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Abstract—The tremendous impact of deep learning algorithms over a wide range
of application domains has encouraged a surge of neural network (NN) accelerator
research. An evolving benchmark suite and its associated benchmark method are
needed to incorporate emerging NN models and characterize NN workloads. In
this paper, we propose a novel approach to understand the performance
characteristic of NN workloads for accelerator designs. Our approach takes as
input an application candidate pool and conducts an operator-level analysis and
application-level analysis to understand the performance characteristics of both
basic tensor primitives and whole applications. We conduct a case study on the
TensorFlow model zoo by using this proposed characterization method. We find
that tensor operators with the same functionality can have very different
performance characteristics under different input sizes, while operators with
different functionality can have similar characteristics. Additionally, we observe
that without operator-level analysis, the application bottleneck is mischaracterized
for 15 out of 57 models from the TensorFlow model zoo. Overall, our
characterization method helps users select representative applications out of the
large pool of possible applications, while providing insightful guidelines for the
design of NN accelerators.

Index Terms—Neural network, workload characterization, benchmark
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1 INTRODUCTION

NEURAL Network (NN) algorithms have demonstrated greater
accuracy than other machine learning algorithms in a wide range
of application domains, including computer vision (CV) [1], [2],
[3], [4], [5] and natural language processing (NLP) [6], [7]. These
breakthroughs indicate a promising future for their real-world
deployment. Deploying these applications, especially for the infer-
ence stage, requires high performance under stringent power
budgets supporting the development of accelerator designs for
these applications. However, designing such an NN accelerator
using application specific integrated circuits (ASICs) is challenging
because NN applications are changing rapidly to support new
functionality and to improve accuracy, while ASIC development
requires a long design and manufacturing period. Any accelerator
design would thus risk becoming obsolete if the design fails to cap-
ture key characteristics of emerging models. Therefore, a bench-
mark to capture these workload characteristics is crucial to guiding
the NN accelerator design.

Existing benchmark suites, such as Fathom [8], BenchIP [9],
MLPerf [10], and Al Matrix [11], serve the purpose of selecting rep-
resentative applications to guide the hardware design. However,
these benchmarks may not pay enough attention to the following
two problems. First, the applications are empirically selected to
cover various application domains instead of employing a consis-
tent, quantitative approach. Second, due to the lack of a
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quantitative guideline, existing benchmarks are difficult to update
or customize. With the rapid development of application domains,
existing benchmarks must undergo an opaque and difficult process
to determine whether new applications sufficiently differ from
those in the existing suite, and whether the existing suite still accu-
rately represents the state of the application domain.

In this paper, we address these problems by developing a bot-
tom-up approach to select representative NN applications out of a
large application candidate pool. We propose a novel characteriza-
tion method, based on operator-level and application-level analy-
sis, to quantify the performance features of both tensor primitives
and end-to-end applications. Based on this method, we can select
representative and diverse benchmarks out of the pool and update
the pool promptly by adding emerging applications and removing
obsolete ones. Our case study on a comprehensive set of NN appli-
cations, the TensorFlow (TF) model zoo [12], reveals that:

e Tensor operators with the same functionality can exhibit
different performance features under different input tensor
shapes while operators can have similar performance fea-
tures although they are different functionally.

e  Without the help of operator-level analysis, which clusters
operators by their performance features instead of func-
tionality, the application bottleneck could be incorrectly
characterized.

2 CHARACTERIZATION METHOD

In this section, we first provide an overview of our characterization
process, then describe operator-level analysis and application-level
analysis in details.

2.1 Overview

The proposed characterization process consists of two stages, oper-
ator-level and application-level analysis, as shown in Fig. la.
Because tensor operators are the primitives of NN applications,
operator-level analysis is conducted first, before application-level
analysis. Two important metrics, locality and parallelism, are
selected to represent the range of operator behavior and are used
to cluster the analyzed operators into several groups. After this
operator-level clustering, application-level analysis is performed
as the second stage. Applications are first profiled on baseline
architectures before they are quantified by time breakdown on the
different operator clusters. After obtaining these application fea-
tures, we conduct similarity analysis for all applications. Finally, a
benchmark suite composed of diverse and representative work-
loads can be selected out of the application candidate pool. Instead
of clustering operators according to their functionalities, as in prior
work like Fathom [8], our work is fundamentally different because
it clusters tensor operators according to their architectural features,
i.e., locality and parallelism. We observe that functionality-based
classification is not sufficient and can cause incorrect bottleneck
characterization, as validated by the experiments in Section 3.3.

