
future internet

Article

Crossing the Borders: Re-Use of Smart Learning
Objects in Advanced Content Access Systems

Hamza Manzoor 1 , Kamil Akhuseyinoglu 2 , Jackson Wonderly 1 , Peter Brusilovsky 2 and

Clifford A. Shaffer 1,*

1 Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
2 School of Computing and Information, University of Pittsburgh, 135 North Bellefield Avenue,

Pittsburgh, PA 15260, USA

* Correspondence: shaffer@vt.edu

Received: 31 May 2019; Accepted: 15 July 2019; Published: 19 July 2019
����������
�������

Abstract: Researchers in many disciplines are developing novel interactive smart learning objects

like exercises and visualizations. Meanwhile, Learning Management Systems (LMS) and eTextbook

systems are also becoming more sophisticated in their ability to use standard protocols to make use

of third party smart learning objects. But at this time, educational tool developers do not always

make best use of the interoperability standards and need exemplars to guide and motivate their

development efforts. In this paper we present a case study where the two large educational ecosystems

use the Learning Tools Interoperability (LTI) standard to allow cross-sharing of their educational

materials. At the end of our development process, Virginia Tech’s OpenDSA eTextbook system

became able to import materials from Aalto University’s ACOS smart learning content server, such as

python programming exercises and Parsons problems. Meanwhile, University of Pittsburgh’s Mastery

Grids (which already uses the ACOS exercises) was made to support CodeWorkout programming

exercises (a system already used within OpenDSA). Thus, four major projects in CS Education became

inter-operable.

Keywords: computer science education; learning tools interoperability; etextbook; smart

learning objects

1. Introduction

Computer Science Education Researchers have a long history of creating online educational

materials. As might be expected, systems that support practicing small programming exercises have

been available for many years, for example, Coding Bat [1] and CodeWorkout [2]. But many other

problem types have been developed and deployed successfully, such as for Parson’s Problems [3] and

data structures proficiency exercises [4]. Likewise, visualizations have been used for decades to show

the dynamic behavior of algorithms [5–7].

There exist communications protocols that allow third-party educational tools to integrate

with Learning Management Systems (LMS). Learning Tools Interoperability (LTI) [8] is one such

specification. It was developed by IMS Global Learning Consortium and is now adopted by all major

LMS. The purpose of LTI is to establish a standard way to securely integrate remotely hosted learning

applications with platforms like an LMS.

Under LTI terminology, learning applications are called Tools and they are delivered by Tool

Providers. A tool might be an interactive exercise that a student might do for a grade. An LMS

(systems like Moodle, Canvas or Blackboard) is called a Tool Consumer. The LTI specification enhances

the native functionality provided by a Tool Consumer to include the tools made available by the tool

provider. The result is that instructors have available many “smart objects” that they can embed into

Future Internet 2019, 11, 160; doi:10.3390/fi11070160 www.mdpi.com/journal/futureinternet



Future Internet 2019, 11, 160 2 of 15

their course. Functionally, with LTI the LMS can display the third-party content to a student as though

it were a native part of the LMS, collect scoring results from the third-party content and store this

result in the LMS gradebook once the student has completed it.

Many learning applications now support LTI but usually this integration is simple and

uni-directional, with an LMS consuming small “smart learning objects” like a small exercise

or visualization. But education researchers are developing much richer content and tools that

require more sophisticated communications structures than this simple uni-directional model allows.

In particular, eTextbook systems such as OpenDSA [9,10] or Runestone [11] represent learning content

as a hierarchically structured textbook and marshal a range of content types into an integrated whole.

Another example is personalized content access portals such as SQL-Tutor [12] or MasteryGrids [13],

which attempt to guide students to the most appropriate interactive activities by modeling the student’s

knowledge and visualizing their learning progress. Such systems should not try to duplicate the

administrative services provided by an LMS, such as authentication of users and maintaining scores

but at the same time they need to make decisions based on previous history of the students’ interactions.

So the simplest model of a smart learning object communicating with an LMS breaks down in these

situations. Further, both the “smart objects” and the eTextbook itself typically generates a rich set

of learner analytics data. This information is easily lost if it can only be communicated to the LMS.

