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ABSTRACT

Previously, nanofiber-nanoparticle electrodes produced via a simultaneous electrospinning
and electrospraying (E/E) process (E/E electrodes) resulted in polymer electrolyte mem-
brane fuel cells with high power densities at ultra-low platinum (Pt) loadings (<0.1 mgp,
cm™?). In this study, E/E electrodes were fabricated at various Nafion contents to investigate
the impact of ionomer content on catalyst layer transport resistances and fuel cell power
density at ultra-low Pt loadings. Regardless of the Nafion content in the electrospray, the
Nafion nanofiber diameters and catalyst aggregate particle sizes are constant in the E/E
electrodes evidenced by electron microscopy. Therefore, this study allows for the exclusive
investigation of the effect of transport resistances on fuel cell performances at different
ionomer contents at a constant catalyst layer morphology, which differs from conventional
electrodes. At higher magnifications, changes are evident in the micrographs around the
catalyst aggregate particles, where an increase in ionomer thin film thickness is ocbserved
with increasing ionomer content. The maximum fuel cell performance and a minimum in
catalyst layer resistance for E/E electrodes is observed at a total Nafion content of 62 wt%,
which differs from conventional electrodes (ca. 30 wt%).

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

expensive metal catalyst, significantly contributes to the fuel
cell cost and is required due to the inherently slow oxygen
reduction reaction (ORR) in the fuel cell acidic environment

Proton exchange membrane fuel cells (PEMFCs) are attractive
alternative energy sources for large market applications, such
as transportation, due to their high energy and power density,
low-to-moderate temperature operation, use of fuels from
renewable sources, and zero point-of-use carbon emissions.
However, lowering fuel cell cost, while maintaining high
power density, remains a global technological challenge that
requires further research in the underlying transport mecha-
nisms that transpire within the fuel cell [1,2]. Platinum (Pt), an
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[3]. Numerous studies have investigated different aspects of
the PEMFC (e.g., novel catalysts [4,5], various operating con-
ditions [6—8], alternative membranes [9—11]) to improve fuel
cell power density at lower Pt loadings (<0.1 mgp; cm; typical
Pt loadings ~0.4-0.5 mgp, cm~2) in order to reduce overall fuel
cell cost. However, at lower Pt loadings, typically, there is a
significant loss in fuel cell power density due the negative
impact on the ORR in the electrode or catalyst layer (i.e., in-
crease in charge and mass transport resistances).

0360-3199/© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
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ORR within the fuel cell electrode can only occur at triple
phase boundaries (pore-catalyst-ionomer interfaces or junc-
tions) [12], where not only a higher number of these junctions
are needed, but also a connected network of all three are also
required, i.e., pore network for O, transport, catalyst (Pt)
network for electron transport, and ionomer (Nafion)
network for proton transport [13]. Increasing the number and
connectivity of triple phase boundaries can have a positive
impact on the ORR by reducing both charge and mass
transport resistances. Typically, the conventional electrode
fabrication technique involves depositing a well-dispersed
catalyst slurry solution (Nafion ionomer, Pt/C catalyst, and
aqueous alcohol solvent) onto a substrate, typically a gas
diffusion layer. After the solvent evaporates, the catalyst
particles and ionomer create an intricate porous network,
known as the catalyst layer, and allows physical contact be-
tween catalyst, ionomer, and pores to form multiple triple
phase boundaries.

The impact of the porous catalyst layer structure on fuel
cell performance has been extensively studied with the use of
simulation models [14-18], different carbon materials
[19-21], and various solvent compositions [22—25]. Specif-
ically, studies on the effect of the ionomer content in the
catalyst layer show that the ionomer content has a simulta-
neous impact on both the ionomer and pore network [26—-32].
Passalacqua et al. [27] demonstrated that at low ionomer
content, there is a loss of ionomer connectivity and subse-
quently proton conductivity or transport (i.e., increases charge
resistance), which lowers fuel cell performance. At higher
ionomer contents, Uchida et al. [29] showed that pore volume
decreases and blocks O, gas from reaching Pt reaction sites
(i.e., increases mass transfer resistance), which also lowers
fuel cell performance. This finding was later supported by Lee
et al. [30], who introduced the concept of the ionomer thin film
resistance and reported that at higher ionomer contents, the
ionomer thin film thickness increases and prevents O, from
accessing Pt sites. Therefore, as illustrated in Fig. 1, thereis a
balance between ionomer connectivity and ionomer thin film
resistance that limits the maximum power density due to the
trade off in resistances in charge transfer (Fig. 1(a)) and mass
transfer (Fig. 1(b)), respectively.

