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Abstract—In this communication, a translational roadmap
for a noninvasive Brain Machine Interface (BMI) system for
rehabilitation is presented. This multi-faceted project
addresses important engineering, clinical, end user and
regulatory challenges. The goal is to improve the feasibility
of at-home neurorehabilitation for patients with chronic
stroke by providing a low-cost, portable, form fitting,
reliable, and easy-to-use system. The proposed BMI system
is also designed to enable direct communication between the
end-user and clinician, allowing for continuous patient-
specific rehabilitation optimization.

I. INTRODUCTION

There are about 7.2 M persons living with stroke [1].
Stroke is the primary cause of long-term disability in the
US, leading to reduced quality of life and social stigma,
with many of them requiring long-term care. With more
than ~800,000 people having stroke in the US every year,
and a global market size expected to reach $31B by 2021
[2], there is a pressing need for novel stroke rehabilitation
tools and devices for in-clinic and at-home use for
sustainable long-term therapy that also promotes cortical
reorganization toward recovery. Unfortunately, simple
rehabilitation tools (passive exercisers) and more
sophisticated devices (such as robot-assisted therapy
devices) fail to engage and motivate the patients, are hard
to match to their needs, or are limited to clinical settings.
Moreover, these systems do not necessarily promote
motor relearning towards recovery, are costly and/or
difficult to deploy for in-home use. To promote motor
reorganization, developers are now turning to devices
equipped with interfaces for video gaming and virtual
reality, but these technologies are still in the very early
stage of development. Thus, there is a lack of safe,
effective, engaging, and low-cost smart neuro-
rehabilitative systems that can provide clinic and home-
based sustained long-term neuro-recovery of motor
function for stroke survivors.
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Current stroke rehabilitation roadmaps are adapted from
the clinical practice guideline endorsed by The Stroke
Council of the American Heart Association [3]. Based on
stroke severity, the healthcare professional decides on
inpatient/outpatient interventions. Inpatient rehabilitation
starts with the assessment of the type and intensity of the
rehabilitation. The clinician monitors the patient’s
recovery and decides if there is sufficient improvement for
the patient to live in the community again. If not, the
rehabilitation continues at the clinic, the extent of which
depends on patient status and insurance benefits. If there is
sufficient improvement, the patient can get discharged. At
this point, the process merges with the outpatient
rehabilitation  practices. If necessary, a suitable
rehabilitation practice starts or continues as outpatient. If
not, the patient is left with an option to continue home-
based exercise routines. Home rehabilitation process can
vary greatly as at this point the clinician’s involvement is
minimal, and feedback is provided on the basis of clinical
follow-ups, if any. On the other hand, if the rehabilitation
continues as outpatient, the clinician checks if optimal
recovery is reached or the recovery is plateaued, resulting
again in often self-applied home exercise routines (if the
patient is motivated and/or there is family support) and
clinical follow-ups.

Whether the rehabilitation occurs at the clinic or at
home, the main issues that are often faced by the patients
are: 1) the limited duration of the therapy routines, 2) the
cost and accessibility of the inpatient/outpatient therapy
and devices, and 3) the lack of established norms for home
exercise routines/therapy. The main challenges for the
healthcare professional are: 1) monitoring and tracking the
patient’s progress, 2) lack of reliable metrics (currently
based mostly on observation), and 3) engaging the patient
thereby promoting cortical plasticity, which perhaps is the
most critical component on stroke rehabilitation [3]-[6].
Importantly, there is currently no established framework
that combines the therapeutic roadmap to provide
sustained long-term therapy for individuals with stroke at
home, with medical devices that a) can continuously
monitor/log patient status for clinicians, b) provide human-
centric assessment metrics to assess success of the
intervention, and c¢) promote patient’s engagement to the
therapeutic session in an effective way.

