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Time-Scale Transformed Iterative Learning Control for a Class
of Nonlinear Systems With Uncertain Trial Duration

Patrick M. Sammons , David Hoelzle , and Kira Barton

Abstract— Iterative learning control (ILC) is a powerful tool
for improving the tracking performance in systems characterized
by trial-repetitive behavior, including exogenous signals such as
references and disturbances, through repeated update of control
signals based on previous error histories. The application of ILC
algorithms to physical systems typically requires trial-to-trial
invariance that is expressed as a set of assumptions on the
operation of the process. Among these assumptions is that the
duration of the system trajectory is trial-invariant. In some
physical processes, however, the trial duration may be a function
of system outputs or states that may force the trial to be either
shorter or longer than expected. This results in situations in
which the trial duration is unknown a priori, breaking the
typical invariance assumptions, but in which updating the control
input is still desired. In order to address this class of processes,
the approach proposed here uses a time-scale transformation
to nondimensionalize the trial duration. An ILC algorithm is
then proposed on the nondimensional time scale, and it is
shown that the output error converges asymptotically toward the
origin. A learning operator design is proposed, which provides a
direct tradeoff between convergence rate and steady-state error.
Simulation results on a benchmark nonlinear system demonstrate
the efficacy of the proposed approach.

Index Terms— Iterative learning control (ILC), time-scale
transformation, uncertain systems.

I. INTRODUCTION

ITERATIVE LEARNING CONTROL (ILC) is a feedfor-
ward control scheme that attempts to improve dynamic

system tracking performance by utilizing historical input and
output data. ILC is characterized by operation over two
dimensions—a bounded interval (typically time or space)
along which the nominal system dynamics that evolve can
be either continuous or discrete and an unbounded discrete
interval, termed the trial domain, along which the control
input is updated. On each trial, the historical data are filtered
through a control update law to generate control inputs for the
next trial. In this way, repetitive disturbances can be rejected
and tracking performance can be improved over conventional
feedback controllers that do not have the ability to incorporate
historical trial data.
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ILC has received considerable attention in the past several
decades for applications ranging from robotics to chemical
manufacturing processes [1]. The conventional implementation
of an ILC algorithm in these applications requires the invo-
cation of several invariance assumptions. In short, the system,
which includes the plant, exogenous signals, trial duration,
and initial conditions, is trial-invariant [2], [3]. While these
assumptions seem restrictive at first glance, many physical
systems and processes, during normal operation, satisfy these
assumptions. However, there are also many systems that
do not satisfy all of these assumptions despite operating
in a repetitive, also termed trial-to-trial, manner. In these
cases, analyses, and algorithms that leverage these analyses,
are needed to understand the implications of relaxing these
assumptions.

Relaxation of the constraint on matched initial conditions
has seen some of the earliest attention as this is arguably
the most difficult to completely satisfy in practice [4], [5].
Methods to treat systems with trial-varying plant dynamics
have been proposed [6], [7]. Further, algorithms for track-
ing trial-varying references have also been proposed, for
example, the internal model in [8], the basis function approach
in [9], and the “library”-based approaches in [10]–[13].
In [12] and [13], a direct learning approach is taken where
the control input is computed from a complete knowledge of
the plant and the iteration-to-iteration feedback loop is broken.
In addition, the goal of the methods proposed therein is to
learn new input signals for different desired references, given
a “library” of previous outputs and inputs. In [14], linear time-
varying systems are treated in a similar fashion to [15] where
sections of systems signals are zeroed out to ensure learning
only on observed intervals. However, attempting to learn a
single trajectory in the face of uncertain trial duration for
nonlinear systems without requiring manual treatment of the
control signal has received relatively little attention.