A number of studies have now investigated the role of
the Nafion ionomer thin film and its impact on transport

(a)

resistance and fuel cell performance with both in situ and ex
situ investigations [14,33—46]. However, few studies provide
insight on the role of transport resistances on fuel cell
performance at low Pt loadings [47,48]. Greszler et al. [48]
investigated the influence of Pt loading on oxygen trans-
port resistance using limiting current density experiments
and observed that fuel cell performance loss was significant
at low Pt loadings. Owejan et al. [47] reported that fuel cells
with ultra-low Pt loadings (<0.05 mgp, cm™?) experienced
significant transport losses and subsequently fuel cell per-
formance losses and demonstrated that transport resis-
tance is a strong function of the surface area and dispersion
of particles (catalyst layer morphology). Both studies
employed carbon as a filler to maintain similar porous
catalyst layer morphologies and electrode thicknesses
under different Pt loadings in order to investigate the ion-
omer thin film resistance. However, in these studies, the
overall distribution of Pt catalyst differed due to the addi-
tional carbon (i.e., catalyst layer morphology was not con-
stant) and therefore it was difficult to design an experiment
where catalyst layer morphology and ionomer content (thin
film effect) could be investigated independent of one
another or exclusively. In other words, an experiment
where the catalyst layer morphology is held constant, while
ionomer content changes with the goal of exploring the
impact of transport resistances on fuel cell performance
absent of changes in the catalyst layer morphology at low Pt
catalyst loadings.

Other studies have investigated alternative catalyst layer
deposition techniques, such as pulse electrodeposition [49],
magnetron sputter deposition [50], electrospraying [51,52],
electrospinning [53—55], screen printing [56], and inkjet
printing [57]. However, regardless of the deposition technique,
changing the ionomer content in the catalyst layer affects not
only the amount of ionomer that surrounds the catalyst par-
ticles, but also the overall morphology of the catalyst layer.
Recently, in our laboratory, a new simultaneous electro-
spinning and electrospraying (E/E) process, shown in Fig. 2,
was developed to produce unique nanofiber-nanoparticle
electrodes for PEMFCs that resulted in high power densities
at ultra-low Pt loadings [58,59]. The E/E technique allows
for fabrication of similar catalyst layer morphology
while changing other properties (e.g., ionomer content, fiber

Fig. 1 — Illustration of (a) proton transport resistance due to low Nafion content and (b) mass transport resistance due to

Nafion thin film surrounding catalyst particles.
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Fig. 2 — Schematic of the electrospinning/electrospraying (E/E) apparatus.

composition, etc.), which is difficult to achieve with other
catalyst layer deposition techniques, as previously explained.
The simultaneous execution of electrospraying and electro-
spinning increases the number and connectivity of triple
phase boundaries by creating a connected network of pores,
proton conductive Nafion nanofibers, and electron conductive
Pt/C nanoparticles, which differs from conventional elec-
trodes. Here, in this work, E/E electrodes, at various Nafion
contents in the electrospraying solution, were fabricated to
investigate the impact of Nafion content on catalyst layer
transport resistances and fuel cell power density at ultra-low
Pt loadings (ca. 0.05 mgp; cm ™). Therefore, this study allows
for the exclusive investigation of the effect transport re-
sistances on fuel cell performances at different ionomer
contents (thin film effect) at a constant catalyst layer
morphology, unlike conventional electrodes.

Experimental
Materials

Isopropanol (IPA; ACS reagent, > 99.5%) and poly(acrylic
acid) (PAA; My = 450,000 g mol') were purchased from
Sigma-Aldrich. Carbon (Vulcan XC-72) and 20 wt% platinum
on carbon (Pt/C; Vulcan XC-72) were purchased from Pre-
metek Co. 1100 EW Nafion solution (5 wt% in 3/1 v/v iso-
propanol/water) and Nafion membrane (NR-212, 1100 EW
(0.91 meqg/g), 0.002 in (~51 pm) dry thickness) were pur-
chased from Ion Power. Gas diffusion layer (GDL; Sigracet
25BC) was purchased from Fuel Cells Etc. All materials were
used as received. Deionized (DI) water with a resistivity of
16 MQ cm was used as appropriate. Ultra-high purity grade
nitrogen was purchased from Brazos Valley Welding Supply.
Ultra-high purity grade oxygen and ultra-zero grade air were
purchased from Airgas. Ultra-high purity grade hydrogen
was purchased from Praxair. All gases were used for all fuel
cell experiments.

