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1. Introduction

The breakdown of liquidity in normally robust financial
markets presents one of the enduring questions from the
recent financial crisis. During the crisis, central bank inter-
vention failed to enhance liquidity and, over short inter-
vals, crowded out private liquidity (Brunetti et al.,, 2011). In
addition, precautionary hoarding by relatively weak banks
during the crisis appeared to exacerbate market liquidity
problems.! Given the central role that banks play in pro-
viding valuable liquidity to many markets, the interbank
market plays a significant role in facilitating market liq-
uidity in the wholesale funding market.? As the Bank for

1 See, for instance, Acharya et al. (2010); Heider et al. (2015); Ashcraft
et al. (2011); Acharya and Skeie (2011), and Acharya and Merrouche
(2013).

2 Interconnectedness is one of the five (equally important) characteris-
tics used by the European Union to determine globally systemic impor-
tant banks (Bank for International Settlements, 2011).
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International Settlements®> notes, during the recent crisis
“a market run on an institution whose illiquid assets were
financed by short-term liquid liabilities ... spread quickly
and widely to other institutions and markets,” i.e., physi-
cal network interconnectedness plays an important role in
identifying a bank’s systemic importance.

In this paper, we study interconnectedness in the Eu-
ropean interbank market to explore whether, and how,
bank interconnectedness evolved during the crisis using
two different network structures—the correlation (Granger-
causality) network of bank stock returns (Billio et al., 2012)
and the physical interbank trading network. We study how
interconnectedness in these networks is affected by mon-
etary and macroeconomic shocks related to the European
Central Bank (ECB) interventions and announcements of
both conventional and unconventional ECB operations (see
Rogers et al., 2014). Further, we explore whether intercon-
nectedness metrics help to forecast financial and economic
activity.

We show that during the crisis, physical network con-
nectedness drops significantly, reflecting hoarding behavior
among banks, which impairs interbank market liquidity.
Conversely, and similar to results in Billio et al. (2012) and
Diebold and Yilmaz (2014), we find that European bank
correlation networks reveal increased connectedness dur-
ing the crisis. These findings show that correlation and
physical networks evolve differently and reflect different
economic content. While the physical trading network
reveals the breakdown between banks, the correlation
network reveals that banks equity returns were moving
closely together during the crisis.

We further explore the source of these interconnected
changes by utilizing information on the country of ori-
gin for each bank, by core Europe (those from Austria,
Belgium, France, Germany, Luxemburg, and the Nether-
lands), peripheral countries (those from Greece, Ireland,
Italy, Portugal, and Spain), and others (those from Den-
mark, Great Britain, Norway, and Switzerland). Within cor-
relation networks, banks from peripheral countries consis-
tently contribute most to changes in interconnectedness.
However, within the physical network, banks from both
peripheral and core European countries are important at
different times, with the importance of banks from core
countries bottoming out immediately following the failure
of Lehman Brothers on September 15, 2008.

We also find that correlation and physical networks re-
spond differently to monetary and macroeconomic shocks.
Early in the crisis central banks intervened heavily to pro-
mote funding and market liquidity. Interconnectedness in
physical networks adjusts strongly and quickly to these
central bank operations and announcements, revealing im-
portant market characteristics related to interbank trad-
ing at short (daily) horizons. Conversely, interconnected-
ness in correlation networks changes little in response to
these events, presumably since these announcements and
interventions have little impact on the factors driving stock

3 Bank for International Settlements, 2011. Global systemically impor-
tant banks: assessment methodology and the additional loss absorbency
requirement.

returns.* In this light, monitoring the response of the inter-
bank market to announcements and interventions is more
valuable to policy makers interested in monitoring and en-
hancing interconnectedness among banks.

We further compare networks to test whether intercon-
nectedness measures might serve to forecast short-term
(daily) economic conditions. We show that correlation and
physical networks can identify (and forecast), at the daily
horizon, hard information like industrial production and
retail sales. Complementarily, physical interbank trading
networks serve to identify weakening interconnectedness
in the interbank system that may lead to liquidity prob-
lems in the wholesale funding market.

Since the (US based) Lehman Brothers failure appears to
have altered the dynamics of how European physical and
correlation networks react to shocks, we also explore the
lead-lag relations between interconnectedness in the cor-
relation networks for the two continents. Consistent with
these altered dynamics, we find that US network variables
(such as degree, clustering coefficients, etc.) significantly
Granger-cause the European network variables in the two
sub-periods leading up to the Lehman failure, but Euro-
pean network variables more commonly Granger-cause US
network variables in the post-Lehman periods.

From a policy perspective, understanding both types of
networks can be useful. Correlation networks constructed
from equity market returns rely on publicly traded eq-
uity prices and so cannot identify problem banks that
are privately held. Likewise, correlation networks cannot
distinguish between common exposures and transmission
among banks, nor can they identify the different channels
of transmission, a precondition for preventive and pallia-
tive actions by policy makers and regulators. While corre-
lation networks might better identify systemic risk,” phys-
ical networks respond to smaller exogenous shocks and
are useful in identifying both systemically important and
problem banks on an ongoing basis. Physical networks
are therefore more useful when exogenous shocks are not
large enough to threaten systemic risk (i.e., most of the
time). Since market liquidity depends crucially on the con-
nectedness between banks, regulators would be well suited
to monitor the interbank market for early signs of liquidity
problems.

Our work contributes to the literature on networks in
finance, which, broadly speaking, distinguishes between
correlation networks, where edges are based on asset
return correlations (e.g. Billio et al, 2012; Diebold and
Yilmaz, 2014), and physical networks, where links result
from agent choices (e.g., banks A and B contract to ex-
change overnight funds as in Cont et al. (2012). We demon-
strate that the two types of networks capture related,
but differing information sets, with correlation networks
capturing both direct and indirect linkages and physical
networks capturing more specific direct linkages among

4 Similarly, Fiordelisi et al. (2014) and Ricci (2015) find that standard
ECB interventions more effectively restore the interbank market, while
nonstandard interventions register stronger reactions in stock prices.

5 See Puliga et al. (2014).
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banks.® To guide this intuition, we develop an accounting
framework that helps to illuminate the different nature of
the two network structures. We then utilize the direct na-
ture of our trading data to empirically compare and con-
trast correlation and physical networks.

The paper proceeds as follows. In Section 2, we provide
a review of the main literature. In Section 3, we provide an
accounting framework that helps in understanding the two
different network formations. Section 4 describes our data,
while Section 5 describes the interconnectedness metrics
from the correlation and physical networks we construct.
In Section 6, we study how central bank announcements
and interventions and traditional financial variables affect
network topology in a forecasting exercise. We explore ev-
idence of transmission between the US and Europe corre-
lation networks in Section 7 and conclude with a brief dis-
cussion in Section 8.

2. Network interconnectedness literature

A number of research papers highlights how common
holdings can drive interconnectedness within correlation
networks. Much of the finance literature on networks con-
centrates on how network structures are important for the
propagation of shocks. Allen and Gale (2000) and Upper
(2006) shows that the network structure may exacerbate
or attenuate contagion effects. In this literature, linkages
(interconnectedness) between financial institutions may
occur either as a result of common holdings or as a result
of direct contractual agreements.

