Ea future internet ﬁw\p\py

Article
Crossing the Borders: Re-Use of Smart Learning
Objects in Advanced Content Access Systems

Hamza Manzoor 1, Kamil Akhuseyinoglu 2, Jackson Wonderly 1, Peter Brusilovsky 2{* and

Clifford A. Shaffer '*

1 Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA

2 School of Computing and Information, University of Pittsburgh, 135 North Bellefield Avenue,
Pittsburgh, PA 15260, USA

* Correspondence: shaffer@vt.edu

check for
Received: 31 May 2019; Accepted: 15 July 2019; Published: 19 July 2019 updates

Abstract: Researchers in many disciplines are developing novel interactive smart learning objects
like exercises and visualizations. Meanwhile, Learning Management Systems (LMS) and eTextbook
systems are also becoming more sophisticated in their ability to use standard protocols to make use
of third party smart learning objects. But at this time, educational tool developers do not always
make best use of the interoperability standards and need exemplars to guide and motivate their
development efforts. In this paper we present a case study where the two large educational ecosystems
use the Learning Tools Interoperability (LTI) standard to allow cross-sharing of their educational
materials. At the end of our development process, Virginia Tech’s OpenDSA eTextbook system
became able to import materials from Aalto University’s ACOS smart learning content server, such as
python programming exercises and Parsons problems. Meanwhile, University of Pittsburgh’s Mastery
Grids (which already uses the ACOS exercises) was made to support CodeWorkout programming
exercises (a system already used within OpenDSA). Thus, four major projects in CS Education became
inter-operable.

Keywords: computer science education; learning tools interoperability; etextbook; smart
learning objects

1. Introduction

Computer Science Education Researchers have a long history of creating online educational
materials. As might be expected, systems that support practicing small programming exercises have
been available for many years, for example, Coding Bat [1] and CodeWorkout [2]. But many other
problem types have been developed and deployed successfully, such as for Parson’s Problems [3] and
data structures proficiency exercises [4]. Likewise, visualizations have been used for decades to show
the dynamic behavior of algorithms [5-7].

There exist communications protocols that allow third-party educational tools to integrate
with Learning Management Systems (LMS). Learning Tools Interoperability (LTI) [8] is one such
specification. It was developed by IMS Global Learning Consortium and is now adopted by all major
LMS. The purpose of LT is to establish a standard way to securely integrate remotely hosted learning
applications with platforms like an LMS.

Under LTI terminology, learning applications are called Tools and they are delivered by Tool
Providers. A tool might be an interactive exercise that a student might do for a grade. An LMS
(systems like Moodle, Canvas or Blackboard) is called a Tool Consumer. The LTI specification enhances
the native functionality provided by a Tool Consumer to include the tools made available by the tool
provider. The result is that instructors have available many “smart objects” that they can embed into

Future Internet 2019, 11, 160; d0i:10.3390/£i11070160 www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 160 2 of 15

their course. Functionally, with LTI the LMS can display the third-party content to a student as though
it were a native part of the LMS, collect scoring results from the third-party content and store this
result in the LMS gradebook once the student has completed it.

Many learning applications now support LTI but usually this integration is simple and
uni-directional, with an LMS consuming small “smart learning objects” like a small exercise
or visualization. But education researchers are developing much richer content and tools that
require more sophisticated communications structures than this simple uni-directional model allows.
In particular, eTextbook systems such as OpenDSA [9,10] or Runestone [11] represent learning content
as a hierarchically structured textbook and marshal a range of content types into an integrated whole.
Another example is personalized content access portals such as SQL-Tutor [12] or MasteryGrids [13],
which attempt to guide students to the most appropriate interactive activities by modeling the student’s
knowledge and visualizing their learning progress. Such systems should not try to duplicate the
administrative services provided by an LMS, such as authentication of users and maintaining scores
but at the same time they need to make decisions based on previous history of the students’ interactions.
So the simplest model of a smart learning object communicating with an LMS breaks down in these
situations. Further, both the “smart objects” and the eTextbook itself typically generates a rich set
of learner analytics data. This information is easily lost if it can only be communicated to the LMS.
Better is to think of a modern educational system as an ecosystem of collaborating components,
with communications interdependancies that cannot be known until they are brought together.

In this paper we are trying to move one step closer to this complex ecosystem by presenting
a case of more advanced integration, which allows multiple kinds of interactive learning content
developed by four different teams to be used transparently with two different advanced content access
platforms—OpenDSA and Mastery Grids. In Section 2 we describe in some detail the integration
goals of the case study. In Section 3 we detail the four major components involved in the case study:
OpenDSA, Mastery Grids, CodeWorkout and the ACOS Advanced Content Server. Section 4 presents
technical details for how the integration is implemented. Section 5 presents our reflections on the
experience.

2. The Integration Goal

The OpenDSA eTextbook system [9] is an example of a growing number of efforts to provide
a variety of online educational materials. OpenDSA supports a range of Computer Science courses
with content on a growing list of topics, including Data Structures and Algorithms, Formal Languages
and Translators and Compilers. OpenDSA allows users to choose from available modules to put
together a custom textbook for a course. The custom book can be exported to Canvas as individual
modules and assignments. OpenDSA is an open-source project with visualizations and exercises
authored by many collaborators and volunteers. OpenDSA also makes use of small programming
exercises provided by a separate system, CodeWorkout [2]. By adopting exercises from CodeWorkout,
the developers of OpenDSA are not responsible for creating and maintaining a technically demanding
exercise type but are still able to make these exercises available to students.