Two-needle electrospinning/electrospraying (E/E) apparatus

A custom-designed E/E apparatus, as illustrated in Fig. 2,
consists of two high-voltage power supplies (PS/EL50R00.8,
Glassman High Voltage, Inc. and ES40P-10W/DAM, Gamma
High Voltage Research, Inc.), two syringe pumps (NE-1000,
New Era Pump Systems), two glass syringes (Pt. No. CG-3070-
03, Chemglass Life Sciences), two syringe needles
(id. = 0.024 in. (0.603 mm), Hamilton), poly(vinyl chloride)
tubing (Pt. No. 30600-65 and 30600-66, Cole-Parmer), and a
grounded collector (cylindrical drum covered with aluminum
foil, 0.d. = 4.85 cm) connected to a motor (4IK25 GN-SW2,
Oriental Motor) to rotate the drum at 135 rpm during the E/E
process. Four GDLs (ca. 2 cm x 2 cm) were adhered to the
drum, where catalyst nanoparticles and polymer nanofibers
were electrosprayed and electrospun simultaneously onto the
GDLs via the E/E process. The needle tip to collector distances,
applied voltages, and solution flow rates were 15 and 9 cm, 10
and 12 kV, and 0.3 and 3.3 mL h™* for the electrospinning and
electrospraying processes, respectively.

Electrode and membrane electrode assembly (MEA)
fabrication

The electrospraying catalyst ink solution used to fabricate E/E
electrodes consisted of a base mixture of 20 mg of Pt/C cata-
lyst, ~1—2 mg of bare carbon, 250 mg of DI water, Nafion so-
lution and isopropanol. The particle sizes can vary due to the
solids weight percent of the electrospraying solution, thus the
solids weight percent was kept constant at 1 wt% for all E/E
experiments by adjusting the amount of isopropanol in the
mixture. The amount of Nafion solution was adjusted to
achieve different amounts of Nafion content of the solids in
the electrospraying ink solution as detailed in Table 1. The
resulting mixture was sonicated for 3 min at 35% amplitude
(Q125, Qsonica) prior to electrospraying. The electrospinning
polymer solution used to fabricate E/E electrodes was a 5 wt%
4/1 Nafion/PAA polymer solution, e.g., 25 mg of PAA, 2000 mg
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Table 1 — Nafion content of the solids in 1 wt%
electrospraying solution.

Nafion content in Nafion Isopropanol (mg)
solids (wt %) solution (mg)

0 0 1857
19 101 2338
32 200 2704
48 395 3425
65 805 5043
79 1601 8222

of Nafion solution, and 485 mg of 3/1 v/v isopropanol/water
solution. The solution was stirred under ambient temperature
for atleast 12 h to ensure complete dissolution of PAA prior to
electrospinning. The catalyst ink solution and the polymer
solution were used in the electrospraying and electrospinning
processes, respectively, to fabricate E/E electrodes as
described in the previous section, and the Pt loading was
controlled by the duration of the E/E process. Conventional
(control) electrodes were prepared by mixing 100 mg of Pt/C
catalyst, 550 mg of DI water, 1000 mg of Nafion solution, and
1350 mg of isopropanol, which corresponds to 2/1 w/w (Pt/C)/
Nafion in 3/1 v/v isopropanol/water. The mixture was soni-
cated for 3 min at 35% amplitude and subsequently brushed
onto the GDL with an ox hair brush (0689-00025, Gordon Brush
Mfg. Co., Inc.). This process was repeated to achieve the target
Pt loading of 0.1 mgp. cm ™2 Membrane electrode assemblies
(MEAs) were fabricated by placing the Nafion NR-212 mem-
brane in between two catalyst-coated GDLs (anode and cath-
ode) and heat pressing (3851-0, Carver) for 5 min at 275 °F
(135 °C) and 3200 psi (22 MPa). Two MEAs with six different
Nafion contents were fabricated for a total of twelve E/E MEAs
in this study.

Electrode characterization

The morphology of the E/E electrodes were investigated with
scanning electron microscopy (SEM; FEI Quanta 600 FE-SEM,
10 kV for X 5000 magnifications images and 20 kV X 100000
magnification images) using a working distance of 10 mm.
Samples were sputter coated (Cressington 208 HR) with plat-
inum/palladium (6 nm thickness) prior to SEM analysis. For
each image, the diameters of 20 nanofibers and 20 nano-
particles were randomly selected and measured using Image]
software for each electrode sample.

