
Learning the Sparsity for ReRAM: Mapping and Pruning
Sparse Neural Network for ReRAM based Accelerator

Jilan Lin1,2, Zhenhua Zhu2,Yu Wang2 and Yuan Xie1
1Dept. of Electrical and Computer Engineering, UCSB, Santa Barbara, U.S.

2Dept. of Electronic Engineering, Tsinghua University, Beijing, China

Abstract— With the in-memory processing ability, ReRAM
based computing gets more and more attractive for accelerating
neural networks (NNs). However, most ReRAM based accelerators
cannot support efficient mapping for sparse NN, and we need
to map the whole dense matrix onto ReRAM crossbar array to
achieve O(1) computation complexity. In this paper, we propose
a sparse NN mapping scheme based on elements clustering to
achieve better ReRAM crossbar utilization. Further, we propose
crossbar-grained pruning algorithm to remove the crossbars with
low utilization. Finally, since most current ReRAM devices cannot
achieve high precision, we analyze the effect of quantization
precision for sparse NN, and propose to complete high-precision
composing in the analog field and design related periphery circuits.
In our experiments, we discuss how the system performs with
different crossbar sizes to choose the optimized design. Our results
show that our mapping scheme for sparse NN with proposed
pruning algorithm achieves 3 − 5× energy efficiency and more
than 2.5 − 6× speedup, compared with those accelerators for
dense NN. Also, the accuracy experiments show that our pruning
method appears to have almost no accuracy loss.

I. INTRODUCTION

While the neural network (NN) gains unprecedented success
and becomes the hottest topic in the machine learning area, the
huge demand of computation resources and limited memory
bandwidth restrict its development. With the ability of in-
memory computing which can break the memory wall in the
von-Neumann architecture, Resistive Random Access Memory
(ReRAM) [1] provides a promising alternative for accelerating
NN. The crossbar structure of ReRAM can efficiently reduce
the computation complexity of the matrix-vector multiplication
from O(n2) to O(1) and eliminate the parameter fetching pro-
cedure. Therefore, designing ReRAM based NN accelerators
attracts lots of researchers’ attentions [2]–[4].

However, most ReRAM based accelerators focus on the
mapping for regular dense NN instead of the pruned sparse
NN. Learning the sparsity of NN through weights pruning [5]
is a powerful method of NN compressing, which significantly
reduces the redundant parameters and bring considerable relief
from the pressure of storage and bandwidth. And some work
leveraged the sparsity to tolerant the defects in ReRAM de-
vices [6]. However, to achieve the O(1) complexity of matrix
operations, the proper order of column and row must remain
in the crossbar structure, meaning that we still need to store
the sparse matrix in the dense way. As Fig. 1(b) shows, the
gray cells are at High Resistance State (HRS) and representing
zero values, while black cells in Low Resistance State (LRS)

This work was supported by the Project of Science and Technology on Relia-
bility Physics and Application Technology of Electronic Component Laboratory
(No.61428060401162806001), the National Key Research and Development
Program of China (2017YFA0207600), and NSF 1719160, 1725447, 1730309.

AD AD AD AD

𝑽𝑽𝒊𝒊𝒊𝒊

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
AD AD AD AD

𝑽𝑽𝒊𝒊𝒊𝒊

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐

ReRAM Crossbar Mapping Sparse Matrix

(a) (b)

Fig. 1. (a) Matrix-vector computing based on ReRAM crossbar array. (b)
Mapping sparse matrix on ReRAM crossbar array with lots of ReRAM cells
at HRS and representing zero (shown as grey cell).

represent non-zero values. This makes the effort of network
pruning in vain because zeros in NN cannot be eliminated.

Overcoming the intrinsic contradiction between dense cross-
bars and the sparse matrix is extremely difficult. Researchers
have made some exploration to make the mapping of sparse
matrix more efficient. For graph processing, Song tried to using
ultra small ReRAM processing element (PE), like 8×8 or 4×4
crossbar, to traverse the adjacency matrix [7], which, however,
will consume lots of energy for large scale NN, because it has
to read/write the weights repeatedly. Wang focused on mapping
structured sparse NN [8] with block building approach [9], but
not looking into common irregular sparse NN, which can prune
more redundant parameters. Besides, some work proposed to
train a sparse NN that fits the hardware structures of ReRAM
crossbar [10]. It may be a good way but still cannot deal with
the mapping problem for exist sparse NN.