Braverman and Minca (2014) describe how common as-
set holdings among banks can transmit financial distress.
If two banks, A and B, hold the same and an exogenous
shock forces A to liquidate the asset, the price of the asset
will decline and therefore change the value of B’s portfolio.
While links in the network of common asset holdings are
not readily specified in bank balance sheets, they may be
estimated by stock market price linkages. Braverman and
Minca (2014) show that the severity of contagion depends
on both common holdings and the liquidity of these com-
mon holdings, with the higher the number of common as-
sets, the higher is the possibility of contagion (a point first
introduced by Shaffer, 1994).

In a similar vein, Lagunoff and Schreft (1999) develop
a model that shows that as economies increase in size,
diversification opportunities also increase, which reduces
network fragility. However, if the increase exceeds a given
threshold, the high level of interconnectedness may in-
crease financial fragility. Indeed, Cont and Wagalath (2013,
4) show that realized correlations in equity indices in-
creased dramatically with the Lehman Brothers collapse
and conjecture that the increased correlation resulted from
the liquidation of large positions by market participants.
Their model, in which returns are driven by both funda-
mentals and liquidity, shows that even without correla-
tion among fundamentals, liquidity correlations can gen-

6 The linkages among our banks include, but are not limited to, in-
terbank lending. Many are large banks, domiciled in a variety of Euro-
pean countries (see below), and likely interact with additional business
relationships.

erate correlated asset returns, “thus losing the benefit of
diversification exactly when it is needed”.

Cabrales et al. (2014) model contagion as the transmis-
sion of a pathologic disease, linking firms as they exchange
assets to meet capital requirements and noting a trade-off
between risk sharing and contagion. Similarly, De Vries
(2005) claims that banks, by holding similar portfolios,
are exposed to the same market risks so that bank equity
returns are asymptotically dependent. Likewise, Acharya
and Yorulmazer (2008) show that if banks hold stakes
in the same companies, bank equities are necessarily
interdependent.

A second burgeoning literature on financial networks
examines contractual agreements similar to our physical
network constructed from interbank trades. For example,
Acemoglu et al. (2015) find that financial contagion is a
function of the network structure-a network where all
banks are connected is less fragile than an incomplete net-
work for small exogenous shocks but is more fragile for
large shocks. Similarly, Gai et al. (2011) present a theo-
retical framework to show shocks can have large conse-
quences, and Roukny et al. (2016) show the structure of
(credit market) networks can affect the capacity of regula-
tors to assess the level of systemic risk.

Some works consider both correlation and physical net-
works. Cifuentes et al. (2005) construct a model that incor-
porates two channels of contagion: direct linkages through
the interbank market and indirect linkages through com-
mon holdings. Similarly, Caccioli et al. (2013) analyze both
the network of common holdings and the physical net-
work and show that in a crisis, contagion is mainly driven
by common holdings, but it is amplified by trading in
the physical network—i.e., both networks contribute to sys-
temic risk.”

Most of this literature highlights the fact that common
asset holdings, reflected in correlation networks, are the
main source of systemic risk (Elsinger et al., 2006) and that
interbank lending (the physical network of bank connec-
tions) plays only a marginal role. Conversely, we analyze
these networks from a different angle. We aim to quantify
the information content of these two network structures to
better understand how policy decisions might be more ef-
fective in ameliorating systemic risk and enhancing market
liquidity in times of crisis.

3. An accounting framework

In order to highlight the two different network forma-
tions, we adopt a simple accounting framework (follow-
ing Shin, 2009a, b and Elliott et al. 2014) in which banks
connect lenders to borrowers as intermediaries, collecting
deposits from households and firms and investing the de-
posits in a portfolio of assets, including loans to the house-
hold sector (via mortgages and consumer debt) and firms.

We now introduce some notation:

1. y;  denotes the market value of bank i's assets—

including loans to firms and households as well as k

asset classes (equities, bonds, commodities, etc.).

7 See also Allen and Babus (2010) and Allen et al. (2010). In related
work, Roukny et al. (2013) analyze bank network topology and find that
topology matters only when the market is illiquid.
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2. w; | is the weight invested in each of the k assets by
bank i; > w; = 1.
k

3. x; denotes the total value of liabilities of bank i held by
other banks.

. X; j is the value of bank i’s liabilities held by bank j.

. 7; j is the share of bank 's liabilities held by bank j.

. e; indicates the market value of bank i’s equity.

. d; is the total value of liabilities of bank i held by non-
banks.

NN BN

Hence, banks i’s balance sheet is given by

Assets Liabilities

e.

Z WikYik :

k X;

j
(1)
and bank i’s balance sheet identity is
D Wik + Y X = e+ X+ d. (2)
k J

The left hand side is the value of all bank i’s assets that
is equal to the market value of bank i's portfolio, first term,
and to the funds lent by bank i to other banks (interbank
lending), second term.®

From Eq. (2) we can express the vector of interbank
debt as follows

X=IX+WY-E-D, 3)
and
(I-IHX =WY —E - D. (4)

The left hand side is the interbank market that, accord-
ing to Eq. (4), depends on the market value of the portfolio
of assets held by banks, the market value of bank equities,
and the value of bank liabilities held by non-banks. The
interbank market is dynamic, with daily trading (overnight
loans represent the overwhelming majority—92.3% of con-
tracts in our e-MID data) in response to their funding
needs, which is linked to minimum reserve requirements,
margin calls, or shortages needed to fulfill contractual
obligations-the first term of the right hand side of Eq. (4).
Bank equity (E) changes over time may also drive inter-
bank lending through the second term.

Following Shin (2009a), we assume that the debt lia-
bilities to nonbanks are expected to be sticky—i.e., D will
move very slowly. D represents debt claims on the banking
sector by households, mutual and pension funds, and other

8 We assume that banks have restrictions for cross holdings of equities.
This assumption can be easily relaxed in our model.

nonbank institutions, so while D varies over time, changes
to D are less likely to drive interbank lending.

Given the accounting identity that governs the full sys-
tem of banks, we represent the adjacency matrix of the in-
terbank lending market as follows.

Bank 1 Bank 2 Bank s
Bank 1 0 T2 s
Bank 2 T4 0 T
Bank s Ts1 Ts2 0

From Eq. (4) we build the consolidated balance sheet of
the banking sector as a whole, where assets and liabilities
are aggregated across banks. Given that x; ; is a liability
for bank i but an asset for bank j, the aggregated balance
sheet does not include any interbank claims. Hence, Eq. (1)
becomes

Assets Liabilities

Z Z WikVik Z €;
k

i i

2.4
i

(5)

and the balance sheet identity is now®
E=WY -D. (6)

Egs. (4) and (6) highlight how the two networks sub-
sume different information sets which represent our main
object of investigation. The main difference between the
two networks emanate from the aggregation which is re-
quired in the correlation network and from the fact that
the networks are driven by different agents. Correlation
networks are inferred from market prices, driven by in-
vestors, whereas physical networks are driven by the ac-
tions of banks. The different drivers of connections in cor-
relation and physical networks make intuitive sense, since
investor behavior links to systemic risk, while interbank
behavior more closely captures liquidity in the banking
system.'” To further explore the fundamental drivers of
each network type and hence how these networks might
also be connected, we also formally test whether and how
economic fundamentals and shocks affect interconnected-
ness in the two network structures.