Better is to think of a modern educational system as an ecosystem of collaborating components,

with communications interdependancies that cannot be known until they are brought together.

In this paper we are trying to move one step closer to this complex ecosystem by presenting

a case of more advanced integration, which allows multiple kinds of interactive learning content

developed by four different teams to be used transparently with two different advanced content access

platforms—OpenDSA and Mastery Grids. In Section 2 we describe in some detail the integration

goals of the case study. In Section 3 we detail the four major components involved in the case study:

OpenDSA, Mastery Grids, CodeWorkout and the ACOS Advanced Content Server. Section 4 presents

technical details for how the integration is implemented. Section 5 presents our reflections on the

experience.

2. The Integration Goal

The OpenDSA eTextbook system [9] is an example of a growing number of efforts to provide

a variety of online educational materials. OpenDSA supports a range of Computer Science courses

with content on a growing list of topics, including Data Structures and Algorithms, Formal Languages

and Translators and Compilers. OpenDSA allows users to choose from available modules to put

together a custom textbook for a course. The custom book can be exported to Canvas as individual

modules and assignments. OpenDSA is an open-source project with visualizations and exercises

authored by many collaborators and volunteers. OpenDSA also makes use of small programming

exercises provided by a separate system, CodeWorkout [2]. By adopting exercises from CodeWorkout,

the developers of OpenDSA are not responsible for creating and maintaining a technically demanding

exercise type but are still able to make these exercises available to students.

Mastery Grids [13] is an open-source personalized content access interface designed at the

University of Pittsburgh. It has been used with a variety of courses including Python programming,

Java programming and Databases. The system allows instructors to design a course-adapted interface

to several types of interactive learning content hosted on independent content servers. Among these

servers, ACOS Server [14] provides access to Java and Python program animations as well as Parson’s

exercises aimed at introductory programming classes.

It so happens that OpenDSA (and CodeWorkout) on the one hand and Mastery Grids with

ACOS on the other hand, provide fairly disjoint collections of materials. OpenDSA focuses on

advanced programming and visualizations of materials typically used at the sophomore level and

above, while the materials developed for Mastery Grids tends to support the topics offered in first

semester programming courses. But these divisions are not hard, nor permanent, in that some materials









Future Internet 2019, 11, 160 6 of 15

ACOS hosts multiple types of learning content that are valuable for beginner-level programmers

and covers a full set of introductory programming topics ranging from variables to recursion and

classes. In our initial integration, we concentrated on Parson’s problems [3] and code execution

visualizations. The code execution visualizations are animated examples that demonstrate how

programming constructs are executed and how the program state is changed after each execution

step (Figure 4). They are implemented by the Jsvee library [18]. Parson’s problems are a form of coding

exercise where students construct a program by selecting from a collection of given code fragments.

Parson’s problems (Figure 5) are implemented by using the Js-parsons library [19]. As mentioned before,

both Parson’s problems and visualizations are already accessible from the Mastery Grids interface

(Figure 6). In our current work, we made both types accessible from OpenDSA (Figures 9 and 10) using

the LTI protocol. The details are explained in Section 4.2.

Figure 4. An example of program visualization (animated example) that is hosted by ACOS server.

The visualization shows the stack state and the console output based on the current execution step.

Figure 5. An instance of ACOS Parson’s problem, which asks students to construct a program to

indicate weather conditions based on the temperature.











Future Internet 2019, 11, 160 11 of 15

sent via HTTP POST request to the tool provider. When the tool provider receives the launch request,

it checks the validity of the request and loads the content if the request is valid.

As described in the LTI standards, we also implemented an LTI outcome service that listens to the

LTI grade callbacks generated from the LTI tool providers. The outcome service URL is called when

a user performs a graded action while interacting with an LTI tool. The service URL should be publicly

accessible and needs to be passed as a post-request parameter in the LTI launch request as described

above. The grade callback message includes required information about the learning content, the user

and the action result (i.e., if the answer was correct or incorrect). Then, the reported grade result

is directed to the student modeling service using the ADAPT2 protocol. Thus, LTI compatibility is

achieved by an adapter pattern approach, keeping the existing features of the Mastery Grids interface

and the student modeling service.

