Paper Session: Autograders

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Approaches for Coordinating eTextbooks, Online Programming
Practice, Automated Grading, and More into One Course

Margaret Ellis, Clifford A. Shaffer, and Stephen H. Edwards
Virginia Tech
Blacksburg, VA
maellis1|shaffer|s.edwards@vt.edu

ABSTRACT

We share approaches for coordinating the use of many online educa-
tional tools within a CS2 course, including an eTextbook, automated
grading system, programming practice website, diagramming tool,
and debugger. These work with other commonly used tools such as
a response system, forum, version control system, and our learning
management system. We describe a number of approaches to deal
with the potential negative effects of adopting so many tools. To
improve student success we scaffold tool use by staging the ad-
dition of tools and by introducing individual tools in phases, we
test tool assignments before student use, and we adapt tool use
based on student feedback and performance. We streamline course
management by consulting mentors who have used the tools before,
starting small with room to grow, and choosing tools that simplify
student account and grade management across multiple tools.

CCS CONCEPTS

« Social and professional topics — Computing education;

KEYWORDS

tool use, CS2, instruction, course management

ACM Reference Format:

Margaret Ellis, Clifford A. Shaffer, and Stephen H. Edwards. 2019. Ap-
proaches for Coordinating eTextbooks, Online Programming Practice, Auto-
mated Grading, and More into One Course. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19), February
27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287487

1 INTRODUCTION

With continuing advances in CS Education Research, there is an
ever-growing collection of high-quality online educational tools
available to instructors for use in their courses. In this experience
report we share our experience integrating several such tools into a
CS2 course, and describe approaches that others can use to manage
the process of adopting many such tools in an education setting. We
describe the context of our course and our experiences with using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287487

126

WebCat 1, OpenDSAZ, CodeWorkout?, and Lucid Chart 4, all in con-
junction with more typical educational tools such as Canvas (our
LMS), Eclipse and iClickers. We want students to take advantage
of available tools that allow them to explore, practice, tinker, and
build professional skills. Yet we do not want to overwhelm either
the students or the instructional team. The overarching approaches
we used can be grouped into two main categories: 1) improving
instruction and student learning, and 2) streamlining course man-
agement for the instructor. To improve instruction and student
learning we use scaffolding to phase in the use of multiple tools
and for learning individual tools incrementally. We test tool-based
assignments before student use to verify clarity and correctness,
gauge difficulty, and assess the amount of time necessary to com-
plete the assignment. We also modify our use of individual tools
based on student experiences and feedback.

Our approaches to streamline course management for instruc-
tors help save time and reduce the risk of error. When integrating
multiple tools into this course we have benefited from consulting
mentors who have used a given tool before. We also start small with
room to grow in the use of more complex tools, and we prefer to
choose tools that simplify student account and grade management
across multiple tools. We will report on our specific experiences
and within that we describe some guiding principles that can be
applied generally in various instructional settings.

2 BACKGROUND

Student success has been linked to student self-efficacy, and target-
ing instruction to improve student confidence with a specific task
can improve student persistence [10]. A key objective of our CS2
course design is to improve student self-efficacy, so our approach to
integrating and using tools is done with this in mind. Four key areas
of influence impact self-efficacy: vicarious experiences, mastery ex-
periences, social persuasion, and physiological response [2]. Tools
that provide accessible practice to students can help improve their
confidence in the practice area with mastery experiences, particu-
larly when the lessons are sequenced from simple to more complex
and students are able to monitor their understanding. Tools that
provide accurate non-negative feedback can maintain students’
confidence by social persuasion. If students’ frustration with chal-
lenging concepts can be minimized while they have a satisfying
experience then the physiological response positively influences
self-efficacy [3]. In a study of CS majors, students reported that
they gained confidence by tinkering outside of class, and a personal

web-cat.org
opendsa.org
codeworkout.cs.vt.edu

1
2
3
4www.lucidchart.com

Paper Session: Autograders

factor that predicts interest in Computer Science is the willingness
to engage in constant practice [1].

Practice with a tool can help build student self-efficacy with that
tool and improve student success in a course. Furthermore, building
student confidence at learning new tools could have a broad impact
by increasing students’ initiative and willingness to tinker with and
explore tools throughout their career.