Repetitive systems with trial-varying trial duration occur in
several applications. For example, in human gait, the duration
of each gait cycle (with a complete gait cycle as the trial
analog) can vary, in addition to the duration of the stance
and swing sections of the gait cycle [16]. The uncertain trial
length arising in human gait systems was treated using a
discrete-time linear system lifted framework in [15] and [17].
In this approach, the lifted control update signal is manually
set to zero when the trial duration is shorter than the max-
imum expected duration. A similar class of gait systems is
approached using a repetitive control methodology, i.e., repet-
itive in the time-domain, in [18] where a time-sample scaling
factor is used to correct for errors in cycle duration. Moore [19]
and Moore and Mathews [20] proposed a discontinuous update
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law to toggle learning based on the trial duration and applied
the algorithm to the Gas-Metal Arc Welding process to
improve mass flow rate repeatability. Another example of
uncertain trial length in manufacturing is electrohydrodynamic
jet (e-jet) printing where the time-to-ejection and duration of
ejection vary as a function of the input [21]. In addition to
the application-oriented approaches above, other approaches
treat the trial duration as a random variable [22], [23], and
ensure convergence with respect to an expectation operator.
In contrast to the approaches mentioned above, the algorithm
proposed here addresses a more general class of systems,
nonlinear control-affine systems with a priori unknown trial
duration, via a time-scale transformation, inspired by [24]
and [25] and similar to the approach in [18]. In contrast
to [24], [25], however, here a distinct time-scale transforma-
tion is applied on each trial. Despite this, the simplicity of
conventional proportional ILC update laws is retained. The
time-scale transformation scales the output trajectory to a
nondimensional trial duration over which the control law is
updated. This leads to a robust control-oriented methodol-
ogy with a tradeoff between tracking accuracy and system
uncertainty, in the form of the uncertain trial duration. Existing
literature regarding trial-dependent duration has addressed a
wide range of systems. The focus of the work presented here,
however, is on nonlinear systems where the trial duration is
assumed unknown a priori, but bounded. Further, the proposed
control update law does not require a manual restriction of the
control input to the observed duration and is the only signal
that undergoes an update or transform trial-to-trial.

The rest of the brief is structured as follows. First,
in Section II, some preliminaries are given to aid in the
development of the ILC method. In Section III, the state-
ment and assumptions of the control problem are presented.
Section IV presents the main result of the brief showing
asymptotic convergence. In addition, Section IV provides
detail regarding control design. In Section V, the proposed
control methodology is applied to a benchmark nonlinear
system in two simulation cases. Finally, a summary of the
work, as well as conclusions and areas for future work, are
given in Section VI.

II. PRELIMINARIES

This section summarizes some necessary preliminaries for
the results presented later in this brief.
Definition 1 (Lie Derivative): Let f : D → R

n and h :
D → R with D ⊂ R

n . The Lie Derivative of h along f is
defined as

L f h(x) = ∂h

∂x
f (x).

Repeated application of the Lie Derivative is denoted as

Lk
f h(x) = L f L

k−1
f h(x) = ∂

(
Lk−1

f h(x)
)

∂x
f (x)

with L0
f h(x) = h(x). The Lie Derivative of h first along f

then along g : D → R
n × R

m is defined as

LgL f h(x) = ∂(L f h(x))

∂x
g(x).

The Lie Derivative has a rich history in nonlinear control
systems. The reader is directed to other sources, for exam-
ple [26], for a deeper treatment.
Definition 2 (Relative Degree): Let f , h, and g be defined

as above, where ẋ = f (x) + g(x)u and y = h(x). Then,
the system has relative degree η at x = x0 if

1) LgLk
f h(x) = 0 for k < η − 1 and in a neighborhood

of x0.
2) J (x) = LgL

η−1
f h(x) �= 0 in a neighborhood of x0.

Definition 3 (Time-Weighted Norm [27]): The time-weigh-
ted norm of l ∈ X , or the ω-norm, is defined as

‖l(t)‖ω = sup
t

‖l(t)‖e−ωt

where ω > 0, ‖·‖ is any norm on X , and t ∈ [0, T ]. The
ω-norm is equivalent to the supremum norm

‖l(t)‖ω ≤ ‖l(t)‖∞ ≤ eω‖l(t)‖ω.

Definition 4 (Time-Scale Transformation): A time-scale
transformation T : [0, T ] → [0, 1] maps absolute time
coordinates t ∈ [0, T ], 0 < T < ∞, to a nondimensional unit
interval τ and is written as

τ = T (t)

where τ ∈ [0, 1]. A special case of the time-scale transforma-
tion is the constant scaling

T (t) = t

T
.

Remark 1 (Time-Scale Transformation Derivatives): For a
time-scale transformation T , transformed signal derivatives
can be calculated from the absolute time-scale signal as

x (k)(t) =
(
dτ

dt

)k

x (k)(τ )

where x (k) denotes the kth time derivative of x for k ∈ Z+
and (·)k denotes the exponentiation operation. For the special
case of a constant time-scale transformation given above,
signal derivatives of x(τ ) with t ∈ [0, T ] are calculated as

x (k)(τ ) = T kx (k)(t).