4.4. Integrating CodeWorkout Exercises into Mastery Grids

LTI compatibility makes Mastery Grids a fully-fledged smart content delivery platform as defined

in Reference [22]. Being an LTI consumer eliminates further development requirements on the

provider side and opens the way to serve any LTI-compatible learning content. To demonstrate

the opportunities provided by the new approach, we performed the integration of CodeWorkout

exercises into Mastery Grids. We selected CodeWorkout as an exemplary tool provider because of

its diverse set of programming exercises and existing LTI compatibility. This allowed Mastery Grids

to provide programming practice from existing exercises at a variety of content levels. In contrast,

developing a new coding tool and authoring coding exercises at the same quality would require

a considerable amount of time and would be another bad example of re-implementation of an existing

learning tool.

To show the feasibility of our approach, we added CodeWorkout exercises to an existing Java

course in Mastery Grids and nearly doubled the number of practice problems available to the students

(Figure 11). In this course, learners have access to multiple learning activities such as animated

examples (as mentioned in Section 3.4), program construction examples and challenges [23], semantic

problems [24] and newly integrated CodeWorkout coding exercises. Currently, the CodeWorkout

exercises are linked to Mastery Grids manually. However, as future work, we plan to implement the

LTI Deep Linking service, which is provided by IMS Global to overcome resource linking challenges.

Aside from CodeWorkout exercises, Mastery Grids launches other smart learning contents using the

ADAPT2 protocol and the student progress is updated through the same protocol.

Mastery Grids accesses CodeWorkout exercises in a way similar to other available exercise types

(i.e., loading the content inside an iFrame) but using LTI launch requests. As described in Section 4.3,

the learning events generated at CodeWorkout (e.g., submitting a solution) are reported back to the

Mastery Grids student modeling service through LTI grade callbacks. The Mastery Grids progress

visualization is dynamically updated concurrently with the immediate feedback generated on the

CodeWorkout exercise screen, as shown in Figure 12. Thus, the Mastery Grids progress indicator

interface is currently working with multiple protocols, including the standard LTI protocol.





Future Internet 2019, 11, 160 13 of 15

By leveraging LTI communication, we implemented a standards-based approach to broadly re-use

smart content between OpenDSA and Mastery Grids.

We have extended OpenDSA to support Python programming exercises and animations.

OpenDSA had Java programming exercises and animations for various computer science topics

for CS2 and above. It took years of effort by many collaborators across multiple institutions to develop

those animations and exercises. Using the new infrastructure made it immediately possible to support

Python textbooks using various Python exercises and animations from the ACOS server. It also opened

the way to support a Java-based CS1 course through ACOS-based Java animations. Similarly, Mastery

Grids previously was not able to provide good support beyond CS1 due to the lack of more advanced

exercises. Leveraging the LTI-based approach, we were able to re-use a large number of CodeWorkout

programming problems for CS2 courses.

We believe that the approach presented in this paper will open a way to a much broader re-use

of smart leaning content across various advanced-content access systems. We implemented two

proof-of-concept scenarios to connect two specific kinds of smart learning content with two host

systems. Our goal is to encourage other developers of educational systems to make their tools more

inter-operable. Our systems are open source and so publicly available and we encourage developers

to make use of our methods. Our solution is easily generalizable and can be applied for any kind

of Web-based learning content. Moreover, as the number of LTI-compatible platforms increases,

the amount of necessary modifications to support smart content re-usability gradually decreases.

At the same time, it is important to note that the LTI-based solution is not ideal for highly

interactive smart content. The LTI protocol reports the final result of user work, for example, correctness

of a problem solution or a percentage of explored animation. While this approach is sufficient for

simple cases of integrating smart content learning objects (such as programming exercises) with

an LMS, more advanced architectures are needed to deliver detailed learner analytics and to provide

communications within an ecosystem of collaborating tools. To support such cases, a combination of

LTI with other standards such as xAPI or CALIPER is required. We plan to explore these combinations

in future work.