Some tools are specifically designed to enhance learning or auto-
mate course management (e.g., CodeWorkout, OpenDSA, Web-CAT,
iClicker, Piazza), and others are designed to complete a task that
is expected of computing professionals (diagramming tools, IDEs).
Previous research and reports discuss the use of online coding tools,
visualization tools, eTextbooks, auto grading tools, student response
tools, and online forums. Many instructors believe that online cod-
ing tools reduce the dropout rates in introductory programming
classes [20], and these tools have been shown to be useful in helping
students master syntax of programming languages [13]. There are
claims that coding tools increase the self-confidence of students in
Computer Science [4, 15], while visualization is useful for novices
and programmers in general [11, 14]. It is widely accepted in Com-
puter Science education research that automating processes, such
as grading, can save resources and also seems to overall positively
impact academic performance [7, 21]. If used thoughtfully, it is also
commonly accepted that response systems such as iClickers and
online forums such as piazza also improve student learning [6, 12].

Despite the benefits of using the aforementioned educational
tools, some instructors still do not take advantage of tools in their
courses for a variety of reasons. Educators need to feel a sense of
control for successful adoption of a tool. Training and tutorials that
recognize operational and pedagogical difficulties that can arise help
reduce educators’ anxiety [16, 17]. It can be difficult for educators
to find guidance regarding effective use of educational tools such as
algorithm visualization, but experiences and lessons learned from
others can save time and allow educators to make better choices [19].
Educators are less willing to adopt a system unless its usefulness has
been demonstrated. But even though the usefulness of online coding
tools has received attention from researchers, use of such tools is
still not widespread by educators [5]. Researchers recognize time
as the major impediment to instructors’ adoption of visualization
tools which is further exacerbated by course integration issues [18].
The next wave of challenges for instructors who are already using
tools is determining how many and what tools to use, and how to
effectively integrate them. We share our approaches to help other
instructors expand and coordinate their tool use with a greater sense
of control and confidence so they can improve student learning and
reduce administrative work.

3 COURSE DESCRIPTION

Our CS2 course covers an introduction to data structures, efficiency,
and Object Oriented design with Java as the programming language.
There are typically two lecture sections of 100-300 students who
have a variety of backgrounds. Students have obtained credit for
a prerequisite introductory programming course, either in our CS
software engineering sequence, at a community college or another
4-year institution, or by obtaining AP Computer Science A credit.

127

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

g Linked List Insertion Proficiency Exercise

Answer

[CheckAnswer |

Need help?

hig e by cking the

NewNode" button. To ch:

ick on its box (on the

it then click on the node that you want it to point to.

Reset || NewNode || Insert

curr

Figure 1: Example of an OpenDSA interactive exercise.

Students who took the prerequisite programming course at our
institution come to our course familiar with unit testing and our
style and documentation standards. They will have already used
two of the tools discussed here: Web-CAT (for managing submis-
sions of programming projects and auto-grading via unit testing)
and CodeWorkout (which auto-grades small programming exer-
cises). However, a significant fraction of the students in the course
have not used these tools, are not familiar with our style and docu-
mentation standards, and have never written unit tests or used an
auto-grader system. Our CS2 course is taught using Java, and there
are typically a few students whose only prior programming course
used a different programming language.

Students attend two traditional lecture sections and a two-hour
lab each week. Labs and programming projects are submitted to
Web-CAT for feedback and grading. Our current institutional Learn-
ing Management System (LMS) is Canvas. In addition to lab and
projects, students have programming practice assignments in Code-
Workout and OpenDSA. CodeWorkout is used on tests for coding
questions. OpenDSA is an interactive eTextbook which is customiz-
able but already has significant content available for data structures.
Students are assigned OpenDSA reading and problems throughout
the semester, and they find the visualizations and practice useful.
An example exercise is shown in Figure 1. Students also have de-
sign assignments for which they use a diagramming tool of their
choosing. We use Piazza heavily as the course forum, and we use
iClickers for in-lecture active learning.

In 2015 we restructured the course content in order to synchro-
nize lab activities, lecture material and progressively more involved
projects. We incorporated scaffolding throughout the course. Stu-
dents are given pre-reading assignments and quizzes in preparation
for lecture, and the labs are broken into pre-labs, labs and post-labs.
We include iClicker questions in the lecture material. When we
redesigned the course we continued to use Web-CAT but wrote new
tests and hints for reference tests focusing on expected behavior
instead of specific methods, with a goal of keeping the messages
constructive and positive.