9 Eq. (6) has an interpretation similar to that in Elliott, Golub, and
Jackson (2014) and is based on the results in Brioschi et al. (1989) and
Fedenia et al. (1994). De Vries (2005, 2) interprets Eq. (6) as “The for-
tunes of the banking sector as indicated by the balance sheet items, are
sooner or later also reflected in the value of bank equity. This enables
us to characterize systemic failure in terms of the joint bank equity price
movements ... driven by the interdependent bank portfolios.”.

10 We thank our anonymous referee for bringing forward clarity on this
point.
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For the correlation network, edges are a function of the
variance-covariance matrix of bank equity returns. Follow-
ing Billio et al. (2012), we first compute rate of returns of
bank i's equity,

e,
r,-_t:ln L s
€ir—1

and then filter r; ; using a standard GARCH(1,1) model. For
each pair of bank returns, U;, we run the following vector
autoregression model

(LU =V, (7)
where V;~N(0, X) and test the following null:
Ho: ®(L) =0, (8)

where & (L) refers to the off-diagonal terms of ®(L) esti-
mated by ordinary least squares. This is a standard Wald
test with covariance matrix equal to V' X-1V. Rejecting the
null in Eq. (8) produces an edge between the returns of the
two banks in U;."

4. Data

The data required to construct correlation and phys-
ical networks highlight the unique composition of both
networks. Our e-MID physical trading data includes 212
unique banks, with a diminishing number over time as
the crisis progressed.’? However, only 54 of these banks
are publicly traded, so construction of correlation networks
is limited to this smaller set of banks. Only in rare cases
will a partial physical network of 54 banks fully capture
how they trade with each other, since their trades with the
other 158 banks would be excluded.!® Therefore, we utilize
all available data and construct the physical network using
all 212 banks and construct the correlation network from
the set of 54 publicly traded European banks in our e-MID
dataset from January 2006 through December 2012.

11 Barigozzi and Brownlees (2014) construct networks where edges are
based on long run partial correlations. Lin and Michailidis (2017) con-
struct systemwide Granger-causal networks assuming a sparse structure.
Likewise, Diebold and Yilmaz (2014) propose several measures of inter-
connectedness based on the variance-covariance matrix and link these
measures to connectedness used in the network literature. While the
physical network of interbank trades is directly observable, the correla-
tion network based on equity returns is the result of a testing procedure
that, in addition to the classic type I and II errors, is a function of the
model specification in Eq. (7). Moreover, Granger-causal networks require
longer sample periods to establish connections.

12 The e-MID platform is the only electronic market for interbank de-
posits in the Euro region, offering interbank loans ranging from overnight
(one day) to two years in duration, with overnight contracts representing
90% of total volume during our sample period (see Brunetti et al. 2011).

13 While recent work shows that metrics calculated from partial net-
works can have significant bias and loss of information (see, e.g.,
Achlioptas et al. 2009), Handcock and Gile (2010) show that partially ob-
served network data can be used for valid statistical inference. Moreover,
Chandrasekaran et al. (2012) show that for correlation networks, results
based on a subset of nodes are valid as long as the unobserved nodes do
not exert very strong influence on the observed nodes. This is definitely
the case in our correlation network, where the largest (by assets) banks
are included in our analysis-those exerting the largest influence. Simi-
larly, for physical-type networks, Bliss et al. (2014) show that network
statistics estimates are of good quality when based on random samples, a
finding also in accordance with our analysis.

Table 1
Summary statistics of the daily rates of stock returns (x100) for the
different sub-periods.

Pre-crisis: 2-Jan-06 - 8-Aug-07

Mean Median St. Dev.

0.0603 0.0000 14.236
Crisis 1: 9-Aug-07 - 12-Sep-08

—0.1457+ —0.0886 15.449
Crisis 2: 16-Sep-08 - 1-Apr-09

—0.5037** —-0.1986 19.706
Crisis 3: 2-Apr-09 - 31-Dec-12

—0.0439 0.0000 19.849

*, **, and *** refer to significance levels of 10%, 5%, and 1% for testing
the mean difference between each sub-period and the pre-crisis period
that we use as benchmark. Standard errors are computed using boot-
strapping.

While European banks can also trade bilaterally via
phone brokers and with the ECB directly, e-MID inter-
bank activity accounts for 17% of total turnover in un-
secured money market in the Euro area.'* During our
sample period, e-MID volume exceeds €18 trillion, and
includes trades from every major European bank (span-
ning 15 different countries). Moreover, e-MID trades are
also consequential-e-MID executed more large deals (>
€100) than standard-size (smaller) deals from 2005 to
2008.5

We examine daily and monthly data over four sub-
periods: (1) a pre-crisis period from January 2, 2006 un-
til August 7, 2007 (when the ECB noted worldwide lig-
uidity shortages); (2) the first crisis period (pre-Lehman)
from August 8, 2007 until September 12, 2008; (3) the sec-
ond crisis period (post-Lehman) from September 16, 2008
through April 1, 2009 (when the ECB announced the end of
the recession); (4) the third (post-recession) crisis period,
from April 2, 2009 through December 31, 2012. This last
period was characterized by a weak recovery in Europe—
the recession officially ended in the third quarter of 2009,
thanks largely to fiscal and monetary measures to stimu-
late the economy. The beginning and ending dates of our
sample are limited by our access to e-MID data.'®

Daily summary statistics for the rate of returns are re-
ported in Table 1. In the pre-crisis period, rate of returns
are positive and exhibit low volatility. In the crisis periods,
returns are highly negative and exhibit very large volatil-
ity. Bank equity returns remain negative in the third crisis
period albeit still very volatile, highlighting that the crisis
continued to affect the banking system in post-recession
Europe. 17

14 See European Central Bank, 2007. Euro money market study, 2006.

15 See European Central Bank, 2009. Euro money market study, 2008.

16 Other research analyzing e-MID data in the context of network anal-
ysis includes Hatzopoulos et al. (2014), lori et al. (2014), Roukny et al.
(2013), and Delpini et al. (2013).

7 In 2011 and 2012 Euro area bank CDS premiums rose significantly
and sovereign bond spreads widened appreciably for Greece, Ireland, Italy,
Portugal, and Spain (relative to Germany).
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To construct physical networks we employ e-MID trad-
ing data from the only electronic regulated interbank mar-
ket in the world. Each e-MID transaction includes the time
(to the second), lender, borrower, interest rate, quantity,
and an indication of which party is executing the trade.
The e-MID market is open to all banks admitted to oper-
ate in the European interbank market, and non-European
banks can access the market through their European
branches. As of August 2011, the e-MID market had 192
members from European Union countries and the US,
including 29 central banks acting as market observers
(Finger et al., 2013). We observe 212 unique banks and
464,772 trades in the data. At the beginning of our sam-
ple, internal estimates from e-MID reveal that this mar-
ket covers about 20% of the interbank market in the Euro
area. However, this percentage has been dropping since the
crisis. Accordingly, we find a decline in the daily average
number of banks in the data from 129 to 113 to 91 to
69 across our four sub-periods. The automated trade pro-
cessing features in e-MID allow us to accurately assess and
examine the interbank trading connections between banks
in this market (at least those executed through the e-MID
system).

Table 2 reports daily e-MID market summary statistics,
by sub-period, for price changes, effective spreads, volume,
trade imbalances, market concentration (Herfindahl index),
and signed volume. As shown, daily price changes are con-
sistently negative, with greater negative changes during
the two crisis periods. Volatility rises dramatically during
the crisis, remains somewhat elevated through the crisis,
with another dramatic rise at the end of 2011 during the
third crisis sub-period as illustrated in Fig. 1.