To address these unmet needs, we are engineering a
system with diagnostic, assistive and therapeutic functions
that is safe, cost-effective, and reliable, with advanced
form factors, connectivity for clinician monitoring, and
embedded high performance processing capabilities that
users want to wear and benefit for extended periods of



time. In this paper, we review our translational roadmap
for the proposed neurorehabilitative system for stroke
rehabilitation.

II. METHODS

The design of the Brain-Machine Interface (BMI)
system is based on our patented decoding and signal
denoising algorithms for real-time BMI applications [13],
[24], [27], [28]. Specifically, we have demonstrated the
feasibility of inferring gait kinematics and surface
electromyography (EMG) patterns, as well as non-
locomotive (e.g., sit-to-stand) movements from active-
electrode scalp electroencephalography (EEG)[7]-[11];
we have developed real-time adaptive noise cancelling
algorithms for identifying and removing artefactual
components from scalp EEG that increase the signal to
noise ratio [12], [13], [24]; multi-day, real-time, closed-
loop EEG-decoding of the lower-limb kinematics [14]-
[16]; and adaptation to visual-motor gait perturbations
during real-time closed-loop BMI control of a virtual
avatar suggesting that BMIs can be used to promote
cortical plasticity [14]-[16].

The translational research and development of the BMI
system, supported under a National Science Foundation
Partnerships for Innovation (PFI) award, is comprised of
three main components: 1) the BMI Module, 2) the
Information and Control (IC) Module, and 3) a
multifunctional single degree of freedom Upper Limb
Rehabilitation Robot as the initial robotic platform. A
schematic of this system is presented in Figure 1.While
the system is shown as being operated with the actuator at
the elbow, the BMI system is not limited to this setup and
is also intended to be applicable for a variety of upper
limb rehabilitation methods programs.
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Figure 1: BMI system diagram, which highlights the
three major components: the BMI module, the IC module,
and the upper limb rehabilitation robot.

A. Brain Machine Interface (BMI) Module

BMI systems seek to translate neural brain patterns to
machine-acceptable commands using mathematical
mapping tools called decoders, which infer the user’s
motor intent. Depending on the interfaced systems and

intended applications, these mapping tools can be
formulated in the form of continuous-profile model-based
decoders to interpret time varying parameters of action
from neural signals (i.e., leg/arm joint angles, joint
velocities, surface electromyographic (EMG) patterns)
using Kalman or Weiner filters [7]-[11], [16], or in the
form of neural classifiers that map discrete states of neural
patterns to discrete classes to be controlled (e.g., stand-up,
turn left or right, stop, etc.) [13], [17]. Given the spectrum
and extent of motor deficits observed in clinical
populations, BMI-robot systems require some form of
shared control/shared autonomy. In our shared-control
classifier application, we have shown that multiple classes
of user intent can be decoded via non-invasive EEG
measurements. With our exoskeleton-BMI  system
(NeuroRex), we have applied our neural classification
methodology for the control of a robotic lower-limb
exoskeleton (REX, REX Bionics Inc.) [26] for persons
with paraplegia [15]-[16].

B. Information and Control (IC) Module

The information and control module is the gateway of
the BMI module to the rehabilitation hardware. This
module provides input/output capability with high data
transfer rates, featuring two major functions: driving the
rehabilitation device’s actuators according to the output of
the BMI module (decoded neural intent) and sensory data
logging, transmission and feedback to the BMI module for
generating smart metrics regarding the rehabilitation and
tracking patients’ functional improvements and logging
them for the clinician’s review. This unit will also provide
a view screen to supply visual feedback to the patient on
his/her performance for the given tasks in addition to the
kinesthetic feedback supplied by the usage of
rehabilitation hardware. The interface will also be used to
provide patient and rehabilitation session data, necessary
logs and metrics, as well as tools for comparative analysis
among subjects and rehabilitation sessions [19]. As new
subject and new rehabilitation sessions are registered, this
logging interface will form an invaluable database for
engineers, clinicians, neuroscientists, physiotherapists and
other researchers. There is currently no test bed that is
used for rehabilitation that can provide multimodal data to
form a database, across sessions and patients.

