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these public and also private banks. While the two networks behave similarly pre-crisis, 
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networks respond differently to monetary and macroeconomic shocks. Physical networks 

forecast liquidity problems, while correlation networks forecast financial crises. 

Published by Elsevier B.V. 

� We would like to thank the following for valuable discussions and 

comments: Kirsten Anderson, Stefano Battiston, Guido Caldarelli, Rama 

Cont, Michael Gordy, Erik Heitfield, Andrew Karolyi, Luigi Ruggerone, and 

Clara Vega, and seminar participants at Babson College, Cornell Univer- 

sity, Hull University, the CFTC and the Board of Governors, and partici- 

pants to the conference of the Society for Computational Economics, Oslo, 

2014; at the International Association for Applied Econometrics Annual 

Conference, London, 2014; the workshop on “Systemic risk and macro- 

prudential regulation: perspectives from network analysis,” Bank of Eng- 

land, 2014; and the conference on “Behavioral Aspects in Macroeconomics 

and Finance,” Milan 2014. A preliminary draft of this paper was titled 

“The Breakdown of the Interbank Market during the Financial Crisis.”
✩✩ Mankad and Michailidis are supported by the National Science Foun- 

dation under Grant IIS-1633158 and Michailidis under Grants DMS- 

1545277 and CCE-1540093 . 
★ The views in this paper should not be interpreted as reflecting the 

views of the Board of Governors of the Federal Reserve System or of any 

other person associated with the Federal Reserve System. All errors and 

omissions, if any, are the authors’ sole responsibility. 
∗ Corresponding author. 

E-mail address: jharris@american.edu (J.H. Harris). 

1. Introduction 

The breakdown of liquidity in normally robust financial 
markets presents one of the enduring questions from the 
recent financial crisis. During the crisis, central bank inter- 
vention failed to enhance liquidity and, over short inter- 
vals, crowded out private liquidity ( Brunetti et al., 2011 ). In 
addition, precautionary hoarding by relatively weak banks 
during the crisis appeared to exacerbate market liquidity 
problems. 1 Given the central role that banks play in pro- 
viding valuable liquidity to many markets, the interbank 
market plays a significant role in facilitating market liq- 
uidity in the wholesale funding market. 2 As the Bank for 

1 See, for instance, Acharya et al. (2010); Heider et al. (2015); Ashcraft 

et al. (2011); Acharya and Skeie (2011), and Acharya and Merrouche 

(2013) . 
2 Interconnectedness is one of the five (equally important) characteris- 

tics used by the European Union to determine globally systemic impor- 

tant banks ( Bank for International Settlements, 2011 ). 

https://doi.org/10.1016/j.jfineco.2019.02.006 
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International Settlements 3 notes, during the recent crisis 
“a market run on an institution whose illiquid assets were 
financed by short-term liquid liabilities ... spread quickly 
and widely to other institutions and markets,” i.e., physi- 
cal network interconnectedness plays an important role in 
identifying a bank’s systemic importance. 

In this paper, we study interconnectedness in the Eu- 
ropean interbank market to explore whether, and how, 
bank interconnectedness evolved during the crisis using 
two different network structures—the correlation (Granger- 
causality) network of bank stock returns ( Billio et al., 2012 ) 
and the physical interbank trading network. We study how 

interconnectedness in these networks is affected by mon- 
etary and macroeconomic shocks related to the European 
Central Bank (ECB) interventions and announcements of 
both conventional and unconventional ECB operations (see 
Rogers et al., 2014 ). Further, we explore whether intercon- 
nectedness metrics help to forecast financial and economic 
activity. 

We show that during the crisis, physical network con- 
nectedness drops significantly, reflecting hoarding behavior 
among banks, which impairs interbank market liquidity. 
Conversely, and similar to results in Billio et al. (2012) and 
Diebold and Yilmaz (2014) , we find that European bank 
correlation networks reveal increased connectedness dur- 
ing the crisis. These findings show that correlation and 
physical networks evolve differently and reflect different 
economic content. While the physical trading network 
reveals the breakdown between banks, the correlation 
network reveals that banks equity returns were moving 
closely together during the crisis. 

We further explore the source of these interconnected 
changes by utilizing information on the country of ori- 
gin for each bank, by core Europe (those from Austria, 
Belgium, France, Germany, Luxemburg, and the Nether- 
lands), peripheral countries (those from Greece, Ireland, 
Italy, Portugal, and Spain), and others (those from Den- 
mark, Great Britain, Norway, and Switzerland). Within cor- 
relation networks, banks from peripheral countries consis- 
tently contribute most to changes in interconnectedness. 
However, within the physical network, banks from both 
peripheral and core European countries are important at 
different times, with the importance of banks from core 
countries bottoming out immediately following the failure 
of Lehman Brothers on September 15, 2008. 

We also find that correlation and physical networks re- 
spond differently to monetary and macroeconomic shocks. 
Early in the crisis central banks intervened heavily to pro- 
mote funding and market liquidity. Interconnectedness in 
physical networks adjusts strongly and quickly to these 
central bank operations and announcements, revealing im- 
portant market characteristics related to interbank trad- 
ing at short (daily) horizons. Conversely, interconnected- 
ness in correlation networks changes little in response to 
these events, presumably since these announcements and 
interventions have little impact on the factors driving stock 

3 Bank for International Settlements, 2011 . Global systemically impor- 

tant banks: assessment methodology and the additional loss absorbency 

requirement. 

returns. 4 In this light, monitoring the response of the inter- 
bank market to announcements and interventions is more 
valuable to policy makers interested in monitoring and en- 
hancing interconnectedness among banks. 

We further compare networks to test whether intercon- 
nectedness measures might serve to forecast short-term 

(daily) economic conditions. We show that correlation and 
physical networks can identify (and forecast), at the daily 
horizon, hard information like industrial production and 
retail sales. Complementarily, physical interbank trading 
networks serve to identify weakening interconnectedness 
in the interbank system that may lead to liquidity prob- 
lems in the wholesale funding market. 

Since the (US based) Lehman Brothers failure appears to 
have altered the dynamics of how European physical and 
correlation networks react to shocks, we also explore the 
lead-lag relations between interconnectedness in the cor- 
relation networks for the two continents. Consistent with 
these altered dynamics, we find that US network variables 
(such as degree, clustering coefficients, etc.) significantly 
Granger-cause the European network variables in the two 
sub-periods leading up to the Lehman failure, but Euro- 
pean network variables more commonly Granger-cause US 
network variables in the post-Lehman periods. 

From a policy perspective, understanding both types of 
networks can be useful. Correlation networks constructed 
from equity market returns rely on publicly traded eq- 
uity prices and so cannot identify problem banks that 
are privately held. Likewise, correlation networks cannot 
distinguish between common exposures and transmission 
among banks, nor can they identify the different channels 
of transmission, a precondition for preventive and pallia- 
tive actions by policy makers and regulators. While corre- 
lation networks might better identify systemic risk, 5 phys- 
ical networks respond to smaller exogenous shocks and 
are useful in identifying both systemically important and 
problem banks on an ongoing basis. Physical networks 
are therefore more useful when exogenous shocks are not 
large enough to threaten systemic risk (i.e., most of the 
time). Since market liquidity depends crucially on the con- 
nectedness between banks, regulators would be well suited 
to monitor the interbank market for early signs of liquidity 
problems. 

Our work contributes to the literature on networks in 
finance, which, broadly speaking, distinguishes between 
correlation networks, where edges are based on asset 
return correlations (e.g. Billio et al., 2012; Diebold and 
Yilmaz, 2014 ), and physical networks, where links result 
from agent choices (e.g., banks A and B contract to ex- 
change overnight funds as in Cont et al. (2012). We demon- 
strate that the two types of networks capture related, 
but differing information sets, with correlation networks 
capturing both direct and indirect linkages and physical 
networks capturing more specific direct linkages among 

4 Similarly, Fiordelisi et al. (2014) and Ricci (2015) find that standard 

ECB interventions more effectively restore the interbank market, while 

nonstandard interventions register stronger reactions in stock prices. 
5 See Puliga et al. (2014) . 
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banks. 6 To guide this intuition, we develop an accounting 
framework that helps to illuminate the different nature of 
the two network structures. We then utilize the direct na- 
ture of our trading data to empirically compare and con- 
trast correlation and physical networks. 

The paper proceeds as follows. In Section 2 , we provide 
a review of the main literature. In Section 3 , we provide an 
accounting framework that helps in understanding the two 
different network formations. Section 4 describes our data, 
while Section 5 describes the interconnectedness metrics 
from the correlation and physical networks we construct. 
In Section 6 , we study how central bank announcements 
and interventions and traditional financial variables affect 
network topology in a forecasting exercise. We explore ev- 
idence of transmission between the US and Europe corre- 
lation networks in Section 7 and conclude with a brief dis- 
cussion in Section 8 . 