In addition, the model quantization is another remarkable
compressing approach along with the sparsity. Since current
ReRAM devices cannot achieve high precision fixed-point
value [1], mapping quantized NN is also necessary for ReRAM
based accelerators. Previous work proposed to split high-
precision value in several low-bit crossbars [2], [11]. However,
such precision composing method will bring too much interface
cost since they choose to complete the precision composing
procedure in digital part and every split ReRAM crossbar need
separate analog-digital converters.

In this paper, we propose a novel mapping scheme for sparse
NN, along with software-level pruning algorithm and hardware
extension for low-cost high-precision computation. The main
contributions of this work are as follows:

1) We propose a sparse NN mapping scheme based on k-
means clustering, which shuffles the column in weight
matrix and eliminates all-zero crossbars.

2) We propose crossbar-grained pruning algorithm to reduce
the crossbars with low utilization and rescue the accuracy
loss by retraining NN.

3) We analyze how quantization precision influences the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
ASPDAC '19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01…$15.00
https://doi.org/10.1145/3287624.3287715

accuracy of sparse NN, to find the optimized computing
precision for ReRAM. We propose to complete bit-
composition in the analog field to reduce the cost of
analog/digital interfaces and design related circuits.

4) The simulation results show that our mapping scheme
with proposed pruning algorithm achieves 3−5× energy
efficiency and 2.5−6× speedup, compared with PRIME.
Also, the accuracy experiments show that our pruning
method appears to have almost no accuracy loss.

II. PRELIMINARY AND MOTIVATION

In this section, we will introduce the background of sparse
neural network and ReRAM crossbar based computing. And
then we will present our motivation in detail.

A. Sparse Neural Network

As a type of machine learning algorithm, NN typically
consists of input/output layers and multiple hidden layers. The
calculation of each layer can be expressed as follows:

y = f(WTx+ b) = f(
n∑

i=1

Wixi + b) (1)

where x,y are the input and output data, respectively. W is the
weight matrix and b is the bias. f is the activation function.

Current NN often contains enormous parameters, which
brings huge storage and computation pressure. Therefore, spar-
sity becomes an efficient approach to compress the model. By
weights and neurons pruning, the density, or the parameters of
the NN model will be reduced about 10×, with very small or
even no accuracy loss [5], [8].

B. RRAM and RRAM Computing System

As a non-volatile memory, ReRAM stores information with
resistive cells. Multiple ReRAM cells construct the crossbar
structure, which can be used to perform analog matrix-vector
multiplication with reducing the computation complexity from
O(n2) to O(1) [12], as shown in Fig.1 (a). The relationship
between input voltage vector (V i) and the output voltage vector
(V o) can be expressed as follows: V o

1
...

V o
M

 =

 c1,1 · · · c1,N
...

. . .
...

cM,1 · · · cM,N


 V i

1
...

V i
N

 (2)

where ci,j is the parameter to be mapped to ReRAM cell. Note
that the conductance of ReRAM cell can only represent positive
value, two ReRAM crossbars are required to represent a matrix
with both positive and negative parameters.

With the advantages of efficient in-memory computing abil-
ity, previous work has proposed several ReRAM-based Com-
puting Systems, like PRIME [2] and ISAAC [3].

C. Motivation

In ReRAM crossbar based computing systems, to remain the
O(1) computation complexity of the matrix-vector multiplica-
tion, we must map the whole matrix into the crossbar as Eq. 2

shows even though there may be lots of zeros, otherwise it will
cause unpredictable computing error.

For the sparse NN, which contains plenty of zeros in weight
matrix (usually >70% sparsity), the mapping is still the same
as that of the dense NN. The ‘0’s shall occupy their corre-
sponding positions to make the parallel voltage inputs added
into correct cells and receive expected output results, as shown
in Fig. 1(b). Therefore, we may say that the crossbar structure
ruins almost every advantage that the sparsity brings, because
the redundancy of zero elements still exists in the ReRAM
crossbar. To deal with the contradiction between the dense
structure of ReRAM crossbar and the sparsity of weight matrix,
a software and hardware co-optimization scheme is needed for
implementing sparse NN on ReRAM.