2.2 Operator-Level Analysis

As shown in Fig. 1a, we perform operator-level analysis in the first
stage to extract operator features and cluster operators based on
these features. Our operator-level analysis first extracts all opera-
tors from the applications in the application candidate pool. Then,
we analyze operator features from the perspective of architecture
designs. As a highlight, we use platform-independent metrics as the oper-
ator feature to improve the generality of the generated benchmark suite.
Finally, we cluster these operators. Two metrics are employed to
represent the architectural behavior of an operator.
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Fig. 1. Proposed characterization process.

Locality. This metric is defined as the amount of data needed by
an operator divided by the number of scalar arithmetic computa-
tions it needs. The amount of data needed by an operator is equal
to the sum of the input tensor size and the output tensor size. Input
tensors include all input data needed by this operator, such as
model weights. This metric reflects both temporal locality and spa-
tial locality in an ideal memory system where a cache hit will occur
if the same location was accessed before. Lower values of this met-
ric indicate better locality for the operator.

Parallelism. This metric is defined as the ratio of scalar arithmetic
operations which can be executed in parallel, assuming sufficient
hardware resources. Higher values of this metric express greater
available parallelism for the operator. This metric reflects the paral-
lelism of computations in terms of data dependency. For example,
a tensor Add operator adding two tensors with N elements in an
element-wise manner has N scalar-add operations. All of these sca-
lar-add operations can be executed in parallel without any true
dependency. Therefore, the parallelism for this tensor Add operator
is 100 percent. Take a tensor Max operator as another example. The
functionality of a tensor Max operator is to find the maximum
value in the input tensor with N elements. A tree-based reduction
can explore the parallelism with loglV sequential steps that must be
executed in a sequential manner. In each step of this tree-based
reduction, all of NV scalar-max operations can be executed in paral-
lel given sufficient hardware resources. As a result, the parallelism
for a tensor Max operator is Io,llN.

We define these two metrics for the operator-level analysis to
reflect architecture considerations when designing accelerators for
tensor operators. A common practice in accelerator design is to
consider customized data-path designs, such as the different data-
flow structures in Eyeriss [13], that can leverage both the locality of
these operators and can utilize multiple processing elements (PEs)
to exploit the available parallelism. Thus, these two platform-indepen-
dent metrics can be useful to help understand which operators are similar
from the viewpoint of architecture designs. After obtaining operator
performance features in the aforementioned metrics, we can group
operators into several clusters according to these features.

2.3 Application-Level Analysis

As shown in Fig. 1a, we perform application-level analysis in the sec-
ond stage to extract application features and select applications
based on these features. We define the performance feature of an
application as the time breakdown on the different operator clusters
obtained from operator-level analysis. We denote the number of
operator clusters as n. Specifically, the performance feature is
denoted as f = (R, Ry, ..., R,) where R; represents the percentage
of the elapsed time spent in the ith class operators. We profile each
application from the application candidate pool on the baseline hard-
ware, either a CPU or a GPU, to obtain its time spent in each operator
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cluster. By analyzing applications in terms of time breakdown,
benchmark users can have a better understanding about which oper-
ator class acts as a bottleneck on the baseline hardware. Because
operators are grouped by their architecture features of both locality
and parallelism, it provides clearer guidelines to design specialized
hardware to accelerate the bottleneck operator cluster.

3 CAsE StupY: TENSORFLOW MODEL ZoO

To demonstrate the usage and effectiveness of our characterization
method, we introduce a case study where we characterize general
NN inference applications. To this end, we use the TensorFlow
Model Zoo [12] (with 57 NN models and 224,563 operators) as the
application candidate pool, and hence conduct an extensive study.
The TF Model Zoo includes a majority of the state-of-the-art
research models, and it keeps track of numerous updated applica-
tions from the machine learning community. This section follows
the characterization process introduced in Section 2. In addition,
we conclude with several observations and architecture design
guidelines from these case studies to show the advantages of our
methodology.