Effective spreads, in Table 2, remain relatively stable
across our sample period, suggesting that interbank mar-
ket liquidity did not suffer appreciably during the crisis.
On the other hand, average daily volume varies signifi-
cantly and ranges from 927 to almost 42,000 contracts per
day. The top right panel of Fig. 1 shows clearly that vol-
ume drops substantially over time, resulting in third cri-
sis period volume representing less than 20% of pre-crisis
volume.

The lower left panel of Fig. 1 plots trade imbalances
(scaled by volume) over time and shows that imbalances
increase over time, a result driven by the concurrent de-
cline in volume. Market concentration, as measured by the
Herfindahl index, also rises consistently over our sample
period (see bottom right panel of Fig. 1), reflecting greater
concentration among banks using e-MID. Signed volume
is negative throughout our sample period, indicating that
banks actively use e-MID for selling funds.

5. Network interconnectedness

We compute various measures of interconnectedness
by utilizing the correlation networks (from bank stock re-
turns) and physical networks (from e-MID trading data).
Our correlation networks infer edges between banks
through Granger-causality tests between stock returns (as
in Billio et al., 2012). Our physical networks are formed
by direct trades in the e-MID interbank market. Since in-
terbank trades are directly observed, our physical network

Table 2
Summary statistics of e-MID daily financial variables.

Pre-crisis: 2-Jan-06 - 8-Aug-07

Mean Median St. Dev.
A(Price) -0.0232 -0.0150 0.0871
Effective spread 13782 1.3888 0.0988
Volume 22,834 22,337 4902
Trade imbalance 0.0049 0.0046 0.0018
Herfindahl index 0.0159 0.0157 0.0014
Signed volume —13,154 -12,715 5,6309

Crisis 1: 9-Aug-07 - 12-Sep-08
A(Price) —0.1236%** —0.0600 0.2224
Effective spread 1.3685 1.3804 0.1015
Volume 14,512+ 14,132 3537
Trade imbalance 0.0067*** 0.0064 0.0024
Herfindahl index 0.0173** 0.0169 0.0022
Signed volume —8.7772%** —8.5914 3.4672
Crisis 2: 16-Sep-08 - 1-Apr-09

A(Price) —0.2832+** —0.2500 0.2566
Effective spread 1.3629 1.3754 0.0939
Volume 7796%** 7763 2568
Trade imbalance 0.0078*** 0.0072 0.0027
Herfindahl index 0.0202*** 0.0199 0.0026
Signed volume —4.3513++* —4.0138 2.1801

Crisis 3: 2-Apr-09 - 31-Dec-12

A(Price) —0.0070** 0.0000 0.1945
Effective spread 1.3329 1.3465 0.1234
Volume 4002*** 3997 1522

Trade imbalance 0.0199*** —0.0190 0.0101
Herfindahl index 0.0521*** 0.0484 0.0062
Signed volume —1.8971*** -1.8283 1.4590

Trade imbalance is computed as the difference between number of buys
and number of sells, normalized by volume. Signed volume is computed
as the difference between aggressive buy volume and aggressive sell
volume.

*, ** and, *** refer to significance levels of 10%, 5%, and 1% for testing
the mean difference between each sub-period and the pre-crisis period.
Standard errors are computed using bootstrapping.

is more similar to social networks, where a relationship
exists between nodes (see Newman, 2010; and Jackson,
2008). We emphasize the fact that the 54 banks compos-
ing the correlation network are also part of the physical
network, but their connections in one network do not nec-
essarily imply the same connections in the other.

For the correlation network, we utilize returns for indi-
vidual banks to establish Granger-causality links between
banks. In particular, if the return of bank A Granger-causes
the return of bank B, then we draw a directed edge from
A to B. Granger-causality tests are run using both monthly
data with 36-month rolling windows, and daily data with
44-day rolling windows.

The physical network maps lenders to borrowers over
each month. Specifically, if bank B borrows from bank A
within the time interval of interest, then an edge is drawn
from A to B. In this manner, interbank lending networks
capture funding liquidity by distinguishing banks provid-
ing funds from banks receiving funds.'® Similar to the cor-
relation network, we construct daily and monthly physical

18 Weighting the edge in the physical network by volume does not
change our main findings.
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Fig. 1. e-MID daily financial variables among 212 European banks from August 8, 2007, through December 31, 2012. Volume is in number of contracts.
Trade imbalance is computed as the difference between number of buys and number of sells, normalized by volume. The vertical lines indicate the four
subsamples: (1) pre-crisis period January 2, 2006 - August 7, 2007; (2) the first crisis period (pre-Lehman), August 8, 2007 - September 12, 2008; (3) the
second crisis period (post-Lehman) September 16, 2008 - April 1, 2009; (4) and the third crisis period April 2, 2009 - December 31, 2012.

networks that account for all e-MID transactions during a
day or a month.

We extract various network interconnectedness metrics
and display these results in Table 3, taking care to nor-
malize these statistics by the number of banks in the net-
work so that appropriate comparisons can be made be-
tween each network on these metrics. First, we estimate
the degree of each network, defined as the number of con-
nections as a proportion of all possible connections. We
follow the notation in Billio et al. (2012) and introduce the
indicator function A— B denoting whether an edge exists
from bank A to bank B. Degree is then defined as

1 N
Degree = ———— A — B, 9
&r N(N—l);l; (9)

where N is the total number of banks (nodes) in the net-
work. Degree is a network-wide measure used by Billio
et al. (2012) to estimate the risk of a systemic event.
Within the physical network, lower average degree may in-
dicate a lower level of liquidity on e-MID.

The second measure of interconnectivity we utilize is
closeness, which measures how many steps are between
banks on average. To construct this measure, let C45 be the
length of the shortest path from bank A to bank B, where
Cag = N — 1 if there is no path from bank A to bank B. Then
closeness is defined as

1 N
closeness = ——— Cap. 10
N(N_])AZ:;B; 2B (10)

Closeness is normalized to be between zero and one,
where larger values indicate larger relative distance be-
tween banks on the network.

Our third metric of connectivity is the clustering coef-
ficient, which measures how often triangular connections
occur or the probability that neighbors of a bank are them-
selves connected. The clustering coefficient (CC) is defined
as

3 x number of connected triples

= number of possible connected triples’

(11)
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Table 3

Summary statistics of monthly correlation and physical networks.