Paper Session: Autograders

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Table 1: Tools used in CS2

Tool Name Purpose Introduced Integrates with

Canvas Learning Management System(LMS) week 1

Web-CAT auto-grading and feedback system week 1 Canvas

iClicker active learning response system week 2 Canvas and spreadsheets
OpenDSA eTextBook with algorithm and data structure visualization week 5 Separate Canvas Course
Lucidchart optional online collaborative diagramming tool week 5 Google Docs, pdf
Eclipse Debugger Debugger week 5 Web-CAT

CodeWorkout online coding practice and assessment week 6 Canvas

4 LESSONS LEARNED
4.1 Approaches for Student Success

Students start with varying backgrounds, so the initial weeks can be
intimidating and there can be a steeper learning curve for some stu-
dents than for others. Scaffolding tool use helps alleviate the initial
challenges. We scaffold tool use by starting with small introduc-
tory activities, including demonstrations in lecture and with videos,
and eventually expect students to use tools in context. Pro-actively
testing tools and corresponding instructions with consideration for
difficulty and approximate time required improves student success
and minimizes unanticipated frustrations. Assessing student feed-
back and performance allows us to make adaptations to tool use,
activity directions, and overall course instruction.

4.1.1 Scaffold tool use. Our approach to integrating multiple
tools is to phase them in throughout the semester, and to provide in-
struction for each when introduced. At the beginning of the course
students are trying to learn the course routines, CS concepts, and
new tools. To keep them from feeling intimidated and overwhelmed
we phase in tools over time. We make the learning curve for individ-
ual tools more gradual by exposing students to tools at increasing
levels of detail and difficulty over time. We attempt to lessen the
cognitive load on students so that they are not simultaneously try-
ing to master a new concept and a new tool. By scaffolding the
introduction of tools and the learning of specific tools we give stu-
dents the opportunity for mastery experiences that are sequenced
from simple to more complex to build their confidence.

4.1.2 Add tools to the course in stages. In Table 1 we list tools
used in the course and when they are introduced in order to ease
students into the semester. In the first week of the course students
start the routines of going to lab and submitting to Web-CAT. They
also begin weekly pre-reading assignments with quizzes on Canvas.
In the second week we expect students to use their iClickers in class,
and the forum becomes more active. After a few weeks, students
are comfortable with the overall course management and tools.
Many of them need this time to adjust to programming expectations
reinforced by Web-CAT, which includes style and unit test coverage.
This gives them the opportunity to practice and gain confidence in
this software development setting.

After several weeks, when students are accustomed to the course,
we demonstrate the debugger. Students also have their first assign-
ments using a diagramming tool and their eTextbook. In the follow-
ing week they have on-line programming practice to help prepare
them for the upcoming testing experience.

128

4.1.3 Introduce specific tools with increasing levels of difficulty.
To lessen the cognitive load on students, we scaffold the assign-
ments that use the tools. This eases the students into using the tool.
We use a variety of techniques such as having a small assignment
with the specific objective of familiarizing students with the tool,
modeling use of the tool in class, and having assignments with in-
creasingly involved use of the tool. The first day that we introduce
using iClickers is a practice day, and we do not count the points so
as to ease into use and make sure the logistics are correct. These
smaller experiences set the students up for success and allow them
to get positive feedback as they build skills.

In the week when students use the Web-CAT project autograder
for the first time, we provide detailed lab instructions for doing
Web-CAT submissions. The corresponding post-lab activity is an
exploration of the Web-CAT results in order to further familiarize
students with the tool. This eases students into using Web-CAT.
Subsequent Web-CAT lab and project instructions are less detailed.

The first semester that we used the OpenDSA eTextbook, we did
not initially demonstrate it in lecture. From forum and office hours
interactions, we realized that students were getting stuck on those
questions that require problem solving, particularly about algorithm
analysis and recursion. Students actually needed help with course
skills and concepts more than tool use. When we demonstrated
OpenDSA problems in lecture, we found that students were more
comfortable after they watched us solve just a couple problems. Pro-
viding this vicarious experience for them builds their confidence in
solving these types of problem. As a result they start the homework
assignments sooner and ask fewer questions. Similarly for Code-
Workout, students can use the tool and understand the feedback
but might need help with some of the Computer Science context.
Most CodeWorkout questions require students to write member
methods for a class. This is disorienting for some students until
they see a solved example. After that, they are more comfortable
and successful solving future questions.

