
  

  

Abstract—In this communication, a translational roadmap 

for a noninvasive Brain Machine Interface (BMI) system for 

rehabilitation is presented. This multi-faceted project 

addresses important engineering, clinical, end user and 

regulatory challenges. The goal is to improve the feasibility 

of at-home neurorehabilitation for patients with chronic 

stroke by providing a low-cost, portable, form fitting, 

reliable, and easy-to-use system. The proposed BMI system 

is also designed to enable direct communication between the 

end-user and clinician, allowing for continuous patient-

specific rehabilitation optimization. 

 

I. INTRODUCTION 

There are about 7.2 M persons living with stroke [1]. 
Stroke is the primary cause of long-term disability in the 
US, leading to reduced quality of life and social stigma, 
with many of them requiring long-term care. With more 
than ~800,000 people having stroke in the US every year, 
and a global market size expected to reach $31B by 2021 
[2], there is a pressing need for novel stroke rehabilitation 
tools and devices for in-clinic and at-home use for 
sustainable long-term therapy that also promotes cortical 
reorganization toward recovery. Unfortunately, simple 
rehabilitation tools (passive exercisers) and more 
sophisticated devices (such as robot-assisted therapy 
devices) fail to engage and motivate the patients, are hard 
to match to their needs, or are limited to clinical settings. 
Moreover, these systems do not necessarily promote 
motor relearning towards recovery, are costly and/or 
difficult to deploy for in-home use. To promote motor 
reorganization, developers are now turning to devices 
equipped with interfaces for video gaming and virtual 
reality, but these technologies are still in the very early 
stage of development. Thus, there is a lack of safe, 
effective, engaging, and low-cost smart neuro-
rehabilitative systems that can provide clinic and home-
based sustained long-term neuro-recovery of motor 
function for stroke survivors. 
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Current stroke rehabilitation roadmaps are adapted from 
the clinical practice guideline endorsed by The Stroke 
Council of the American Heart Association [3]. Based on 
stroke severity, the healthcare professional decides on 
inpatient/outpatient interventions. Inpatient rehabilitation 
starts with the assessment of the type and intensity of the 
rehabilitation. The clinician monitors the patient’s 
recovery and decides if there is sufficient improvement for 
the patient to live in the community again. If not, the 
rehabilitation continues at the clinic, the extent of which 
depends on patient status and insurance benefits. If there is 
sufficient improvement, the patient can get discharged. At 
this point, the process merges with the outpatient 
rehabilitation practices. If necessary, a suitable 
rehabilitation practice starts or continues as outpatient. If 
not, the patient is left with an option to continue home-
based exercise routines. Home rehabilitation process can 
vary greatly as at this point the clinician’s involvement is 
minimal, and feedback is provided on the basis of clinical 
follow-ups, if any. On the other hand, if the rehabilitation 
continues as outpatient, the clinician checks if optimal 
recovery is reached or the recovery is plateaued, resulting 
again in often self-applied home exercise routines (if the 
patient is motivated and/or there is family support) and 
clinical follow-ups. 

Whether the rehabilitation occurs at the clinic or at 
home, the main issues that are often faced by the patients 
are: 1) the limited duration of the therapy routines, 2) the 
cost and accessibility of the inpatient/outpatient therapy 
and devices, and 3) the lack of established norms for home 
exercise routines/therapy. The main challenges for the 
healthcare professional are: 1) monitoring and tracking the 
patient’s progress, 2) lack of reliable metrics (currently 
based mostly on observation), and 3) engaging the patient 
thereby promoting cortical plasticity, which perhaps is the 
most critical component on stroke rehabilitation [3]–[6]. 
Importantly, there is currently no established framework 
that combines the therapeutic roadmap to provide 
sustained long-term therapy for individuals with stroke at 
home, with medical devices that a) can continuously 
monitor/log patient status for clinicians, b) provide human-
centric assessment metrics to assess success of the 
intervention, and c) promote patient’s engagement to the 
therapeutic session in an effective way. 