The Pt loading was measured with thermal gravimetric
analysis (TGA; Q50, TA Instrument). A small portion of the
electrode (ca. 4—6 mg) was heated in the TGA from ambient
temperature to 900 °C at 10 °C min~? in air at 60 mL min~2,
Since all components in the E/E electrode degrade below
800 °C with the exception of Pt, the Pt loading was determined
by dividing the residual weight at 850 °C by the original area of
the TGA sample. The average Pt loading for each E/E experi-
ment was determined using 2—4 samples.

Fuel cell tests and cyclic voltammetry (CV)

Each MEA (1.21 cm? area) was placed between two serpentine
flow field graphite plates (1 cm? flow area) separated by two

0.152 mm thick PTFE/fiberglass gaskets (Cat. No. 33, Scribner
Associates, Inc.). The entire fuel cell assembly consisted of an
MEA, two gaskets, and two flow plates placed between copper
current collectors followed by endplates all held together by
bolts with 100 1b in (11.3 N m) of applied torque. Fuel cell
performance of each MEA was evaluated with a fuel cell test
station (850C, Scribner Associates, Inc.). Fuel cell tests were
conducted under ambient pressure with saturated (100% RH)
anode and cathode flow rates of 0.43 L min~* hydrogen and
1.02 L. min~?! oxygen or air, respectively. The stoichiometry of
the anode and cathode flow rates used for the fuel cell testing
is approximately 1:2 for hydrogen/oxygen and 1:2 for
hydrogen/air. The cathode gas, anode gas, and cell tempera-
tures were all maintained at 80 °C. Fuel cell performance was
recorded after a new MEA was fully activated. The activation
process consists of operating the MEA at 0.7 V for 1 h, followed
by 0.6V,0.4V, and 0.2 V for 30 min at each voltage, and ending
with two cycles of 0.6 V and 0.4 V for 30 min at each voltage.
Polarization curves (cell voltage versus current density) were
collected from open circuit voltage (OCV) to 0.2 V at in-
crements of 0.05 V min~" to determine that no further in-
crease in current density at a constant voltage was observed,
thus the MEA was at steady state. After the MEA was fully
activated and reached steady state, five polarization curves
were taken to determine the average maximum power den-
sity. The average error between polarization curves was <3%
and <5% for the hydrogen/oxygen and hydrogen/air experi-
ments, respectively.

Cyclic voltammetry (CV) was performed on a fully acti-
vated MEA with a potentiostat (Solartron SI 1287A, Corrware
Software) at 20 mV s~ from 0.01 V to 1 V versus NHE under
ambient pressure. In this two-electrode configuration, the
anode serves as both the counter and reference electrodes.
The fuel cell anode and cathode were supplied with
0.04 L min~" hydrogen and 0.02 L min~" nitrogen, respectively.
Temperatures of the cathode gas, anode gas, and cell were
maintained at 30 °C. The Pt catalyst was assumed to have an
average site density of 210 uC cm~2 [60]. The electrochemical
surface area (ECSA) was determined from the hydrogen
adsorption area from 0.12 to 0.30 V of the CV data. Five cycles
were taken to determine the average ECSA for each MEA.
Linear sweep voltammetry was performed at 2 mV s~ ! from
OCV to 0.8 V versus NHE to determine if the MEA had any
defects that resulted from internal shorts or significant
hydrogen crossover.

Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS; Solartron SI
1260A) was performed on a fully activated MEA from 1 MHz to
1 Hz at —0.4 V versus OCV (ca. 0.49—0.55 V versus NHE) under
ambient pressure. In this two-electrode configuration, the
anode serves as both the counter and reference electrodes.
The fuel cell anode and cathode were supplied with
0.43 L min~! hydrogen and 1.02 L. min~?! oxygen, respectively.
Temperatures of the cathode gas, anode gas, and cell were all
maintained at 80 °C. The EIS data was analyzed using a
common equivalent circuit model that consisted of a resistor
(resistance of the solid electrolyte membrane) in series with a
parallel circuit of a constant phase element and a second
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resistor (resistance of the catalyst layer) that is typically used
to describe a porous electrode [61]. The catalyst layer resis-
tance values reported here are the polarization resistances.