III. SPARSE NN MAPPING SCHEME

To reduce the redundancy in ReRAM crossbar and make
use of the sparsity of NN, we next introduce our mapping
scheme for sparse NN with as fewer crossbar arrays used as
possible. We first introduce the observed facts that motivate us
to propose column exchanging based mapping algorithm. After,
we will explain the mapping procedure in detail and discuss the
overhead it causes.

There are two observations that help us explore the effi-
cient mapping design. First, to achieve a higher accuracy in
complicated tasks, the development of NN is going deeper
and larger-scale. In common-used neural networks, the weight
matrix can be very large. For instance, the first full connection
layer of VGG-16, which contains more than 90% parameters
of the whole network, has the weight matrix with the size of
25088 × 4096. Obviously, such a massive matrix cannot be
mapped on one single ReRAM crossbar and needs to be split
into smaller blocks. Meanwhile, in the current tape-out chip
of ReRAM based computing systems, the size of fabricated
ReRAM crossbar is quite small, like 32 × 32 or 64 × 64
[13], [14]. The second observation is that for those extremely
large layers, although there are massive parameters, the pruning
results show that these layers will be really sparse. Again, take
above FC layer in VGG-16 for example, after pruning, the
density of it is 4% [5], which means that only 4% elements
remain and 96% of the matrix is zero. Further, since we need
two crossbars to represent positive and negative part of the
matrix, the density will be half smaller if half parameters are
positive and the others are negative, which means about 98%
parameters of the matrix become zero.

The observations inspire us that those smaller blocks of
the split weight matrix are probably all-zero, or have all-zero
columns/rows. If we eliminate such zero parts, we could save
considerable resources. However, for the reason mentioned
in Section II-C, even there is only one non-zero element in
the column/row of ReRAM crossbar, we need to keep this
column/row to make the computation of matrix in the correct
order. Here we proposed the k-means clustering based column
exchanging scheme for mapping. In fact, some work applied the
spectrum clustering algorithm to gather the neurons for pruning
[10]. But here our goal is to make the non-zero elements more

AD AD

Original Mapping Mapping Sparse Matrix

AD AD

AD AD AD AD

AD AD AD AD

AD AD AD AD

𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎

𝐶𝑜𝑙𝑢𝑚𝑛 𝐸𝑥𝑐ℎ𝑎𝑔𝑖𝑛𝑔

𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎

00000

Fig. 2. A illustration of our column exchanging based mapping algorithm. (a)
Column exchanging for sparse matrix. (b) The whole mapping scheme

concentrated through column exchanging. Thus we can gain
more all-zero rows and save more crossbars.
k-means is a wide-used method for cluster analysis in data

mining. Given n samples, k-means algorithm aims to cluster
them into k labels, with the minimal within-cluster variance.
In our application, we have n columns in the original large
matrix and crossbar size is L, so we need to partition the n
columns, or say n vectors into n/L labels, with L vectors in
each label. k-means algorithm will not assign specific number
of samples in each label, so our solution is to take the most
concentrated L vectors as clustering results, and then through
a recursive procedure we repeat the clustering for remaining
vectors. Also, since k-means is sensitive to initial value, we
choose to repeat our algorithm to avoid local optimal results.

Algorithm 1 shows our complete mapping scheme which
requires weights matrix, ReRAM crossbar size and a pre-
splitting function fsplit as input. Clustering the extremely large
matrix, like 25088× 4096, is never a wise decision, because it
consumes much more time and will not achieve better results
for smaller pieces. Therefore, we propose to pre-split the matrix
before k-means clustering as shown in line 1-2 with the pre-
splitting function fsplit. Line 3-16 describe our key operation
for k-means based column exchanging. We cluster the vector
in split matrix and pick up L columns into the target set R
repeatedly, and through the recursive calls we will shuffle all
the columns into specific sets we need. After we exchange the
columns according to clustering results, the size of the split
matrix will shrink as we eliminate the all-zero parts. Then we
can further split the shrunk matrix into crossbar size and finish
the mapping procedure as described in line 17-20.

Mention that we use a splitting function fsplit to decide the
split size, and here is how it works: We first produce plenty
of random matrices to start different splitting strategies and
choose the best one by iteration. Through those experienced
parameters, we infer the splitting size for a given matrix. So in
our experiments the fsplit is actually an interpolating function.