Mastery Grids [13] is an open-source personalized content access interface designed at the
University of Pittsburgh. It has been used with a variety of courses including Python programming,
Java programming and Databases. The system allows instructors to design a course-adapted interface
to several types of interactive learning content hosted on independent content servers. Among these
servers, ACOS Server [14] provides access to Java and Python program animations as well as Parson’s
exercises aimed at introductory programming classes.

It so happens that OpenDSA (and CodeWorkout) on the one hand and Mastery Grids with
ACOS on the other hand, provide fairly disjoint collections of materials. OpenDSA focuses on
advanced programming and visualizations of materials typically used at the sophomore level and
above, while the materials developed for Mastery Grids tends to support the topics offered in first
semester programming courses. But these divisions are not hard, nor permanent, in that some materials

Future Internet 2019, 11, 160 3 of 15

used in one system could be of benefit to classes whose topical content might otherwise favor use of
the other system. Likewise, there are differences in the domains covered by the systems. For example,
content available through Mastery Grids supports Python-based courses, while OpenDSA currently
focuses on content for courses in Java and C++.

One solution to expanding the resources available in either system is to re-implement existing
materials. But this would be an inefficient approach. Even if the materials were directly ported
from their original source (which would reduce development cost over reinventing entirely from
scratch), maintainability would be poor. Better is to integrate existing content from the various systems,
allowing the original developers of a given exercise or content type to keep improving to the benefit of
all. Instead, we see to support cross-integration of materials in the two infrastructures. The key idea
explored by our teams is leveraging the LTI protocol to design an inter-operable connection between
various kinds of advanced content across systems and smart learning content. While LTI is not typically
used to support this kind of integration, our work demonstrates that it can successfully support our
more complex scenario. To demonstrate the feasibility of the new approach, we made use of the
Tool-Consumer capabilities of OpenDSA to integrate animations and exercises from ACOS. We also
extended the contents served by Mastery Grids to incorporate programming exercises available
at CodeWorkout. The next section explains each of these tools in order to better understand the
integration that was done, the process used to achieve it and its outcomes.

3. The Integration Components

3.1. OpenDSA

OpenDSA is an open-source eTextbook project lead by Virginia Tech, with many collaborators
from around the world. OpenDSA materials include hundreds of visualizations and interactive
exercises that support courses in a wide variety of Computer Science-related topics such as Data
Structures and Algorithms, Formal Languages and Programming Languages [9,10]. Interactive
algorithm visualizations illustrate most algorithms and data structures in the OpenDSA collection.
OpenDSA combines textbook-quality prose with interactive visualizations and exercises and lets
students practice as much as they need. It also allows students to control the pace of the visualization
and to enter their own test cases to see how the algorithm or data structure works on their input.
OpenDSA exercises provide immediate feedback to students at every step.

Figure 1a shows an example of an exercise in OpenDSA. Here, students reproduce the behavior of
the algorithm to create a maximum heap by swapping records in an array. Similarly, Figure 1b shows
a simulation of the performance of shellsort. Students can analyze the cost of shellsort on their own
custom series of diminishing increments.

Help Reset || Model Answer | Grade D About
Now you are ready to try out some different increment series to see how they affect the cost of Shellsort
Instructions.
N) Hide Performance Simulator
Reproduce the behavior of heapsort for the maximum heap below. You can swap keys by clicking the first one and
then the second one in either of the representations (array or binary tree). Begin by swapping the last key with the
largest key, and reducing the size of the heap by one (by clicking the "Decrement heap size” button). After that, Shellsort Performance About
resiore the heap property again.
Decrementheapsize | Score: 5 /32, Point remaining: 27, Points lost: 0 Increments: Type your increment series below. Directions
91341 Type in your desired series of increments,
80 | 59 | 65 | 46 [40 [10 [20 | 15 | 22 | &1 N then press "Run’. Remember that your
| Run) [[Clear] Listsize: 80 series should always end in 1

You will then see the cost for Shellsort on
your set of increments, and also the cost for

R

s swaps
16 ID Qo\ CJD Divide by twos series needs 753 comparisons and 361 swaps)
/ The s 13 4 1 needs 584 comparisons and 361 swaps [Your goal should be to come up with an
'he series 39 13 4 1 needs 573 comparisons and 349 swaps e periex tha etk e
) (= @

a regular Insertion Sort and the cost for the
“divide by 2" increments

size. Run th

5391
ATULATIONS! You did better than divide-by-twos - ;‘"’JW‘ isons and swaps than the Divide
y-twos series

(a) Exercise to reproduce the behavior of a maxheap (b) Simulator to analyze the performance of shellsort
Figure 1. OpenDSA visualizations and exercises.

Future Internet 2019, 11, 160 4 of 15

OpenDSA implements LTI and works as a tool provider to an LMS. A course instructor who
is using the Canvas LMS can add individual OpenDSA materials directly into their Canvas course.
Instructors can use pre-built books or they can create their own book from the available modules
and exercises. Once they create a book, they can easily export that to Canvas and students directly
interact with OpenDSA within Canvas. Instructors can set the number of points for each assessment.
Once a student finishes the assignment, her score is reported back to Canvas and is displayed in
the Canvas gradebook. Figure 2 shows an OpenDSA module within Canvas. With the help of LTI,
students cannot detect any difference between a Canvas-native module and a module served through
an external tool.