C. The Single Degree of Freedom Upper Limb
Rehabilitation Robot

As a proof-of-principle device, we propose to focus on
upper extremity rehabilitation with the use of a single
degree of freedom upper limb rehabilitation robot. The
system is interchangeable in that the BCI module will be
able to control any robotic system, given the system’s
specific I/O protocol is provided. With the current device,
the patient will be in a seated position (on a
chair/wheelchair) holding a single handle. This will allow
us to focus on unilateral synchronized rehabilitation. The
handle will be sensorized to allow us to measure the
torque/load applied by the patient’s arm. The overall



actuated system will allow us to use the following modes
of operations; fully assistive: the system moves the arm
for the patient once the intent is detected; assist as needed:
the user provides some level of control, the remaining
assistance to reach the target force, position or velocity
(clinician prescribed tasks) will be provided by the system
once the intent is detected, and; resistive: the patient is
able to apply full input necessary to reach the goal,
however, the system applies adjustable levels of resistance
to his/her motion to improve gradually the muscle
activation levels, once the intent is detected.

ITI. TECHNICAL CHALLENGES

The rationale of choosing the above described main
components and the overall development strategy is
closely related to the major technical challenges identified
towards the meaningful commercialization and wide-scale
deployment effort of the proposed BMI module (depicted
in Figure 2).To our knowledge, there is no available FDA-
approved smart neurorchabilitation system in the market.
The following sections will describe the challenges and
will present strategies in how to handle each challenge.
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Figure 2: Technical challenges to commercialization (red)

A. Cost

Current high quality EEG recording systems, including
their amplifiers and software, are designed as general
purpose systems mostly for research purposes. The cost of
such systems are naturally very high (>$25K), preventing
them as good fits for commercial BMI modules. These
systems also have closed/proprietary architectures making
their integration to custom, small form factor hardware
increasingly difficult. Therefore, the design of low-cost
and small form factor EEG amplifiers with high inter-
operability with external robotic-guided rehabilitative
systems is crucial for both commercial and academic
research applications. This could be in the form of a
daughterboard, attached to a credit card sized System of
Module (SOM) module. SOM’s are a type of embedded
computer system that would replace the large amount of
computer hardware typically necessary for real-time
processing of EEG signals. Additionally, an example
SOM, such as the National Instrument’s Field
Programmable Gate Array (FPGA) supported high-

performance SOM, which can cost under $1000, which
helps to reduce the overall cost. For EEG sensors,
commercial dry EEG electrodes should be wused,
considering the high development effort and development
cost of such components. Current dry EEG sensor
technology can easily be interfaced to our custom
amplifier hardware with no additional development or
modification needed. It is also important to minimize
channel count, in favor of a low-cost personalized
architecture. As compared to gel-based wet electrodes, dry
electrodes are typically thought to collect EEG with a
lower signal quality and susceptible to artifacts. However,
recent research on complex naturalistic settings with
freely-behaving individuals suggests the feasibility of
obtaining high signal quality can be achieved with dry
electrodes as compared to the wet electrode alternatives
[20], [21], [24].

B. Portability

The portable nature of any proposed system is vital for
large-scale deployment for home use, which greatly
expands the feasibility of home-based data collection,
diagnostics and therapeutics. Current EEG measurement
systems and most robotic rehabilitation devices are large
and costly. Thus, successful BMI-robotics systems must be
both portable and low-cost to increase the likelihood of
adoption by end-users.

C. Interoperability and Usability

Two identified challenges in the translation of clinical
BMI systems are lack of interoperability and poor usability
in the field [25]. The BMI module’s input/output structure
must be designed to be interoperable (i.e., ‘plug in’) to any
suitable physical or virtual robotic rehabilitative system.
Our proposed active upper limb rehabilitation machine 1/0
layer will lay the groundwork for assessment of
interoperability of our system by other active devices.
Although the single degree of freedom robotic device is
focused on the upper-limb, it should be noted that it can be
modified for upper or lower body interoperability and
therefore has broad applications for similarly defined BMI
research in clinical and non-clinical areas.