2. Network interconnectedness literature 

A number of research papers highlights how common 
holdings can drive interconnectedness within correlation 
networks. Much of the finance literature on networks con- 
centrates on how network structures are important for the 
propagation of shocks. Allen and Gale (20 0 0) and Upper 
(2006) shows that the network structure may exacerbate 
or attenuate contagion effects. In this literature, linkages 
(interconnectedness) between financial institutions may 
occur either as a result of common holdings or as a result 
of direct contractual agreements. 

Braverman and Minca (2014) describe how common as- 
set holdings among banks can transmit financial distress. 
If two banks, A and B , hold the same and an exogenous 
shock forces A to liquidate the asset, the price of the asset 
will decline and therefore change the value of B ’s portfolio. 
While links in the network of common asset holdings are 
not readily specified in bank balance sheets, they may be 
estimated by stock market price linkages. Braverman and 
Minca (2014) show that the severity of contagion depends 
on both common holdings and the liquidity of these com- 
mon holdings, with the higher the number of common as- 
sets, the higher is the possibility of contagion (a point first 
introduced by Shaffer, 1994 ). 

In a similar vein, Lagunoff and Schreft (1999 ) develop 
a model that shows that as economies increase in size, 
diversification opportunities also increase, which reduces 
network fragility. However, if the increase exceeds a given 
threshold, the high level of interconnectedness may in- 
crease financial fragility. Indeed, Cont and Wagalath (2013 , 
4) show that realized correlations in equity indices in- 
creased dramatically with the Lehman Brothers collapse 
and conjecture that the increased correlation resulted from 

the liquidation of large positions by market participants. 
Their model, in which returns are driven by both funda- 
mentals and liquidity, shows that even without correla- 
tion among fundamentals, liquidity correlations can gen- 

6 The linkages among our banks include, but are not limited to, in- 

terbank lending. Many are large banks, domiciled in a variety of Euro- 

pean countries (see below), and likely interact with additional business 

relationships. 

erate correlated asset returns, “thus losing the benefit of 
diversification exactly when it is needed”. 

Cabrales et al. (2014) model contagion as the transmis- 
sion of a pathologic disease, linking firms as they exchange 
assets to meet capital requirements and noting a trade-off
between risk sharing and contagion. Similarly, De Vries 
(2005) claims that banks, by holding similar portfolios, 
are exposed to the same market risks so that bank equity 
returns are asymptotically dependent. Likewise, Acharya 
and Yorulmazer (2008) show that if banks hold stakes 
in the same companies, bank equities are necessarily 
interdependent. 

A second burgeoning literature on financial networks 
examines contractual agreements similar to our physical 
network constructed from interbank trades. For example, 
Acemoglu et al. (2015) find that financial contagion is a 
function of the network structure–a network where all 
banks are connected is less fragile than an incomplete net- 
work for small exogenous shocks but is more fragile for 
large shocks. Similarly, Gai et al. (2011) present a theo- 
retical framework to show shocks can have large conse- 
quences, and Roukny et al. (2016) show the structure of 
(credit market) networks can affect the capacity of regula- 
tors to assess the level of systemic risk. 

Some works consider both correlation and physical net- 
works. Cifuentes et al. (2005) construct a model that incor- 
porates two channels of contagion: direct linkages through 
the interbank market and indirect linkages through com- 
mon holdings. Similarly, Caccioli et al. (2013) analyze both 
the network of common holdings and the physical net- 
work and show that in a crisis, contagion is mainly driven 
by common holdings, but it is amplified by trading in 
the physical network—i.e., both networks contribute to sys- 
temic risk. 7 

Most of this literature highlights the fact that common 
asset holdings, reflected in correlation networks, are the 
main source of systemic risk ( Elsinger et al., 2006 ) and that 
interbank lending (the physical network of bank connec- 
tions) plays only a marginal role. Conversely, we analyze 
these networks from a different angle. We aim to quantify 
the information content of these two network structures to 
better understand how policy decisions might be more ef- 
fective in ameliorating systemic risk and enhancing market 
liquidity in times of crisis. 

3. An accounting framework 

In order to highlight the two different network forma- 
tions, we adopt a simple accounting framework (follow- 
ing Shin, 2009a, b and Elliott et al. 2014 ) in which banks 
connect lenders to borrowers as intermediaries, collecting 
deposits from households and firms and investing the de- 
posits in a portfolio of assets, including loans to the house- 
hold sector (via mortgages and consumer debt) and firms. 

We now introduce some notation: 

1. y i, k denotes the market value of bank i ’s assets—
including loans to firms and households as well as k 
asset classes (equities, bonds, commodities, etc.). 

7 See also Allen and Babus (2010) and Allen et al. (2010) . In related 

work, Roukny et al. (2013) analyze bank network topology and find that 

topology matters only when the market is illiquid. 
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2. w i, k is the weight invested in each of the k assets by 
bank i ; 

∑ 

k 

w i,k = 1 . 

3. x i denotes the total value of liabilities of bank i held by 
other banks. 

4. x i, j is the value of bank i ’s liabilities held by bank j . 
5. π i, j is the share of bank i ’s liabilities held by bank j . 
6. e i indicates the market value of bank i ’s equity. 
7. d i is the total value of liabilities of bank i held by non- 

banks. 

Hence, banks i ’s balance sheet is given by 

(1) 

and bank i ’s balance sheet identity is 
∑ 

k 

w i,k y i,k + 

∑ 

j 

x j πi, j = e i + x i + d i . (2) 

The left hand side is the value of all bank i ’s assets that 
is equal to the market value of bank i ’s portfolio, first term, 
and to the funds lent by bank i to other banks (interbank 
lending), second term. 8 

From Eq. (2) we can express the vector of interbank 
debt as follows 

X = �X + W Y − E − D , (3) 

and 

( I − �) X = W Y − E − D . (4) 

The left hand side is the interbank market that, accord- 
ing to Eq. (4) , depends on the market value of the portfolio 
of assets held by banks, the market value of bank equities, 
and the value of bank liabilities held by non-banks. The 
interbank market is dynamic, with daily trading (overnight 
loans represent the overwhelming majority—92.3% of con- 
tracts in our e-MID data) in response to their funding 
needs, which is linked to minimum reserve requirements, 
margin calls, or shortages needed to fulfill contractual 
obligations–the first term of the right hand side of Eq. (4) . 
Bank equity ( E ) changes over time may also drive inter- 
bank lending through the second term. 

Following Shin (2009a ), we assume that the debt lia- 
bilities to nonbanks are expected to be sticky—i.e., D will 
move very slowly. D represents debt claims on the banking 
sector by households, mutual and pension funds, and other 

8 We assume that banks have restrictions for cross holdings of equities. 

This assumption can be easily relaxed in our model. 

nonbank institutions, so while D varies over time, changes 
to D are less likely to drive interbank lending. 

Given the accounting identity that governs the full sys- 
tem of banks, we represent the adjacency matrix of the in- 
terbank lending market as follows. 

Bank 1 Bank 2 … Bank s 

Bank 1 0 π1 , 2 … π1 ,s 
Bank 2 π2 , 1 0 … π2 ,s 

… … …

Bank s πs, 1 πs, 2 … 0 

From Eq. (4) we build the consolidated balance sheet of 
the banking sector as a whole, where assets and liabilities 
are aggregated across banks. Given that x i, j is a liability 
for bank i but an asset for bank j , the aggregated balance 
sheet does not include any interbank claims. Hence, Eq. (1) 
becomes 

(5) 

and the balance sheet identity is now 9 

E = W Y − D . (6) 

Eqs. (4) and ( 6 ) highlight how the two networks sub- 
sume different information sets which represent our main 
object of investigation. The main difference between the 
two networks emanate from the aggregation which is re- 
quired in the correlation network and from the fact that 
the networks are driven by different agents. Correlation 
networks are inferred from market prices, driven by in- 
vestors, whereas physical networks are driven by the ac- 
tions of banks. The different drivers of connections in cor- 
relation and physical networks make intuitive sense, since 
investor behavior links to systemic risk, while interbank 
behavior more closely captures liquidity in the banking 
system. 10 To further explore the fundamental drivers of 
each network type and hence how these networks might 
also be connected, we also formally test whether and how 

economic fundamentals and shocks affect interconnected- 
ness in the two network structures. 