Results and discussion

Fuel cell experiments with E/E catalyst layer electrodes with
different Nafion contents (Table 1) were conducted to inves-
tigate the effect of the Nafion content on catalyst layer re-
sistances and subsequently on fuel cell performance at a fixed
catalyst layer morphology. SEM images of the E/E catalyst
layers are shown in Fig. 3(a—{), where each image corresponds

to different amounts of Nafion (wt% solids) in the electro-
spraying solution. The E/E catalyst layers show a highly
porous network of randomly arranged nanofibers and particle
aggregates, which promotes facile gas transport to Pt sites for
reactions to occur. The particle-fiber-pore junction points (i.e.,
triple phase boundary points) also provide intimate in-
teractions for electron transport, proton transport, and ORR
without loss of oxygen gas transport due to the highly porous
network as shown in previous studies [58,59]. Fig. 4 shows the
average fiber diameters and particle diameters of the images
shown in Fig. 3(a—f). The average fiber diameters range from
137 + 48 nm to 183 + 64 nm and the average particle diameters
range from 1.27 +0.71 pm to 1.59 + 1.34 ym, indicating that the

500 nm

Fig. 3 — SEM images of E/E electrode with various Nafion contents in electrospraying solution: (a,g) 0 wt%, (b,h) 19 wt%, (c,i)
32 wt%, (d,j) 48 wt%, (e,k) 65 wt%, and (f,]) 79 wt%. (a—f) X 5000 magnification, scale bar = 10 pm; (g—1) X 30000 magnification,

scale bar = 500 nm.
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Fig. 4 — (a) Fiber diameters and (b) particle diameters in the E/E catalyst layers as a function of Nafion content in the

electrospray.

nanofiber sizes and particle aggregate sizes are similar for all
E/E experiments regardless of the amount of Nafion content in
the electrospraying solution. The fiber diameter size distri-
butions and particle aggregate size distributions are also
similar for all E/E experiments. This result highlights the
ability of the E/E process to create catalyst layers with similar
overall morphology at different catalyst-to-ionomer ratios or
ionomer contents. Thus, the impact of transport resistances
due to the ionomer surrounding catalyst particles can be
solely investigated without other parameters changing
simultaneously.

Fig. 3(g—1) (higher magnification of the catalyst layers;
specifically focusing on the catalyst particles) shows that
there are distinct visual differences at a local level in the
appearance of the particle aggregates at varying amounts of
Nafion in the electrospraying solution. From Fig. 3(g)—(i), i.e.,
from no Nafion to a small amount of Nafion in the electro-
spraying solution (0—32 wt% Nafion), there is an appearance of
polymer that adheres between Pt/C particles. From Fig. 3(j), at
48 wt% Nafion, the Nafion ionomer completely surrounds the
particles and creates a thin film around the aggregate. Fig. 3(k)
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and (1) (65 wt% and 79 wt% Nafion), the Nafion film is thicker
and separate Pt/C particles can no longer be distinguished
within the aggregates. Therefore, by increasing the amount of
Nafion in the electrospraying solution, the particle aggregates
begin to change appearance, but maintain relatively similar
particle aggregate sizes and overall catalyst layer morphology,
while the Nafion ionomer thin film that surrounds the
aggregate becomes more visible and thicker. Thus, these re-
sults indicate that the amount of Nafion content in the elec-
trospraying solution did not influence the macroscale
morphology of the catalyst layer, but influenced the micro-
scale appearance and composition around the catalyst
aggregate particles. This allows for the exclusive study of the
ionomer resistance on fuel cell performance without altering
the overall catalyst layer morphology.

Fig. 5 shows fuel cell performances (polarization and power
curves; hydrogen/oxygen and hydrogen/air at ambient pres-
sure at 80 °C) for E/E electrodes at 0.05 mgp, cm ™2 total loading
(produced with 48 wt% Nafion of the solids in the electro-
spraying solution) and for conventional painted electrodes
(control) at 0.1 mgp cm~? total loading. Under hydrogen/
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Fig. 5 — Fuel cell performance and polarization curves of MEAs with (a) E/E electrodes with 0.05 mgPt cm 2 and (b)
conventional electrodes with 0.1 mgPt cm~2 under hydrogen/oxygen (solid) and hydrogen/air (dashed).
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oxygen, the maximum power density for the E/E electrodes
(567 mW c¢m™?) is similar to that of conventional electrodes
(561 mW cm?) with only 50% of the Pt loading compared to
the conventional electrodes. Under hydrogen/air, the
maximum power density for the E/E electrodes (262 mW cm™?)
is also similar to that of conventional electrodes
(250 mW cm™?). These results further emphasize the influence
of morphology in ultra-low Pt loading catalyst layers on fuel
cell performance as demonstrated in previous studies [58,59].