System set-up represents an important usability
challenge as in current noninvasive BMI systems, the EEG
electrode density and electrode cap set-up require long
preparation times and can lead to user errors in cap
placement or signal integrity due to high electrode
impedance or electrode pop-up [21]. Our group has made
significant progress on optimizing the most relevant
electrode spatial locations by choosing the most
information-rich channels for decoding, for both able-
bodied, and individuals with spinal cord injury (SCI) [18]
and stroke [22]. This not only reduces the number of
channels, but also leads to the availability of selective
channel locations, per subject, depending on their clinical
condition. We expect that with personalized headsets,
reduced channel count and the use of dry electrodes will
lead to reliable quick setup-to-recording time of less than 2
minutes, without requiring expert input.



D. Form factor

The use of feedback from focus groups on the form of
the EEG sensor headset/cap for reliable and long-term
usage can help to address the technical challenge of form
factor that also affects usability. The selection or design of
the EEG sensor cap is an iterative process that will likely
lead to several form factors to accommodate the needs and
desires of the end-users for wide-scale deployment.3D
handheld scanners and 3D printed prototyping in
collaboration with design professionals now allow for the
design and manufacture of customized electrode holders
and headsets that could be combined with other wearables
such as headphones, as an alternative to traditional
soft/meshed caps or the newer semi- or rigid EEG helmets
that can be found in the consumer electronics market. We
have done an extensive comparative effort of the form
factor and usability of different commercial EEG systems
[21] that adds to the knowledge base of the long-term
usability of different designs.

E. Reliability

Planned wide-scale deployment of such a system at the
clinic or at home requires reliable mechanical components
and electronics systems, especially considering the
unattended home use. It is important for commercial BMI
applications to follow accepted standards in compliance
with the regulatory norms (e.g. FDA and National Institute
of Standards and Technology —NIST- traceable norms).It
should be noted that the creation and adoption of standards
for BMI systems is one of current challenges in the field
[25]. Further regulatory challenges are discussed in section
IV.

F. Denoising algorithms

A technical challenge in EEG-based BMI systems is
the presence of physiological and non-physiological
artifacts that are superimposed onto the neural signals
measured from the scalp recording areas. Ocular artifacts,
for example, are present in most EEG recordings, and, due
to volume conduction, corrupt measurements from all
electrode locations in changing profiles and amplitude
distributions. Artifacts are perhaps one of the major factors
challenging the high accuracy real-time applications of
these systems. Our laboratory has developed a generalized
real-time de-noising framework for high performance
artifact cleaning based on the robust adaptive H” filtering
formulation [13] [24]. We have shown the effectiveness of
our technique for cleaning eye-blinks, eye-movements,
signal bias and signal drifts, for60 EEG locations
simultaneously, in real-time [13], and more recently,
motion artifacts [24]. One important advantage of our
method is that it depends on the real-time measurement of
the noise source. This might seem like a disadvantage at
first due to its requirement of additional sensory
measurements, however, compared to other existing
methods that depend on the definition of clean EEG
segments, or estimated statistical distributions, it allows us
to be very selective on what is removed from the EEG
measurements. Having this capability allows us also to
identify the possibly time-varying artifactual components
and recover in real-time the actual EEG data that is
contaminated by the artifacts. In [13] and [24], we have

established a scientific premise regarding the motion-
related artifacts and their adverse effects on EEG signal
processing. It should be noted that the proposed initial
BMI rehabilitation system is designed to accept the patient
in a seated position, thus minimizing the presence of
motion artifacts. Nevertheless, our group has analyzed the
effects or presence of motion artifacts in treadmill walking
[12] [24] and found that even in normal walking speeds,
the motion artifacts were found to be negligible to non-
detectable.