Discussions 1.1.1.1. Example Grammar 1

Grades <exp> u= <irm>
<exp>+<irm>
<exp>—<irm>

|

People |
@ | <ep>x<trm>
| <ep>/<trm>

Account <trm> u= <pri>
| (<exp>)
(%) < pri > == A|B|C] ... |X|Y|Z
Syllabus
Dashboard This is essentially a grammar for algebraic expressions with variables (that is, the < pri > non-terminal) allowed to be a single
case letter. When reading a grammar, the vertical bar | means "or". Hence < pri > can be A or B or C ... The < #rm > non-termin
either be a < pri > or a parenthesized < exp >. A derivation of the expression A+ B+ C according to this grammar proce
illustrated in the following slide show, with the final result being a parse tree. You should step through all the slides, making sure
Modules each step you understand the production that is being applied to "grow” the parse tree.
ul
Calendar Conferences 6/16 77\ 2 77\ @
(<< < (> >> e
Collaborations N~ ~— g
Inbox
Attendance
& QEERS
OpenDSA Tools

Commons

Parsing non-terminal <pri>

@ Settings
Help @

Figure 2. An OpenDSA module delivered in Canvas.

3.2. Mastery Grids

Mastery Grids is a personalized content access interface [13]. It unifies access to different types
of smart learning content and supports students by allowing them to visualize their knowledge
progress through the materials. The interface also offers a social comparison mode, which allows
students comparing their knowledge progress topic-by-topic with that of the whole class or a group of
peers. Figure 3 shows the Mastery Grids interface prepared for an introductory Python programming
course [15]. The course content is grouped into a set of topics and Mastery Grids visualizes topics as
columns which are ordered by the course order. The colors of the cells indicate student knowledge
progress (green) and class progress (blue) for each topic. Each topic could be opened to provide access
to associated learning content and Mastery Grids also shows the student progress for each content item.
The figure shows the available practice content for the topic If Statement, which includes four types of
learning content. Different types of learning content usually reside on different independent content
servers. In particular, two of the four types, Parson’s problems and Animated examples, are hosted by
ACOS server (introduced below).

Future Internet 2019, 11, 160 50f 15

Me and group (Students in the class)

&
& .
&F)
& ey & -2
a8 o W& o
& & @ & & < K
&
g & & @‘?\ OQY on & 3! .?(‘k 0(\67 & >
Q?Y. FF FFEF e & &F & F & & &
& g & e § S g
) & o & F & O"G & & » & o

<) @ F . ’

Me vs group Y,

Group ¢
Questions ..
Load the)

Parsons Problems

ST
Annotated Examples .. ‘..‘

Figure 3. Mastery Grids interface showing student progress at the topic level and the available smart
learning contents for the If Statement topic. Student’s progress for each content type is shown in the
pop-up window.

3.3. CodeWorkout

CodeWorkout [2] is an online drill-and-practice system developed at Virginia Tech, primarily to
provide students with small-scale programming assignments. It allows students to develop experience
and knowledge by completing code-writing activities and answering multiple-choice questions.
CodeWorkout provides some course management functionality, like the ability to manage assignments
(deadlines, grades, weights, etc.) and users (enrollment, authentication, extensions, etc.). However,
it is possible that an instructor would want to use CodeWorkout in their course along with other
online educational materials, which likely provide similar course management features. Having to
manage these tasks on multiple fronts (e.g., Canvas, OpenDSA and CodeWorkout) can be a daunting
endeavour, possibly resulting in reduced rates of adoption.

To facilitate CodeWorkout’s use within a more general context, its developers have made
CodeWorkout into an LTI-compliant tool provider. This means that CodeWorkout exercises can be
practiced on the CodeWorkout site itself or they can be embedded inside other web applications
(i.e., tool consumers like Canvas). LIT allows the tool consumer (such as OpenDSA or an LMS) to
authenticate users, serve them CodeWorkout exercises and receive and record their attempts and
grades, all without requiring the user to manually sign in to or open CodeWorkout and requiring
minimal management effort from course staff. In later sections, we describe how we integrated
CodeWorkout exercises into two LTI-compliant tool consumers: OpenDSA (Figure 8) and Mastery
Grids (Figure 12).

3.4. ACOS: Advanced Content Server

ACOS server is a smart learning content server developed as a joint project between Aalto
University and the University of Pittsburgh [14]. It enhances the re-usability of online learning
activities by decoupling the content types from the interoperability protocols. This enables content
developers to concentrate on the content creation without dealing with the details of the protocols.

ACOS server currently supports multiple communication protocols including LTI, A+ protocol [16]
(a lightweight protocol similar to LTI), and the ADAPT2 protocol [17] (a similar protocol that focuses
on adaptive learning content). ACOS also supports the standard HTML protocol, allowing learning
activities to be embedded into a webpage (but this action does not communicate scoring or analytics
to any consumer).