As shown in Fig. 6(a), the maximum power density for E/E
electrodes varies with the amount of Nafion content in the
electrospraying ink solution. Under hydrogen/oxygen, from
0 to 32 wt% Nafion content of the solids in the electrospraying
solution, there is minimal difference in the maximum power
density, which ranges between 415 mW cm 2 and
455 mW cm~2. However, at 48 wt% Nafion content of the solids
in the electrospraying solution, the power density increases to
567 mW cm 2, which is a 36% gain in power output. From 48 to
65 wt% Nafion content of the solids in the electrospraying
solution, the power density slightly decreases to
521 mW cm™~2, which corresponds to 8% loss in power output.
From 65 wt% to 79 wt% Nafion content of the solids in the
electrospraying solution, the power density continues to
decrease to 412 mW cm 2, which is an additional 21% loss in
power output. This trend is similar for fuel cell performances
under hydrogen/air as well. From 0 to 32 wt% Nafion content
in the electrospraying solution, there is minimal difference in
the maximum power density, which ranges between
170 mW cm 2 and 180 mW cm 2. However, at 48 wt% Nafion
content of the solids in the electrospraying solution, the
power density increases to 262 mW cm 2, which is a 53% gain
in power output. From 48 to 65 wt% Nafion content of the
solids in the electrospraying solution, the power density de-
creases to 204 mW cm~2, which corresponds to 22% loss in
power output. From 65 wt% to 79 wt% Nafion of the solids in
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the electrospraying solution, the power density continues to
decrease to 142 mW cm~2, which is an additional 30% loss in
power output. These results suggest that low Nafion content
(0—32 wt% of solids in the electrospraying solution), where the
Nafion ionomer has no or little presence as shown in the left
inset SEM image in Fig. 6(a), there is no or minimal effect on
fuel cell performance; therefore, proton conductivity between
the particle aggregates may be constant. This is supported by
the SEM images shown previously in Fig. 3(g — i), where the
Nafion ionomer does not completely cover the aggregate until
48 wt% as shown in Fig. 3(j). The increase in power density
from 32 wt% to 48 wt% Nafion content can be explained by the
Nafion ionomer coverage around the particle aggregate which
promotes proton conductivity to the triple phase boundaries.
As illustrated by Fig. 1(a), the lack of proton pathways will
introduce charge transfer resistance, which is evident in the
low Nafion content (0—32 wt%) electrodes, where not all of the
particle aggregates are visibly connected to the ionomer as
shown in the left inset SEM image in Fig. 6(a) (0 wt% Nafion
content in the electrospraying solution). However, at 48 wt%
Nafion content of the solids in the electrospraying solution, as
shown by the middle inset SEM image of Fig. 6(a), there is
enough ionomer content that allows each catalyst aggregate
to effectively transport protons at each reaction site, as illus-
trated in Fig. 1(b), which reduces the charge transfer resis-
tance and improves the power density. In addition, the
amount of ionomer that surrounds the entire catalyst particle
aggregate, as illustrated in Fig. 1(b), is low enough to allow gas
to diffuse through, and therefore mass transfer resistance is
also minimized. Thus, at 48 wt% Nafion content, the highest
maximum power density is achieved by diminishing the
charge and mass transfer resistances. At higher Nafion con-
tent (65 wt% to 79 wt% of the solids in the electrospraying
solution), the power density steadily decreases. As seen pre-
viously in Fig. 3(k and 1), with higher Nafion content, the
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Fig. 6 — (a) Maximum power density under oxygen (red) and air (blue) versus Nafion content in electrospray for E/E MEAs
with insets representing high magnification SEM images of catalyst aggregate particles at given Nafion contents: 0 wt%,
48 wt%, and 79 wt% (left to right)) and (b) catalyst layer resistance versus Nafion content in electrospray for E/E MEAs with
illustrations of proton transport resistance (left) and mass transport resistance (right). The highest value for maximum
power density and minimum resistance is indicated by the dashed vertical line (orange) in (a) and (b), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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particle aggregates cannot be visually seen due to the dense
ionomer coverage, which increases mass transport resistance.
As previously illustrated in Fig. 1(b), mass transport resistance
can occur when the solid ionomer blocks reactant gas from
reaching Pt reaction sites. This resistance is visually demon-
strated by the right inset SEM image in Fig. 6(a) (79 wt% Nafion
content of the solids in the electrospraying solution), where
the Nafion ionomer completely covers the aggregate and in-
dividual particles are no longer distinguishable. Therefore, the
solid ionomer becomes a physical barrier for gas diffusion and
prevents reactant gas from reaching Pt reaction sites, which
effectively decreases the power density.