Fig. 3 shows our system skeleton. The flowchart of our
system is similar to PRIME but we add extra indexing units,
since we disorder the columns and rows of a regular matrix. The
index registers are only added for the output vectors because

Algorithm 1 k-means base column exchanging for mapping
sparse weight matrix.
Require: Weight matrix W , splitting function fsplit, ReRAM

crossbar size L.
1: Get the matrix size (x, y) of W . Let ext = y mod L, and

add ext zero columns for W with length of x;
2: Get the sparsity sp of W , and the splitting size

(xsplit, ysplit) = fsplit(x, y, sp). Split W into m small
blocks Wi;

3: Initialize clustering result set Ri = {}, i = 1, 2, ...,m,
which will store the tuples of columns in a crossbar;

4: for i = 0 to m do
5: Initialize unclustered set U = {v}, where v is each

column in Wi;
6: while U ! = ∅ do
7: n = |U |;
8: Cluster U into n subset Cj using k-means with

hamming distance;
9: for j = 0 to n do

10: if |Cj | ≥ L then
11: Find the nearest L vectors {v} ⊂ Cj ;
12: Add {v} into Ri, and remove them from U ;
13: end if
14: end for
15: end while
16: end for
17: for {v} in Ri do
18: Compose the block matrix Wi,block with {v};
19: Eliminate all-zero parts and get Wi,block shrunk, then

map it into ReRAM crossbar;
20: end for

ReRAM
Crossbar

ReRAM
Crossbar

-

In
de

xi
ng

 U
ni

t

In
pu

t

Ac
tiv

at
io

n

Po
ol

in
g

…

PE 1

PE
 B

uf
fe

r

PE n
…

Bank 1

Bank N
…

Ba
nk

 B
uf

fe
r

Gl
ob

al
 B

uf
fe

r
Processor

Controller

Bank
Controller

Fig. 3. The skeleton of our system flowchart.

we can schedule the corresponding input voltages after NN
mapping. Note that the index units are needed for ReRAM
crossbars but not every matrix element. Besides, Due to the
pre-splitting procedure, we do not need to index among the
huge matrix but inside the split small block.

IV. CROSSBAR-GRAINED PRUNING

In the section above, we introduce our proposed sparse
mapping scheme based on column exchanging strategy, which
will gather non-zero elements together as concentrated as
possible in order to eliminate the zero crossbars. However,
we could still find that in some crossbars, the utilization of

Distribution of ReRAM Crossbar Utilization Ratio

0 0.05 0.30 0.350.10 0.15 0.20 0.25
Utilization Ratio of ReRAM Crossbar

0

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

Original Mapping
Our Mapping

Fig. 4. The distribution of utilization ratio for ReRAM crossbar, with mapping
a sparse VGG-16.

ReRAM cells is much lower, and there may exist only few, or
even just one non-zero element(s) in one row. We implement
our mapping algorithm on 64×64 ReRAM crossbar for VGG-
16. Fig. 4 shows the distribution of utilization ratio of those
crossbars, compared with original mapping in the dense way.
The percentile in x-axis represents the ratio for non-zero cells
in the ReRAM crossbar. We can easily find that in more than
20% crossbars, there are only 15% ReRAM cells storing valid
parameters and 85% of them are zero.

Obviously, if we can further delete those low utilization
crossbars, we can achieve much more hardware resource reduc-
tion. Here we will introduce our crossbar-grained NN pruning
to further compress the sparse NN and save ReRAM crossbars.
The key idea is to throw away those ReRAM crossbars with
only few parameters. First, we implement column exchanging
for NN mapping according to Section III. Then we start
crossbar-grained pruning for NN, which will remove multiple
weights in the crossbar rows. We adopt the pruning criterion
in Mao’s work [15]: Compute the Salience Si =

∑
w∈Gi

|w|,
i.e. the sum of L1-norm weights, to decide which group of
weights should be deleted. Here the pruning grain Gi is the
ReRAM crossbar rows. After weights pruning, we finetune the
NN to rescue the accuracy, expecting the least accuracy loss. To
achieve better pruning results, we can repeat the procedure of
“Pruning - Finetuning - Pruning”, and get the final NN model
step by step.