Many students do not begin the semester debugging their code
with a source-line debugger. We notice that students are intimidated
by the eclipse debugger until they have one-to-one coaching in
office hours, at which point they value it and become proficient
with it. In the first semester that we used the debugger, we did
introduce it in lecture and lab, but then we realized we needed a lab
dedicated solely to that topic. We have since also added more early
exposure to the debugger. By week 5 we have demonstrated using
the debugger in lecture to see the contents of a linked structure. In
the post-lab the following week, students further explore the lab
code using the debugger and are given a corresponding quiz. This

Paper Session: Autograders

increases self-efficacy with the debugger around the time that their
programming projects are becoming larger. In Week 9 we have a
lab dedicated to debugging. The students find this frustrating, but
more of them begin using the debugger, which we observe helps
them in the projects.

The final project requires students to work in a group to it-
eratively design and implement a program. For each of the four
programming projects that precede the final group project, the stu-
dents are given design guidelines. In preparation for creating their
own design with a UML diagram, students are initially asked to
create a simple UML diagram of existing code containing only two
Java classes. This experience helps familiarize them with using the
diagramming tool when the diagram difficulty is low. We also pro-
vide our own brief video tutorials, and we vet and link to existing
tutorials. Lab and project instructions provide UML diagrams as
examples, and the tool is not phased in until Week 4, with the com-
plexity of its use increasing over the semester. This is an example
of phasing in a tool over time, so students are comfortable with it
by the time that they use it for their more high-stakes final project.

4.1.4 Test tool assignments with consideration for clarity, diffi-
culty and timing. Working through assignment instructions well
before they are assigned is valuable because it improves the instruc-
tions and overall assignment. Actually completing an assignment
allows instructors to verify that students are set up for success
with clear directions, pages with working links and images, the
necessary pre-requisite skills, and the appropriate time-frame to
complete the assignment. Pro-actively testing instructions reduces
student questions and increases their comfort, and saves time in
the long run for the instructional staff. Having other instructors or
teaching assistants test the assignment is ideal, but minimally the
author themself can work back through the instructions with fresh
eyes well after it was drafted.

As part of our lab restructuring, we broke each into pre-lab, lab,
and post-lab. In the first semester we had the TAs work through the
labs in advance using a rubric such as the one shown in Figure 2.
As detailed in the checklist, we test the instructions on Canvas,
the down-loadable code skeleton, and the Web-CAT configuration.
We reduce confusion in lab when the Canvas instructions are clear
and complete. Assignment testing also uncovers potential issues
with our Web-CAT reference tests and feedback messages. Our
expectations about student performance and the amount of time
required to complete the lab is improved by having someone time
themselves to complete the assignment. With assignment testing
the resulting instructions are clearer, and adjusted expectations
are more reasonable. This reduces student anxiety and frustration
while still challenging them.

Each semester we have different assistants solve our CodeWork-
out questions, and we verify that the timing, difficulty and instruc-
tions are appropriate. Even after multiple iterations, we still discover
ways that we can improve instructions or how we write our unit
tests. Here are examples of feedback that we gained from testing
our instructions:

“The only problem I encountered is for union, the instructions
didn’t say you can’t edit the original bags, but CodeWorkout won’t
let you pass if you modify the original bags”

129

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Checklist for Lab Review
1. Review Pre-lab and solutions, check if well connected to lab
2. Read lab instructions
a. verify all links work
b. verify images work
c. take a careful look at code blocks and check formatting
. Make sure skeleton formatting is reasonable
. Verify skeleton downloads correctly
. Solve the lab yourself
. Review Solution against yours (we can reuse former solution or your
new one)
7. Submit Solution(s) to WebCAT
a. check for reasonable error feedback on WebCAT
b. check deadline times for each lab
8. Review Lab Notes from last year regarding the lab and make it
usable for team
9. Review Post-lab and solutions
a. check if well connected to lab
b. check deadline times

o O AW

10. Send feedback to me and communicate/work back and forth
11. Report out to the team (by Sunday)
12. Make sure google drive directories have latest skeleton and

solution, rename any former one with _prev. Both the Skeletons and
Solutions directory

Figure 2: Example checklist for testing lab instructions

“I was of the opinion that when the second bag is null, the bag
returned should be a new bag with all the elements in the current
bag, rather than just returning a reference to the current bag, but if
that’s not a requirement then it shouldn’t create any confusion for
students since both approaches work”

Testing CodeWorkout questions helps us anticipate multiple so-
lution approaches and how we might need to improve our unit
tests. We have also found that we need to be mindful of what meth-
ods the students need to know in order to solve the problem (e.g.
String substring(int, int), double pow(double, double),
int parseInt(String)). Testing helps us to flesh this out and
decide what additional information students might need.