III. PROBLEM FORMULATION

Consider a nonlinear system of the form

ẋ j (t) = f (x j (t)) + g(x j (t))u j (t)

y j (t) = h(x j (t)) (1)

where j ∈ Z+ is the trial index, t ∈ [0, Tj ] is the trial time
index, Tj is the trial duration, x ∈ R

n is the state vector,
u ∈ U ⊂ R

m is the input vector, U is a bounded subset
of R

m , y ∈ R
p is the output vector, f : R

n → R
n is the

state mapping, g : Rn → R
n × R

m is the input mapping, and
h : Rn → R

p is the output mapping.
Let T j (t) = (t/Tj ) be a time-scale transformation that is

applied on each trial. Then, under the time-scale transforma-
tion in conjunction with Remark 1, (1) is

ẋ j (τ ) = f j (x j (τ )) + g j (x j (τ ))u j (τ )

y j (τ ) = h(x j (τ )) (2)
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where f j = Tj f and g j = Tj g. Note that the output
mapping h is unchanged. Assume the following about the
system.
A1. The trial duration on trial j is unknown a priori, but

bounded, Tj ∈ [Tl , Tu] for all j ∈ Z+ and 0 <
Tl < Tu < ∞. The trial duration can be determined
a posteriori.

A2. The mapping from input u to output y (through the
mapping from u to x) is one-to-one and there exists
a control input u∞ such that

ẋ∞(t) = f (x∞(t)) + g(x∞(t))u∞(t)

r(t) = h(x∞(t))

where r is the system reference, x∞ is the reference state
trajectory, t ∈ [0, T∞], and T∞ is the known reference
duration. The time-scale transformed reference system is

ẋ∞(τ ) = f∞(x∞(τ )) + g∞(x∞(τ ))u∞(τ )

r(τ ) = h(x∞(τ ))

A3. The mappings in (1) are Lipschitz with respect to x
for all t , and where appropriate, Lipschitz in T for all
Tj ∈ [Tl, Tu]. That is, there exist constants ρ f,x , ρ f,T ,
ρg,x , and ρg,T such that

‖T1 f (x1(τ )) − T2 f (x2(τ ))‖ ≤ ρ f,x‖x1(τ ) − x2(τ )‖
+ ρ f,T |T1 − T2|

‖T1g(x1(τ )) − T2g(x2(τ ))‖ ≤ ρg,x‖x1(τ ) − x2(τ )‖
+ ρg,T |T1 − T2|

for all xi ∈ R
n , τ ∈ [0, 1], and Tj ∈ [Tl, Tu]. In addition,

there exists a constant ρh,x such that

‖h(x1(τ )) − h(x2(τ ))‖ ≤ ρh,x‖x1(τ ) − x2(τ )‖.
A4. The relative degree of the nonlinear system is η for all t
A5. The reference signal is continuously differentiable at

least η times.
Assumption A1 ensures that both the trial duration is

nontrivial, i.e., Tj > 0, and that a trial occurs in finite
time. In addition, a bounded trial duration, both above and
away from zero, ensures that the time-scale transformation
is bounded. Further, in order for a time-scale transforma-
tion to be possible using previous trial information, the trial
duration must be accessible at the completion of a trial.
Note, however, that it is not assumed that there is knowledge
of the trial duration bounds. Assumption A2 ensures that
a reference trajectory exists and that, if a control input is
chosen correctly, it is possible to reconstruct the reference
trajectory. Assumption 2 is necessary for the result pro-
vided here as convergence in the input space is used as an
intermediate step to show convergence in the error space.
While it may be possible to relax this assumption, it is not
considered here. Knowledge of the reference trial duration
follows from Assumption A1. In addition, knowledge of the
reference trajectory implies knowledge of the reference trial
duration, T∞. As mentioned in the introduction, applications
where this hold include the droplet ejection dynamics in

e-jet printing where the desired time to ejection (or interval
between ejection events) is a design parameter, [21], [28], time
between gait phases in human gait systems [18], and many
motion control problems. Therefore, the reference duration is
known a priori. Assumption A3 ensures both continuity of
the mappings f , g, h, and the Lie derivatives of the system
in (1). Continuous differentiability of f and g is not assumed.
Finally, Assumptions A4 and A5 are required to iteratively
apply the update law that is proposed in Section IV. Implicit
in A4 is the fact that h is continuously differentiable at least η
times

IV. ILC DESIGN AND ANALYSIS

In this section, the assumptions and problem formulation
given above are leveraged to present an appropriate ILC update
law and to show the convergence of the algorithm.