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

Sparse Mapping Further Pruning

AD AD AD AD

AD AD AD AD

Crossbar Pruning

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

AD AD AD AD

AD AD AD AD 00000

Fig. 5. ReRAM crossbar-grained pruning for sparse NN.

0.88

0.89

0.90

0.91

0.92

0.93

0.94

60 70 92.5 95

A
cc

ur
ac

y

80 90
Pruning Sparsity (%)

Accuracy Degrading Curve

4-bit 8-bit Float

Fig. 6. The curve showing the accuracy degrading with gradually deeper NN
pruning sparsity, and different quantization precision.

Finally, mention that our pruning algorithm is conducted on
sparse NN, where the model is already compressed. Therefore,
the further pruning may damage the NN performance on
accuracy. In our experiments section, we will discuss the above
issue in detail.

V. PRECISION COMPOSITION

Quantization for NN often accompanies weights pruning,
which is another powerful method for NN compression [16].
Quantizing NN will reduce the storage with low-bit weights,
and computing fixed-point operations is easier from hardware
level compared with float operation. Besides, since current
ReRAM devices are difficult to represent full-precision or high-
precision value [1], [17], quantizing the NN and composing
high-precision operation with multi crossbars are quite nec-
essary. Obviously, the quantization will lead to accuracy loss
and this impact will be severer for sparse NN. Previous work,
like PRIME, has some discussions on the precision for ReRAM
based architectures, but it was not meant for sparse NN and the
precision composition cost too many interfaces. In this section,
we first explore how NN precision affects the accuracy for
sparse NN, and then we will introduce our precision composing
circuits which computes the results in the analog field and
minimizes the interface cost.

First, we evaluate the accuracy degrading caused by quantiza-
tion with different degrees of sparsity. Fig. 6 plots the accuracy
results, according to our experiments of VGG-16 on CIFAR-
10 dataset, with quantization of 4-bit, 8-bit and float precision.
From Fig. 6 we can observe the degrading curve of accuracy
with deeper pruning. We find that under 8-bit precision, the
degrading curve is almost the same as the curve under full
precision, which achieves no accuracy loss with ≤90% pruning
and <1% accuracy loss with ≤95% pruning. At the same time,
the accuracy is lower even at the beginning phase of pruning
as we use 4-bit precision, and it starts to degrade badly with
90% pruning. Therefore, 8-bit precision is enough to represent
the whole NN.

Here we will introduce our circuits design for precision
composing. The key idea is that we decompose the high

TIA

𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

𝑅𝑅𝑠𝑠 2𝑅𝑅𝑠𝑠 2𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠

𝑅𝑅𝑠𝑠 4𝑅𝑅𝑠𝑠

Fig. 7. The tree circuits design for bit composing.

precision value among a single crossbar and finish the bit
carrying in the analog field. Taking 1-bit ReRAM crossbar for
instance, we map the 8-bit value in 8 columns, instead of 8
crossbars, like the storage mode in traditional memory. Then
after the voltage inputs, the output currents from each column
will represent the computing result in different binary bits.
What we need is to complete the bit carrying operation and add
the results. Most work did this in digital part, which means we
need 8 times analog-digital interfaces [2] [18]. Fig. 7 shows our
solution. We design a tree circuits to make each current from
different digital columns multiply their binary coefficients, and
through a trans-impedance amplifier, which shall be realized
operational amplifier, we can get our final computing result.

VI. SIMULATION RESULTS

A. Simulation Setup

We implements our design, including our sparse NN map-
ping algorithm along with proposed precision composing cir-
cuits design on PRIME, which means we modify the PRIME
design and its data scheduling. We mainly look into the energy
efficiency and speedup as our evaluation metrics. We assume
2-bit ReRAM cell and simulate the energy cost through NVSim
[19]. The ReRAM crossbar in baseline PRIME is size 256×256
with 4-bit precision. Besides, to evaluate the performance
of ReRAM crossbar grained pruning, we will compare the
accuracy loss after pruning for different NNs.