Future Internet 2019, 11, 160 6 of 15

ACOS hosts multiple types of learning content that are valuable for beginner-level programmers
and covers a full set of introductory programming topics ranging from variables to recursion and
classes. In our initial integration, we concentrated on Parson’s problems [3] and code execution
visualizations. The code execution visualizations are animated examples that demonstrate how
programming constructs are executed and how the program state is changed after each execution
step (Figure 4). They are implemented by the Jsvee library [18]. Parson’s problems are a form of coding
exercise where students construct a program by selecting from a collection of given code fragments.
Parson’s problems (Figure 5) are implemented by using the Js-parsons library [19]. As mentioned before,
both Parson’s problems and visualizations are already accessible from the Mastery Grids interface
(Figure 6). In our current work, we made both types accessible from OpenDSA (Figures 9 and 10) using
the LTI protocol. The details are explained in Section 4.2.

a=2 Stack

a=a+3
print("The result is now", a) Literals
1~ Stack frame i

. . (print(value) |
print("The result is now", a)

@

T
a=9

1
2
3
4
S5a=1+a
6
7
8
9 print("The result is now", a)

prn @ |

The result is now 5

Fetching value from the variable a - ready.

|| < »

Figure 4. An example of program visualization (animated example) that is hosted by ACOS server.
The visualization shows the stack state and the console output based on the current execution step.
Construct a program that outputs “Cold”, when the temperature is 15 degrees Celcius or below. It prints “Moderate” when the temperature is over 15 degrees but

no more than 25 degrees. If the temperature is over 25 degrees, it prints “Hot".
Drag from here Construct your solution here

else: if temperature ,

print("Cold")

elif temperature ‘:-

print("Hot")

if temperature ,

print("Moderate")

New instance Get feedback

Feedback from testing your program:

Temperature is under 15 degrees
Expected output:

Output of your program:

Temperature is 15 degrees
Expected output:

Cold

Output of your program:

Cold

Figure 5. An instance of ACOS Parson’s problem, which asks students to construct a program to
indicate weather conditions based on the temperature.

Future Internet 2019, 11, 160 7 of 15

Topic: If Statement + Activity: Hiscore 2

Literals

- Suack frame -
Me vs group S printvalue)
hi_score

=)

score

=)

Group

e (D
Load they

e . _

Annotated Examples ‘
P .- . Fetching value from the variable hi_score - ready.

o | < || »

Animated Examples Help Close window

Figure 6. A program visualization (animated example) loaded from the Mastery Grids interface.

4. Materials and Methods

4.1. OpenDSA as a Tool-Consumer

Historically, OpenDSA started as only an LTI tool provider. OpenDSA modules could be added
to Canvas through the Canvas APL Over time, instructors wanted to add support for coding exercises
in OpenDSA modules. Our orignal design involved using CodeWorkout [2] as another tool provider
in Canvas. To accomplish this, OpenDSA content creators would add CodeWorkout exercises as a part
of the OpenDSA module. Then instructors would create their courses on OpenDSA and OpenDSA
would populate the Canvas course through the Canvas API. The Canvas API calls would not only
create OpenDSA modules in Canvas but also would create CodeWorkout assignments separately.
Unfortunately, this goes against the model of “OpenDSA as a textbook” that has understanding and
control of its exercises (while communicating necessary information to the LMS). Instead, separate
Canvas assignments are required, which means that students had to navigate away from the OpenDSA
module and open the assignment in a separate page. Also, OpenDSA did not have a complete picture
of students’ performance, because under this model CodeWorkout and Canvas directly communicated
with each other. Finally, OpenDSA could not group multiple assignments onto a page as might be the
more natural presentation, because Canvas requires that each of its assessments be mapped to separate
Canvas pages.

To overcome these problems, the OpenDSA development team implemented a new architecture
that allows OpenDSA to act as both a tool provider and a tool consumer. This new architecture
enables OpenDSA to integrate with other external tools. In this particular example, OpenDSA uses
CodeWorkout as an external tool and includes the CodeWorkout assignments within its modules,
as shown in Figure 7. Now, Canvas uses OpenDSA as an external tool and has no direct interaction
with or information about, CodeWorkout. Canvas sends an LTI launch request to OpenDSA and then
OpenDSA sends an LTI launch request to CodeWorkout to display coding exercises in the textbook.
CodeWorkout responds to the LTI launch request from OpenDSA by displaying the requested exercise,
which is shown within an iframe in the OpenDSA module, while the OpenDSA module is itself
displayed within an iframe in the Canvas page.

Figure 8 shows a CodeWorkout exercise embedded within an OpenDSA module as it appears
within Canvas. This allows students to solve programming exercises from within the same Canvas
page where they read prose and see visualizations. This also allows OpenDSA to have a more complete
picture of how a student is performing on other exercises, since it knows when the CodeWorkout
exercise has been accessed, as well as what scores students get on CodeWorkout exercises. We believe
that this approach offers a richer model for the future of online textbook construction. While inclusion
of external interactive content has been used in several online textbook projects [11,20], it was done
using proprietary integration approaches making it impossible to use interactive content across

Future Internet 2019, 11, 160 8 of 15

multiple projects. Using standard interaction protocols opens a way to a broad re-use of smart content.
The approach used by OpenDSA, whereby intermediaries stand between the LMS and the individual
smart object types, points the way to richer ecosystems of collaborating components. Unfortunately
there still remains the problem that CodeWorkout does not share details about student interactions
within the programming exercise with OpenDSA (or any other third party accessing it). This is
a communications deficiency that deserves attention in future work but becomes no longer a problem
inherent in the communications architecture.

peanA

Tool consumer

Tool provider \

Tool provider
Tool consumer

Canvas CodeWorkout

Figure 7. OpenDSA New Architecture.

operations that one naturally expects to perform on lists and serves 1o ilustrate the issues relevant to implementing t
structure. As an example of using the list ADT, here is a function to retum txue if there is an occurrence of a given intege
and false otherwise. The £ind method needs no knowledge about the specific ist implementation, just the list ADT.