The unique challenge of attempting to implement conven-
tional ILC on systems where the trial length is uncertain
a priori is that control and error signals on different trials
are defined over different intervals. Attempting to treat these
systems in absolute time coordinates would require marking
different sections of the output trajectories as suitable and not
suitable for learning. However, this leads to a discontinuous
update law and specific switching logic for the control signal.
An alternative is to scale each trial duration to a common
interval and implement the update algorithm on the common
interval. Once the transformation to a common interval is
performed, conventional ILC update laws can be leveraged
as the transformed system is equivalently trial-invariant. This
is the approach taken here.

Let e j (t) = r(t) − y j (t) be the tracking error defined over
t ∈ [0, Tj ]. As above, the i th time derivative of e j is denoted
by e(i)

j . In this brief, an ILC update law of the form

u j+1(τ ) = q j (τ ) ∗ (
u j (τ ) + �(τ)e(η)

j (τ )
)

(3)

where τ ∈ [0, 1], q j is a robustness filter, � is the static
learning gain, and (·)∗(·) represents the convolution operation,
is considered. The filter q j is a common element of ILC
laws that aim to remove unwanted frequency content from
the control law. Note that while the learning gain � is
time-varying, there does not exist any dynamics between it
and the error term e(n)

j . For the sake of clarity and com-
pactness in presentation, only the single-in, single-out (SISO)
case is considered here. However, extension to the multi-in
multi-out (MIMO) case is straightforward with appropriate
modifications to the proof. Details of these modifications are
provided in the Appendix. Below is the main result of the
work.
Theorem 1 (SISO Case, p = m = 1): The error of the sys-

tem (2) and (3) converges asymptotically to a ball centered at
the origin, with respect to j , if

sup
τ∈[0,1]
∀ j∈Z+

‖q j (τ ) ∗ (1 − �(τ)J (x∞))‖ = ρ < 1 (4)

where J (x∞) = Lg∞Lη−1
f∞ h(x∞(τ )).
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Proof: First, note the error derivatives can be written as

e(η)
j (τ ) = r (η)(τ ) − y(η)

j (τ )

= dη−1

dτη−1

d

dτ
r(τ ) − dη−1

dτη−1

d

dτ
y j (τ )

= dη−1

dτη−1

dx

dτ

d

dx
h(x∞(τ )) − dη−1

dτη−1

dx

dτ

d

dx
h(x j (τ ))

= dη−1

dτη−1 L
1
f∞h(x∞) − dη−1

dτη−1 L
1
f j h(x j )

= Lη
f∞h(x∞) − Lη

f j
h(x j )

+ Lg∞Lη−1
f∞ h(x∞)u∞ − Lg j L

η−1
f j

h(x j )u j (5)

where by the definition of relative degree, the input signal
u does not appear until the output has been differentiated η
times. Then, using (5) in (3), denoting δu j = u j − u∞ and
dropping the τ argument for compactness, gives

δu j+1

= q j ∗ (
u j+�e(η)

j

)−u∞
= q j ∗ (

u j+�
[
Lη

f∞h(x∞)−Lη
f j
h(x j )

+ Lg∞Lη−1
f∞ h(x∞)u∞−Lg j L

η−1
f j

h(x j )u j
])−u∞

= q ∗ (
1 − �Lg∞ Lη−1

f∞ h(x∞)
)
(δu j )

+ q ∗ �
(
Lg∞ Lη−1

f∞ h(x∞)−Lg j L
η−1
f j

h(x j )
)
u j

+ q ∗ �
(
Lη

f∞h(x∞)−Lη
f j
h(x j )

)+(q − 1) ∗ u∞. (6)

Denote δx j = x j − x∞ and δTj = Tj − T∞. Then, taking the
norm of both sides of (6) gives

‖δu j+1‖ ≤ ρ‖δu j‖ + c1γx, j‖δx j‖
+ c1γT , j |δTj | + sup

τ∈[0,1]
j∈Z+

‖(q j − 1) ∗ u∞‖ (7)

where c1 = supτ, j‖q j ∗ �‖, γx, j = m f,x + mg,xmu , mu =
supu‖u‖, γT , j = m f,T + mg,Tmu , m f,x and m f,T are the
Lipschitz constants of the Lie derivatives Lη

f h(x) with respect
to x and T , respectively, and mg,x and mg,T are the Lipschitz
constants of the Lie derivatives LgL

η−1
f h(x) with respect to

x and T , respectively. This follows from continuity of f , g,
and h. Using the system dynamics (2), Grönwall’s lemma [27],
and the definition of the ω-norm, δx j can be bounded by