9 Eq. (6) has an interpretation similar to that in Elliott, Golub, and 

Jackson (2014) and is based on the results in Brioschi et al. (1989) and 

Fedenia et al. (1994) . De Vries (2005 , 2) interprets Eq. (6) as “The for- 

tunes of the banking sector as indicated by the balance sheet items, are 

sooner or later also reflected in the value of bank equity. This enables 

us to characterize systemic failure in terms of the joint bank equity price 

movements … driven by the interdependent bank portfolios.”. 
10 We thank our anonymous referee for bringing forward clarity on this 

point. 



524 C. Brunetti, J.H. Harris and S. Mankad et al. / Journal of Financial Economics 133 (2019) 520–538 

For the correlation network, edges are a function of the 
variance-covariance matrix of bank equity returns. Follow- 
ing Billio et al. (2012) , we first compute rate of returns of 
bank i ’s equity, 

r i,t = ln 

(

e i,t 
e i,t−1 

)

, 

and then filter r i, t using a standard GARCH(1,1) model. For 
each pair of bank returns, U t , we run the following vector 
autoregression model 

�( L ) U t = V t , (7) 

where V t ∼N(0, �) and test the following null: 

H 0 : ˆ �( L ) = 0 , (8) 

where ˆ �(L ) refers to the off-diagonal terms of �( L ) esti- 
mated by ordinary least squares. This is a standard Wald 
test with covariance matrix equal to V ′ �−1 V . Rejecting the 
null in Eq. (8) produces an edge between the returns of the 
two banks in U t . 11 

4. Data 

The data required to construct correlation and phys- 
ical networks highlight the unique composition of both 
networks. Our e-MID physical trading data includes 212 
unique banks, with a diminishing number over time as 
the crisis progressed. 12 However, only 54 of these banks 
are publicly traded, so construction of correlation networks 
is limited to this smaller set of banks. Only in rare cases 
will a partial physical network of 54 banks fully capture 
how they trade with each other, since their trades with the 
other 158 banks would be excluded. 13 Therefore, we utilize 
all available data and construct the physical network using 
all 212 banks and construct the correlation network from 

the set of 54 publicly traded European banks in our e-MID 

dataset from January 2006 through December 2012. 

11 Barigozzi and Brownlees (2014) construct networks where edges are 

based on long run partial correlations. Lin and Michailidis (2017) con- 

struct systemwide Granger-causal networks assuming a sparse structure. 

Likewise, Diebold and Yilmaz (2014) propose several measures of inter- 

connectedness based on the variance-covariance matrix and link these 

measures to connectedness used in the network literature. While the 

physical network of interbank trades is directly observable, the correla- 

tion network based on equity returns is the result of a testing procedure 

that, in addition to the classic type I and II errors, is a function of the 

model specification in Eq. (7) . Moreover, Granger-causal networks require 

longer sample periods to establish connections. 
12 The e-MID platform is the only electronic market for interbank de- 

posits in the Euro region, offering interbank loans ranging from overnight 

(one day) to two years in duration, with overnight contracts representing 

90% of total volume during our sample period (see Brunetti et al. 2011 ). 
13 While recent work shows that metrics calculated from partial net- 

works can have significant bias and loss of information (see, e.g., 

Achlioptas et al. 2009 ), Handcock and Gile (2010 ) show that partially ob- 

served network data can be used for valid statistical inference. Moreover, 

Chandrasekaran et al. (2012) show that for correlation networks, results 

based on a subset of nodes are valid as long as the unobserved nodes do 

not exert very strong influence on the observed nodes. This is definitely 

the case in our correlation network, where the largest (by assets) banks 

are included in our analysis–those exerting the largest influence. Simi- 

larly, for physical-type networks, Bliss et al. (2014) show that network 

statistics estimates are of good quality when based on random samples, a 

finding also in accordance with our analysis. 

Table 1 

Summary statistics of the daily rates of stock returns ( ×100) for the 

different sub-periods. 

Pre-crisis: 2-Jan-06 - 8-Aug-07 

Mean Median St. Dev. 

0.0603 0.0 0 0 0 14.236 

Crisis 1: 9-Aug-07 - 12-Sep-08 

−0.1457 ∗ −0.0886 15.449 

Crisis 2: 16-Sep-08 - 1-Apr-09 

−0.5037 ∗∗ −0.1986 19.706 

Crisis 3: 2-Apr-09 – 31-Dec-12 

−0.0439 0.0 0 0 0 19.849 

∗ , ∗∗ , and ∗∗∗ refer to significance levels of 10%, 5%, and 1% for testing 

the mean difference between each sub-period and the pre-crisis period 

that we use as benchmark. Standard errors are computed using boot- 

strapping. 

While European banks can also trade bilaterally via 
phone brokers and with the ECB directly, e-MID inter- 
bank activity accounts for 17% of total turnover in un- 
secured money market in the Euro area. 14 During our 
sample period, e-MID volume exceeds €18 trillion, and 
includes trades from every major European bank (span- 
ning 15 different countries). Moreover, e-MID trades are 
also consequential–e-MID executed more large deals ( > 

€100) than standard-size (smaller) deals from 2005 to 
2008. 15 

We examine daily and monthly data over four sub- 
periods: (1) a pre-crisis period from January 2, 2006 un- 
til August 7, 2007 (when the ECB noted worldwide liq- 
uidity shortages); (2) the first crisis period (pre-Lehman) 
from August 8, 2007 until September 12, 2008; (3) the sec- 
ond crisis period (post-Lehman) from September 16, 2008 
through April 1, 2009 (when the ECB announced the end of 
the recession); (4) the third (post-recession) crisis period, 
from April 2, 2009 through December 31, 2012. This last 
period was characterized by a weak recovery in Europe—
the recession officially ended in the third quarter of 2009, 
thanks largely to fiscal and monetary measures to stimu- 
late the economy. The beginning and ending dates of our 
sample are limited by our access to e-MID data. 16 

Daily summary statistics for the rate of returns are re- 
ported in Table 1 . In the pre-crisis period, rate of returns 
are positive and exhibit low volatility. In the crisis periods, 
returns are highly negative and exhibit very large volatil- 
ity. Bank equity returns remain negative in the third crisis 
period albeit still very volatile, highlighting that the crisis 
continued to affect the banking system in post-recession 
Europe. 17 

14 See European Central Bank, 2007. Euro money market study, 2006 . 
15 See European Central Bank, 2009. Euro money market study, 2008 . 
16 Other research analyzing e-MID data in the context of network anal- 

ysis includes Hatzopoulos et al. (2014) , Iori et al. (2014) , Roukny et al. 

(2013) , and Delpini et al. (2013) . 
17 In 2011 and 2012 Euro area bank CDS premiums rose significantly 

and sovereign bond spreads widened appreciably for Greece, Ireland, Italy, 

Portugal, and Spain (relative to Germany). 
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To construct physical networks we employ e-MID trad- 
ing data from the only electronic regulated interbank mar- 
ket in the world. Each e-MID transaction includes the time 
(to the second), lender, borrower, interest rate, quantity, 
and an indication of which party is executing the trade. 
The e-MID market is open to all banks admitted to oper- 
ate in the European interbank market, and non-European 
banks can access the market through their European 
branches. As of August 2011, the e-MID market had 192 
members from European Union countries and the US, 
including 29 central banks acting as market observers 
( Finger et al., 2013 ). We observe 212 unique banks and 
464,772 trades in the data. At the beginning of our sam- 
ple, internal estimates from e-MID reveal that this mar- 
ket covers about 20% of the interbank market in the Euro 
area. However, this percentage has been dropping since the 
crisis. Accordingly, we find a decline in the daily average 
number of banks in the data from 129 to 113 to 91 to 
69 across our four sub-periods. The automated trade pro- 
cessing features in e-MID allow us to accurately assess and 
examine the interbank trading connections between banks 
in this market (at least those executed through the e-MID 

system). 
Table 2 reports daily e-MID market summary statistics, 

by sub-period, for price changes, effective spreads, volume, 
trade imbalances, market concentration (Herfindahl index), 
and signed volume. As shown, daily price changes are con- 
sistently negative, with greater negative changes during 
the two crisis periods. Volatility rises dramatically during 
the crisis, remains somewhat elevated through the crisis, 
with another dramatic rise at the end of 2011 during the 
third crisis sub-period as illustrated in Fig. 1 . 

Effective spreads, in Table 2 , remain relatively stable 
across our sample period, suggesting that interbank mar- 
ket liquidity did not suffer appreciably during the crisis. 
On the other hand, average daily volume varies signifi- 
cantly and ranges from 927 to almost 42,0 0 0 contracts per 
day. The top right panel of Fig. 1 shows clearly that vol- 
ume drops substantially over time, resulting in third cri- 
sis period volume representing less than 20% of pre-crisis 
volume. 