3.1 Characterization Process

The characterization process of this case study is shown in Fig. 1b.
We apply operator-level analysis to all applications from the Tensor-
Flow Model Zoo [12]. We first extract all 224,563 operators (Fig. 1b-
@) from 57 models in the application candidate pool. Next, we
extract operator features (Fig. 1b-@) by measuring the locality and
parallelism as defined in Section 2.2 for each operator. The result
distribution of operator features is shown in Fig. 2a. In the last step
of operator-level analysis, we cluster operators (Fig. 1b-@®) based on
extracted operator features. We use the k-means method in this
case study, resulting in three operator clusters which are shown in
Fig. 2b. After this, we conduct the application-level analysis. Because
most accelerator designs compare their performance to two kinds
of general purpose processors, CPU and GPU, we profile and break
down the elapsed time into three operator clusters (Fig. 1b-@) for all
applications from the application candidate pool on an Intel Xeon
E5-2680 CPU and an NVIDIA Titan Xp GPU, respectively. The
application performance feature in this case study is denoted as
f= (R1, R2, R3), where Ry, Ry, and Rj represent the time break-
down of an application into three operator clusters. The perfor-
mance feature distributions measured on CPU and GPU are shown
as Figs. 4a and 4b, where the z-axis represents Ry, the y-axis repre-
sents R3, and R; =1 — Ry — R3 because R; + Ry+ Rz = 1. Finally,
we select applications (Fig. 1b-@®) based on the distribution of appli-
cation features, selecting the CPU as the baseline architecture in
this example. Because the R; component is negligible for most
applications, we select ten applications with features evenly dis-
tributed along the line Ry 4+ R3 = 1 to come up with the benchmark
suite, NNBench-X. The distribution of these ten applications are
shown in Fig. 3. Brief descriptions for these ten applications can be
found in Table 1.

3.2 Observations and Insights

Observations on the Operator-Level Analysis. We make several obser-
vations from the results of operator clustering (Figs. 2a and 2b).
First, convolution and matrix multiplication operators are similar
to each other, and most of them have good locality. Because of
existing reduction patterns along some tensor dimensions, such as
input channels in convolution operators, these two kinds of opera-
tors possess moderate parallelism. Second, all element-wise opera-
tors have identical parallelism while the computation intensity on
each tensor element can vary significantly. Because of fully parallel
scalar operations for all elements in element-wise operators,
element-wise operators have the largest degree of parallelism
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Fig. 2. The distribution of operator features.

(100 percent). Third, operators with the same or similar functions can
have very different performance features, such as reduction and pool-
ing operators. Clustering these operators by functions and design-
ing hardware accordingly would result in bottleneck mis-
prediction.

Architecture Implications of Operator Clusters. The application fea-
ture in our work is directly associated with the breakdown of exe-
cution time spent on different operator clusters. Since we cluster
operators according to their architecture features, i.e., locality and
parallelism, operators in the same cluster could favor similar archi-
tecture designs. Therefore, application features indicate the distri-
bution of execution time on these operator clusters, which helps
identify the application bottleneck from the perspective of operator
clusters, and further provides architecture design guidelines. For
example, an application with a large R, indicates that its bottleneck
comes from operators in the second cluster, which could prefer
architecture designs with more computation resources or larger
on-chip memory. Similarly, an application with a large R3 could
prefer memory-centric architectures for higher effective memory
bandwidth because it is bounded by operators in the third cluster.

Observations on the Application-Level Analysis. For the application-
level analysis in Figs. 4a and 4b, we summarize the following
observations. First, Conv, MatMul, and Element-wise operators take
up a majority of the application time in most of the applications,
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Fig. 3. The feature distribution of selected applications.

(b) Operator clusters.

since most of the applications distribute near the line R, 4+ R3 = 1.
Second, in contrast to CPU, GPU is more likely to be bounded by R;,
due to its more powerful computing resource and higher memory
bandwidth. In addition, Rs takes a larger percentage on GPU,
indicating there are opportunities for GPU memory system optimi-
zation. Third, the consideration of application scenarios reveals
additional trends. Both of Figs. 4a and 4b label different application
domains including computer vision, natural language processing,
hybrid CV and NLP (CV+NLP), information and coding, and
others. Among these application domains, the domain CV+NLP
includes applications requiring both CV and NLP algorithms, such
as image captioning where CV network architectures extract image
features and NLP network architectures generate the final output
caption. The domain labeled as Information and Coding includes
applications using neural networks for traditional information and
coding tasks, such as file compression and decompression. The
domain labeled as Others includes the rest of the applications, most
of applications in this category belong to applications using the
reinforcement learning, such as robotics applications. Most CV
applications are bounded by operations from R, (mostly Conv and
MatMul). On the contrary, most NLP applications are bounded by
operations from the Rs (mostly element-wise operators). This indicates
that memory-centric computing architectures can be helpful for
these NLP applications.