Correlation network

Pre-crisis

2-Jan-06 - 8-Aug-07

Physical network

Pre-crisis

2-Jan-06 - 8-Aug-07

Mean Median ~ St. Dev. ~ Mean Median  St. Dev.
Degree 0.0419 0.0412 0.0048 0.0638 0.0632 0.0036
Closeness 0.0303 0.0303 0.0060 0.0053 0.0051 0.0004
cC 0.1459 0.1429 0.0247 0.3434 0.3405 0.0258
EVCentrality 0.0104 0.0095 0.0035 0.0170 0.0131 0.0090
LSCC 0.3411 0.3846 0.1666 0.4839 0.4858 0.0276
Crisis 1 Crisis 1
9-Aug-07 - 12-Sep-08 9-Aug-07 - 12-Sep-08
Degree 0.0540%** 0.0532 0.0180 0.0556*** 0.0561 0.0050
Closeness 0.0386*** 0.0388 0.0127 0.0051*** 0.0051 0.0003
cC 0.1587 0.1527 0.0610 0.3512 0.3590 0.0263
EVCentrality 0.0147*** 0.0133 0.0073 0.0113*** 0.0091 0.0062
LSCC 0.4393*** 0.5000 0.2345 0.4140*** 0.4340 0.0378
Crisis 2 Crisis 2
16-Sep-08 - 1-Apr-09 16-Sep-08 - 1-Apr-09
Degree 0.1061*** 0.1081 0.0165 0.0415*** 0.0393 0.0061
Closeness 0.0637*** 0.0591 0.0087 0.0049*** 0.0050 0.0004
cC 0.2761*** 0.2780 0.0502 0.2881*** 0.2795 0.0349
EVCentrality = 0.0456*** 0.0485 0.0119 0.0899*** 0.0501 0.0781
LSCC 0.7088*** 0.6923 0.0537 0.2358*** 0.2170 0.0587
Crisis 3 Crisis 3
2-Apr-09 - 31-Dec-12 2-Apr-09 - 31-Dec-12
Degree 0.1256*** 0.1338 0.0261 0.0405*** 0.0407 0.0049
Closeness 0.1029*** 0.0894 0.0386 0.0051*** 0.0051 0.0001
cC 0.3295*** 0.3395 0.0693 0.3018*** 0.3039 0.0330
EVCentrality =~ 0.0583*** 0.0641 0.0177 0.0238*** 0.0143 0.0232
LSCC 0.7653*** 0.7308 0.0824 0.1758*** 0.1745 0.0457

527

Degree refers to the average degree in each network. Closeness measures the average
distance, in terms of edges, between banks in the network. CC indicates the clustering
coefficient. EVCentrality refers to the eigenvalue from eigenvector centrality, and LSCC
refers to the proportion of nodes in the largest strongly connected component.

*, %, and *** refer to significance levels of 10%, 5%, and 1% for testing the mean difference
between each sub-period and the pre-crisis period. Standard errors are computed using

bootstrapping.

where a connected triple means any three banks A,
B, and C such that A—B, A—C, and B— C. Clustering
coefficients approaching the maximum value of 1 would
indicate higher levels of connectedness.

The fourth measure of interconnectivity is eigenvector
centrality, which is calculated by taking the first eigenvec-
tor of the adjacency matrix of network relations [X]s5 =
A — B. In addition to being closely related to the best rank-
1 approximation of X, the scores for each bank can also be
interpreted as being proportional to the sum of the cen-
tralities of those banks to whom it is connected, so that
banks with high eigenvector centralities are those that are
connected to many other banks that are, in turn, connected
to many others (and so on). The scores are between zero
and one, where larger values indicate banks that are more
important to interconnectivity.

The fifth and last measure of network connectivity, the
largest strongly connected component (or LSCC), is the
proportion of banks that are connected to other banks by
following directed edges on the network scaled by the to-
tal number of banks in the network. Hence, the LSCC also
measures the level of interconnectedness in the network
with an LSCC of one indicating that any bank can reach

every other bank, while an LSCC closer to zero indicates a
highly fragmented network.

As shown in Table 3, the variation of monthly network
statistics in the correlation network is larger than that in
the physical network.'® Within correlation networks, the
change in connectedness from pre-crisis to the first, sec-
ond, and third crisis periods is statistically significant. Clus-
tering, eigenvalue centrality, degree and LSCC all remain
elevated for European banks from 2009 into 2011 before
falling off in the second half of 2011 through 2012.

However, through the lens of the physical market, con-
nectedness appears to have been significantly diminished.
Connectivity in the physical network drops significantly at
the outset of the crisis and remains below pre-crisis levels
through the third crisis period.

These disparate results show that the correlation and
physical networks capture different notions of connected-
ness. The crisis permanently diminished interconnected-
ness between banks in the physical interbank trading net-
work, while interconnectedness increases when measured
via stock return correlation networks. While the physical

19 Similar results are obtained from the daily sampling frequency.
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Fig. 2. Measures of interconnectedness (with statistics smoothed using local polynomial regression) for monthly physical networks for interbank lending
among 212 European banks and correlation network statistics from 54 publicly traded European banks from August 8, 2007, through December 31, 2012.
The two networks show generally opposite connectivity patterns, with the physical network losing connectivity versus the correlation network gaining
connectivity. The vertical lines indicate the four subsamples: (1) pre-crisis period January 2, 2006 - August 7, 2007; (2) the first crisis period (pre-Lehman),
August 8, 2007 - September 12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008 - April 1, 2009; and (4) the third crisis period April

2, 2009 - December 31, 2012.

connections between banks in the interbank market are
diminished, these same banks are connected to a com-
mon factor that does not affect interbank trading. Indeed,
Cont and Wagalath (2012, 2013) use a structural equa-
tion model to link the behavior of large institutional in-
vestors to equity correlations, the basis of our correlation
networks.

Fig. 2 displays the monthly time series of the network
measures from the two types of networks and clearly
shows that connectivity increases in the correlation net-
work at the onset of the first crisis sub-period and keeps
rising in the subsequent sub-periods. Overall, we find that
interconnectedness increases after the failure of Lehman
Brothers in the correlation network but decreases in the
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physical network. Lagunoff and Schreft (1999, 2) claim
that “A financial crisis is a breakdown of the economy’s
financial linkages, a collapse of all or part of the financial
structure.” The physical network clearly captures this
phenomenon.

The two networks also behave differently in other re-
spects. As Fig. 3 shows, correlation networks are sparser
than the physical networks in the pre-crisis period, per-
haps expected with only 54 banks in the correlation
network. However, despite the lower number of banks,
the correlation network becomes more interconnected
throughout our sample period. Conversely, the physical
network in the third crisis period is characterized by a
“core” of banks highly interconnected and several banks
that have a low degree of interconnectedness.2’

To further study the evolution of the two network
structures during the crisis, we identify individual banks
that contribute most to market connectivity using a ma-
trix factorization-based technique.?! These results (omitted
here for brevity) show that a small subset of banks con-
tributed most to the physical network connectivity during
the crisis and beyond. Interestingly, some banks became
more connected in the physical network, even though the
overall market became less connected. However, in the cor-
relation network, the onset of the crisis brought a spike in
connectivity among all bank returns.

While our interbank trading data do not allow us
to specifically identify individual banks, we are able to
classify banks by region. We use these classifications and
the matrix factorization-based technique described above
to explore which regions contribute most to directional
interconnectedness during our sample period.

Fig. 4 displays the centrality measures by region over
time, based on both correlation (incoming and outgoing)
and physical networks (borrowing and lending). As shown,
banks from peripheral countries contribute most to cor-
relation networks throughout the sample period, followed
by banks from core countries and then banks from other
countries.

Results from the physical networks are much more
volatile. While banks from other countries are largely least
influential in terms of borrowing and lending, banks from
peripheral and core European countries are most impor-
tant at different times. Generally, banks from core coun-
tries fall off in importance over time but reach their low-
est levels of both borrowing and lending immediately fol-
lowing the failure of Lehman Brothers (during Crisis 2).
While importance measured here is somewhat subjective,
Fig. 4 clearly shows that physical and correlation networks
have markedly different dynamics.