The lower left panel of Fig. 1 plots trade imbalances 
(scaled by volume) over time and shows that imbalances 
increase over time, a result driven by the concurrent de- 
cline in volume. Market concentration, as measured by the 
Herfindahl index, also rises consistently over our sample 
period (see bottom right panel of Fig. 1 ), reflecting greater 
concentration among banks using e-MID. Signed volume 
is negative throughout our sample period, indicating that 
banks actively use e-MID for selling funds. 

5. Network interconnectedness 

We compute various measures of interconnectedness 
by utilizing the correlation networks (from bank stock re- 
turns) and physical networks (from e-MID trading data). 
Our correlation networks infer edges between banks 
through Granger-causality tests between stock returns (as 
in Billio et al., 2012 ). Our physical networks are formed 
by direct trades in the e-MID interbank market. Since in- 
terbank trades are directly observed, our physical network 

Table 2 

Summary statistics of e-MID daily financial variables. 

Pre-crisis: 2-Jan-06 - 8-Aug-07 

Mean Median St. Dev. 

�(Price) −0.0232 −0.0150 0.0871 

Effective spread 1.3782 1.3888 0.0988 

Volume 22,834 22,337 4902 

Trade imbalance 0.0049 0.0046 0.0018 

Herfindahl index 0.0159 0.0157 0.0014 

Signed volume −13,154 −12,715 5,6309 

Crisis 1: 9-Aug-07 - 12-Sep-08 

�(Price) −0.1236 ∗∗∗ −0.0600 0.2224 

Effective spread 1.3685 1.3804 0.1015 

Volume 14,512 ∗∗∗ 14,132 3537 

Trade imbalance 0.0067 ∗∗∗ 0.0064 0.0024 

Herfindahl index 0.0173 ∗∗ 0.0169 0.0022 

Signed volume −8.7772 ∗∗∗ −8.5914 3.4672 

Crisis 2: 16-Sep-08 - 1-Apr-09 

�(Price) −0.2832 ∗∗∗ −0.2500 0.2566 

Effective spread 1.3629 1.3754 0.0939 

Volume 7796 ∗∗∗ 7763 2568 

Trade imbalance 0.0078 ∗∗∗ 0.0072 0.0027 

Herfindahl index 0.0202 ∗∗∗ 0.0199 0.0026 

Signed volume −4.3513 ∗∗∗ −4.0138 2.1801 

Crisis 3: 2-Apr-09 - 31-Dec-12 

�(Price) −0.0070 ∗∗ 0.0 0 0 0 0.1945 

Effective spread 1.3329 1.3465 0.1234 

Volume 4002 ∗∗∗ 3997 1522 

Trade imbalance 0.0199 ∗∗∗ −0.0190 0.0101 

Herfindahl index 0.0521 ∗∗∗ 0.0484 0.0062 

Signed volume −1.8971 ∗∗∗ −1.8283 1.4590 

Trade imbalance is computed as the difference between number of buys 

and number of sells, normalized by volume. Signed volume is computed 

as the difference between aggressive buy volume and aggressive sell 

volume. 
∗ , ∗∗ and, ∗∗∗ refer to significance levels of 10%, 5%, and 1% for testing 

the mean difference between each sub-period and the pre-crisis period. 

Standard errors are computed using bootstrapping. 

is more similar to social networks, where a relationship 
exists between nodes (see Newman, 2010 ; and Jackson, 
2008 ). We emphasize the fact that the 54 banks compos- 
ing the correlation network are also part of the physical 
network, but their connections in one network do not nec- 
essarily imply the same connections in the other. 

For the correlation network, we utilize returns for indi- 
vidual banks to establish Granger-causality links between 
banks. In particular, if the return of bank A Granger-causes 
the return of bank B , then we draw a directed edge from 

A to B . Granger-causality tests are run using both monthly 
data with 36-month rolling windows, and daily data with 
44-day rolling windows. 

The physical network maps lenders to borrowers over 
each month. Specifically, if bank B borrows from bank A 
within the time interval of interest, then an edge is drawn 
from A to B. In this manner, interbank lending networks 
capture funding liquidity by distinguishing banks provid- 
ing funds from banks receiving funds. 18 Similar to the cor- 
relation network, we construct daily and monthly physical 

18 Weighting the edge in the physical network by volume does not 

change our main findings. 
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Fig. 1. e-MID daily financial variables among 212 European banks from August 8, 2007, through December 31, 2012. Volume is in number of contracts. 

Trade imbalance is computed as the difference between number of buys and number of sells, normalized by volume. The vertical lines indicate the four 

subsamples: (1) pre-crisis period January 2, 2006 – August 7, 2007; (2) the first crisis period (pre-Lehman), August 8, 2007 – September 12, 2008; (3) the 

second crisis period (post-Lehman) September 16, 2008 – April 1, 2009; (4) and the third crisis period April 2, 2009 – December 31, 2012. 

networks that account for all e-MID transactions during a 
day or a month. 

We extract various network interconnectedness metrics 
and display these results in Table 3 , taking care to nor- 
malize these statistics by the number of banks in the net- 
work so that appropriate comparisons can be made be- 
tween each network on these metrics. First, we estimate 
the degree of each network, defined as the number of con- 
nections as a proportion of all possible connections. We 
follow the notation in Billio et al. (2012) and introduce the 
indicator function A → B denoting whether an edge exists 
from bank A to bank B . Degree is then defined as 

Degree = 
1 

N ( N − 1 ) 

N 
∑ 

A =1 

∑ 

B � = A 

A → B, (9) 

where N is the total number of banks (nodes) in the net- 
work. Degree is a network-wide measure used by Billio 
et al. (2012) to estimate the risk of a systemic event. 
Within the physical network, lower average degree may in- 
dicate a lower level of liquidity on e-MID. 

The second measure of interconnectivity we utilize is 
closeness, which measures how many steps are between 
banks on average. To construct this measure, let C AB be the 
length of the shortest path from bank A to bank B , where 
C AB = N − 1 if there is no path from bank A to bank B. Then 
closeness is defined as 

closeness = 
1 

N ( N − 1 ) 

N 
∑ 

A =1 

∑ 

B � = A 

C AB . (10) 

Closeness is normalized to be between zero and one, 
where larger values indicate larger relative distance be- 
tween banks on the network. 

Our third metric of connectivity is the clustering coef- 
ficient, which measures how often triangular connections 
occur or the probability that neighbors of a bank are them- 
selves connected. The clustering coefficient ( CC ) is defined 
as 

CC = 
3 × number of connected triples 

number of possible connected triples 
, (11) 
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Table 3 

Summary statistics of monthly correlation and physical networks. 

Correlation network Physical network 

Pre-crisis Pre-crisis 

2-Jan-06 - 8-Aug-07 2-Jan-06 - 8-Aug-07 

Mean Median St. Dev. Mean Median St. Dev. 

Degree 0.0419 0.0412 0.0048 0.0638 0.0632 0.0036 

Closeness 0.0303 0.0303 0.0060 0.0053 0.0051 0.0 0 04 

CC 0.1459 0.1429 0.0247 0.3434 0.3405 0.0258 

EVCentrality 0.0104 0.0095 0.0035 0.0170 0.0131 0.0090 

LSCC 0.3411 0.3846 0.1666 0.4839 0.4858 0.0276 

Crisis 1 Crisis 1 

9-Aug-07 - 12-Sep-08 9-Aug-07 - 12-Sep-08 

Degree 0.0540 ∗∗∗ 0.0532 0.0180 0.0556 ∗∗∗ 0.0561 0.0050 

Closeness 0.0386 ∗∗∗ 0.0388 0.0127 0.0051 ∗∗∗ 0.0051 0.0 0 03 

CC 0.1587 0.1527 0.0610 0.3512 0.3590 0.0263 

EVCentrality 0.0147 ∗∗∗ 0.0133 0.0073 0.0113 ∗∗∗ 0.0091 0.0062 

LSCC 0.4393 ∗∗∗ 0.50 0 0 0.2345 0.4140 ∗∗∗ 0.4340 0.0378 

Crisis 2 Crisis 2 

16-Sep-08 - 1-Apr-09 16-Sep-08 - 1-Apr-09 

Degree 0.1061 ∗∗∗ 0.1081 0.0165 0.0415 ∗∗∗ 0.0393 0.0061 

Closeness 0.0637 ∗∗∗ 0.0591 0.0087 0.0049 ∗∗∗ 0.0050 0.0 0 04 

CC 0.2761 ∗∗∗ 0.2780 0.0502 0.2881 ∗∗∗ 0.2795 0.0349 

EVCentrality 0.0456 ∗∗∗ 0.0485 0.0119 0.0899 ∗∗∗ 0.0501 0.0781 

LSCC 0.7088 ∗∗∗ 0.6923 0.0537 0.2358 ∗∗∗ 0.2170 0.0587 

Crisis 3 Crisis 3 

2-Apr-09 - 31-Dec-12 2-Apr-09 - 31-Dec-12 

Degree 0.1256 ∗∗∗ 0.1338 0.0261 0.0405 ∗∗∗ 0.0407 0.0049 

Closeness 0.1029 ∗∗∗ 0.0894 0.0386 0.0051 ∗∗∗ 0.0051 0.0 0 01 

CC 0.3295 ∗∗∗ 0.3395 0.0693 0.3018 ∗∗∗ 0.3039 0.0330 

EVCentrality 0.0583 ∗∗∗ 0.0641 0.0177 0.0238 ∗∗∗ 0.0143 0.0232 

LSCC 0.7653 ∗∗∗ 0.7308 0.0824 0.1758 ∗∗∗ 0.1745 0.0457 

Degree refers to the average degree in each network. Closeness measures the average 