‖δx j‖ω ≤ ρx(c2‖δu j‖ω + γT ,∞|δTj |) (8)

where ρx = supτ (1 − e−ωτ )(ω − γx,∞(1 − e−ωτ ))−1, γx,∞ =
m f,x + mg,x‖u∞‖, γT ,∞ = m f,T + mg,T ‖u∞‖, and c2 =
‖g(x)‖. Using the definition of the ω-norm in (7) with (8)
gives

‖δu j+1‖ω ≤ (ρ + c1γx, jρxc2)︸ ︷︷ ︸
ρu

‖δu j‖ω

+ (c1γx, jρxγT ,∞ + c1γT , j )︸ ︷︷ ︸
ρT

|δTj |

+ sup
j

‖(q j − 1) ∗ u∞‖ω

︸ ︷︷ ︸
υ∞

. (9)

Since ρ < 1, there exists a value of ω sufficiently large such
that ρx ≈ 0 and thus ρu < 1. Then, it is easy to show that

lim
j→∞‖δu j‖ ≤ ρT |Tu − Tl | + υ∞

1 − ρu
. (10)

Finally, from A2 and the system dynamics

‖e j‖ω ≤ ρh,xρx
(
c2‖δu j‖ω + γT ,∞|δTj |

)

and therefore

lim
j→∞‖e j‖ ≤ ρh,xρx

(
c2

ρT

1 − ρu
+ γT ,∞

)
|Tu − Tl |

+ ρh,xρxc2
υ∞

1 − ρu
. (11)

�
The following remarks provide general insights into the

proof presented above.
Remark 2: The result in Theorem 1 ensures only asymp-

totic convergence which is in contrast to many ILC schemes
which show monotonic convergence to the origin. While it
may be possible to achieve this result for the class of systems
considered here, it is reserved for future work.
Remark 3: The final ball to which the tracking error con-

verges, (11), contains numerous design and system parameters.
However, clearer representation of the parameters that influ-
ence the magnitude of the converged error is given in (10).
The parameters ρu , ρT , and υ∞ are influenced by control
design choices. The convergence parameter ρu is a function
of the learning gain � through ρ, in addition to the q-filter
through c1. The parameter ρT is also influenced by the q-filter
and the learning gain � through c1. Finally, υ∞ is explicitly a
function of the q-filter. While the aforementioned parameters
are influenced by control design, the remaining parameters
in (11) are dependent on the system properties and are largely
influenced by the magnitude of the operators f and g, in
addition, the Lipschitz constants of these parameters both with
respect to x and T . The final ball to which the error converges,
however, is dependent on the choice of the time-weighted
norm parameter ω. Further, the time-weighted norm is upper
bounded by the supremum norm, and, therefore, the ball given
in (11) is a conservative upper bound on the converged error.
Remark 4: In the development of Theorem 1, it is assumed

that the trial length is unknown but bounded on each trial by
the constants Tu and Tl . In some practical situations, it might
be the case that as tracking error decreases, the bounds on
the trial length may shrink. Further, in some cases, as will
be demonstrated in the simulation section, the trial duration
may converge to a trial-invariant value as tracking performance
improves. Clearly then, from (11), tracking performance can
be significantly improved in these cases. In addition, by exam-
ining (10) and (11), it can be seen that when the trial duration
is known, i.e., Tu = Tl and T∞ = Tj , the associated terms
on the right-hand side (RHS) disappear and, as expected, it is
possible to recover zero-error convergence in the limit.
Remark 5: The second term on the RHS of (11) denotes

the residual tracking error due to the filter q . Performance
improvements can be made by designing q such that it
minimizes ‖q − 1‖.
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Fig. 1. Schematic of the proposed ILC update law implementation. Error
signals are transformed into τ -coordinates, the control law is updated for trial
j + 1, and the updated control law is transformed into the Tu time-scale.

The following remarks and Lemma are specific properties
that arise from the treatment of the ILC problem through the
use of the time-scale transformation.
Remark 6: Typically, the filter q is designed to be a low

pass filter in order to attenuate unwanted high-frequency
content from entering the control signal. When designing the
filter q , a notion of the allowable bandwidth is needed. Since
this would be done in practice based on the desired trial
duration, and the time-scale transformation distorts frequency
content, a method is needed to update the q filter to ensure
the proper bandwidth is retained. One method to retain the
desired frequency domain properties of q is to use the Laplace
transform property

q j (t) = q j (Tjτ ) ↔ 1

Tj
Q j

(
s

Tj

)
(12)

where Q(s) = L{q(t)} is the frequency-domain representation
of q .