We have found that integrating tools requires additional time
spent by the instructional staff on configuring tools and testing
the assignments up front in order for students to have a smooth
experience. Fortunately, the tools that we use have also successfully
reduced the time spent grading by our TAs and instructors, so there
is more time available for configuring and testing. Even with the
additional time spent in preparation, the end result is more time
available for student contact.

4.1.5 Consider student input and experience. Watching and talk-
ing to students about using tools enlightens us and debunks pre-
conceived notions about their experience with, and perception of,
the tools. This allows us to make adjustments that improve student
learning.

By watching students and looking at their submission history, we
could see that many students were submitting to Web-CAT heavily
to receive feedback while not thinking through their submissions
thoroughly on their own. These students were using Web-CAT
feedback to make guesses until they had full code coverage for
their own tests, and likewise making small changes until they pass
all of our tests, seemingly without regard for the bigger picture
of the assignment or overall test cases for the problem. One of

Paper Session: Autograders

the goals of an auto-grading system that requires student tests
and provides feedback is to promote reflection-in-action, however
student patterns of over-submitting are well documented [9] [8]. An
adjustment that we made was to configure the use of “submission
energy”, which is a mechanism to limit the frequency with which
students can submit to Web-CAT. This causes students to think
through the problem more thoroughly and learn more from the
assignment.

When we began updating this course we knew we wanted to
increase student engagement. Some of our faculty had formerly
experienced frustration with response systems, and others did not
want to require students to make additional purchases. By talking
with students, we discovered that because most of them also take
Physics, they already have iClickers. So our use of iClickers was
adapted to mirror how our colleagues in Physics use them. This
simplified our ramp up, and was convenient for students because it
was already a familiar tool. Paying attention to students and talking
to them allowed us to come up with this solution.

4.2 Approaches for Instructor Success

Instructor time is valuable. If instructors can spend less time on
administrative work then they have more time to spend with stu-
dents and improving curriculum. We try to streamline the use of
multiple tools in one course in order to save time and reduce errors.
We consult mentors to head off difficulties, and we start small to
ease into teaching with a new tool. We pick tools that integrate
well with each other, particularly for managing grades.

4.2.1 Consult a mentor who has used the tool before. Finding a
mentor who has used a given tool is valuable for avoiding pitfalls
and quickly resolving logistical issues. Having a mentor is especially
helpful for guidance on how to handle absences, late work, and
how to accommodate students with special services needs.

When we changed the lab structure and set up all new projects
for the course, it was advantageous to have a mentor for using
Web-CAT. It made us more efficient in setting up configurations
for assignments and in writing tests. Experienced users could pro-
vide guidance not just on syntax for test messages, but various
approaches on how and when to give students feedback on failed
tests. Seeing examples of a mentor’s previous configurations helped
to accommodate late submissions with automatic point deductions.
For a tool as complicated as Web-CAT, it is ideal to build community
and corporate knowledge from semester to semester in the form
of experienced TAs training new TAs, and having the experienced
TAs write training manuals for new TAs who will have to pick up
being tool administrators.

Having a mentor for CodeWorkout was useful for realizing what
previous content was already available. It was also important for
logistical nuisances such as knowing to use the same name for
the assignment in Canvas and CodeWorkout, and being sure to
synchronize settings and time constraints across course sections. A
mentor was also useful for demonstrating how to provide alternate
test times and extended time. The begin and end dates can be
adjusted and so can the time alloted. Having a mentor saved time
and allowed us to anticipate and resolve logistical issues.