Electrochemical impedance spectroscopy is a widely used
technique to investigate the inner processes of fuel cells, such
as electrode degradation [62], proton transfer [63], reaction
kinetics on thin film fuel cell electrodes [41], and catalyst layer
resistances for PEMFCs [64—66|; specifically ionic conductiv-
itles [67—69] and oxygen transport resistances [42]. Springer
et al. [64] first proposed and experimentally verified one of the
earlier circuit models to describe PEMFCs under operation,
and identified and correlated different frequency regimes
with different transport processes along the polarization
curve. Since then, multiple studies have proposed more
complex models to study and identify specific transport pro-
cesses within the catalyst layer [43,66,69,70]. To further
explore the impact of Nafion ionomer on fuel cell perfor-
mance, the catalyst layer resistance was measured with
electrical impedance spectroscopy under hydrogen/oxygen at
ambient pressure at 80 °C at —0.4 V versus OCV (ca. 0.49—-0.55V
versus NHE), which is at a slightly lower voltage compared to
the voltage where the maximum power density was observed.
As shown in Fig. 6(b), the average catalyst layer resistance
is relatively steady between 320 and 350 mQ cm? from 0 to
32 wt% Nafion content of the solids in the electrospraying
solution, indicating that at low Nafion content, where proton
transport resistance is expected to be high in conventional
electrodes due to the poor proton connection between parti-
cles and ionomer (as shown in Fig. 3(h) and illustrated in the
left inset in Fig. 6(b)), there is little to no effect on fuel cell
performance for E/E electrodes because protons can be
transferred through the Nafion in the nanofibers, regardless of
the amount of Nafion ionomer in the electrospraying solution.
From 32 wt% to 48 wt% Nafion content of the solids in the
electrospraying solution, there is a decrease in the average

catalyst layer resistance from 320 to 240 mQ cm?, which sug-
gests that the continuous thin film formation around catalyst
particle aggregates (as shown in Fig. 3(k) further improves
proton transport and increases the triple phase boundary.
From 48 wt% to 79 wt% Nafion content of the solids in the
electrospraying solution, the average catalyst layer resistance
increases from 240 to 490 mQ cm?, which may be attributed to
the increase in mass transport resistance as the thin film that
surrounds the Pt/C aggregate increases in thickness (as shown
in Fig. 3(1) and illustrated in the right inset in Fig. 6(b)). This
result suggests that at higher ionomer content in E/E elec-
trodes, mass transport resistance is more dominant than
proton transport resistance. Overall, these results show that
there is a balance between proton transport and mass trans-
port in E/E electrodes that can be observed by changing the
Nafion ionomer content in the electrospray in order to opti-
mize fuel cell performance.

Table 2 summarizes these results: maximum power den-
sity, catalyst layer resistance, average electrode Pt loading,
and electrochemical surface area (ECSA). The ECSA is a mea-
sure of the adsorption or desorption of hydrogen onto the Pt
sites; therefore, it is also dependent on the porous structure,
electron conductivity, and proton conductivity. From the SEM
images, the morphology is similar for all E/E experiments, as
stated previously. Therefore, the only difference is the con-
nectivity and thickness of the proton conducting ionomer
network surrounding the catalyst particle aggregates, which
subsequently depends on the ionomer content in the elec-
trospraying solution. The ECSA steadily increases from
21.9 m? gl to 42.9 m? gzt for 0 to 32 wt% Nafion content of the
solids in the electrospraying solution, rapidly increases to
99.0 m? gp{* at 48 wt% Nafion content, and then decreases to
69.6 m? g5 and 22.3 m? g for 65 wt% Nafion content and
79 wt% Nafion content, respectively. The increase in the ECSA
may be attributed to the increase in proton transport, which
allows for more Pt particles to be accessible, thereby
increasing the ECSA. Overall, this trend is similar to the trends
observed for power density (Fig. 6(a)) and catalyst layer
resistance (Fig. 6(b)). Specifically, at higher Nafion content
(from 48 wt% to 79 wt% of solids in the electrospraying solu-
tion), the decreasing trend in the ECSA values suggests that
the solid ionomer is effectively blocking hydrogen gas from
reaching the Pt sites and thereby reducing the amount of
available Pt surface area for the reaction to occur.

Table 2 — Ptloading, electrochemical surface area, maximum power density, and catalyst layer resistance for E/E electrodes

with different Nafion contents in electrospraying solution.

Nafion contentin Pt loading Max power Max power Catalyst layer resistance® ECSA® (m? gz)
solids (wt %) (mgprcm™?)  density® (mW cm™?  density™® (kW gpl) (mQ cm?)