distance, in terms of edges, between banks in the network. CC indicates the clustering 

coefficient. EVCentrality refers to the eigenvalue from eigenvector centrality, and LSCC 

refers to the proportion of nodes in the largest strongly connected component. 
∗ , ∗∗ , and ∗∗∗ refer to significance levels of 10%, 5%, and 1% for testing the mean difference 

between each sub-period and the pre-crisis period. Standard errors are computed using 

bootstrapping. 

where a connected triple means any three banks A, 

B , and C such that A → B, A → C , and B → C . Clustering 
coefficients approaching the maximum value of 1 would 
indicate higher levels of connectedness. 

The fourth measure of interconnectivity is eigenvector 
centrality, which is calculated by taking the first eigenvec- 
tor of the adjacency matrix of network relations [ X] AB = 

A → B . In addition to being closely related to the best rank- 
1 approximation of X , the scores for each bank can also be 
interpreted as being proportional to the sum of the cen- 
tralities of those banks to whom it is connected, so that 
banks with high eigenvector centralities are those that are 
connected to many other banks that are, in turn, connected 
to many others (and so on). The scores are between zero 
and one, where larger values indicate banks that are more 
important to interconnectivity. 

The fifth and last measure of network connectivity, the 
largest strongly connected component (or LSCC), is the 
proportion of banks that are connected to other banks by 
following directed edges on the network scaled by the to- 
tal number of banks in the network. Hence, the LSCC also 
measures the level of interconnectedness in the network 
with an LSCC of one indicating that any bank can reach 

every other bank, while an LSCC closer to zero indicates a 
highly fragmented network. 

As shown in Table 3 , the variation of monthly network 
statistics in the correlation network is larger than that in 
the physical network. 19 Within correlation networks, the 
change in connectedness from pre-crisis to the first, sec- 
ond, and third crisis periods is statistically significant. Clus- 
tering, eigenvalue centrality, degree and LSCC all remain 
elevated for European banks from 2009 into 2011 before 
falling off in the second half of 2011 through 2012. 

However, through the lens of the physical market, con- 
nectedness appears to have been significantly diminished. 
Connectivity in the physical network drops significantly at 
the outset of the crisis and remains below pre-crisis levels 
through the third crisis period. 

These disparate results show that the correlation and 
physical networks capture different notions of connected- 
ness. The crisis permanently diminished interconnected- 
ness between banks in the physical interbank trading net- 
work, while interconnectedness increases when measured 
via stock return correlation networks. While the physical 

19 Similar results are obtained from the daily sampling frequency. 
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Fig. 2. Measures of interconnectedness (with statistics smoothed using local polynomial regression) for monthly physical networks for interbank lending 

among 212 European banks and correlation network statistics from 54 publicly traded European banks from August 8, 2007, through December 31, 2012. 

The two networks show generally opposite connectivity patterns, with the physical network losing connectivity versus the correlation network gaining 

connectivity. The vertical lines indicate the four subsamples: (1) pre-crisis period January 2, 2006 – August 7, 2007; (2) the first crisis period (pre-Lehman), 

August 8, 2007 – September 12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 – April 1, 2009; and (4) the third crisis period April 

2, 2009 – December 31, 2012. 

connections between banks in the interbank market are 
diminished, these same banks are connected to a com- 
mon factor that does not affect interbank trading. Indeed, 
Cont and Wagalath (2012, 2013 ) use a structural equa- 
tion model to link the behavior of large institutional in- 
vestors to equity correlations, the basis of our correlation 
networks. 

Fig. 2 displays the monthly time series of the network 
measures from the two types of networks and clearly 
shows that connectivity increases in the correlation net- 
work at the onset of the first crisis sub-period and keeps 
rising in the subsequent sub-periods. Overall, we find that 
interconnectedness increases after the failure of Lehman 
Brothers in the correlation network but decreases in the 
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physical network. Lagunoff and Schreft (1999 , 2) claim 

that “A financial crisis is a breakdown of the economy’s 
financial linkages, a collapse of all or part of the financial 
structure.” The physical network clearly captures this 
phenomenon. 

The two networks also behave differently in other re- 
spects. As Fig. 3 shows, correlation networks are sparser 
than the physical networks in the pre-crisis period, per- 
haps expected with only 54 banks in the correlation 
network. However, despite the lower number of banks, 
the correlation network becomes more interconnected 
throughout our sample period. Conversely, the physical 
network in the third crisis period is characterized by a 
“core” of banks highly interconnected and several banks 
that have a low degree of interconnectedness. 20 

To further study the evolution of the two network 
structures during the crisis, we identify individual banks 
that contribute most to market connectivity using a ma- 
trix factorization-based technique. 21 These results (omitted 
here for brevity) show that a small subset of banks con- 
tributed most to the physical network connectivity during 
the crisis and beyond. Interestingly, some banks became 
more connected in the physical network, even though the 
overall market became less connected. However, in the cor- 
relation network, the onset of the crisis brought a spike in 
connectivity among all bank returns. 

While our interbank trading data do not allow us 
to specifically identify individual banks, we are able to 
classify banks by region. We use these classifications and 
the matrix factorization-based technique described above 
to explore which regions contribute most to directional 
interconnectedness during our sample period. 

Fig. 4 displays the centrality measures by region over 
time, based on both correlation (incoming and outgoing) 
and physical networks (borrowing and lending). As shown, 
banks from peripheral countries contribute most to cor- 
relation networks throughout the sample period, followed 
by banks from core countries and then banks from other 
countries. 

Results from the physical networks are much more 
volatile. While banks from other countries are largely least 
influential in terms of borrowing and lending, banks from 

peripheral and core European countries are most impor- 
tant at different times. Generally, banks from core coun- 
tries fall off in importance over time but reach their low- 
est levels of both borrowing and lending immediately fol- 
lowing the failure of Lehman Brothers (during Crisis 2). 
While importance measured here is somewhat subjective, 
Fig. 4 clearly shows that physical and correlation networks 
have markedly different dynamics. 

20 While the number of banks in the physical (up to 212) and correlation 

( N = 54) networks differ in robustness tests, we generate similar patterns 

across time in the physical network when we randomly sample 54 of the 

most active 78 banks (those above the 75th percentile) from our trad- 

ing data. Eigenvector centrality, however, spikes more often and often at 

different times when using the “partial network” of just 54 banks. These 

results are available upon request. 
21 See Mankad and Michailidis (2013) and Mankad et al. (2014) . We 

briefly review this technique in the appendix . 

6. Economic shocks and network connectedness 

We explore these differing dynamics further by analyz- 
ing how these network structures reflect economic shocks. 
Given that markets react to announcements (e.g., Faust 
et al., 2007 ), we aim to compare and contrast how an- 
nouncements are reflected in the stock market and inter- 
bank market. We are particularly interested in two types 
of shocks. The first type refers to ECB announcements and 
interventions. During our sample period, the ECB adopted 
both conventional and unconventional monetary interven- 
tions. In particular, for the ECB interventions, 22 we dis- 
tinguish among long term refinancing operations (LTRO), 
main refinancing operations (MRO) and other types (OT) of 
ECB operations. For the announcements, we follow Rogers 
et al. (2014) and consider conventional and unconventional 
ECB operations. 

The second type of shocks we consider refer to more 
general changes in macroeconomic conditions. We first 
capture these shocks using the real activity (surprise and 
uncertainty) indices developed in Scotti (2016) . The sur- 
prise index summarizes economic data surprises and cap- 
tures optimism/pessimism about the state of the economy. 
The uncertainty index measures uncertainty related to the 
state of the economy. 23 We also consider the evolution of 
the European stock market (the Dow Jones index for Eu- 
rope) and the spread between the Euro Interbank Offered 
Rate (EURIBOR) and the overnight indexed swap (OIS), a 
measure of health of the banking system. 