When we decided to use iClickers, we consulted with our col-
leagues in Physics. We had a meeting to discuss their approaches

130

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

and steps for setting up iClickers across our institution. They
showed us how they installed and configured the software and
also explained their grading scheme and course guidelines. When
they described some of their management efforts with grading and
especially dealing with absences, we chose to take a simpler over-
all approach. We followed their advice to require students to only
use the iClickers to respond and not their phones. Their guidance
helped us head off logistical issues and made getting started with
iClickers run smoothly.

4.2.2 Start small with room to grow. We avoid investing signifi-
cant time and effort on a tool or corresponding assignments until
we are confident it will yield positive learning experiences for our
students. We will not really know this until we try the tool, so
we start with a small number of assignments and keep the grad-
ing value of the assignments low. It is easier to start with a tool
that provides some ready-made content, this allows you to initially
spend your efforts on integrating the tool versus creating content.
If the tool is also customizable then we improve and enhance our
approaches either throughout the semester or from semester to
semester. As discussed above, it is useful to test any ready-made
content before assigning it to students.

The first semester that we used CodeWorkout, we began with
pre-existing questions about arrays. CodeWorkout was familiar
to some students who had used it in our CS1 course the previous
semester. CodeWorkout was not familar to all the students, and it
had not been used before in the CS2 course, so we eased into it. We
created a couple of practice assignments with new data structure
content that the students did for low point homework, and then
used it in an exam. The following semester we added working an
assignment during lecture. In the future we plan to create more
CS2 content to use for active learning during lectures.

We do not make tool activities worth many points and we do not
over-promise how we will use or grade activities with the tool. For
example, there are many OpenDSA questions, but they are worth
only 2% of the students’ overall grade. However, they have great
value to the students as practice. One semester our server running
OpenDSA restarted overnight, and students who completed the as-
signment before the server crashed lost their grades, while students
who did the assignment after the crash were graded normally. So
we follow a two-level approach here. In the long term, we want to
fix the underlying problem before the next semester (or work with
the tool developers if appropriate). In the meantime, we can take
the simple route and give everyone credit for that set of questions.
This is why it is a good idea to keep the percentage of the grade
and the level of instructor effort at a minimal level until you have
confidence in the tool.

Integrating multiple tools is more manageable because we start
small and then gradually increased tool usage, which mitigates risk
and allows us to adapt and enhance how we incorporate the tools
over time.

4.2.3 Choose tools that simplify management of student accounts
and grades. As much as possible, we use tools that simplify course
administration. This reduces errors and frees up instructor time to
focus on students and instruction. We manually manage student
accounts and porting grades as needed, but in most cases our tools
are set up to communicate automatically.

Paper Session: Autograders

Web-CAT now allows us to port grades directly to Canvas. In
the past we would download a gradesheet from Canvas to ensure
the proper column title for the grades that we were uploading.
We learned to be sure to delete spreadsheet columns for other
assignments so as to not unintentionally overwrite them when
we upload. Keeping this spreadsheet open in Excel simultaneously
with a tools” spreadsheet allows one sheet to reference the other
using the Excel VLOOKUP command as needed to manually port
grades.

Having the grades port directly from Web-CAT to Canvas takes
significantly less time than any manual process and greatly reduces
error in the transfer. We had formerly made errors such as porting
grades over to the wrong assignment in the LMS or having all the
student grades shifted down a row. Another key administrative ben-
efit to grades automatically porting is that late grades are handled
seamlessly. When we ported the grades manually, there would be
added administrative work and more errors for the scenario where
we ported grades for an assignment from Web-CAT to Canvas and
then one student’s grade was later changed in Web-CAT but this
was not reflected in Canvas.

OpenDSA is now fully integrated with Canvas, so students do
not need a separate account, and grades are automatically ported.
Before OpenDSA automatically ported the grades over to Canvas,
the student accounts were not necessarily the same. It is important
that the roll from your LMS and the roll from your tool share some
attribute that uniquely identifies each student. This is typically
the student ID number or the institutional email. We formerly had
grade errors because, despite instructions, some students would
use a personal email to self-enroll in OpenDSA and then there was
no shared unique key with the Canvas roll. Furthermore, some
students would enroll in OpenDSA multiple times with various
emails, so grades could be scattered across OpenDSA accounts, and
various subsets might or might not get ported to Canvas. Having
synchronized student accounts eliminates these issues and saves
instructor time.