With a known filter structure and the property pair given
above, a simplification of Theorem 1 can be presented.
Lemma 1: Let q be a filter with desired trial-invariant

frequency response properties over the normalized interval
τ ∈ [0, 1]. The system (2) and (3) converges asymptotically
to a ball centered at the origin, with respect to j , if

sup
τ∈[0,1]

T∈[Tl ,Tu]

∥
∥qT (τ ) ∗ (

1 − �(τ)Lg∞ Lη−1
f∞ h(x∞(τ ))

)∥∥ = ρ < 1

(13)

where now the robustness filter is parameterized by T .
Proof: Follows directly from Theorem 1 and the property

pair above. �
Remark 7: The implementation of the control law in (3)

requires two time-scale transformations: one transformation
from t with trial duration Tj to τ -coordinates and a sec-
ond transformation from τ -coordinates to t with trial dura-
tion Tj+1. However, as it is assumed that this is not known
a priori, a logical estimate for the time scale is the reference
time scale T∞. In nearly all practical situations, and ensured by
Assumption A2 in Section III, T∞ is known. This estimate of
Tj+1 is consistent with the result of Theorem 1. A schematic
of the update law algorithm is shown in Fig. 1.
Remark 8: Examining (2) above reveals that the time-

scaled system is in essence the original system with an
uncertain gain on the state-to-state mapping f and the input-
to-state mapping g. Therefore, the ILC algorithm provided in
this brief is equally effective for the original class of systems,

i.e., of the form (17), with an unknown, but bounded gain

ẋ j (t) = K j ( f (x j (t)) + g(x j (t))u(t))

y(t) = h(x j (t)) (14)

where K j ∈ [Kl, Ku ] is a gain on the system for each trial,
t ∈ [0, T ] and T is the trial-invariant trial duration. By posing
the same problem as being of trial-invariant duration and trial-
varying gain, established analyses such as those in [29] can
be applied.

A. q-Filter and Learning Operator Design

There are two user-determined parameters in (3): the filter
q and the gain �. Following the proof for Theorem 1, the two
controller parameters play different roles in the overall system
performance. The learning gain � determines the error con-
vergence rate, while the filter q determines which frequency
ranges of the system should be learned. In conventional ILC,
when certain conditions on the plant P are met, the learning
gain can be chosen to approximate the plant inverse such that
‖1−�P‖ is as close to zero as possible [30]–[32]. In addition,
the filter q is chosen such that high-frequency content is
attenuated. While the filter q and the learning gain � function
in similar ways here, some guidelines are presented to aid in
the selection of the learning gain � and the robustness filter q .

The stability requirement and performance guarantees of
Theorem 1 require that the condition in (4) be satisfied.
However, in practice, it may be difficult to find a learning
gain � which satisfies this condition. A unique challenge
with the proposed approach is the possibility for the desired
reference signal to cause J in (4) to become ill-conditioned.
In this case, a pure “plant inverse” design �(τ) = J−1(x∞)
is not feasible or desired. In order to avoid inverting an
ill-conditioned J , and to provide a systematic method for
designing � for the class of systems considered here, a choice
for selecting the learning operator is

�(τ) = (Jᵀ(x∞(τ ))J (x∞(τ )) + λ2 I )−1 Jᵀ(x∞(τ )) (15)

where λ is a tuning parameter and (·)ᵀ is the transpose
operator. The operator selection in (15) satisfies

min
�(τ)

(‖I − �(τ)J (x∞(τ ))‖2 + λ2‖�(τ)‖) (16)

and λ determines the tradeoff between solution accuracy,
i.e., minimization of (4), and the magnitude of the gain �.
Note that the solution in (15) is termed the damped least
squares solution [33], [34] and is a single step of the
Levenberg–Marquardt algorithm.

Examining (10), it can be observed that the magnitude
of the ball to which the input converges is, for sufficiently
large ω, proportional to the inverse of 1 − ρ. In the limit with
‖1 − �Lg∞ Lη−1

f∞ h(x∞)‖ ≈ 1, the input converges slower to a

ball of larger radius than if ‖1 − �Lg∞ Lη−1
f∞ h(x∞)‖ ≈ 0.