To fully capture the ECB shocks, we use daily data. 
Hence, for this exercise we adopt daily networks. Following 
Kilian and Vega (2011) , we estimate the following models 
for each sub-period and for each network type: 

y t+ k = α + β1 U t + β2 S t + β3 DJ S T t + β4 EON I A t 

+ β5 EURI BOR _ OI S t + β6 LT R O t + β7 MR O t 

+ β8 O T t + γ y t−1 + ε t , (12) 

y t+ k = α + β1 U t + β2 S t + β3 DJ S T t + β4 EON I A t 

+ β5 EURI BOR _ OI S t + β6 Annoucement s t 

+ γ y t−1 + e t , (13) 

where y t+ k represents network statistics (degree, closeness, 
clustering coefficient, eigenvector centrality, and LSCC) on 
day t, U t is the economic uncertainty index, and S t the eco- 
nomic surprise index from Scotti (2016) ; DJST t is the DJ Eu- 
rope stock index; EONIA t is the Euro Overnight Index Av- 
erage; EURI BOR _ OI S t is the spread between the EURIBOR 
and OIS rate, LTRO t is a dummy for ECB long term refi- 
nancing operations; MRO t is a dummy for ECB main re- 
financing operations; OT t is a dummy for other types of 
ECB operations; and Announcements t is a dummy variable 
that captures both conventional and unconventional ECB 

22 These data are available from the ECB website. 
23 The indices, on a given day, are weighted averages of the surprises or 

squared surprises from a set of macro releases, where the weights depend 

on the contribution of the associated real activity indicator to a business 

condition index. 
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Fig. 3. Time series of network statistics and corresponding graphs showing increasing connectivity in correlation networks and decreasing connectivity 

in physical networks. The vertical lines indicate the four subsamples: (1) pre-crisis period January 2, 2006 – August 7, 2007; (2) the first crisis period 

(pre-Lehman), August 8, 2007 – September 12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 – April 1, 2009; (4) the third crisis 

period April 2, 2009 – December 31, 2012. 
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Fig. 4. Directed bank (node) centrality measures (see Appendix ) aggregated by geographic region. Banks from peripheral countries contribute most to 

correlation networks throughout the sample period, followed by banks from core countries and then banks from other countries. Results from the physical 

networks are much more volatile. The vertical lines indicate the four subsamples: (1) pre-crisis period January 2, 2006 – August 7, 2007; (2) the first crisis 

period (pre-Lehman), August 8, 2007 – September 12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 – April 1, 2009; and (4) the 

third crisis period April 2, 2009 – December 31, 2012. 

intervention announcements. 24 U t , S t , DJST t , EONIA t , and 
EURI BOR _ OI S t are proxies for fundamental shocks in the 
economy, while LTRO t , MRO t , OT t , and Announcements t cap- 
ture monetary policy shocks. 

24 The announcements variable is constructed from Rogers et al. 

(2014) Table 3 data. 

Fig. 5 shows the R 2 for each network type, over 
all dependent variables and forecasting horizons, k , for 
Eq. (12) . 25 With the exception of the clustering coefficient 
and eigenvector centrality, it seems that both networks 

25 Results for Eq. (13) are very similar. 
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Fig. 5. R 2 for the regressions in Eq. (12) showing that the physical network reacts more to ECB interventions and macroeconomic shocks during the crisis 

and following. The physical network statistics for interbank lending are computed from 212 European banks and correlation network statistics from 54 

publicly-traded European banks. The results are stratified by four subsamples: (1) pre-crisis period January 2, 2006 – August 7, 2007; (2) the first crisis 

period (pre-Lehman), August 8, 2007 – September 12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 – April 1, 2009; and (4) the 

third crisis period April 2, 2009 – December 31, 2012. 

capture the same information before the crisis. However, 
there is a clear pattern showing that the physical net- 
work reacts more to ECB interventions and macroeconomic 
shocks during the crisis and following. 

Analysis of the estimated coefficients (not reported 
here) reveals that the correlation network reacts to shocks 
captured by the EONIA t , which plays an important role in 
explaining the structure of the correlation network in all 
sub-periods. The EURIBOR-OIS spread, EONIA, and the un- 
certainty index are the most important factors in the phys- 
ical network and seem so dominant that they overshadow 

the other variable effects. This evidence is consistent with 
the vast literature showing that uncertainty has important 
effects on the real economy. 26 Our evidence shows that the 
network structures we study react to uncertainty shocks as 
well. 

In Fig. 6 , we distinguish between macroeconomic 
shocks and monetary policy shocks (of course, the two 

26 Bloom (2009) and Leduc and Liu (2012) , e.g., provide evidence that 

uncertainty in the recent crisis has reduced economic activity (firm in- 

vestment) and incrementally increased US unemployment. 

might be correlated) and formally test whether the net- 
work structure of the correlation and of the physical net- 
works react to these two types of shocks. Our null hy- 
potheses are that all macro shocks have no effect on 
the network structure (i.e., the coefficient of U t , S t , DJST t , 

EONIA t , and EURI BOR _ OI S t in Eqs. (12) and ( 13 ) are jointly 
equal to zero), and, similarly, all ECB shocks have no im- 
pact on the network structure (i.e., the coefficients of 
LTRO t , MRO t , and OT t in Eq. (12) are jointly equal to 
zero in Eq. (12) , and the coefficient for Announcements t in 
Eq. (13) is equal to zero). A p -value close to zero indicates 
rejection of the null—e.g., macro and/or ECB shocks are sta- 
tistically relevant. In the pre-crisis period, macroeconomic 
shocks are important for the correlation network metrics 
(except in eigenvector centrality) at most all forecasting 
horizons, while the physical network reacts to macroeco- 
nomic shocks largely at horizons beyond the three days. 
Moreover, the right panel in Fig. 6 generally shows that 
the physical network responds more than the correlation 
network to ECB operations as well. 

We explore the partial R 2 from Eq. (12) related to 
the macroeconomic shocks in Fig. 7 . Conditional on ECB 
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Fig. 6. p -Values from F -tests for the regressions in Eq. (12) . The left panel shows the p -value for the test statistic corresponding to the null hypothesis 

H 0 : β1 = β2 = β3 = β4 = β5 = 0 – macro shocks do not affect the network structure. The right panel shows the p -value for the test-statistic corresponding 

to H 0 : β6 = β7 = β8 = 0 –ECB interventions do not affect the network structure. The physical network statistics for interbank lending are computed from 

212 European banks and correlation network statistics from 54 publicly-traded European banks. The results are stratified by four subsamples: (1) pre-crisis 

period January 2, 2006 – August 7, 2007; (2) the first crisis period (pre-Lehman), August 8, 2007 – September 12, 2008; (3) the second crisis period 

(post-Lehman) September 16, 2008 – April 1, 2009; and (4) the third crisis period April 2, 2009 – December 31, 2012. 

operations, macroeconomic shocks impact both networks 
on a more permanent basis, especially at longer time hori- 
zons. Fig. 8 displays the partial R 2 from Eq. (13) related 
to the announcements alone (during the pre-crisis period, 
no announcement were made). Importantly, the incremen- 
tal information impounded by the announcements, condi- 
tional on the general impact of macroeconomic factors, is 
only mildly reflected in both the correlation and the phys- 
ical network at short horizons and dissipates at horizons 
greater than ten. 

In all three crisis periods, the correlation network is 
more responsive to macroeconomic shocks than the physi- 
cal network, consistent with Puliga et al. (2014) who show 

that during the crisis, increased correlations in credit de- 
fault swap premiums depend on macroeconomic factors. 

The F-tests for the ECB interventions in Eq. (12) show 

that these types of shocks are mainly important to physi- 
cal networks. In particular, the physical network reacts to 
ECB interventions mainly at short horizons. 27 To further 
isolate the effect of ECB shocks, we also examine the hy- 
potheses above within a partial regression analysis setting. 

27 We obtain similar results when analyzing F -tests for the macro and 

ECB shocks in Eq. (13) where ECB shocks refer to ECB conventional and 

unconventional monetary policy announcements. 