20 While the number of banks in the physical (up to 212) and correlation
(N=54) networks differ in robustness tests, we generate similar patterns
across time in the physical network when we randomly sample 54 of the
most active 78 banks (those above the 75th percentile) from our trad-
ing data. Eigenvector centrality, however, spikes more often and often at
different times when using the “partial network” of just 54 banks. These
results are available upon request.

21 See Mankad and Michailidis (2013) and Mankad et al. (2014). We
briefly review this technique in the appendix.

6. Economic shocks and network connectedness

We explore these differing dynamics further by analyz-
ing how these network structures reflect economic shocks.
Given that markets react to announcements (e.g., Faust
et al., 2007), we aim to compare and contrast how an-
nouncements are reflected in the stock market and inter-
bank market. We are particularly interested in two types
of shocks. The first type refers to ECB announcements and
interventions. During our sample period, the ECB adopted
both conventional and unconventional monetary interven-
tions. In particular, for the ECB interventions,>> we dis-
tinguish among long term refinancing operations (LTRO),
main refinancing operations (MRO) and other types (OT) of
ECB operations. For the announcements, we follow Rogers
et al. (2014) and consider conventional and unconventional
ECB operations.

The second type of shocks we consider refer to more
general changes in macroeconomic conditions. We first
capture these shocks using the real activity (surprise and
uncertainty) indices developed in Scotti (2016). The sur-
prise index summarizes economic data surprises and cap-
tures optimism/pessimism about the state of the economy.
The uncertainty index measures uncertainty related to the
state of the economy.”> We also consider the evolution of
the European stock market (the Dow Jones index for Eu-
rope) and the spread between the Euro Interbank Offered
Rate (EURIBOR) and the overnight indexed swap (OIS), a
measure of health of the banking system.

To fully capture the ECB shocks, we use daily data.
Hence, for this exercise we adopt daily networks. Following
Kilian and Vega (2011), we estimate the following models
for each sub-period and for each network type:

Yesk =+ BUt + B2St + B3DJST: + P4EONIA,
+ BsEURIBOR_OIS; + PB6LTRO; + B7MRO;
+ BsOT: + yye1 + &, (12)

Ve =0+ BiU + BaS;t + B3DJST, + B4EONIA;
+ BsEURIBOR_OIS; + BeAnnoucements;
+ YY1+ e (13)

where y; ., represents network statistics (degree, closeness,
clustering coefficient, eigenvector centrality, and LSCC) on
day t, U; is the economic uncertainty index, and S; the eco-
nomic surprise index from Scotti (2016); DJST; is the D] Eu-
rope stock index; EONIA; is the Euro Overnight Index Av-
erage; EURIBOR_OIS; is the spread between the EURIBOR
and OIS rate, LTRO; is a dummy for ECB long term refi-
nancing operations; MRO; is a dummy for ECB main re-
financing operations; OT; is a dummy for other types of
ECB operations; and Announcements; is a dummy variable
that captures both conventional and unconventional ECB

22 These data are available from the ECB website.

23 The indices, on a given day, are weighted averages of the surprises or
squared surprises from a set of macro releases, where the weights depend
on the contribution of the associated real activity indicator to a business
condition index.
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intervention announcements.”* U;, S, DJST;, EONIA;, and
EURIBOR_OIS; are proxies for fundamental shocks in the
economy, while LTRO;, MRO;, OT;, and Announcements; cap-
ture monetary policy shocks.

24 The announcements variable is constructed from Rogers et al.
(2014) Table 3 data.

Fig. 5 shows the RZfor each network type, over
all dependent variables and forecasting horizons, k, for
Eq. (12).%> With the exception of the clustering coefficient
and eigenvector centrality, it seems that both networks

25 Results for Eq. (13) are very similar.
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capture the same information before the crisis. However,
there is a clear pattern showing that the physical net-
work reacts more to ECB interventions and macroeconomic
shocks during the crisis and following.

Analysis of the estimated coefficients (not reported
here) reveals that the correlation network reacts to shocks
captured by the EONIA;, which plays an important role in
explaining the structure of the correlation network in all
sub-periods. The EURIBOR-OIS spread, EONIA, and the un-
certainty index are the most important factors in the phys-
ical network and seem so dominant that they overshadow
the other variable effects. This evidence is consistent with
the vast literature showing that uncertainty has important
effects on the real economy.26 Our evidence shows that the
network structures we study react to uncertainty shocks as
well.

In Fig. 6, we distinguish between macroeconomic
shocks and monetary policy shocks (of course, the two

26 Bloom (2009) and Leduc and Liu (2012), e.g., provide evidence that
uncertainty in the recent crisis has reduced economic activity (firm in-
vestment) and incrementally increased US unemployment.

might be correlated) and formally test whether the net-
work structure of the correlation and of the physical net-
works react to these two types of shocks. Our null hy-
potheses are that all macro shocks have no effect on
the network structure (i.e., the coefficient of Ui, S;, DJST;,
EONIA;, and EURIBOR_OIS; in Egs. (12) and (13) are jointly
equal to zero), and, similarly, all ECB shocks have no im-
pact on the network structure (i.e., the coefficients of
LTRO;, MRO:, and OT; in Eq. (12) are jointly equal to
zero in Eq. (12), and the coefficient for Announcements; in
Eq. (13) is equal to zero). A p-value close to zero indicates
rejection of the null—e.g., macro and/or ECB shocks are sta-
tistically relevant. In the pre-crisis period, macroeconomic
shocks are important for the correlation network metrics
(except in eigenvector centrality) at most all forecasting
horizons, while the physical network reacts to macroeco-
nomic shocks largely at horizons beyond the three days.
Moreover, the right panel in Fig. 6 generally shows that
the physical network responds more than the correlation
network to ECB operations as well.

We explore the partial R? from Eq. (12) related to
the macroeconomic shocks in Fig. 7. Conditional on ECB
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Fig. 6. p-Values from F-tests for the regressions in Eq. (12). The left panel shows the p-value for the test statistic corresponding to the null hypothesis
Ho : B1 = B2 = B3 = B4 = 5 = 0 - macro shocks do not affect the network structure. The right panel shows the p-value for the test-statistic corresponding
to Ho : fs = 7 = Bs = 0 —-ECB interventions do not affect the network structure. The physical network statistics for interbank lending are computed from
212 European banks and correlation network statistics from 54 publicly-traded European banks. The results are stratified by four subsamples: (1) pre-crisis
period January 2, 2006 - August 7, 2007; (2) the first crisis period (pre-Lehman), August 8, 2007 - September 12, 2008; (3) the second crisis period
(post-Lehman) September 16, 2008 - April 1, 2009; and (4) the third crisis period April 2, 2009 - December 31, 2012.

operations, macroeconomic shocks impact both networks
on a more permanent basis, especially at longer time hori-
zons. Fig. 8 displays the partial R? from Eq. (13) related
to the announcements alone (during the pre-crisis period,
no announcement were made). Importantly, the incremen-
tal information impounded by the announcements, condi-
tional on the general impact of macroeconomic factors, is
only mildly reflected in both the correlation and the phys-
ical network at short horizons and dissipates at horizons
greater than ten.

In all three crisis periods, the correlation network is
more responsive to macroeconomic shocks than the physi-
cal network, consistent with Puliga et al. (2014) who show
that during the crisis, increased correlations in credit de-
fault swap premiums depend on macroeconomic factors.

