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We explore the use of longitudinal dialog data for

two dialog prediction tasks: next message prediction

and response time prediction. We show that

a neural model using personal data that leverages

a combination of message content, style matching,

time features, and speaker attributes leads to the

best results for both tasks, with error rate reductions

of up to 15% compared to a classifier that relies

exclusively on message content and to a classifier that does not use personal data.

Most dialog research provides an overall view of speakers’ language and interaction behaviors
based on data from recorded spoken conversations, movie scripts, social network messaging,
forums, instant messaging, and audio subtitles. 1,2,3,4,5 These corpora contain a diverse set of
speakers. Thus, the developed models are not tailored to individual speakers, who might have
preferences and behaviors different than the consensus trends.

In this work, we address discourse analysis in personal dialog data. In particular, we seek to
explore what can be learned from personal messaging history by analyzing language usage and
communication patterns. We conduct our analyses over a large set of conversations obtained from
the instant messaging history of several individuals. The conversation set contains 1.3 million
messages from a five-year time span. We label speaker social relations using seven categories
– gender, school, work, relationship status, family, age, and cultural background. We then use
psycholinguistic-inspired analysis to analyze language usage within groups in these categories.
We use the insights from these analyses to derive features that represent the message content,
messaging frequency and messaging timing. We also derive several features to capture interaction
behaviors, including word usage and language matching across conversational groups. We use
these features in combination with standard word embeddings to conduct two classification tasks:
(1) predicting the next message in the conversation (based on the most common utterances); and
(2) predicting the message response time. For both tasks, models with our features and trained on
personalized data perform best.
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Participant Other All

Total Messages 690,767 647,026 1,340,338
Average Unique Messages 63,039 62,907 123,568
Total Tokens 4,992,575 5,069,745 10,062,320
Average Unique Tokens 19,023 23,265 32,195
Average Tokens / Message 7.23 7.83 7.52

Table 1. Distribution of messages and tokens (words, punctuation, emoticons) in conver-
sations. Unique averages are computed at the participant level.

RELATED WORK
Speaker behavior in instant messaging services has been widely studied for tasks such as dialog
act tagging and discourse analysis. Studies have attempted to classify messages into actions, such
as ‘greet’, ‘accept’, or ‘reject’ for online messaging, customer service interactions, and many
other settings. 6,7 Other recent work has focused on the understanding of speakers, detecting the
emotion they are expressing 8 and the relationship between speakers. 9 Holmer applied discourse
structure analysis to identify and visualize message content and interaction structures. 10 Tuulos et
al. inferred social structures in conversations, using heuristics based on participant’s references,
message response time and dialog sequences. 11 They represented the social structure using graph-
based methods and explored features extracted from the graph to identify topics.

Many other dialog corpora exist. Recent work on building task-oriented and end-to-end dialog
systems has used corpora from Twitter 12 and specific types of chatrooms, such as the Ubuntu
chat corpus . 13 The construction of such datasets is motivated by the desire to have more useful
dialog systems. Although much can be learned from these corpora, systems often also require
commonsense reasoning to be effective. 14 The most relevant corpus for our work is the NUS SMS
corpus, which contains publicly released text messages, however the authors could not collect
messages received, restricting their analysis. 15

DATASET
To enable our experiments, we invited individuals to contribute their personal messaging history
for a study on personal longitudinal data.1 To ensure data privacy, we recruited participants who
could run our code on their own computers, keeping message content private and sharing only
aggregate statistics with us. We recruited eight participants and provided them with detailed
instructions on how to prepare the data and run the scripts.

We define the following conversation units: A message consists of all the text written by a partici-
pant in a conversation right before they press the send key. A turn change occurs when the author
of the current message differs from the participant in the previous message. Note that a turn can
be composed of multiple messages. We define a conversation as a sequence of turns between two
individuals. Message response time is the amount of time that has passed between a message
from a user and the previous turn change. On these platforms conversations continue indefinitely,
but shifts in response time can indicate when a synchronous exchange has ended.