Java Processing Java (Generic) = C++

// Return true if k is in list L, false otherwise
static boolean find(List L, Object k) {
for (L.moveToStart(); !L.isAtEnd(); L.next())
if (k == L.getValue()) return true; // Found k
return false; // k not found

}

In languages that support it, this implementation for £ind could be rewritten as a generic or template with respect to the el
While making it more flexible, even generic types still are limited in their ability to handle different data types stored or
particular, for the £4nd function generic types would only work when the description for the object being searched for (k in t
is of the same type as the objects themselves. They aiso have to be comparable when using the == operator. A more realis
is that we are searching for a record that contains a key field whose value matches k. Similar functions to find and retum a
type based on a key value can be created using the list implementation, but to do so requires some agreement between
and the £ind function on the concept of a key, and on how keys may be compared.

There are two standard hes to lists, the array list, and the linked list.

9.2.2. List ADT Programming Exercise

X278: ListADT

Use appropriate method calls from the List ADT to create the following Lt
<419|2330>
You should assume that L is passed to the function as an empty list.

Reset

Figure 8. A CodeWorkout exercise embedded within an OpenDSA module, displayed through Canvas.
4.2. Integrating ACOS Visualizations and Exercises into OpenDSA

While the integration of OpenDSA and CodeWorkout was done using a standard protocol, it was
not a complete test of the new approach since both tools were developed in the same institution.
To explore our approach accross institutional borders, we moved to integrated ACOS server content
into OpenDSA textbooks. The integration of OpenDSA and ACOS became possible because OpenDSA
works as both a tool consumer and a tool provider, as explained above.

OpenDSA acts as a tool provider to Canvas to serve textbooks and within those books, OpenDSA
calls other tools such as CodeWorkout to serve various coding exercises. We added ACOS as a new
tool within OpenDSA to serve the Python exercises and animated examples for Java and Python. To do
so, first we made minor modifications to the OpenDSA external tools script which allows instructors or
content developers to add various exercises through external tools in their books. This script is called

Future Internet 2019, 11, 160 9 of 15

during the book compilation process if external tools are used and it simply generates an HTML div
element with data attributes that store information about the external tool exercise, including the ID
assigned to the exercise by OpenDSA. We then added references to Parsons problems, Java animations
and Python animations, respectively, into the OpenDSA database as LTI tool providers.

When an OpenDSA module that contains content from one or more of these tools is loaded in
a user’s browser, the OpenDSA front-end framework retrieves the ID of the exercise from a data
attribute on the exercise’s div element. The front-end framework then replaces the div element with
an iframe whose target URL points to an endpoint on the OpenDSA server, with the URL containing
the ID of the exercise as a parameter. When the iframe is rendered by the browser it results in a GET
request being sent to the iframe’s target URL. The OpenDSA server receives the request and retrieves
the information for the tool associated with the exercise from the database, including the LTI launch
URL of the tool. OpenDSA then generates the standard LTI launch request parameters, signs the
request with OAuth using the key and secret that were stored with the tool information, then generates
an HTML page containing a form with all of the LTI and OAuth parameters as fields. When this page is
rendered by the user’s browser, a single line of JavaScript automatically submits the form, which results
in a POST request being sent to the tool’s launch URL. The tool (e.g., ACOS) receives the request and
delivers the exercise or animation which is displayed inside an iframe in the OpenDSA module.

The integration enabled 34 Parsons problems to be be added to various OpenDSA books. These
are graded exercises, so when OpenDSA sends a request to ACOS, it expects a score back from it once
a student finishes the exercise. These scores are then passed on to Canvas and are shown in the Canvas
gradebook. Figure 9 shows an example of a Parsons problem served through Canvas via the OpenDSA
eTextbook.

Figure 10 shows an example of Python function animation served through Canvas via the
OpenDSA eTextbook. Currently, 56 Python and 53 Java animations can be added to OpenDSA books.

@ 2.2.5. ps_python_recursive_factorial

Pesa: Recursive functions are functions that call themselves either directly (from the same function) or indirectly
(from another function) to perform a loop operation. Below is a problem which requires you to define a

s recursive function which calculates the factorial of a given positive integer value.”

Dashboard Try to detect the "base" condition (where the recursive call finishes) and the "recursive" condition (where the function call itself)
from the tiles listed on the left panel. To successfully solve the problem, put them in the correct order and pay attention
to the indentation. Check your solution by clicking on "Get feedback". To retry, click on "New instance".

Drag from here Construct your solution here
return factorial(n-1) * n def factorial(n):
else: if n < 3:

return n

Commons

®

New instance Get feedback

Define a function that returns the factorial of a given positive integer.

Figure 9. A Parsons problem (served by ACOS) made available within an OpenDSA eTextbook,
delivered via Canvas.

Future Internet 2019, 11, 160 10 of 15

1.1.9. ae_python_function
Syllabus

In this example, we will see how functions work. In this case we will see how the parameter passing and the return value work. Please pay
attention because functions are very important but sometimes hard to understand. Can you understand the difference between printing and
returning a value after this example?

Modules

wi elght): s
are:", width, height)

Conferences

Stack frame.
width | height
(22) || (10

Collaborations

Attendance

sidel, side2)

OpenDSA Tools (12)| * | (10]

e_area(2+3, 742))

Settings + Stack frame
sidet || side2

(2] || (19

calculate_area (g

calculate_area(width, height)| (main0| = Literals

print(value)

* 4

Commons

@

+ Stack frame

Help

Fetching value from the variable height - ready.

»

Figure 10. Python function animation (served by ACOS) made available within an OpenDSA eTextbook,
delivered via Canvas.