CodeWorkout can now be launched via Canvas, and grades are
automatically ported over. However, we experienced similar issues
with CodeWorkout as we formerly did with OpenDSA if we al-
lowed students to self-enroll in CodeWorkout. Issues arose when
students created multiple accounts and used different emails for
their accounts, and additionally we had complications when stu-
dents enrolled in the wrong or multiple sections of the course, which
then affects their assignment settings. Using student accounts di-
rectly from Canvas in CodeWorkout, and not allowing students to
self-enroll, saves time and reduces errors.

4.3 Potential Pitfalls

Integrating multiple tools into a course can positively impact stu-
dent learning and instructor routines, but there are increased op-
portunities for complications. Our approaches have helped us pro-
actively avoid many frustrations but there remain situations that
can easily be mis-managed, especially when configuring a variety
of tools independently.

One interesting example of a configuration issue and potential
pitfall is whether students can rework the problems to study for a

131

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

test. Some questions we ask ourselves are: Do the students have ac-
cess to previously worked problems? If they rework them will they
get regraded? If they rework them will they count as late? Currently
we handle this in OpenDSA by closing assignments when they are
due and then downloading grades before reopening questions the
week before a test so students can use them for more practice.

Another interesting example of a configuration issue and poten-
tial pitfall is whether to record the grade for the last or best attempt
from a student. This is the kind of option that may go unnoticed at
first without a mentor. We find that on CodeWorkout we should
take the best attempt since they might run out of time, but on Web-
CAT we should take the last attempt since they are under less time
pressure to make thoughtful decision about their submissions.

Hurdles such as these support the case that it is advisable to
test your process with colleagues, teaching assistants, or by set-
ting up multiple accounts of your own to enable testing. Versions,
installation processes, interfaces, and security issues can change
between semesters, so it is best to re-test to avoid unexpected stu-
dent frustration. New issues can arise, but also, former issues might
be resolved with updates.

5 CONCLUSIONS AND FUTURE WORK

By maintaining focus on student success and trying to streamline
the process for instructors we have been able to integrate many
tools into one course. We improve student success by scaffolding
tool use, testing tool assignments before student use, and consci-
entiously paying attention to student feedback and behavior. We
improve the experience for instructors by consulting mentors, start-
ing small, and choosing tools that simplify course management.
These approaches can be applied across educational settings. We
reported on our experience with a large, in-person lecture. But
many of these strategies can be applied to smaller classes, labs,
and on-line courses. Our checklist in Figure 2 can be found at
http://people.cs.vt.edu/~maellis1/teaching_resources/ and adapted
to various circumstances.

Our future work includes integrating more active learning during
lecture by expanding our use of CodeWorkout. We hope to improve
student comprehension by using new content form OpenDSA with
interactive questions for linked structures. We will also be adopting
a version of Web-CAT with enhanced student feedback. While
students benefit from scaffolding the use of the debugger, we plan
to reduce the cognitive load for the debugger lab by making it about
a programming concept that students have previously mastered.
We are currently applying these approaches for integrating multiple
tools into an updated version of our Problem Solving in CS course.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National Science
Foundation under Grant DLR-1740765. We thank our colleagues
Jack Lesko and Manuel Pérez-Quifiones for their constructive dis-
cussions during the course of the work described here.

REFERENCES

[1] CT. Amelink, K. Davis, B.G. Ryder, and M.O. Ellis. 2018. Exploring Factors
Influencing the Continued Interest in a Computer Science Major. In 2018 ASEE
Annual Conference & Exposition.

Paper Session: Autograders

=
fust

=

[10

[11]
[12]

A. Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review 84 (1977), 191-215.

M. Beier, J. Lesko, and C. Amelink. 2018. Engineering Self-Efficacy: What it
is, Why it Matters, and How to Encourage it! https://www.wepan.org/page/
SelfEfficacy.

Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez. 2018. The
Effect of a Web-based Coding Tool with Automatic Feedback on Students’ Per-
formance and Perceptions. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (SIGCSE ’18). 2-7.

P. Brusilovsky, S.H. Edwards, A. Kumar, L. Malmi, L. Benotti, D. Buck, P. Thantola,
R. Prince, T. Sirkid, S. Sosnovsky, J. Urquiza, A. Vihavainen, and M. Wollowski.
2014. Increasing Adoption of Smart Learning Content for Computer Science
Education. In Proceedings of the Working Group Reports of the 2014 on Innovation
& Technology in Computer Science Education Conference (ITiCSE-WGR °14). 31-57.