To address these unmet needs, we are engineering a 
system with diagnostic, assistive and therapeutic functions 
that is safe, cost-effective, and reliable, with advanced 
form factors, connectivity for clinician monitoring, and 
embedded high performance processing capabilities that 
users want to wear and benefit for extended periods of 
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systems with experience in the NSF I-Corps program, and 
3) the benefit of an established business model in the 
market segment of rehabilitation robotics for inpatient 
rehabilitation facilities. The NSF I-Corps program helps 
to prepare scientists who are in the process of moving 
basic-research projects towards commercialization, while 
the C3i program is an industry-recognized approach 
towards biomedical research translation. Experience and 
participation with the these two programs, and with the 
assistance of the University of Houston’s Office of Tech 
Transfer and Innovation, helps to validate the business 
hypotheses regarding commercialization of advanced 
rehabilitation robotics by interviewing potential customers 
and to validate the market opportunity and minimize 
unexpected risk with the mentorship by program 
instructors and successful entrepreneurs within the 
industry. Additionally, focus group feedback to our 
proposed system by physicians, physical therapists, and 
patients began early in the project and will continue to be 
a key factor in maintaining patient-oriented designs and 
maximizing usability. 

C. Optimizing Key Roles and Metrics 

During the multi-year effort towards a proof-of-
principle device development, and beyond, key personnel 
roles will be optimized in accordance with the defined 
metrics, at multiple levels. One of the 1st order project 
metrics can be defined as the pre-defined milestones and 
year-end deliverables. Since the deliverables of a 
commercial BMI module targets multiple users, the 
throughput of per year-end deliverables may be used as an 
additional metric. Proof-of-principle device performance 
on BMI decoder accuracy, subject task completion 
accuracy and time, overall setup-to-usage time of the 
device at each level of development, from all subjects, can 
be logged and used as improvement points for the next 
iteration. Software efficiency metric can be calculated as, 
for example, errors/bugs per 1000 lines of code, and 
adjustments can then be made accordingly. As the 
proposal nears the mid-term of the multi-year timeline, 
2nd order metrics can be employed, such as; device 
delivery to subjects (scheduling time and cost), loss of 
system availability and cost due to maintenance and 
repairs, estimated cost of delivery delays and its reasons, 
and overall project cost for projected future deliveries. 
Finally, in the final stages of the timeline, 3rd order 
metrics can be used to help define the future production 
costs and improvement points, overall weight and form 
factor of the final proof-of-principle device, and measure 
mean time between failures/errors, to gauge the efficiency 
of the device. Additional metrics that spans the full 
duration of the proposal may include: Number of 
customer needs identified (to gauge the effort in 
identifying the future need), number of in-process changes 
(gauging the overall plan effectiveness), assembly 
efficiency (gauging the design -mechanical and electrical- 
efficiency), percent of sub-milestone dates met (gauging 
the team efficiency), and percent of parts used in multiple 
products (to gauge the parts’ generality/effectivity 

towards reducing the future costs). The measured cost, 
development effort and effectiveness metrics can then be 
used towards iterating our design to a Minimum Viable 
Product (MVP). 

D. Envisioned Plan beyond the Project 

The deliverables of this commercialization strategy are 
1) the definition of specific gain creators and pain 
relievers that are based on in-person customer/prospect 
interviews and feedback obtained after demonstrations 
using a minimum viable product (MVP), 2) a definition of 
specific value propositions (VPs), cost structure and 
revenue streams that will help to create a path to 
successful commercialization of the proposed smart co-
robot system, and 3) submission to FDA for regulatory 
review and approval.  

V. CONCLUSION 

The high-cost and expertise required for current state-
of-the-art rehabilitation systems is prohibitive for most 
chronic stroke survivors seeking rehabilitation. Therefore, 
there is a need for reliable neurotechnologies that engage 
the user, are low-cost, and can be deployed at home. The 
commercial and societal impact potential for the proposed 
BMI-based stroke neurorehabilitation is two-fold:  

Innovation ecosystem: An integrated user-centered 
research-driven translational roadmap for accelerating 
innovation, translation, and entrepreneurship of BMI 
systems for therapeutics and diagnostics has been 
presented in this paper. The proposed BMI system will 
benefit students, faculty, industry, and end users. 
Engagement of end users and regulatory agencies early in 
the design process is expected to ensure the system is 
responsive to the needs of the end users and complies with 
regulatory guidelines for safety and efficacy. This should 
ensure faster translation of the system to the end users.  

National Impact: The US market for a smart therapeutic 
system for rehabilitation after stroke is estimated to be 
$1.2B. Moreover, smart neurotechnologies that safely and 
quickly interface non-invasively with the nervous and the 
body represent a major opportunity for innovation in the 
US industry over the next decade. A commercial BMI 
system will also accelerate scientific discovery in human 
and clinical neuroscience; significantly improve national 
health; boost innovation in wearable therapeutic 
neurotechnologies, and empower individuals to gain 
awareness and take control of their own healthcare and 
wellness. 
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