IV. COMMERCIALIZATION STRATEGY

A well-defined commercialization strategy  will
significantly increase the ability to overcome the many
regulatory and commercial challenges in the path towards
commercialization. Approaches to addressing the
regulatory and commercial challenges were developed
through close collaboration with clinicians, patients, and
business leaders during the Commercializing Innovation
(C3i) program [22]. Figure 3 presents the 3-phase

commercialization strategy with each phase lasting
approximately one year.
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Figure 3: Commercialization pipeline with intended
hardware, software, and regulatory milestones highlighted.
This assumes that intellectual property (IP) has been
adequately protected.

A. Regulatory Challenges

Regulatory approval is one of the challenges that must
be carefully navigated for timely and cost-effective
commercialization of the proposed system. To accelerate
technology transfer, it is imperative to work closely with
regulatory agencies (e.g., US Food and Drug
Administration or FDA), and make use of their pre-
submission program, and/or new pathways for innovative
devices. Proof-of-principle data acquired during early
feasibility trials could serve as data for regulatory
purposes. Thus, experimental design and outcome
variables should be discussed with the FDA to ensure it
meets their regulatory requirements.

B. Validation of the Customer Needs and Business Model

Our initial business plan (one must remain flexible to
adapt to changing conditions) has been shaped by three
key components that include 1) our team’s experience
with the Concept to Clinic: Commercializing Innovation
(C31) Program[22], 2) a core set of industry experts in
rehabilitation robotics and embedded/instrumentation



systems with experience in the NSF I-Corps program, and
3) the benefit of an established business model in the
market segment of rehabilitation robotics for inpatient
rehabilitation facilities. The NSF I-Corps program helps
to prepare scientists who are in the process of moving
basic-research projects towards commercialization, while
the C3i program is an industry-recognized approach
towards biomedical research translation. Experience and
participation with the these two programs, and with the
assistance of the University of Houston’s Office of Tech
Transfer and Innovation, helps to validate the business
hypotheses regarding commercialization of advanced
rehabilitation robotics by interviewing potential customers
and to validate the market opportunity and minimize
unexpected risk with the mentorship by program
instructors and successful entrepreneurs within the
industry. Additionally, focus group feedback to our
proposed system by physicians, physical therapists, and
patients began early in the project and will continue to be
a key factor in maintaining patient-oriented designs and
maximizing usability.

C. Optimizing Key Roles and Metrics

During the multi-year effort towards a proof-of-
principle device development, and beyond, key personnel
roles will be optimized in accordance with the defined
metrics, at multiple levels. One of the Ist order project
metrics can be defined as the pre-defined milestones and
year-end deliverables. Since the deliverables of a
commercial BMI module targets multiple users, the
throughput of per year-end deliverables may be used as an
additional metric. Proof-of-principle device performance
on BMI decoder accuracy, subject task completion
accuracy and time, overall setup-to-usage time of the
device at each level of development, from all subjects, can
be logged and used as improvement points for the next
iteration. Software efficiency metric can be calculated as,
for example, errors/bugs per 1000 lines of code, and
adjustments can then be made accordingly. As the
proposal nears the mid-term of the multi-year timeline,
2nd order metrics can be employed, such as; device
delivery to subjects (scheduling time and cost), loss of
system availability and cost due to maintenance and
repairs, estimated cost of delivery delays and its reasons,
and overall project cost for projected future deliveries.
Finally, in the final stages of the timeline, 3rd order
metrics can be used to help define the future production
costs and improvement points, overall weight and form
factor of the final proof-of-principle device, and measure
mean time between failures/errors, to gauge the efficiency
of the device. Additional metrics that spans the full
duration of the proposal may include: Number of
customer needs identified (to gauge the effort in
identifying the future need), number of in-process changes
(gauging the overall plan effectiveness), assembly
efficiency (gauging the design -mechanical and electrical-
efficiency), percent of sub-milestone dates met (gauging
the team efficiency), and percent of parts used in multiple
products (to gauge the parts’ generality/effectivity

towards reducing the future costs). The measured cost,
development effort and effectiveness metrics can then be
used towards iterating our design to a Minimum Viable
Product (MVP).