To throughly exam our design for different NN structures,
we choose to conduct our simulation on CNN (Convolutional
Neural Network) and RNN (Recurrent Neural Network). CNN
mainly consists of convolutional layers, like ResNet series [20],
which only have one fully connected layer, while RNN is a
typical fully connected neural network, like LSTM [21]. The
benchmarks in our simulation are LeNet-5, AlexNet, VGG-16,
ResNet-20 and LSTM-5. The LSTM-5 model we use is a 5-
layer bi-directional LSTM RNN, and the length of hidden unit
is 800. The sparsity, which represents the degree of pruning,
of each NN can be found in Table I.

TABLE I
THE SPARSITY OF EACH NN

NN LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5
Sparsity 92% 89% 92.5% 75% 85%

B. Energy Results with Sparse Mapping

Before we conduct our experiments on different NNs, let
us look into how the crossbar size affects the system’s energy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PRIME 60 70 80 90 92.5 95

E
n

er
g

y
 E

ff
ic

ie
n

cy
(N

o
rm

al
iz

ed
 t

o
 P

R
IM

E
)

Pruning Sparsity (%)

128× 64× 32× 16×

Fig. 8. The energy results with gradually deeper NN pruning sparsity, and
different ReRAM crossbar size.

efficiency. We take VGG-16 to implement our experiments and
get our energy results through simulation. As shown in Fig. 8,
the x-axis represents deeper pruned NNs with different crossbar
size, and the y-axis plots the normalized energy efficiency
compared with PRIME. We can find that as the ReRAM
crossbar gets smaller, we may first save more energy, but the
energy cost becomes larger with 16× 16 crossbar, which may
be caused by the huge amount of interfaces when mapping such
a large NN into those really small ReRAM crossbar. Therefore,
we will take 32× 32 ReRAM crossbar in our next experiment.

0

1

2

3

4

5

6

LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5

E
n
er

g
y

 E
ff

ic
ie

n
cy

(N
o
rm

al
iz

ed
 t

o
 P

R
IM

E
)

PRIME Sparse Mapping Crossbar Pruning

Fig. 9. The Energy Results with Different NNs.

Fig. 9 plots the energy performance, and the results have
been normalized to PRIME. As seen, our system for sparse NN
achieves 3−5× energy efficiency improvement for popular NNs
after our crossbar grained pruning, which makes the energy
efficiency further improved. Through the results we find that
the system performs much better in NN with large layers, like
AlexNet, VGG or LSTM, because such layer often occupy
too much energy cost and will be quite sparse after pruning.
Meanwhile, for the ResNet which mainly contains convolu-
tional layers, it is more difficult to cut down the parameters,
but the energy efficient will be improved a lot after our crossbar
grained pruning. The system can achieve more energy savings
as the NN get sparser, as we learn from Fig. 8. Finally, we have
to note that the excellent result of LeNet-5 is that mapping such
a small NN into 256× 256 crossbar will cause huge resources
wasted, while our small crossbar show its charm to LeNet-5.

0

2

4

6

8

10

12

LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5

Sp
ee

du
p

(N
om

al
iz

ed
to

 P
R

IM
E)

PRIME Sparse Mapping Crossbar Pruning

Fig. 10. The Speedup Results with Different NNs.

The system’s speedup is mainly brought by the data re-using
in those ReRAM crossbar we saved, and faster time-cycle for
smaller crossbar. Fig. 9 plots the time consuming results for
different NN, where we can learn that our system achieve
more than 5× speedup for most NNs. However, The results
for ResNet is not so impressing, the reason is the same, for
convolutional layers, compressing with pruning and mapping
sparse irregular weights matrix is more difficult.

C. Accuracy Results with Crossbar-Grained Pruning

We conduct our pruning experiments through LeNet-5 on
MNIST dataset, VGG-16 and ResNet-18 on CIFAR-10 dataset,
and LSTM-5 on 1000h LibriSpeech.

Fig. 11 shows the comparison between the parameters we
removed and the crossbars we saved, both of which have been
normalized to the whole NN model. We find that through
pruning a small amount of parameters, we can save plenty of
crossbar resources. Table II presents the accuracy for those
NNs, through which we can find that for three CNNs and
LSTM, our crossbar-grained pruning achieves almost no ac-
curacy loss (<1%). Besides, note that the performance for
accuracy highly depends on the redundancy in NN, and in our
experiments, we adjusted the pruning rate gradually for the
trade-off between accuracy and hardware efficiency.