This work was performed with NSF support in the context of the SPLICE project

(http://cssplice.org). SPLICE is focused on developing technical infrastructure for Computer Science

Education research. In the context of this project, we collaborate with a number of research teams who

develop and use innovative learning tools. As our work progresses, we plan to expand on ways to

inter-operate with other infrastructures and collections of smart content.

Author Contributions: Conceptualization, H.M., P.B. and C.A.S.; Funding acquisition, P.B. and C.A.S.;
Methodology, H.M. and J.W.; Project administration, P.B. and C.A.S.; Software, H.M., K.A. and J.W.; Supervision,
P.B. and C.A.S.; Writing—original draft, H.M., K.A. and C.A.S.; Writing— review & editing, H.M., K.A., J.W., P.B.
and C.A.S.

Funding: This research was partially funded by National Science Foundation grants DLR-1740775 and
DLR-1740765, and by Virginia Tech’s Technology-enhanced learning and Online Strategies unit.

Acknowledgments: We would like to thank Ayaan Kazerouni for his help in setting up a private instance
of CodeWorkout.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LMS Learning Management System

LTI Learning Tools Interoperability

ACOS Advanced Content Server



Future Internet 2019, 11, 160 14 of 15

References

1. Parlante, N. CodingBat. 2015. Available online: https://codingbat.com/java (accessed on 18 July 2019).

2. Buffardi, K.; Edwards, S.H. Introducing CodeWorkout: An Adaptive and Social Learning Environment.

In Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta, GA, USA,

5–8 March 2014; ACM: New York, NY, USA, 2014; p. 724.

3. Parsons, D.; Haden, P. Parson’s programming puzzles: A fun and effective learning tool for first

programming courses. In Proceedings of the 8th Australasian Conference on Computing Education,

Hobart, Australia, 16–19 January 2006; Australian Computer Society, Inc.: Darlinghurst, Australia, 2006;

Volume 52, pp. 157–163.

4. Malmi, L.; Karavirta, V.; Korhonen, A.; Nikander, J.; Seppälä, O.; Silvasti, P. Visual Algorithm Simulation

Exercise System with Automatic Assessment: TRAKLA2. Inform. Educ. 2004, 3, 267–288.

5. Diehl, S. Software Visualization; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2002;

Volume 2269.

6. Fouh, E.; Akbar, M.; Shaffer, C.A. The Role of Visualization in Computer Science Education. Comput. Sch.

2012, 29, 95–117. [CrossRef]

7. Shaffer, C.A.; Cooper, M.L.; Alon, A.J.D.; Akbar, M.; Stewart, M.; Ponce, S.; Edwards, S.H. Algorithm

Visualization: The State of the Field. ACM Trans. Comput. Educ. 2010, 10, 9. [CrossRef]

8. Severance, C.; Hanss, T.; Hardin, J. IMS Learning Tools Interoperability: Enabling a Mash-up Approach to

Teaching and Learning Tools. Technol. Instr. Cogn. Learn. 2010, 7, 245–262.

9. Shaffer, C.A.; Karavirta, V.; Korhonen, A.; Naps, T.L. OpenDSA: Beginning a Community Active-ebook

Project. In Proceedings of the 11th Koli Calling International Conference on Computing Education Research,

Koli, Finland, 17–20 November 2011; ACM: New York, NY, USA, 2011; pp. 112–117.

10. Fouh, E.; Karavirta, V.; Breakiron, D.A.; Hamouda, S.; Hall, S.; Naps, T.L.; Shaffer, C.A. Design and

Architecture of an Interactive eTextbook–The OpenDSA System. Sci. Comput. Program. 2014, 88, 22–40.

[CrossRef]

11. Ericson, B.; Cohen, J.; Miller, B. Using and Customizing Open-Source Runestone Ebooks for Computer

Science Classes. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education,

Minneapolis, MN, USA, 27 February–2 March 2019; ACM: New York, NY, USA, 2019; p. 1240. [CrossRef]

12. Mitrovic, A.; Martin, B. Evaluating the Effect of Open Student Models on Self-Assessment. Int. J. Artif.

Intell. Educ. 2007, 17, 121–144.