4.3. Making Mastery Grids an LTI Consumer

To further confirm the potential of the new approach, we attempted to re-implement it in
a different advanced content access tool, Mastery Grids [13]. The Mastery Grids interface originally
served multiple types of learning content using the ADAPT2 proprietary content invocation
protocol [17]. This loads a learning object (such as a coding exercise or Parson’s problem) into
an iFrame by sending an HTTP GET request to the content provider. Learning events are generated
based on learner actions at the content and reported back to a dedicated student model server through
the ADAPT?2 learner modeling protocol [17,21]. An important feature of the Mastery Grids interface
is visualization of a learner’s topic-level knowledge progress. The necessary information is accessed
by querying the student modeling server, which maintains a knowledge model of every student by
processing the learning events sent by various types of content.

The integration process described above required development effort at the content provider
side. Tool providers need to make sure that the generated learning events are successfully reported
back to the student modeling server and additional development effort could be cumbersome for
content providers with scarce development resources. The drawback of this integration process was
already being addressed by the researchers at the University of Pittsburgh and Aalto University by
supporting the proprietary ADAPT2 protocol in ACOS server as described in Section 3.4. However,
this still requires content providers to make their contents accessible through ACOS server.

To implement the new communication approach, Mastery Grids was enhanced to support LTI
Version 1.1, allowing it to function as an LTI consumer similar to an LMS, while keeping its distinctive
features such as the progress visualization provided through the student modeling service.

We implemented our own LTI consumer service as a Node]S server application, used to send
LTI launch requests on behalf of the Mastery Grids interface. Implementing a separate LTI service
decouples the LTI requirements from Mastery Grids and enables Mastery Grids to serve content
through multiple protocols including LTI. This service is called when a content cell is clicked on
the interface. Mastery Grids sends the unique user id and the requested content information to
the LTI consumer service. Based on the requested content and the user information, the service
determines which LTI tool provider will be called and generates the corresponding LTI launch request.
Such an LTI launch requests holds information to identify the requested content, the user and an LTI
outcome service URL. This outcome service listens to the LTI grade callbacks generated by the LTI
tool. The service authenticates itself by signing the launch request with the consumer secret provided
by the LTI tool provider using OAuth 1 libraries available in JavaScript. Then, the launch request is

Future Internet 2019, 11, 160 11 of 15

sent via HTTP POST request to the tool provider. When the tool provider receives the launch request,
it checks the validity of the request and loads the content if the request is valid.

As described in the LTI standards, we also implemented an LTI outcome service that listens to the
LTI grade callbacks generated from the LTI tool providers. The outcome service URL is called when
a user performs a graded action while interacting with an LTI tool. The service URL should be publicly
accessible and needs to be passed as a post-request parameter in the LTI launch request as described
above. The grade callback message includes required information about the learning content, the user
and the action result (i.e., if the answer was correct or incorrect). Then, the reported grade result
is directed to the student modeling service using the ADAPT2 protocol. Thus, LTI compatibility is
achieved by an adapter pattern approach, keeping the existing features of the Mastery Grids interface
and the student modeling service.

4.4. Integrating CodeWorkout Exercises into Mastery Grids

LTI compatibility makes Mastery Grids a fully-fledged smart content delivery platform as defined
in Reference [22]. Being an LTI consumer eliminates further development requirements on the
provider side and opens the way to serve any LTI-compatible learning content. To demonstrate
the opportunities provided by the new approach, we performed the integration of CodeWorkout
exercises into Mastery Grids. We selected CodeWorkout as an exemplary tool provider because of
its diverse set of programming exercises and existing LTI compatibility. This allowed Mastery Grids
to provide programming practice from existing exercises at a variety of content levels. In contrast,
developing a new coding tool and authoring coding exercises at the same quality would require
a considerable amount of time and would be another bad example of re-implementation of an existing
learning tool.

To show the feasibility of our approach, we added CodeWorkout exercises to an existing Java
course in Mastery Grids and nearly doubled the number of practice problems available to the students
(Figure 11). In this course, learners have access to multiple learning activities such as animated
examples (as mentioned in Section 3.4), program construction examples and challenges [23], semantic
problems [24] and newly integrated CodeWorkout coding exercises. Currently, the CodeWorkout
exercises are linked to Mastery Grids manually. However, as future work, we plan to implement the
LTI Deep Linking service, which is provided by IMS Global to overcome resource linking challenges.
Aside from CodeWorkout exercises, Mastery Grids launches other smart learning contents using the
ADAPT?2 protocol and the student progress is updated through the same protocol.

Mastery Grids accesses CodeWorkout exercises in a way similar to other available exercise types
(i.e., loading the content inside an iFrame) but using LTI launch requests. As described in Section 4.3,
the learning events generated at CodeWorkout (e.g., submitting a solution) are reported back to the
Mastery Grids student modeling service through LTI grade callbacks. The Mastery Grids progress
visualization is dynamically updated concurrently with the immediate feedback generated on the
CodeWorkout exercise screen, as shown in Figure 12. Thus, the Mastery Grids progress indicator
interface is currently working with multiple protocols, including the standard LTI protocol.

Future Internet 2019, 11, 160 12 of 15

Me and group (Students in the class)

Me
Me vs group

Group

Animated Examples
Load the res
Examples

Challenges

Problems

CodeWorkout

Figure 11. Mastery Grids interface prepared for a Java course. The available smart learning contents
are shown for the topic Strings including integrated CodeWorkout coding exercises.