D. FEnvisioned Plan beyond the Project

The deliverables of this commercialization strategy are
1) the definition of specific gain creators and pain
relievers that are based on in-person customer/prospect
interviews and feedback obtained after demonstrations
using a minimum viable product (MVP), 2) a definition of
specific value propositions (VPs), cost structure and
revenue streams that will help to create a path to
successful commercialization of the proposed smart co-
robot system, and 3) submission to FDA for regulatory
review and approval.

V. CONCLUSION

The high-cost and expertise required for current state-
of-the-art rehabilitation systems is prohibitive for most
chronic stroke survivors seeking rehabilitation. Therefore,
there is a need for reliable neurotechnologies that engage
the user, are low-cost, and can be deployed at home. The
commercial and societal impact potential for the proposed
BMI-based stroke neurorehabilitation is two-fold:

Innovation ecosystem: An integrated user-centered
research-driven translational roadmap for accelerating
innovation, translation, and entrepreneurship of BMI
systems for therapeutics and diagnostics has been
presented in this paper. The proposed BMI system will
benefit students, faculty, industry, and end users.
Engagement of end users and regulatory agencies early in
the design process is expected to ensure the system is
responsive to the needs of the end users and complies with
regulatory guidelines for safety and efficacy. This should
ensure faster translation of the system to the end users.

National Impact: The US market for a smart therapeutic
system for rehabilitation after stroke is estimated to be
$1.2B. Moreover, smart neurotechnologies that safely and
quickly interface non-invasively with the nervous and the
body represent a major opportunity for innovation in the
US industry over the next decade. A commercial BMI
system will also accelerate scientific discovery in human
and clinical neuroscience; significantly improve national
health; boost innovation in wearable therapeutic
neurotechnologies, and empower individuals to gain
awareness and take control of their own healthcare and
wellness.



ACKNOWLEDGMENT

The authors would like to acknowledge Youngmok

Yun from Harmonic Bionics, Gerard E. Francisco from
Memorial Hermann Hospital’s Institute for Rehabilitation
and Research (TIRR), Igor Alvarado from National

Instruments,

and Shaheen Lokhandwala from the

University of Houston's Office of Technology Transfer
for their guidance and collaboration.

[10]

[11]

[12]

[13]

[14]

REFERENCES

Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S.
R., Deo, R, ... & Jiménez, M. C. (2017). Heart disease and stroke
statistics-2017 update: a report from the American Heart
Association. Circulation, 135(10), e146-e603.

“Stroke Diagnostics and Therapeutics Market by Diagnostics
(Magnetic Resonance Imaging, Computed Tomography Scan,
Electrocardiography Carotid Ultrasound, Cerebral Angiography
and Others) by Therapeutics (Tissue Plasminogen Activator,
Antiplatelet, Antihype,” 2016. [Online]. Available:
https://www.zionmarketresearch.com/sample/stroke-diagnostics-
therapeutics-market.

Duncan, P. W., Zorowitz, R., Bates, B., Choi, J. Y., Glasberg, J.
J., Graham, G. D., ... & Reker, D. (2005). Management of adult
stroke rehabilitation care: a clinical practice

guideline. stroke, 36(9), e100-¢143.

Nudo, R. J. (2003). Functional and structural plasticity in motor
cortex: implications for stroke recovery. Physical Medicine and
Rehabilitation Clinics, 14(1), S57-S76.

Kortte, K. B., Falk, L. D., Castillo, R. C., Johnson-Greene, D., &
Wegener, S. T. (2007). The Hopkins rehabilitation engagement
rating scale: development and psychometric properties. Archives
of physical medicine and rehabilitation, 88(7), 877-884.