TABLE II
ACCURACY RESULTS AFTER CROSSBAR PRUNING

Nerual Networks LeNet-5 VGG-16 ResNet-18 LSTM-5
Original 99.23% 93.64% 92.37% 89.24%

Normal Pruning 99.13% 93.62% 92.07% 88.49%
Crossbar Pruning 99.15% 93.72% 91.78% 88.01%

VII. CONCLUSIONS

In this paper, we propose a novel sparse NN mapping scheme
based on weight columns clustering, to achieve better ReRAM
crossbar utilization. Further, we propose crossbar-grained prun-
ing algorithm to reduce the crossbars with low utilization.
Finally, since most current ReRAM device cannot achieve high
precision, we analyze the effect of quantization precision for
sparse NN, and propose to complete high-precision composing
in analog field and design related periphery circuits. The sim-
ulation results show that compared with those accelerators for
dense NN, our mapping scheme for sparse NN with proposed

0%

5%

10%

15%

20%

25%

Lenet-5 VGG-16 ResNet-18 LSTM-5

Pr
un

ed
 R

at
io

/S
av

ed
 R

at
io

C
o
m

p
ar

ed
 t

o
 t

h
e

W
h
o
le

 N
N

 M
o
d

el

Parameter Pruned Crossbar Saved

Fig. 11. The NN parameters we pruned V.S. the crossbar resources we saved,
both of which are normalized to the whole NN model.

pruning algorithm achieves 3− 5× energy efficiency and more
than 2.5−6× speedup. Also, our pruning algorithm appears to
have almost no accuracy loss.

REFERENCES

[1] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951–1970, 2012.

[2] P. Chi et al., “PRIME: a novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in Inter-
national Symposium on Computer Architecture, 2016, pp. 27–39.

[3] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[4] L. Song et al., “PipeLayer: A pipelined reram-based accelerator for deep
learning,” in HPCA, 2017, pp. 541–552.

[5] S. Han et al., “Learning both weights and connections for efficient neural
network,” in NIPS, 2015, pp. 1135–1143.

[6] L. Xia et al., “Fault-tolerant training with on-line fault detection for rram-
based neural computing systems,” in DAC, 2017, p. 33.

[7] L. Song et al., “GraphR: Accelerating graph processing using reram,” in
HPCA. IEEE, 2018, pp. 531–543.

[8] W. Wen et al., “Learning structured sparsity in deep neural networks,”
2016, pp. 2074–2082.

[9] P. Wang et al., “SNrram: An efficient sparse neural network computation
architecture based on resistive random-access memory,” in DAC, 2018.

[10] A. Ankit et al., “Trannsformer: Neural network transformation for mem-
ristive crossbar based neuromorphic system design,” in ICCAD, 2017.

[11] L. Ni et al., “On-line machine learning accelerator on digital RRAM-
crossbar,” in ISCAS, 2016, pp. 113–116.

[12] L. Xia et al., “Switched by input: power efficient structure for RRAM-
based convolutional neural network,” in DAC, 2016, p. 125.

[13] F. Su et al., “A 462 GOPS/J RRAM-based nonvolatile intelligent pro-
cessor for energy harvesting ioe system featuring nonvolatile logics and
processing-in-memory,” in VLSI, 2017, pp. T260–T261.

[14] W.-H. Chen et al., “A 65nm 1mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
AI edge processors,” in ISSCC, 2018, pp. 494–496.

[15] H. Mao et al., “Exploring the granularity of sparsity in convolutional
neural networks,” IEEE CVPRW, vol. 17, 2017.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[17] S.-S. Sheu et al., “A 5ns fast write multi-level non-volatile 1 k bits RRAM
memory with advance write scheme,” in VLSI, 2009, pp. 82–83.

[18] L. Ni et al., “An energy-efficient matrix multiplication accelerator by
distributed in-memory computing on binary RRAM crossbar,” in ASP-
DAC, 2016, pp. 280–285.

[19] X. Dong et al., “NVSIM: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” IEEE TCAD, vol. 31, no. 7,
pp. 994–1007, 2012.

[20] K. He et al., “Deep residual learning for image recognition,” in CVPR,
2016, pp. 770–778.

[21] F. A. Gers et al., “Learning to forget: Continual prediction with LSTM,”
1999.