Specifically, let ˆ y t+ k | 1:4 denote the fitted values resulting 
from estimating the following regression model 

y t+ k = α + β1 U t + β2 S t + β3 DJ S T t + β4 EON I A t 

+ β5 EURI BOR _ OI S t + γ y t−1 + ε t . (14) 

We test the significance of variables in the following re- 
gression models 

y t+ k − ˆ y t+ k | 1:4 = β0 + β6 LT R O t + β7 MR O t + β8 O T t + e t 

(15) 

y t+ k − ˆ y t+ k | 1:4 = β0 + β6 Annoucement s t + v t . (16) 

Fig. 9 depicts the F -test for the null H 0 : β6 = β7 = 

β8 = 0 | β1 , β2 , β3 , β4 , β5 � = 0 for Eq. (15) . In all sub- 
periods, the correlation network responds to ECB inter- 
ventions only contemporaneously (i.e., k = 0 ). This is also 
true for the physical network. However, physical network 
interconnectedness reacts to ECB interventions contempo- 
raneously and across subsequent days in all crisis sub- 
periods. 28 

28 Similar results are obtained for test statistic corresponding to the 

partial regression null hypothesis H 0 : β6 = 0 | β1 , β2 , β3 , β4 , β5 � = 0 in 

Eq. (16) . 



534 C. Brunetti, J.H. Harris and S. Mankad et al. / Journal of Financial Economics 133 (2019) 520–538 

Fig. 7. Partial R 2 values of announcements conditional on macro shocks for the regressions in Eq. (13) . The physical network statistics for interbank 

lending are computed from 212 European banks and correlation network statistics from 54 publicly-traded European banks. The results are stratified by 

three subsamples: (1) the first crisis period (pre-Lehman), August 8, 2007 – September 12, 2008; (2) the second crisis period (post-Lehman) September 16, 

2008 – April 1, 2009; and (3) the third crisis period April 2, 2009 – December 31, 2012. 

Overall, Figs. 5 –9 show that the physical and correla- 
tion networks respond differently to shocks and therefore 
reflect different information sets. To the extent that cor- 
relation networks based on stock prices are more forward 
looking, we conjecture that the relatively muted response 
is related to anticipated macroeconomic changes. Con- 
versely, since our physical networks respond more strongly 
to shocks, we surmise that the physical network more 
closely reflects connectedness between and among banks, 
a connectedness that is more sensitive to economic shocks. 

Given that correlation and physical networks capture 
different phenomena, we assess whether and how the net- 
work topology might help to serve policy makers in fore- 
casting relevant macroeconomic variables. In this regard, 
we utilize monthly networks and consider several of the 
macro variables including: 

• Hard information, such as Industrial production (IP) and 
Retail sales (RS); 

• Soft information, such as the Purchasing manager index 
(PMI) – Ba ́nbura and Rünstler (2011) show that soft in- 
formation may be important in forecasting; 

• The spread between the EURIBOR and the OIS, which is 
considered a measure of health of the banking system; 

• The spread between the ten-year Greek, Italian, Por- 
tuguese, and Spanish government bond yields and the 
German government bonds yield, denoted by GRSP, 
ITSP, PTSP, and SPSP, respectively. 29 

We estimate the following model from January 2006 
until December 2008 (36 months) and then produce one- 
step-ahead forecasts for the macro variable from January 
2009 until March 2010. 

z i,t = γ0 + γ1 Degre e j,t−1 + γ2 C C j,t−1 + γ3 Closenes s j,t−1 

+ γ4 LSC C j,t−1 + γ5 z i,t−1 + u j,t (17) 

where z i, t represents the macro variable described above 
(we consider one variable per time), and j denotes the cor- 
relation and the physical network, respectively. 

Table 4 reports the R 2 of the regressions (from January 
2006 until December 2008) and root mean squared error 
(RMSE) for the forecasting exercise. 

29 Some of the macro variables are not stationary; in these cases, we 

consider the first difference. 
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Table 4 

Linear regression results of the network variables on the macro variables. 

R 2 RMSE 

Correlation network Physical network Difference Correlation network Physical network Difference 

Hard information 

�(IP) 0.3143 0.2763 0.0380 3.1867 2.9624 0.2243 

�(RS) 0.2146 0.1944 0.0202 1.9719 1.3710 0.6009 ∗

Soft information 

�(PMI) 0.3806 0.4730 −0.0924 ∗∗ 6.9828 4.3975 2.5853 ∗∗

Banking system health 

EURIBOR-OIS Spread 0.6773 0.6739 0.0033 0.2255 0.7928 −0.5673 ∗

Country-specific spreads 

ITSP 0.0949 0.1795 −0.0846 ∗∗ 0.9620 0.8750 0.0870 

PTSP 0.0190 0.1764 −0.1574 ∗∗ 1.1201 0.5976 0.5225 ∗

GRSP 0.1156 0.1922 −0.0766 ∗∗ 1.6393 1.4050 0.2343 ∗

SPSP 0.2777 0.1499 0.1279 ∗∗ 1.2028 0.5798 0.6229 ∗

R 2 refers to the regression of the network variables (Degree, CC, Closeness, Eigenvector centrality, and LSCC) on the macro variables in the 

first column over the period January 2006 – December 2008. RSME refers to one-step-ahead forecasts from January 2009 until March 2010. 

Monthly observations. ∗ and ∗∗ refer to significance levels of 10% and 5%. IP is industrial production, RS is retail sales, PMI is purchasing 

manager index, EURIBOR-OIS spread is the spread between the Euro Interbank Offered Rate and the Overnight Indexed Swap Rate, and ITSP, 

PTSP, GRSP, and SPSP represent spreads between the ten year Italian, Portuguese, Greek, and Spanish government bond yields and the ten 

year German government bond yields, respectively. 

Fig. 8. Partial R 2 values of macro shocks conditional on ECB interventions 

(operations) from the regressions in Eq. (12) . The physical network statis- 

tics for interbank lending are computed from 212 European banks and 

correlation network statistics from 54 publicly-traded European banks. 

The results are stratified by four subsamples: (1) pre-crisis period January 

2, 2006 – August 7, 2007; (2) the first crisis period (pre-Lehman), August 

8, 2007 – September 12, 2008; (3) the second crisis period (post-Lehman) 

September 16, 2008 – April 1, 2009; and (4) the third crisis period April 

2, 2009 – December 31, 2012. 

Fig. 9. p -Values for the regressions in Eq. (15) corresponding to the 

null hypothesis that ECB interventions do not affect the network struc- 

ture conditional on the macroeconomic variables ( H 0 : β6 = β7 = β8 = 

0 | β1 , β2 , β3 , β4 , β5 � = 0 ). The physical network statistics for interbank 

lending are computed from 212 European banks and correlation network 

statistics from 54 publicly-traded European banks. The results are strati- 

fied by four subsamples: (1) pre-crisis period January 2, 2006 – August 7, 

2007; (2) the first crisis period (pre-Lehman), August 8, 2007 – September 

12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 

– April 1, 2009; and (4) the third crisis period April 2, 2009 – December 

31, 2012. 
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The results show that both the correlation and the 
physical networks exhibit statistically similar R 2 for the re- 
gression of the network variables (Degree, CC, Closeness, 
Eigenvector centrality and LSCC) on hard information—i.e., 
IP, RS. This is also the case for the spread between the EU- 
RIBOR and the overnight indexed swap spread. 

The physical network is able to better explain, in terms 
of R 2 , soft information and the Italian, Portuguese, and 
Greek spreads. Notably, the correlation network has better 
forecasting performance for the Spanish spread. However, 
the physical network is better suited for forecasting all 
the other macro variables. For policy makers, the interbank 
market appears to provide valuable information about the 
future state of the economy. In this regard, we suggest that 
monitoring interbank markets provides a valuable gage for 
assessing the state of the bank sector and the effectiveness 
of interventions. 

In unreported results, we estimate Granger-causality 
tests between the connectedness variables in correlation 
and physical networks using a bivariate VAR-X with the 
addition of explanatory variables as in Eq. (13) . These tests 
indicate significant lead-lag connectedness relations be- 
tween the two network types, but neither network con- 
sistently leads the other across measures or across time. 
The fact that each network feeds back into the other is 
in line with our other results that correlation and physical 
networks reflect different kinds of information, and thus 
both should be considered for policy analysis and academic 
research. 30 

7. Transmission between the US and Europe 

Our tests above show that macroeconomic shocks im- 
pact both networks on a relatively permanent basis, and 
the Lehman Brothers failure (demarking our Crisis 1 and 
Crisis 2 periods) also appears to have altered the dynamics 
of how physical and correlation networks react to shocks 
in Europe. Interconnectedness among European banks in- 
creases after the Lehman failure in the correlation net- 
work but falls in the physical network. While we are (un- 
fortunately) not privy to interbank transactions among US 
banks, we construct a US bank correlation network using 
publicly traded banks in the US over the same 2006-2012 
period. Given the evidence that macroeconomic shocks 
during the crisis are not isolated to individual continents, 
we explore the lead-lag relations between U.S. and Euro- 
pean correlation networks. 31 

More specifically, following Billio et al. (2012) , we first 
extract the principal components from daily returns for 
individual banks (using a 36-day window for estimation). 
Both Europe and the US show increases in the fraction of 
the total variance explained by the first principal compo- 
nent after the advent of the crisis. We then estimate both 

30 We also estimate two alternatives: (i) a simple bivariate VAR between 

correlation and physical network variables; and (ii) a bivariate VAR-X 

with the addition of explanatory variables as for Eq. (12) and find sim- 

ilar results. Complete results are available upon request. 
31 Given the fact that 54 publicly traded banks from multiple countries 

are in the data, there are most certainly significant overlapping business 

relationships within this set of European banks. 