All messages sent and received by participants via Google Hangouts, iMessage, and Facebook
Messenger are considered, covering a range of short message service systems. The data spans a
decade and contains about 1.3 million messages,2 but we focus on a five year span containing the
majority of messages: 2012 to 2017. We also exclude multi-party conversations and conversation

1The study was approved by the Institutional Review Board (IRB) at the University of Michigan.
2There may be some overlap if participants spoke to each other though we cannot quantify it because we do not have

access to the raw data.
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Figure 1. Distribution of number of messages and tokens between the (P) participants
and their conversation partners (O) in our dataset.

Figure 2. Shared attributes between participants and their conversation partners

partners with fewer than 100 messages. This leads to a final set of 508 interlocutor pairs and
contains all the messages from conversations held between the participants and other individuals
during 2012-2017. Table 1 shows corpus statistics. The data contains slightly more sent messages
than received, but sent messages are slightly shorter.

Annotation of Social Interaction Categories

To enable our analyses, each participant manually labeled their conversation partners with seven
attributes that describe their social relationship. We chose attributes that they were likely to know
about the people they converse with and may impact the way they write. The attributes are de-
fined as follows:

Same Gender: The participant is the same gender as the other speaker.
School: The participant and the other speaker met while attending school.
Work: The participant and the other speaker know each other from work.
Romantic: The participant and the other speaker were in a romantic relationship at some point.
Family: The participant and the other speaker are related.
Relative Age: The participant is older, younger or the same age (±1.5 years) as the speaker.
Childhood Country: The participant grew up in the same country as the other speaker.

These attributes and their values are used during the analyses and experiments presented through-
out this paper. We analyze aggregate statistics of our corpus including total messages and tokens
exchanged, the distribution of attributes, and message production across time.

Message and Speaker Distributions

Figure 1 shows the distribution of messages and tokens across participants. The leftmost plot
shows participants had from a few thousand to a few hundred thousand messages. Distributions
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No. Time Message No. Time Message

c1m0 15:45:06 P: Wanna grab coffee? c2m0 12:21:00 P: Perfect!!
c1m1 15:45:20 A: yeah c2m1 15:56:22 P: Wanna go to get Thai?
c1m2 15:45:25 P: Sweet!!!! c2m2 16:01:18 P: I’ll take it you’re sleeping
c1m3 15:45:29 P: Meet in the lobby? c2m3 16:19:59 A: Yeah
c1m4 15:45:52 A: okay c2m4 16:20:08 A: I mean I was sleeping

Table 2. Two examples of five-message context windows (c1 and c2) in our dataset.
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Figure 3. Distribution of messages over time. Months are grouped by season. Totals per
season are listed in the inner circles with bars from 85k to 115k messages.

are similar for participants and their partners across the number of messages, tokens, and unique
messages. The distribution of unique tokens differs, providing some evidence for variation in
writing, as each value for O is based on a set of individuals, while each value for P is based on
one individual (the participant). The average number of tokens per message ranges from 5-12
with the exception of one outlier, whose messages were significantly longer.

We also examine the distribution of speaker attributes over conversation partners and across par-
ticipants. Figure 2 shows this by representing the values ‘yes’ (school, work, romantic, family) or
‘same’ (gender, age, childhood country) for each attribute. For instance, the gender plot shows that
the median proportion of conversation partners of the same gender as the participant is 54%. Note
that while age takes three values the plot shows only Relative Age=same. The range is similar for
older conversation partners but ranges from 11-37% for those who are younger.

Message Production Across Time

To explore messaging behavior over time, we analyze message exchange trends during conversa-
tions based on the time they were sent and speaker response time.

Figure 3 presents the distribution of messages over various periods of time: hour of the day, day
of the week, season of the year, and across years. Looking at the distribution over months and
seasons (middle circle), there is a slight increase during autumn. Looking at the distribution over
hour of the day (top left graph), there is an increase until midnight and then a dip in the morning.
Looking at the distribution over days of the week (top right graph), there is a decrease as the
weekend approaches. This may be instant messaging complementing real-life communication,
picking up when real-life communication slows down (beginning of the week) and dropping down
when real-life communication picks up (end of the week). Finally, looking at the distribution
across years (bottom left graph), there is a peak in late 2015, which might be related to life events,
such as starting a new job or starting school.