Blank, A. A., French, J. A., Pehlivan, A. U., & O’Malley, M. K.
(2014). Current trends in robot-assisted upper-limb stroke
rehabilitation: promoting patient engagement in therapy. Current
physical medicine and rehabilitation reports, 2(3), 184-195.
Presacco, A., Goodman, R., Forrester, L., & Contreras-Vidal, J. L.
(2011). Neural decoding of treadmill walking from noninvasive
electroencephalographic signals. Journal of

neurophysiology, 106(4), 1875-1887.

Presacco, A., Forrester, L. W., & Contreras-Vidal, J. L. (2012).
Decoding intra-limb and inter-limb kinematics during treadmill
walking from scalp electroencephalographic (EEG) signals. IEEE
Transactions on Neural Systems and Rehabilitation

Engineering, 20(2), 212-219.

He, Y., Nathan, K., Venkatakrishnan, A., Rovekamp, R., Beck,
C., Ozdemir, R., ... & Contreras-Vidal, J. L. (2014, August). An
integrated neuro-robotic interface for stroke rehabilitation using
the NASA X1 powered lower limb exoskeleton. In 2014 36th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (pp. 3985-3988). IEEE.

Bulea, T. C., Prasad, S., Kilicarslan, A., & Contreras-Vidal, J. L.
(2014). Sitting and standing intention can be decoded from scalp
EEG recorded prior to movement execution. Frontiers in
neuroscience, 8, 376.

Bulea, T. C., Kilicarslan, A., Ozdemir, R., Paloski, W. H., &
Contreras-Vidal, J. L. (2013). Simultaneous scalp
electroencephalography (EEG), electromyography (EMG), and
whole-body segmental inertial recording for multi-modal neural
decoding. JoVE (Journal of Visualized Experiments), (77),
€50602.

Nathan, K., & Contreras-Vidal, J. L. (2016). Negligible motion
artifacts in scalp electroencephalography (EEG) during treadmill
walking. Frontiers in human neuroscience, 9, 708.

Kilicarslan, A., Grossman, R. G., & Contreras-Vidal, J. L. (2016).
A robust adaptive denoising framework for real-time artifact
removal in scalp EEG measurements. Journal of neural
engineering, 13(2), 026013.

Contreras-Vidal, J. L. (2014, October). Identifying engineering,
clinical and patient's metrics for evaluating and quantifying

[15]

(1e]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

performance of brain-machine interface (BMI) systems. In 2014
IEEE International Conference on Systems, Man, and Cybernetics
(SMC) (pp. 1489-1492). IEEE.

Luu, T. P, He, Y., Brown, S., Nakagome, S., & Contreras-Vidal,
J. L. (2015, June). A closed-loop brain computer interface to a
virtual reality avatar: Gait adaptation to visual kinematic
perturbations. In 2015 International Conference on Virtual
Rehabilitation (ICVR) (pp. 30-37). IEEE.

Luu, T. P., He, Y., Brown, S., Nakagome, S., & Contreras-Vidal,
J. L. (2016). Gait adaptation to visual kinematic perturbations
using a real-time closed-loop brain—computer interface to a virtual
reality avatar. Journal of neural engineering, 13(3), 036006.
Kilicarslan, A., Prasad, S., Grossman, R. G., & Contreras-Vidal,
J. L. (2013, July). High accuracy decoding of user intentions
using EEG to control a lower-body exoskeleton. In 2013 35th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 5606-5609). IEEE.
Zhang, Y., Prasad, S., Kilicarslan, A., & Contreras-Vidal, J. L.
(2017). Multiple kernel based region importance learning for
neural classification of gait states from EEG signals. Frontiers in
neuroscience, 11, 170.

Contreras-Vidal, J. L., & Grossman, R. G. (2013, July).
NeuroRex: A clinical neural interface roadmap for EEG-based
brain machine interfaces to a lower body robotic exoskeleton.