Me and group (Students in the class) [Topic: Strings * Activity: Hello Name

X6: helloName

Write a function in Java that implements the following logic: Given a string

Me name, e.g. "Bob’, return a greeting of the form "Hello Bob!".

public String (String name)

Me vs group

Group

Animated Examples

] A
Examples ... | Lheck my answer: ‘ Reset
Challenges .=. Feedback

Load the res

Problems

CodeWorkout & @
1.0 4

Behavior Result
helloName("Bob") -> "Hello Bob!"
helloName("Alice”) -> "Hello Alice!”

Close window

Figure 12. An instance of a CodeWorkout exercise accessed from the Mastery Grids interface.
When a correct solution is submitted, the Mastery Grids progress visualization is updated (shown as
a green circle).

5. Discussion and Conclusions

In this paper, we presented and explored a standards-based approach for broader re-use of smart
learning content across multiple advanced content access tools. Our project was motivated by the
need for content exchanged between two advanced tools, an online textbook system (OpenDSA)
and a personalized content access interface (Mastery Grids). Each system was a centrepiece of its
own infrastructure, providing access to various kinds of smart learning content. While the content
provided by OpenDSA and Mastery Grids was complementary, there was no possibility to exchange
the content across the systems due to the use of proprietary integration approaches. To make
our infrastructures open and transparent for multiple kinds of learning content, we explored use
of LTI protocol. While designed for a different context—integrating various tools into learning
management systems—LTI offered a common ground for connecting different integration architectures.

Future Internet 2019, 11, 160 13 of 15

By leveraging LTI communication, we implemented a standards-based approach to broadly re-use
smart content between OpenDSA and Mastery Grids.

We have extended OpenDSA to support Python programming exercises and animations.
OpenDSA had Java programming exercises and animations for various computer science topics
for CS2 and above. It took years of effort by many collaborators across multiple institutions to develop
those animations and exercises. Using the new infrastructure made it immediately possible to support
Python textbooks using various Python exercises and animations from the ACOS server. It also opened
the way to support a Java-based CS1 course through ACOS-based Java animations. Similarly, Mastery
Grids previously was not able to provide good support beyond CS1 due to the lack of more advanced
exercises. Leveraging the LTI-based approach, we were able to re-use a large number of CodeWorkout
programming problems for CS2 courses.

We believe that the approach presented in this paper will open a way to a much broader re-use
of smart leaning content across various advanced-content access systems. We implemented two
proof-of-concept scenarios to connect two specific kinds of smart learning content with two host
systems. Our goal is to encourage other developers of educational systems to make their tools more
inter-operable. Our systems are open source and so publicly available and we encourage developers
to make use of our methods. Our solution is easily generalizable and can be applied for any kind
of Web-based learning content. Moreover, as the number of LTI-compatible platforms increases,
the amount of necessary modifications to support smart content re-usability gradually decreases.

At the same time, it is important to note that the LTI-based solution is not ideal for highly
interactive smart content. The LTI protocol reports the final result of user work, for example, correctness
of a problem solution or a percentage of explored animation. While this approach is sufficient for
simple cases of integrating smart content learning objects (such as programming exercises) with
an LMS, more advanced architectures are needed to deliver detailed learner analytics and to provide
communications within an ecosystem of collaborating tools. To support such cases, a combination of
LTI with other standards such as xAPI or CALIPER is required. We plan to explore these combinations
in future work.

This work was performed with NSF support in the context of the SPLICE project
(http://cssplice.org). SPLICE is focused on developing technical infrastructure for Computer Science
Education research. In the context of this project, we collaborate with a number of research teams who
develop and use innovative learning tools. As our work progresses, we plan to expand on ways to
inter-operate with other infrastructures and collections of smart content.

Author Contributions: Conceptualization, HM., PB. and C.A.S; Funding acquisition, P.B. and C.A.S,;
Methodology, H.M. and].W.; Project administration, P.B. and C.A.S.; Software, HM., K.A. and J.W,; Supervision,
P.B. and C.A.S.; Writing—original draft, H.M., K.A. and C.A.S.; Writing— review & editing, H.M., K.A., J.W., P.B.
and C.A.S.

Funding: This research was partially funded by National Science Foundation grants DLR-1740775 and
DLR-1740765, and by Virginia Tech’s Technology-enhanced learning and Online Strategies unit.

Acknowledgments: We would like to thank Ayaan Kazerouni for his help in setting up a private instance
of CodeWorkout.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
LMS Learning Management System

LTI Learning Tools Interoperability
ACOS Advanced Content Server

Future Internet 2019, 11, 160 14 of 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Parlante, N. CodingBat. 2015. Available online: https://codingbat.com/java (accessed on 18 July 2019).
Buffardi, K.; Edwards, S.H. Introducing CodeWorkout: An Adaptive and Social Learning Environment.
In Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta, GA, USA,
5-8 March 2014; ACM: New York, NY, USA, 2014; p. 724.

Parsons, D.; Haden, P. Parson’s programming puzzles: A fun and effective learning tool for first
programming courses. In Proceedings of the 8th Australasian Conference on Computing Education,
Hobart, Australia, 16-19 January 2006; Australian Computer Society, Inc.: Darlinghurst, Australia, 2006;
Volume 52, pp. 157-163.

Malmi, L.; Karavirta, V.; Korhonen, A.; Nikander, J.; Seppéld, O.; Silvasti, P. Visual Algorithm Simulation
Exercise System with Automatic Assessment: TRAKLA?2. Inform. Educ. 2004, 3, 267-288.

Diehl, S. Software Visualization; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2002;
Volume 2269.