The F-tests for the ECB interventions in Eq. (12) show
that these types of shocks are mainly important to physi-
cal networks. In particular, the physical network reacts to
ECB interventions mainly at short horizons.?’” To further
isolate the effect of ECB shocks, we also examine the hy-
potheses above within a partial regression analysis setting.

27 We obtain similar results when analyzing F-tests for the macro and
ECB shocks in Eq. (13) where ECB shocks refer to ECB conventional and
unconventional monetary policy announcements.

Specifically, let ;1.4 denote the fitted values resulting
from estimating the following regression model

Yerk = @+ BiUr + BaSe + B3DJST: + B4EONIA,
+ BsEURIBOR_OIS; + yy;_1 + &:. (14)

We test the significance of variables in the following re-
gression models

Yerk — Verki1:4 = Po + BeLTROr + B7MRO; + BsOT; + e,
(15)

Yesk — Verki:4 = Po + PsAnnoucements, + . (16)

Fig. 9 depicts the F-test for the null Hy: Bg=p87;=
Bs =0 | B1,B2, B3, Pa.Bs# 0 for Eq. (15). In all sub-
periods, the correlation network responds to ECB inter-
ventions only contemporaneously (i.e., k=0). This is also
true for the physical network. However, physical network
interconnectedness reacts to ECB interventions contempo-
raneously and across subsequent days in all crisis sub-
periods.?8

28 Similar results are obtained for test statistic corresponding to the
partial regression null hypothesis Hy : Bs =0| B1, B2, B3, Ba,fs # 0 in
Eq. (16).



534

C. Brunetti, J.H. Harris and S. Mankad et al./Journal of Financial Economics 133 (2019) 520-538

Crisis 1 Crisis 2 Crisis 3
0.08 1
)
@
[{=]
@
@
=)
| .
&
[}
E &
wn @
£ 2
E 2
g sadtisidastsbeidiay
O
=
= & =]
o ', =
c f 28
! @ @
3 [ )
. - =1
g Pt M i 4
@
3 o
@ 23
-3
1 oa
==
@ =g
@
o
=
W
O
O
x; =y 3 bbb bt ogp b d ,“_‘: » el 4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Forecast horizon

Network —* Correlation —*~ Physical

Fig. 7. Partial R? values of announcements conditional on macro shocks for the regressions in Eq. (13). The physical network statistics for interbank
lending are computed from 212 European banks and correlation network statistics from 54 publicly-traded European banks. The results are stratified by
three subsamples: (1) the first crisis period (pre-Lehman), August 8, 2007 - September 12, 2008; (2) the second crisis period (post-Lehman) September 16,
2008 - April 1, 2009; and (3) the third crisis period April 2, 2009 - December 31, 2012.

Overall, Figs. 5-9 show that the physical and correla-
tion networks respond differently to shocks and therefore
reflect different information sets. To the extent that cor-
relation networks based on stock prices are more forward
looking, we conjecture that the relatively muted response
is related to anticipated macroeconomic changes. Con-
versely, since our physical networks respond more strongly
to shocks, we surmise that the physical network more
closely reflects connectedness between and among banks,
a connectedness that is more sensitive to economic shocks.

Given that correlation and physical networks capture
different phenomena, we assess whether and how the net-
work topology might help to serve policy makers in fore-
casting relevant macroeconomic variables. In this regard,
we utilize monthly networks and consider several of the
macro variables including:

 Hard information, such as Industrial production (IP) and
Retail sales (RS);

« Soft information, such as the Purchasing manager index
(PMI) - Banbura and Riinstler (2011) show that soft in-
formation may be important in forecasting;

 The spread between the EURIBOR and the OIS, which is
considered a measure of health of the banking system;

» The spread between the ten-year Greek, Italian, Por-
tuguese, and Spanish government bond yields and the
German government bonds yield, denoted by GRSP,
ITSP, PTSP, and SPSP, respectively.2?

We estimate the following model from January 2006
until December 2008 (36 months) and then produce one-
step-ahead forecasts for the macro variable from January
2009 until March 2010.

Ziy = Yo + y1Degree;;_1 + ¥2CCj:_1 + y3Closeness;;_4

+ ValSCCj 1 + V5Zi -1 + Uj¢ (17)
where z; ; represents the macro variable described above
(we consider one variable per time), and j denotes the cor-
relation and the physical network, respectively.

Table 4 reports the R? of the regressions (from January
2006 until December 2008) and root mean squared error
(RMSE) for the forecasting exercise.

29 Some of the macro variables are not stationary; in these cases, we
consider the first difference.



Pre-crisis Crisis 1 Crisis 2 Crisis 3
03+ /.-H -
UQ'LM ]
@
0.1 W @
0.0-
2 03 it o
o - ~ Wy ‘ =
S 02t
s 0.2 M”M || 1 ‘ﬁ .’/ g
Q0.1 fuw W Vi 'H: @
[s) Py <
o 00
| =
& 03- o
E g2 ot pn sz
ko] % i
o 0.1 ~ M—"-’ W E
© - § Sggeevttuge)
S5 00
g f“ ot m
0.39 M T
14 Il N".au -He g“f‘,
z ._f““ a1 a3
= I Tk w "ol [ 1] =T
E 0.1 o _J" .pi H::ﬁ&'—g*
o go-
035 %
| &
o2 e o, 8
0.1 e ¥, o
0.0-

C. Brunetti, J.H. Harris and S. Mankad et al./Journal of Financial Economics 133 (2019) 520-538

535

Table 4
Linear regression results of the network variables on the macro variables.
R? RMSE
Correlation network  Physical network  Difference  Correlation network  Physical network  Difference
Hard information
A(IP) 0.3143 0.2763 0.0380 3.1867 2.9624 0.2243
A(RS) 0.2146 0.1944 0.0202 1.9719 1.3710 0.6009*
Soft information
A(PMI) 0.3806 0.4730 —0.0924+* 6.9828 43975 2.5853**
Banking system health
EURIBOR-OIS Spread 0.6773 0.6739 0.0033 0.2255 0.7928 —0.5673*
Country-specific spreads
ITSP 0.0949 0.1795 —0.0846** 0.9620 0.8750 0.0870
PTSP 0.0190 0.1764 —0.1574** 1.1201 0.5976 0.5225*
GRSP 0.1156 0.1922 —-0.0766%* 1.6393 1.4050 0.2343*
SPSP 0.2777 0.1499 0.1279** 1.2028 0.5798 0.6229*