13. Loboda, T.D.; Guerra, J.; Hosseini, R.; Brusilovsky, P. Mastery Grids: An Open Source Social Educational

Progress Visualization. In Proceedings of the European Conference on Technology Enhanced Learning,

Graz, Austria, 16–19 September 2014; Springer: Berlin, Germany, 2014; pp. 235–248.

14. Sirkiä, T.; Haaranen, L. Improving Online Learning Activity Interoperability with Acos Server.

Softw. Pract. Exp. 2017, 47, 1657–1676. [CrossRef]

15. Brusilovsky, P.; Malmi, L.; Hosseini, R.; Guerra, J.; Sirkiä, T.; Pollari-Malmi, K. An integrated practice system

for learning programming in Python: design and evaluation. Res. Pract. Technol. Enhanc. Learn. 2018, 13, 18.

[CrossRef] [PubMed]

16. Karavirta, V.; Ihantola, P.; Koskinen, T. Service-oriented approach to improve interoperability of e-learning

systems. In Proceedings of the 2013 IEEE 13th International Conference on Advanced Learning Technologies,

Beijing, China, 15–18 July 2013; IEEE: Piscataway, NJ, USA, 2013, pp. 341–345.

17. Brusilovsky, P. KnowledgeTree: A distributed architecture for adaptive e-learning. In Proceedings of the

13th International World Wide Web Conference on Alternate Track Papers & Posters, New York, NY, USA,

19–21 May 2004; ACM: New York, NY, USA, 2004, pp. 104–113.

18. Sirkiä, T. Jsvee & Kelmu: Creating and tailoring program animations for computing education. J. Softw.

Evolut. Proc. 2018, 30, e1924.

19. Ihantola, P.; Karavirta, V. Two-dimensional parson’s puzzles: The concept, tools, and first observations.

J. Inform. Technol. Educ. 2011, 10, 119–132. [CrossRef]

20. Weber, G.; Brusilovsky, P. ELM-ART: An adaptive versatile system for Web-based instruction. Int. J. Artif.

Intell. Educ. 2001, 12, 351–384.

21. Rey-López, M.; Brusilovsky, P.; Meccawy, M.; Díaz-Redondo, R.; Fernández-Vilas, A.; Ashman, H. Resolving

the problem of intelligent learning content in learning management systems. Int. J. E-Learn. 2008, 7, 363–381.



Future Internet 2019, 11, 160 15 of 15

22. Brusilovsky, P.; Edwards, S.; Kumar, A.; Malmi, L.; Benotti, L.; Buck, D.; Ihantola, P.; Prince, R.; Sirkiä,

T.; Sosnovsky, S.; others. Increasing adoption of smart learning content for computer science education.

In Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science

Education Conference, Uppsala, Sweden, 23–25 June 2014; ACM: New York, NY, USA, 2014, pp. 31–57.

23. Hosseini, R.; Akhuseyinoglu, K.; Petersen, A.; Schunn, C.D.; Brusilovsky, P. PCEX: Interactive Program

Construction Examples for Learning Programming. In Proceedings of the 18th Koli Calling International

Conference on Computing Education Research, Koli, Finland, 22–25 November 2018; ACM: New York, NY,

USA, 2018, p. 5.

24. Hsiao, I.H.; Sosnovsky, S.; Brusilovsky, P. Guiding students to the right questions: Adaptive navigation

support in an E-Learning system for Java programming. J. Comput. Assist. Learn. 2010, 26, 270–283.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction
	The Integration Goal
	The Integration Components
	OpenDSA
	Mastery Grids
	CodeWorkout
	ACOS: Advanced Content Server

	Materials and Methods
	OpenDSA as a Tool-Consumer
	Integrating ACOS Visualizations and Exercises into OpenDSA
	Making Mastery Grids an LTI Consumer
	Integrating CodeWorkout Exercises into Mastery Grids

	Discussion and Conclusions
	References