0 0.052 4382 +6.3 4.21 + 0.06 3214 219 +31

19 0.041 452.0 +10.3 5.51+0.13 303.2 382 +54

32 0.049 416.8 + 4.3 4.25 + 0.04 320.4 429 +59

48 0.049 566.8 + 12.6 5.78 + 0.13 236.8 99.0 + 17.2

65 0.042 5214 +13.8 6.21 + 0.16 265.5 69.6 +7.7

79 0.043 4118 +7.6 4.79 £ 0.09 631.0 223 +22

2 Under H,/O, at 80 °C, ambient pressure.
® Under Hy/N, at 30 °C, ambient pressure.
¢ Calculated using the total Pt loading in the MEA.
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The optimum ionomer content for conventional catalyst
layers in fuel cell electrodes has been thoroughly investi-
gated and reported to be approximately 30 wt% [27,29,71]. To
compare the optimum total ionomer content in the E/E
electrodes to that of conventional electrodes, the total
Nafion content in the E/E electrodes, including the Nafion
from the nanofibers, was calculated. As shown in Fig. 7, the
current density at 0.6 V versus NHE under hydrogen/air for
the E/E MEAs from this study is compared to the results
from Qi et al. [72] for conventional MEAs. The conventional
MEAs show a maximum current density at 30 wt% Nafion
content in the electrodes. However, for E/E MEAs, the
maximum current density was observed at 62 wt% Nafion,
which is a 93% increase from the optimum Nafion content
compared to conventional electrodes. Interestingly, one
study has shown that the optimum Nafion content changes
with Pt loading, and at low Pt loading (0.1 mgp; cm ), the
optimum Nafion content is 50 wt% [73], which suggests that
at ultra-low Pt loadings (<0.1 mgy. cm™2), the optimum
ionomer content may differ from that at a conventional
loading (ca. 0.4 mgp: cm~2). Therefore, by utilizing the E/E
technique, electrode catalyst layers with ultra-low Pt load-
ings and different ionomer contents can be investigated to
optimize and understand the role of the ionomer thin film
resistance on fuel cell performance, while maintaining a
constant catalyst layer morphology.

In this study, the fuel cell performance of E/E electrodes
were similar to conventional electrodes (control), but the total
Pt loading were not similar. Fig. 8 shows fuel cell performance
of the E/E electrodes with similar overall Pt loading compared
to the control (0.1 mgp: cm?). Under hydrogen/oxygen, the
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Fig. 8 — Fuel cell performance and polarization curves of
MEAs with E/E electrodes with 0.1 mgPt cm~2 under
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average maximum power density for these E/E electrodes
(690 mW cm™?) was observed to be 23% higher than control
electrodes (561 mW cm™2) at similar total Pt loadings. Simi-
larly, under hydrogen/air, the average maximum power
density for the E/E electrodes (372 mW cm~2) was observed
to be 49% higher than that for the control electrodes
(250 mW cm~2). Overall, compared to conventional electrodes,
the enhanced morphology the E/E electrodes (increased triple
phase boundaries) results in similar fuel cell performance at
lower Pt loadings or higher fuel cell performance at similar Pt
loadings.

Conclusions

In this study, the simultaneous E/E technique provides a
platform to produce electrodes with similar overall
morphology at various ionomer contents, which allows for the
exclusive exploration of the impact of the ionomer thin film
on catalyst layer resistances and subsequently fuel cell per-
formances. As ionomer content increased, the catalyst layer
resistance decreased and then increased, which was attrib-
uted to charge transfer resistance at low ionomer content and
mass transport resistance at high ionomer content. However,
unlike conventional electrodes, at low ionomer content, a
connected proton conducting network still exists in E/E elec-
trodes due to the presence of Nafion nanofibers, and at high
ionomer content, a highly porous network still exists in E/E
electrodes due to the nanofiber-nanoparticle network.
Therefore, the catalyst layer resistances observed are exclu-
sive to the Nafion thin film surrounding the catalyst aggregate
particles and not the overall connected pore-ionomer-catalyst
morphology. Overall, for E/E electrodes, a maximum in power
density and minimum in catalyst layer resistance was
observed at 62 wt% Nafion, which differs from conventional
electrodes (30 wt%). Furthermore, E/E electrodes had a similar
power density compared to conventional electrodes at half
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the Pt loading (0.05 mgp, cm ™) and higher power density at
similar Pt loading (0.1 mgp: cm ™).
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