange. Then they
are extended into 4 × 4 ×Cl with adjacent pixels. Second, within
the WPE, the data get transformed with WTM_B into 4 × 4 ×Cl .
Third, the 3×3×Cl filters, as shown in three colors, already get pre-
transformed and stored in the crossbars. The element-wise matrix
multiplication are accumulated across channels. As shown in the
Fig. 9, deeper colors represent the first vector mapped to crossbar
column, while lighter ones represent the 16th vector. In total 16
sets of ReRAM crossbars are needed. Finally, the MVM results are
three vectors with length of 16. We fold them into 4 × 4 tiles and
transform them back to 2 × 2, which are convolutional results.

4 EVALUATION
In this section, we evaluate the performance, energy results and
area overhead of CNNWire.
4.1 Experiment Setup
We evaluate CNNWire with simulation. ReRAM and SRAM are
simulated with NVSim [2] and CACTI 6.0 [6], and digital designs
are synthesized with Synopsys DC with 45nm technology. DA/AD
are referred to [3, 4]. ReRAM capacity has been fixed at 64MB per
bank with 8 banks. We set 1KB registers for WPE buffer, and 4MB
SRAM buffer per bank. System clock is 200MHz. We compare with
GEMM based mapping and overlapped mapping The benchmarks
are VGG-16 and ResNet serie. For 1 × 1 convolution and fully-
connected layers, all the three mappings get to be the same.
4.2 Performance
As shown in Fig. 10, CNNWire improves the inference by 3.24× on
average compared with GEMM based mapping, and outperforms
the overlapped mapping (OM) by 1.22× on average - the reason for
a relatively small speedup is that the overlapped mapping could
maximize the throughput with arbitrary duplication.

For ResNet-50 and VGG-16, the speedups are lower than ResNet-
18/34. The reason for ResNet-50 traces back to the huge amount of
1 × 1 convolutions, since there are 2 of 3 1 × 1 convolutional layers
within every residual block. For VGG-16, the convolution layer 1
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Figure 10: The speedup among three mappings, which have
been normalized to GEMM based mapping.

needs kernel size of 7 × 7 by GEMM with the largest IFMs, leading
to huge amount of inefficiency.
4.3 Energy
Fig. 11 gives energy results of CNNWire. On average 3.85× energy
efficiency boosting is observed compared with GEMM, while 1.88×
on everage compared with overlapped mapping. It is still found that
1 × 1 convolutions degrades the energy performance in ResNet-50.

As shown in the energy breakdown, AD/DA interfaces occupy
most of the energy consumption for ReRAM computing. CNNWire
reduces a considerable amount of AD/DA energy with efficient
Winograd convolution. Besides, the cost of buffering has also been
reduced notably with the implementation of WPE interconnections.
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Figure 11: The energy consumption among three mappings
with normalization to GEMM based mapping.

4.4 Area
The area breakdown of CNNWire is shown in Fig. 12. The AD/DA
take over 80% area, with the ReRAM crossbar array being a really
small part. The digital part occupies the second largest area. Our
introduced Winograd transform circuits bring 6% area overhead,
which is relatively small.
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Figure 12: The area breakdown of CNNWire.
5 CONCLUSIONS
In this paper, we prensent CNNWire, a CNN accelerator with
Winograd’s convolution on ReRAM (CNNWire) to tackle the inef-
ficiency in traditional mapping. We realize the convolution with
Winograd Processing Element (WPE) dealing with convolution
tiles.Interconnections between WPEs are designed aiming to im-
prove the data reuse. Finally, we introduce the mapping flow to im-
plement the Winograd convolution. The results show 3.85× energy
efficiency boosting and 3.24× speedup on average among different
CNN benchmarks, compared with traditional GEMM mapping.
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