Figure 3 also shows the distribution of message response times with a log-log scale (bottom right).
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The graph shows that usually responses occur within a half-hour interval, though there are many
up to a day apart, and some a year or more apart.

PREDICTING CONVERSATIONAL ASPECTS
We consider two prediction tasks related to conversation: 1) predicting the next message in a con-
versation, and 2) predicting message response times. Our experiments are conducted on context-
windows consisting of one message written by a participant and the four preceding messages.
Table 2 shows two examples of context-windows.

Features

Our features are inspired by the group and message production analyses above as well as linguis-
tic aspects in conversational analysis. Personality of the speaker would be a relevant feature but is
not feasible for us to obtain ground truth as it would require each speaker to take a personality test.
Future work could attempt to gather this data or use a pretrained model for extracting personality
from documents. 16 We define several linguistic, time, frequency, and interaction features:

Speaker Attributes: These features aim to represent the relationship(s) between the participant
and their conversation partner. We derive binary features representing the seven attributes listed in
Section 2 for the current conversation partner. If all messages in the context window belong to the
participant this vector contains only zeros.
Messaging frequency: This set of features attempts to capture the message frequency patterns
observed in Figure 3. Our features include the number of messages exchanged between conversa-
tion participants in the past day, week, month, and from all time. We also include binary features
representing the sequence of conversation turns in the context window.
Message timing: During our analyses we observed important differences in message timing
across the day of the week, month, season, and year. To capture these, we define a set of features
inclduing the time elapsed during the first four messages in the context window, the number of
seconds between each of the first four messages, and the day, month, year, season (winter, fall,
summer, spring), and hour of the day of the fourth message.
LIWC: To capture the semantic categories of text we use the Linguistic Inquire and Word Count
(LIWC) lexicon. For each speaker, we calculated normalized counts for the 73 categories and use
them as features along with their cosine similarity, and vector sum.
Style Matching: To incorporate information about how the interaction between the participant
and their conversation partners changes over time, we calculated the degree to which the speak-
ers match each others language. We use the Linguistic Style Matching (LSM) metric, 17 which
quantifies to what extent one speaker’s language matches the language of another using eight
linguistic markers from the LIWC dictionary. 18 Specifically, we calculate LSM over the last hun-
dred messages exchanged and the difference in LSM from the beginning to the end of the context
window.
Message Embeddings: We also obtain word vector representations for each message using the
GloVe Common Crawl pre-trained model. 19 We chose this word embedding over other off-the-
shelf options because the Common Crawl data more closely resembles our data.

Model

Figure 4 presents the model graphically. We use a bidirectional long-short term memory network
(BiLSTM) to encode the messages. 20 GloVe word embeddings are used as input. To encode other
feature sets, we use another fully-connected layer whose output is concatenated with the LSTM
output. Finally, the concatenated output is passed through a projection layer to get scores over
the classes. Hyper-parameters for the network, including hidden layer sizes, learning rate, and
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Figure 4. The model architecture encodes a context window as a sequence of tokens.
The encoding is used with our other feature sets for classification.

number of epochs, were tuned on a validation set. We use 80% of the data for training, and 10%
for validation and testing respectively.

For each participant, we sample random contexts for training and testing. A separate personalized
model is trained for each participant and evaluated on the same participant’s test data. For compar-
ison with our personalized models, we also train and evaluate models trained on general data. For
each participant, the data for the general model is sampled randomly from all other participants’
data. For both the general and personalized models the test data is the same. This allows us to
measure the impact of having a user-specific model.

Prediction of Next Message in the Conversation

In this task, we must predict which of a small set of messages will occur next in a conversation.
This is similar to services like Google’s Smart Reply,3 which suggests potential responses to
email and text messages. 21 We structure the task as a multi-label classification problem. We use
the top five most frequent utterances sent by each participant as classes. The classes vary slightly
but typically include values like ‘yes’, ‘haha’, ‘okay’, ‘oh’, and ‘nice’. We also include an addi-
tional category ‘other’, which is a random sample of 1% of the messages sent by the participant
(other than the most common five).

During feature extraction, we take the last message in the context window as the label to be pre-
dicted and use the previous four messages to generate features as described above. For instance,
for the first example in Table 2 we assign the label ‘okay’, as it appears in the most common set,
but for the second example we assign the label ‘other’, as this message is not one of the five most
frequent messages.