In 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (pp. 1579-
1582). IEEE.

Chi, Y. M., Wang, Y. T., Wang, Y., Maier, C., Jung, T. P., &
Cauwenberghs, G. (2011). Dry and noncontact EEG sensors for
mobile brain—computer interfaces. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 20(2), 228-235.
Cruz-Garza, J. G., Brantley, J. A., Nakagome, S., Kontson, K.,
Megjhani, M., Robleto, D., & Contreras-Vidal, J. L. (2017).
Deployment of mobile EEG technology in an art museum setting:
evaluation of signal quality and usability. Frontiers in human
neuroscience, 11, 527.

Bhagat, N. A., Venkatakrishnan, A., Abibullaev, B., Artz, E. J.,
Yozbatiran, N., Blank, A. A., ... & Francisco, G. E. (2016).
Design and optimization of an EEG-based brain machine
interface (BMI) to an upper-limb exoskeleton for stroke
survivors. Frontiers in neuroscience, 10, 122.

T. Merchak, “Concept to Clinic: Commercializing Innovation
(C3i) Program,” National Institute of Biomedical Imaging and
Bioengineering. Available as of 7/8/2019:
https://www.nibib.nih.gov/research-funding/concept-clinic-
commercializing-innovation-c3i-program

Kilicarslan A, Contreras-Vidal JL.Characterization and real-time
removal of motion artifacts from EEG signals.J Neural Eng. 2019
Jun 20. doi: 10.1088/1741-2552/ab2b61.

Bowsher K, Civillico EF, Coburn J, Collinger J, Contreras-Vidal
JL, Denison T, Donoghue J, French J, Getzoff N, Hochberg LR,
Hoffmann M, Judy J, Kleitman N, Knaack G, Krauthamer V,
Ludwig K, Moynahan M, Pancrazio JJ, Peckham PH, Pena C,
Pinto V, Ryan T, Saha D, Scharen H, Shermer S, Skodacek K,
Takmakov P, Tyler D, Vasudevan S, Wachrathit K, Weber D,
Welle CG, Ye M.Brain-computer interface devices for patients
with paralysis and amputation: a meeting report.J Neural Eng.
2016 Apr;13(2):023001. doi: 10.1088/1741-2560/13/2/023001.
REX Bionics Product Info. (2019) Retrieved from
https://www.rexbionics.com/product-information/ on 7/8/2019.
United States Patent and Trademark Office (USPTO) Patent #
US20150012111, “Methods for closed-loop neural-machine
interface systems for the control of wearable exoskeletons and
prosthetic devices”, granted on October 9, 2018; also
WO2015003118A1.

United States Patent and Trademark Office (USPTO) Patent #
US9468541, “Time Domain-based Decoding Methods for
Noninvasive Brain-Machine Interfaces”, granted on October 18,
2016.



	I. INTRODUCTION
	II. Methods
	A. Brain Machine Interface (BMI) Module
	B. Information and Control (IC) Module
	C. The Single Degree of Freedom Upper Limb Rehabilitation Robot

	III. Technical Challenges
	A. Cost
	B. Portability
	C. Interoperability and Usability
	D. Form factor
	E. Reliability
	F. Denoising algorithms

	IV. Commercialization Strategy
	A well-defined commercialization strategy will significantly increase the ability to overcome the many regulatory and commercial challenges in the path towards commercialization. Approaches to addressing the regulatory and commercial challenges were d...
	A. Regulatory Challenges
	B. Validation of the Customer Needs and Business Model
	C. Optimizing Key Roles and Metrics
	D. Envisioned Plan beyond the Project

	V. Conclusion
	Acknowledgment
	The authors would like to acknowledge Youngmok Yun from Harmonic Bionics, Gerard E. Francisco from Memorial Hermann Hospital’s Institute for Rehabilitation and Research (TIRR), Igor Alvarado from National Instruments, and Shaheen Lokhandwala from the ...
	References