AT. Chamillard. 2011. Using a Student Response System in CS1 and CS2. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education
(SIGCSE °11). 299-304.

B. Cheanga, A. Kurniaa, A. Limb, and W.C. Oonc. 2002. On automated grading
of programming assignments in an academic institution. Computers & Education,
121-131. Issue 41.

S.H. Edwards. 2004. Using software testing to move students from trial-and-error
to reflection-in-action. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE "04). 26-30.

S.H. Edwards, J. Snyder, M.A. Pérez-Quifiones, A. Allevato, K. Dongkwan, and
B. Tretola. 2009. Comparing Effective and Ineffective Behaviors of Student
Programmers. In Proceedings of the Fifth International Workshop on Computing
Education and Research (ICER °09). 3-14.

JV. Ernst, B.D. Bowen, and T.O. Williams. 2016. Freshman Engineering Students
At-Risk Of Non-Matriculation: Self-Efficacy For Academic Learning. American
Journal of Engineering Education 7 (June 2016), 9-18.

E. Fouh, M. Akbar, and C.A. Shaffer. 2012. The Role of Visualization in Computer
Science Education. Computers in the Schools 29 (2012), 95-117. Issue 1-2.

D.D. Garcia, L. Aaronson, S. Kenner, C. Lewis, and S. Rodger. 2016. Technology
We Can’t Live Without!, Revisited. In Proceedings of the 47th ACM Technical

132

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

[13

[14

[15]

[17

[18

[20

[21]

Symposium on Computing Science Education (SIGCSE ’16). 236-237.

P. Thantola, A. Vihavainen, A. Ahadi, M. Butler, J. Borstler, S.H. Edwards, E.
Isohanni, A. Korhonen, A. Petersen, K. Rivers, M.A. Rubio, J. Sheard, B. Skupas,
J. Spacco, C. Szabo, and D. Toll. 2015. Educational Data Mining and Learning
Analytics in Programming;: Literature Review and Case Studies. In Proceedings of
the 2015 ITiCSE on Working Group Reports (ITICSE-WGR ’15). 41-63.

R. Ishizue, K. Sakamoto, H. Washizaki, and Y. Fukazawa. 2018. PVC: Visualizing C
Programs on Web Browsers for Novices. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE ’18). 245-250.

AN. Kumar. 2008. The Effect of Using Problem-solving Software Tutors on the
Self-confidence of Female Students. SIGCSE Bull. 40, 1 (March 2008), 523-527.
R.B. Levy and M. Ben-Ari. 2007. We Work So Hard and They Don’T Use It:
Acceptance of Software Tools by Teachers. In Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE "07). ACM, New York, NY, USA, 246-250. https://doi.org/10.1145/1268784.
1268856

R.B. Levy and M. Ben-Ari. 2008. Perceived behavior control and its influence
on the adoption of software tools. In Proceedings of the 13th annual conference
on Innovation and technology in computer science education (ITiCSE "08). ACM,
169-173. https://doi.org/10.1145/1384271.1384318

T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Ro88ling, W. Dann, A. Korhonen, L.
Malmi, J. Rantakokko, R.J. Ross, J. Anderson, R. Fleischer, M. Kuittinen, and M.
McNally. 2003. Evaluation the educational impact of visualization. In Working
Group Reports from the Symposium on Innovation and Technology in Computer
Science Education (ITiCSE-WGR ’03). 124-136.

C.A. Shaffer, M.L. Cooper, A.J.D. Alon, M. Akbar, M. Stewart, S. Ponce, and S.H.
Edwards. 2010. Algorithm Visualization: The State of the Field. ACM Transactions
on Computing Education 10 (August 2010), 1-22.

C. Watson and FW.B. Li. 2014. Failure Rates in Introductory Programming
Revisited. In Proceedings of the 2014 Conference on Innovation & Technology
in Computer Science Education (ITiCSE ’14). 39-44.

C. Wilcox. 2015. The Role of Automation in Undergraduate Computer Science
Education. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). 90-95.

	Abstract
	1 Introduction
	2 Background
	3 Course Description
	4 Lessons Learned
	4.1 Approaches for Student Success
	4.2 Approaches for Instructor Success
	4.3 Potential Pitfalls

	5 Conclusions and Future Work
	Acknowledgments
	References