Prediction of Message Response Time

In this task, we predict the time till the next message. This kind of information can be used to
make conversational agents, such as Microsoft’s XiaoIce, feel more natural.4 We address this task
as a four-class classification problem, where messages are categorized based on their response
time as: (1) the response occurs within 90 seconds of the timestamp of the previous message;
(2) between 90 seconds and 10 minutes; (3) more than 10 minutes but less than a day; and (4)
longer than a day. For this task, the fifth message in the context window is used to determine the
label, and the previous four messages are used to generate features. For example, the response
time labels for the context windows shown in Table 2 are determined by the time elapsed between

3https://allo.google.com/
4https://blogs.microsoft.com/ai/xiaoice-full-duplex/
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msg3 and msg4, which fall into the first category, i.e., the response occurred in under 90 seconds.

The total number of utterances per person (P+O) ranges from 15,000 to 336,000. Two people had
too few common utterances for the common utterance prediction task and were excluded from
these experiments. Perhaps not surprisingly, we notice that there is a large overlap in common
utterances across speakers. The utterance ‘yes’ is in the top two most frequent utterances for all
speakers, and laughter (‘haha’) appears in the top two in six of the eight participants. We also
consider general and personalized models for this task, with data prepared in the same way as in
the message prediction task.

Results

The results for both prediction tasks are shown in Table 3. We use an average of 9,500 context
windows for next message prediction and 88,000 for response time. The results show that across
the participants in our study, our neural model with all features and personal data performs best,
improving over the classifiers that use only message embeddings or classifiers that do not use
personal data.5

Next Msg. Resp. Time

Majority Class 32.5 65.8
General MEmb 38.0 68.0
General All Feat 39.0 70.5
Personal MEmb 45.5 69.6
Personal All Feat 48.3 73.4

Table 3. Prediction results averaged
across participants. The majority base-
line is compared to models that use
embeddings only and a model which
uses all features under a general and
personal training setting.

Next Msg Resp Time

Majority Class 34.0 61.9
MEmb 46.5 64.4
MEmb + Time 47.0 67.5
MEmb + LIWC 47.6 64.4
MEmb + Style 46.7 64.4
MEmb + Freq 47.6 64.8
MEmb + Attributes 46.9 64.5
All Features 50.0 68.0

Table 4. Ablation results shown for each
feature type and compared to a model
that uses all features, as well as base-
lines obtained using the majority class or
message embeddings (MEmb) only.

In follow up analysis, we found that as the number of messages in an individual’s dataset in-
creased, the percentage that were short also increased. These messages tend to be fast and close
together, leaving less room for improvement on the response time task. Future work could explore
the relationship between the number of messages in an individual’s dataset and the accuracy of
models trained on their data.

We also perform an ablation using data from the participant with the largest number of messages.
Table 4 shows the results. For the next message prediction task, the time, LIWC, and frequency
features give the largest improvement, increasing classification accuracy by 3.5% over the base-
line message embeddings model. For response time predictions, the previous response times are
the most useful feature. However, we find that the combined features give an improvement of
3.6%, or a 10% error reduction. The next most useful features are the speaker attributes and the
frequency of past communication.

CONCLUSIONS
In this paper, we studied a corpus of personal conversations consisting of the instant messaging
history from eight individuals. The analyses were conducted over 1.3 million messages written
over a five-year time span.

5The next message task excludes two participants who had too few messages.
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We developed several linguistic features inspired by conversational and interaction behaviors we
observed in the longitudinal data. Our features include message content, style matching, time
features, and speaker attributes. These features were used to address two classification tasks:
predicting common messages and message response times. While the most common utterances
and distribution of response times vary across speakers, we found that a classifier that relies on
a combination of all proposed features and uses personal data leads to error reductions of up to
15% compared to classifiers that exclusively rely on message content or are trained on messages
randomly selected from other speakers in the corpus.

Our code is publicly available6 so that others may perform similar analyses and experiments on
their own personal longitudinal data or other data, to discover patterns in messaging behavior and
train models for dialog prediction tasks.
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