3.3 The Advantage of Our Methodology

We first demonstrate the advantage of the operator-level analysis by
showing how misleading bottleneck diagnosis would occur if the
aforementioned analysis is neglected. Without operator-level clus-
tering, one has to extract the application feature with function-
based operator clustering. For example, as described by Fathom,
Add operators are clustered as the category Elementwise Arithmetic,
but transpose operators are clustered as another category Data
Movement. However, when using our operator-level analysis, these
two clusters should be in the same category (R3; in our notation),
since they have very similar architecture features in terms of local-
ity and parallelism. There would be an issue in the case where Rj
is the application’s bottleneck, but as part of R3, neither Elementwise
Arithmetic nor Data Movement individually shows as a bottleneck.
The bottleneck is then misunderstood. The described problem happens for
15 out of 57 models in the TF Model Zoo. Taking application video_
prediction_stp [18] for example, according to the performance
feature defined in Fathom, it will show Conv2D as the bottleneck
(taking 38 percent of total time). However, the elapsed time of
operators from the Rj cluster takes 52 percent of total time, making
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TABLE 1
Brief Descriptions for Ten Applications in NNBench-X
Application Description
textsum [6] Text summarization
skip_thoughts [7] Sentence-to-vector encoder
pel 1l [14] Reinforcement learning

entropy_coder [15]
mobilenet [1]
inception_resnet v2 [2], [3]
image_decoder [16]
rfen_resnet101 [4]
faster_rcnn_resnet50 [5]
vggl6 [17]

Image file compression
Image classification
Image classification
Image file decompression
Object detection

Object detection

Image classification

R3-like operators (memory intensive highly parallel operators) the
actual bottleneck, not Conv2D. Instead of accelerating Conv2D,
which would result in more computation resources or larger on-
chip memory, our analysis recommends that the architecture
should be designed with higher effective memory bandwidth,
such as processing-in-memory architectures [19], [20], [21], [22], for
Rs-like operators because they take the majority of the elapsed
time.
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Second, our benchmark process selects more diverse and repre-
sentative applications. Compared to Fathom, our method selects
applications from a large application candidate pool based on
extracted application features. Therefore, our analysis-based selec-
tion guarantees the diversity and representativeness of selected
applications from the viewpoint of performance features. To
understand the representativeness of Fathom applications on the
TF Model Zoo, we go through the same application analysis pro-
cess for applications (8 applications in total) from Fathom. The
results measured on the CPU and the GPU are shown as Figs. 5a
and 5b. Through comparisons, we can conclude that the applica-
tion selection in Fathom is fairly good due to its similar distribution
as TF Model Zoo. However, compared with Fathom, our bench-
mark selection in Fig. 3 is more evenly distributed, making it more
representative as a general benchmark. For example, the two
selected benchmark applications in the orange circle in Fig. 5a are
too close to each other, making one of them redundant. In addition,
some applications are underrepresented, such as applications in
green circles in Figs. 5a and 5b. The applications from Fathom in
these green circles are not sufficiently representative of the other
applications with similar characteristics.
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4 CONCLUSION

In this paper, we propose a novel benchmarking method to under-
stand the performance characteristics of NN workloads. We con-
duct an operator-level analysis to extract architecture-independent
performance features, and to then cluster similar operators
together. Our application-level analysis then breaks down the time
spent by each application into three operator clusters, identifying
application bottlenecks and providing accelerator design guidance.
We have two observations from the case study on the TensorFlow
Model Zoo: 1) operators with the same functionality can have very
different parallelism and locality features while operators with dif-
ferent functionality can have similar ones, and 2) operator-level
analysis helps us identify and understand the performance bottle-
neck of applications. Finally, based on our characterization results,
we select ten representative applications out of the TensorFlow
model zoo into the benchmark suite, NNBench-X, which serves as
a benchmark for general NN processor designs.
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