Fouh, E.; Akbar, M.; Shaffer, C.A. The Role of Visualization in Computer Science Education. Comput. Sch.
2012, 29, 95-117. [CrossRef]

Shaffer, C.A.; Cooper, M.L.; Alon, A.J.D.; Akbar, M.; Stewart, M.; Ponce, S.; Edwards, S.H. Algorithm
Visualization: The State of the Field. ACM Trans. Comput. Educ. 2010, 10, 9. [CrossRef]

Severance, C.; Hanss, T.; Hardin, J. IMS Learning Tools Interoperability: Enabling a Mash-up Approach to
Teaching and Learning Tools. Technol. Instr. Cogn. Learn. 2010, 7, 245-262.

Shaffer, C.A.; Karavirta, V.; Korhonen, A.; Naps, T.L. OpenDSA: Beginning a Community Active-ebook
Project. In Proceedings of the 11th Koli Calling International Conference on Computing Education Research,
Koli, Finland, 17-20 November 2011; ACM: New York, NY, USA, 2011; pp. 112-117.

Fouh, E.; Karavirta, V.; Breakiron, D.A.; Hamouda, S.; Hall, S.; Naps, T.L.; Shaffer, C.A. Design and
Architecture of an Interactive eTextbook-The OpenDSA System. Sci. Comput. Program. 2014, 88, 22—40.
[CrossRef]

Ericson, B.; Cohen, J.; Miller, B. Using and Customizing Open-Source Runestone Ebooks for Computer
Science Classes. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
Minneapolis, MN, USA, 27 February—2 March 2019; ACM: New York, NY, USA, 2019; p. 1240. [CrossRef]
Mitrovic, A.; Martin, B. Evaluating the Effect of Open Student Models on Self-Assessment. Int. J. Artif.
Intell. Educ. 2007, 17, 121-144.

Loboda, T.D.; Guerra, J.; Hosseini, R.; Brusilovsky, P. Mastery Grids: An Open Source Social Educational
Progress Visualization. In Proceedings of the European Conference on Technology Enhanced Learning,
Graz, Austria, 16-19 September 2014; Springer: Berlin, Germany, 2014; pp. 235-248.

Sirkid, T., Haaranen, L. Improving Online Learning Activity Interoperability with Acos Server.
Softw. Pract. Exp. 2017, 47, 1657-1676. [CrossRef]

Brusilovsky, P.; Malmi, L.; Hosseini, R.; Guerra, J.; Sirkid, T.; Pollari-Malmi, K. An integrated practice system
for learning programming in Python: design and evaluation. Res. Pract. Technol. Enhanc. Learn. 2018, 13, 18.
[CrossRef] [PubMed]

Karavirta, V.; Ihantola, P.; Koskinen, T. Service-oriented approach to improve interoperability of e-learning
systems. In Proceedings of the 2013 IEEE 13th International Conference on Advanced Learning Technologies,
Beijing, China, 15-18 July 2013; IEEE: Piscataway, NJ, USA, 2013, pp. 341-345.

Brusilovsky, P. KnowledgeTree: A distributed architecture for adaptive e-learning. In Proceedings of the
13th International World Wide Web Conference on Alternate Track Papers & Posters, New York, NY, USA,
19-21 May 2004; ACM: New York, NY, USA, 2004, pp. 104-113.

Sirkid, T. Jsvee & Kelmu: Creating and tailoring program animations for computing education. J. Softw.
Evolut. Proc. 2018, 30, €1924.

Ihantola, P,; Karavirta, V. Two-dimensional parson’s puzzles: The concept, tools, and first observations.
J. Inform. Technol. Educ. 2011, 10, 119-132. [CrossRef]

Weber, G.; Brusilovsky, P. ELM-ART: An adaptive versatile system for Web-based instruction. Int. J. Artif.
Intell. Educ. 2001, 12, 351-384.

Rey-Lopez, M.; Brusilovsky, P.; Meccawy, M.; Diaz-Redondo, R.; Ferndndez-Vilas, A.; Ashman, H. Resolving
the problem of intelligent learning content in learning management systems. Int. . E-Learn. 2008, 7, 363-381.

Future Internet 2019, 11, 160 15 of 15

22. Brusilovsky, P; Edwards, S.; Kumar, A.; Malmi, L.; Benotti, L.; Buck, D.; Ihantola, P.; Prince, R.; Sirkis,
T.; Sosnovsky, S.; others. Increasing adoption of smart learning content for computer science education.
In Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science
Education Conference, Uppsala, Sweden, 23-25 June 2014; ACM: New York, NY, USA, 2014, pp. 31-57.

23. Hosseini, R.; Akhuseyinoglu, K.; Petersen, A.; Schunn, C.D.; Brusilovsky, P. PCEX: Interactive Program
Construction Examples for Learning Programming. In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research, Koli, Finland, 22-25 November 2018; ACM: New York, NY,
USA, 2018, p. 5.

24. Hsiao, LH.; Sosnovsky, S.; Brusilovsky, P. Guiding students to the right questions: Adaptive navigation
support in an E-Learning system for Java programming.]. Comput. Assist. Learn. 2010, 26, 270-283.
[CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

	Introduction
	The Integration Goal
	The Integration Components
	OpenDSA
	Mastery Grids
	CodeWorkout
	ACOS: Advanced Content Server

	Materials and Methods
	OpenDSA as a Tool-Consumer
	Integrating ACOS Visualizations and Exercises into OpenDSA
	Making Mastery Grids an LTI Consumer
	Integrating CodeWorkout Exercises into Mastery Grids

	Discussion and Conclusions
	References