However, note that the uncertainty in the trial duration is
proportional to the constant c1 and thus the learning gain
� as in (10). Therefore, there exists a tradeoff between the
rate at which the error converges and the magnitude of the
converged error. A schematic of the convergence performance
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Fig. 2. Schematic of the convergence performance properties for two designs
where �1 < �2 and ε2 < ε1 < ε0. The convergence rate is faster for �2 with
j1 < j2 < j3 than for �1, in addition to converging to a smaller ball centered
on the origin. Note that in both cases, the error may grow in magnitude as
only asymptotic, not monotonic, convergence is guaranteed.

tradeoff is shown in Fig. 2 for a case where the trial duration
uncertainty is small compared to the term υ∞ for simplicity
of presentation.

The selection of q is more application-specific than the
learning gain �, but the typical structure is that of a low-
pass filter. In the framework presented here, the implemen-
tation of the filter q is in τ -coordinates. In many practical
situations, there is knowledge of the desired frequency content
to be learned in absolute time coordinates, i.e., t ∈ [0, Tj ].
Therefore, a design procedure for q is as follows. First, select
the structure of q such that it has unit gain

∫ ∞

−∞
q(t)dt = 1.

Then, set the application specific filter bandwidth with respect
to absolute time coordinates. Finally, perform the transforma-
tion to τ -coordinates using the property pair in Remark 6.

V. NUMERICAL EXAMPLE

In this section, the ILC algorithm presented in the previous
section is applied to a benchmark nonlinear system. Details
of the system, the control design, and finally, the simulation
results are provided.

A. Benchmark Nonlinear System

Consider the following nonlinear mass-spring-damper
system
[
ẋ1, j (t)
ẋ2, j (t)

]
=

[
x2, j (t)

−K (x1, j (t)) − B(x2, j (t))

]
+

[
0

F(x1, j (t))

]
u j (t)

y j (t) = [
1 2

]
x j (t) (17)

where t ∈ [0, Tj ] is the trial duration (s), x j = [x1, j x2, j ]ᵀ is
the state vector, u j is the input signal, and

K (x(t)) = kx5(t)

B(x(t)) = bx2(t)sgn(x(t))

F(x(t)) = a + x(t)sgn(x(t)) (18)

with k = 1, b = 1, and a = 0.1. While the system considered
here is not explicitly modeling a physical system, it is similar
in structure to many physically relevant systems such as the
ejection dynamics in e-jet printing [28].

Fig. 3. Reference trajectory for each of the three simulation cases presented.

Two different simulation cases are considered here: a case
where the trial duration is dictated by an output-dependent
function without output noise and a case where the trial
duration is dictated by the same output-dependent function
with output noise. For both cases, the reference trajectory
shown in Fig. 3 is used with T∞ = 4. The q−filter is chosen as
a causal, first order low-pass filter with a cutoff frequency of
4 kHz on the normalized trial duration. This cutoff frequency
maps to 1 kHz on the reference trial duration T∞.

Examining the system in (17), it can be seen that the relative
degree is η = 1 and the Lie Derivative is

J (x∞) = Lg∞L0
f∞h(x∞) = T∞F(x1,∞). (19)

Remark 9: In order to check stability and design a control
gain using the procedure detailed in Section IV-A, knowledge
of x∞ is needed. With Assumption 2, the nonlinear system is
one-to-one, and it is possible to invert the system dynamics,
given r , to find an estimate of the reference states. Then,
the Lie derivative above can be calculated.

B. Case 1

In the first simulation case, the system in (17) is treated
as known with no uncertainty and the trial duration is deter-
mined by

Tj =
{
t f inf{t f = t | y j (t) ≥ 1.10r(t)}
Tu otherwise

(20)

where t f is the time instant when the inequality above is true.
The system is simulated for M = 1000 trials with values of
λ = 0.1, 0.5, and 1.0. These values of λ are chosen to show
the effects of the magnitude of ρ in (4) on the error properties
in the trial domain.

Fig. 4 shows the supremum norm of the tracking error as
a function of trial for each value of λ (recall Definition 3).
As mentioned above, smaller values of λ, and in turn smaller
values of ρ, yield faster convergence and tighter error bounds.
This is demonstrated in the trial domain error plots in Fig. 4.
For the smallest value of λ = 0.1 and thus the largest magni-
tude learning gain �, the convergence occurs in approximately
five trials to a level of approximately 1.5×10−3. Alternatively,
for the largest magnitude of λ = 1.0, convergence does not
occur until approximately 40 trials and only to a value of
approximately 3 × 10−3.
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Fig. 4. Error magnitude as a function of trial for simulation cases 1 and 2.

Fig. 5. Input u and output y signal’s for selected trials for simulation case 1.