Table 5 

Granger causality results to measure the US – EU transmissions in net- 

work statistics. 

Degree 

US → EU EU → US Lags 

Pre-crisis 0.0 0 06 ∗∗∗ 0.6340 3 

Crisis 1 0.0321 ∗∗∗ 0.1669 2 

Crisis 2 0.7613 0.0539 ∗∗∗ 1 

Crisis 3 0.5375 0.3265 4 

Closeness 

Pre-crisis 0.5834 0.9045 2 

Crisis 1 0.5568 0.9577 2 

Crisis 2 0.5873 0.4738 2 

Crisis 3 0.0073 ∗∗∗ 0.0441 ∗∗∗ 4 

Clustering coefficient 

Pre-crisis 0.0062 ∗∗∗ 0.4466 2 

Crisis 1 0.0783 ∗∗ 0.7521 2 

Crisis 2 0.4872 0.0202 ∗∗∗ 2 

Crisis 3 0.7709 0.7507 4 

Eigenvector centrality 

Pre-crisis 0.0618 ∗∗ 0.1841 4 

Crisis 1 0.0105 ∗∗∗ 0.3144 3 

Crisis 2 0.7127 0.0455 ∗∗∗ 1 

Crisis 3 0.5778 0.6320 5 

LSCC 

Pre-crisis 0.6127 0.6071 2 

Crisis 1 0.0949 ∗∗ 0.7924 2 

Crisis 2 0.9612 0.0822 ∗∗ 2 

Crisis 3 0.1480 0.0703 ∗∗ 4 

US → EU indicates that the US network Granger-causes the European 

network; EU → US indicates that the European network Granger-causes 

the US network; ∗ , ∗∗ , and ∗∗∗ refer rejection of the null of Granger- 

noncausality at significance levels of 10%, 5%, and 1%. The four subsam- 

ples are (1) pre-crisis period Jan 2, 2006 – Aug 7, 2007; (2) the first 

crisis period (pre-Lehman), Aug 8, 2007 – Sep 12, 2008; (3) the sec- 

ond crisis period (post-Lehman) Sep 16, 2008 – April 1, 2009; and (4) 

the third crisis period Apr 2, 2009 – Dec 31, 2012. The last column re- 

ports the optimal lag-length selected by the Akaike information crite- 

rion (AIC). 

US and European correlation networks after removing the 
first principal component from the return series and run 
Granger-causality tests between the US and European net- 
works. The results are presented in Table 5 . 

The main finding is that during the Pre-crisis and Crisis 
1 periods, the US network variables significantly Granger- 
cause the European network variables (in seven of ten pair- 
wise tests). During these first two sub-periods, European 
network variables never Granger-cause US network vari- 
ables. However, after the failure of Lehman Brothers, the 
reverse is true. During Crisis 2 and Crisis 3 periods, Euro- 
pean network variables tend to significantly Granger-cause 
U.S. network variables (in six of ten pairwise tests) while 
Granger-causation from the U.S. to Europe is significant in 
only one of ten pairwise tests during these post-Lehman 
periods. These findings largely mirror the volatility con- 
nectedness documented between the US and Europe in 
Yilmaz (2014) . 

8. Concluding remarks 

During the recent financial crisis, market dynamics 
changed dramatically, with some markets seizing up as 
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market uncertainty and asymmetric information between 
banks created unprecedented problems in the world econ- 
omy. In this paper, we analyze the detailed trading data 
from the European (e-MID) interbank market to better un- 
derstand how interbank trading reflected these economic 
problems. We construct and examine physical networks of 
trade that allow us to examine bank connectedness over 
time. Further, we compare and contrast correlation net- 
works (constructed based on Granger-causality between 
stock returns) with physical networks (constructed from 

interbank trades) to better interpret results from each. 
We demonstrate that correlation and physical networks 

reflect important, but different, economic conditions in 
the European banking sector. During the crisis, physi- 
cal bank networks reveal a breakdown in connectivity in 
the interbank market. Interestingly, correlation networks 
show increased co-movements in market returns during 
the crisis that have been interpreted as an increase in 
connectivity. 

We further explore the source of these interconnected 
changes by region of Europe. Within correlation networks, 
banks from peripheral European countries (Greece, Ireland, 
Italy, Portugal, and Spain) contribute most to changes in 
interconnectedness. However, banks from both core Euro- 
pean countries (Austria, Belgium, France, Germany, Luxem- 
burg, and the Netherlands) and peripheral countries con- 
sistently contribute to interconnectedness changes within 
the physical networks. 

Moreover, correlation and physical networks respond 
differently to monetary and macroeconomic shocks. Inter- 
connectedness in physical networks adjusts strongly and 
quickly to central bank operations and to announcements 
of new information, revealing important markers of liquid- 
ity at short (daily) horizons. Conversely, while intercon- 
nectedness in correlation networks marks the onset of the 
crisis, this metric changes little in response to central an- 
nouncements and interventions. 

We also show that the Lehman Brothers failure not 
only altered the dynamics of how physical and correlation 
networks react to shocks in Europe, but also altered the 
lead-lag relations between interconnectedness in the cor- 
relation networks of European and US banks. US network 
variables significantly lead the European network variables 
prior to the Lehman failure, but European network vari- 
ables significantly lead US network variables after Lehman 
failed. 

Our results demonstrate that correlation and physical 
networks can identify (and forecast) hard information like 
industrial production and retail sales. Complementarily, 
physical interbank trading networks serve to identify 
weakening interconnectedness in the interbank system 

that may lead to liquidity problems. Moreover, physical 
networks can identify systemically important and problem 

banks on an ongoing basis. From a policy perspective, 
monitoring both types of networks would be useful. 

Appendix 

Let A t be the network adjacency matrix at time t . Then, 
the given network sequence can be approximated with 

A t ≈ U t V 
T 
t , 

where U t and V t are both vectors that are constrained to be 
nonnegative, i.e., each element of U t and V t is greater than 
or equal to zero. Interpretations of U t and V t are straight- 
forward. The j th element of U t measures the importance of 
bank j to average outgoing connectivity at time t . Likewise, 
the j th element of V t measures the importance of bank j 
to the average incoming connectivity at time t . Together, 
U t and V t are useful for highlighting banks by their impor- 
tance to interconnectivity. 

Constraints that force evolving factors U t and V t to ex- 
hibit temporal smoothness are imposed on the factoriza- 
tions to enhance their visualization and interpretability. 
This ensures that bank trajectories are visually smooth 
when drawn, and as a consequence, time plots of each 
bank become informative. Thus, centrality measures over 
time are found by minimizing an objective function that 
consists of a goodness of fit component and a smoothness 
penalty 

min 
{ U t , V t } 

T 
∑ 

t=1 

∣

∣

∣

∣A t −U t V 
T 
t 

∣

∣

∣

∣

2 

F 
+ λ1 

T 
∑ 

t=2 

| | U t −U t−1 | | 
2 
F 

+ λ2 

T 
∑ 

t=2 

| | V t −V t−1 | | 
2 
F , 

where the parameters λ1 and λ2 are set by the user to 
control the amount of memory or smoothness in the fac- 
tors over time, and U t and V t are both vectors that are con- 
strained to be nonnegative. The interpretation is again in- 
tuitive. For the physical network, U t measures importance 
to selling (outgoing edges) and V t to buying (incoming 
edges). For the correlation network, U t measures impor- 
tance of banks whose returns are predictive of other bank 
returns (outgoing edges) and V t to banks whose stock re- 
turns are predicted by other banks’ stock returns (incom- 
ing edges). 

To minimize the objective function and obtain the cen- 
trality measures, gradient descent algorithms standard for 
matrix factorization can be utilized. Extensive discussion, 
including estimation and other implementation details, can 
be found in Mankad and Michailidis (2013) and Mankad 
et al. (2014) . 
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