Selected input and output signals for Case 1 when λ = 1.0
are shown in Fig. 5. On trial j = 0, the initial input signal
results in a large output signal that violates the inequality
in (20). The ILC algorithm quickly updates the control law
such that the peak magnitude has moved earlier in the control
signal (approximately t = 2.5 s on both trials j = 2 and
j = 3). By trial j = 10, the ILC algorithm has sufficiently
learned the appropriate control law in order to closely track
the desired reference. Past approximately trial j = 40, the ILC
algorithm has converged and no further tracking performance
is gained. This is evidenced by the error plot in Fig. 4 and the
coincident control and output signals for trials j = 500 and
j = 750 in Fig. 5.

C. Case 2

In the second scenario, additive noise is included on the
output channel and is drawn from a normal distribution with
characteristics N (0, 1×10−4). The trial duration is determined
as in (20).

The trial domain error can again be observed in Fig. 4.
The trends with respect to λ follow the same as described for
Case 1. Further, as is expected, the performance is slightly
degraded by the additional process uncertainty. After con-
vergence, each error curve in Case 2 is offset above the
corresponding Case 1 error curve by approximately 5 × 10−3.
In Case 1, where no output noise is considered, the differen-
tiation required to obtain the error derivative needed for (3)

results in a relatively smooth signal. However, in this case,
where output noise is considered, the differentiation operation
results in a significantly noisier error derivative. Despite this,
however, the ILC algorithm successfully overcomes both the
uncertain trial duration and the output noise to achieve similar
performance to the noiseless case.

VI. CONCLUSION

Conventionally, implementation of ILC requires several
assumptions on trial-to-trial invariance be satisfied. Among
those is the assumption that the trial duration is constant.
However, there exist some practical examples of systems
that operate in a trial-to-trial manner where it is necessary
to relax this assumption. Here, an ILC update algorithm,
based on a time-scale transformation, is proposed to improve
tracking performance for a class of nonlinear, control-affine
systems where the trial duration is bounded, but unknown
a priori. A criterion is presented which, when satisfied, ensures
asymptotic convergence of the tracking error to a ball centered
at the origin. The magnitude of the ball is a function of both
the mappings in the nonlinear system and of the ILC update
law parameters.

A series of simulation cases show the efficacy of the pro-
posed solution. In two cases where the trial duration is deter-
mined by a function of the output, as tracking performance
improves, the trial duration converges to a trial-invariant value.
In these cases, higher learning gains yield faster convergence
and lower tracking error. This agrees well with intuition
and existing results of robust ILC. As compared to some
other ILC methodologies where the trial duration is uncertain,
the nonmonotone convergence of the approach taken must be
accounted for carefully. However, the less restrictive system
class and assumptions on trial duration greatly increase the
applicability of the proposed approach. Practical implemen-
tation of the proposed methodology, through the convergence
criterion, requires partial knowledge of the model and state
trajectories. This is solved here through the invertibility of the
output mapping. For higher relative degree systems, numerical
differentiation is required to reconstruct the necessary error
signals, but the noise introduced by this process can be
mitigated through the use of the q-filter. Application of the
ILC paradigm demonstrated in the simulations to a physical
system is an area of future work.

APPENDIX

Theorem 2 (MIMO System, p ≤ m): Consider a control
law of the form in (3) where now � ∈ R

m×p is a static learning
gain matrix and e(η)

j = [
eη1

1, j e
η2
2, j · · · eηm

m, j

]
is an error vector

corresponding to the vector relative degree of the system. The
error converges asymptotically to a ball centered at the origin,
with respect to j , if

sup
τ∈[0,1]
∀ j∈Z+

‖q j (τ ) ∗ (1 − �(τ)J (x∞))‖ = ρ < 1 (21)

where J (x∞) = Lg∞Lη−1
f∞ h(x∞(τ )).
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Proof: Define the error derivatives as

e(i)
k, j (τ ) = Li

f hk(x∞) − Li
f hk(x j ), 0 ≤ i ≤ ηk − 1

e(i)
k, j (τ ) = Li

f hk(x∞) − Li
f hk(x j )

+ [
Lg1L

i−1
f hk(x∞) . . . Lgp L

i−1
f hk(x∞)

]
u∞

+ [
Lg1L

i−1
f hk(x j ) . . . Lgp L

i−1
f hk(x j )

]
u j . (22)

Following similar arguments as in the proof of Theorem 1 by
denoting again δu j = u j − u∞ and defining as in (6) with
appropriate modifications for the error signals in (22) gives
the result. �
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