R? refers to the regression of the network variables (Degree, CC, Closeness, Eigenvector centrality, and LSCC) on the macro variables in the
first column over the period January 2006 - December 2008. RSME refers to one-step-ahead forecasts from January 2009 until March 2010.
Monthly observations. * and ** refer to significance levels of 10% and 5%. IP is industrial production, RS is retail sales, PMI is purchasing
manager index, EURIBOR-OIS spread is the spread between the Euro Interbank Offered Rate and the Overnight Indexed Swap Rate, and ITSP,
PTSP, GRSP, and SPSP represent spreads between the ten year Italian, Portuguese, Greek, and Spanish government bond yields and the ten

year German government bond yields, respectively.
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Fig. 8. Partial R? values of macro shocks conditional on ECB interventions
(operations) from the regressions in Eq. (12). The physical network statis-
tics for interbank lending are computed from 212 European banks and
correlation network statistics from 54 publicly-traded European banks.
The results are stratified by four subsamples: (1) pre-crisis period January
2, 2006 - August 7, 2007; (2) the first crisis period (pre-Lehman), August
8, 2007 - September 12, 2008; (3) the second crisis period (post-Lehman)
September 16, 2008 - April 1, 2009; and (4) the third crisis period April
2, 2009 - December 31, 2012.
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Fig. 9. p-Values for the regressions in Eq. (15) corresponding to the
null hypothesis that ECB interventions do not affect the network struc-
ture conditional on the macroeconomic variables (Hy: fBs=f7=fBs =
0 | Bi. B2, B3, Ba.Bs # 0). The physical network statistics for interbank
lending are computed from 212 European banks and correlation network
statistics from 54 publicly-traded European banks. The results are strati-
fied by four subsamples: (1) pre-crisis period January 2, 2006 - August 7,
2007; (2) the first crisis period (pre-Lehman), August 8, 2007 - September
12, 2008; (3) the second crisis period (post-Lehman) September 16, 2008
- April 1, 2009; and (4) the third crisis period April 2, 2009 - December
31, 2012.
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The results show that both the correlation and the
physical networks exhibit statistically similar R? for the re-
gression of the network variables (Degree, CC, Closeness,
Eigenvector centrality and LSCC) on hard information—i.e.,
IP, RS. This is also the case for the spread between the EU-
RIBOR and the overnight indexed swap spread.

The physical network is able to better explain, in terms
of R?, soft information and the Italian, Portuguese, and
Greek spreads. Notably, the correlation network has better
forecasting performance for the Spanish spread. However,
the physical network is better suited for forecasting all
the other macro variables. For policy makers, the interbank
market appears to provide valuable information about the
future state of the economy. In this regard, we suggest that
monitoring interbank markets provides a valuable gage for
assessing the state of the bank sector and the effectiveness
of interventions.

In unreported results, we estimate Granger-causality
tests between the connectedness variables in correlation
and physical networks using a bivariate VAR-X with the
addition of explanatory variables as in Eq. (13). These tests
indicate significant lead-lag connectedness relations be-
tween the two network types, but neither network con-
sistently leads the other across measures or across time.
The fact that each network feeds back into the other is
in line with our other results that correlation and physical
networks reflect different kinds of information, and thus
both should be considered for policy analysis and academic
research.3’

7. Transmission between the US and Europe

Our tests above show that macroeconomic shocks im-
pact both networks on a relatively permanent basis, and
the Lehman Brothers failure (demarking our Crisis 1 and
Crisis 2 periods) also appears to have altered the dynamics
of how physical and correlation networks react to shocks
in Europe. Interconnectedness among European banks in-
creases after the Lehman failure in the correlation net-
work but falls in the physical network. While we are (un-
fortunately) not privy to interbank transactions among US
banks, we construct a US bank correlation network using
publicly traded banks in the US over the same 2006-2012
period. Given the evidence that macroeconomic shocks
during the crisis are not isolated to individual continents,
we explore the lead-lag relations between U.S. and Euro-
pean correlation networks.?!

More specifically, following Billio et al. (2012), we first
extract the principal components from daily returns for
individual banks (using a 36-day window for estimation).
Both Europe and the US show increases in the fraction of
the total variance explained by the first principal compo-
nent after the advent of the crisis. We then estimate both

30 We also estimate two alternatives: (i) a simple bivariate VAR between
correlation and physical network variables; and (ii) a bivariate VAR-X
with the addition of explanatory variables as for Eq. (12) and find sim-
ilar results. Complete results are available upon request.

31 Given the fact that 54 publicly traded banks from multiple countries
are in the data, there are most certainly significant overlapping business
relationships within this set of European banks.

Table 5

Granger causality results to measure the US - EU transmissions in net-

work statistics.

Degree
US— EU EU — US Lags
Pre-crisis 0.0006*** 0.6340 3
Crisis 1 0.0321*** 0.1669 2
Crisis 2 0.7613 0.0539*** 1
Crisis 3 0.5375 0.3265 4
Closeness
Pre-crisis 0.5834 0.9045 2
Crisis 1 0.5568 0.9577 2
Crisis 2 0.5873 0.4738 2
Crisis 3 0.0073*** 0.0441+** 4
Clustering coefficient
Pre-crisis 0.0062*** 0.4466 2
Crisis 1 0.0783** 0.7521 2
Crisis 2 0.4872 0.0202+** 2
Crisis 3 0.7709 0.7507 4
Eigenvector centrality
Pre-crisis 0.0618** 0.1841 4
Crisis 1 0.0105*** 0.3144 3
Crisis 2 0.7127 0.0455*** 1
Crisis 3 0.5778 0.6320 5
LSCC
Pre-crisis 0.6127 0.6071 2
Crisis 1 0.0949%* 0.7924 2
Crisis 2 0.9612 0.0822+* 2
Crisis 3 0.1480 0.0703** 4

US — EU indicates that the US network Granger-causes the European
network; EU — US indicates that the European network Granger-causes
the US network; *, **, and *** refer rejection of the null of Granger-
noncausality at significance levels of 10%, 5%, and 1%. The four subsam-
ples are (1) pre-crisis period Jan 2, 2006 - Aug 7, 2007; (2) the first
crisis period (pre-Lehman), Aug 8, 2007 - Sep 12, 2008; (3) the sec-
ond crisis period (post-Lehman) Sep 16, 2008 - April 1, 2009; and (4)
the third crisis period Apr 2, 2009 - Dec 31, 2012. The last column re-
ports the optimal lag-length selected by the Akaike information crite-
rion (AIC).

US and European correlation networks after removing the
first principal component from the return series and run
Granger-causality tests between the US and European net-
works. The results are presented in Table 5.

The main finding is that during the Pre-crisis and Crisis
1 periods, the US network variables significantly Granger-
cause the European network variables (in seven of ten pair-
wise tests). During these first two sub-periods, European
network variables never Granger-cause US network vari-
ables. However, after the failure of Lehman Brothers, the
reverse is true. During Crisis 2 and Crisis 3 periods, Euro-
pean network variables tend to significantly Granger-cause
U.S. network variables (in six of ten pairwise tests) while
Granger-causation from the U.S. to Europe is significant in
only one of ten pairwise tests during these post-Lehman
periods. These findings largely mirror the volatility con-
nectedness documented between the US and Europe in
Yilmaz (2014).

8. Concluding remarks

During the recent financial crisis, market dynamics
changed dramatically, with some markets seizing up as
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market uncertainty and asymmetric information between
banks created unprecedented problems in the world econ-
omy. In this paper, we analyze the detailed trading data
from the European (e-MID) interbank market to better un-
derstand how interbank trading reflected these economic
problems. We construct and examine physical networks of
trade that allow us to examine bank connectedness over
time. Further, we compare and contrast correlation net-
works (constructed based on Granger-causality between
stock returns) with physical networks (constructed from
interbank trades) to better interpret results from each.

We demonstrate that correlation and physical networks
reflect important, but different, economic conditions in
the European banking sector. During the crisis, physi-
cal bank networks reveal a breakdown in connectivity in
the interbank market. Interestingly, correlation networks
show increased co-movements in market returns during
the crisis that have been interpreted as an increase in
connectivity.

We further explore the source of these interconnected
changes by region of Europe. Within correlation networks,
banks from peripheral European countries (Greece, Ireland,
Italy, Portugal, and Spain) contribute most to changes in
interconnectedness. However, banks from both core Euro-
pean countries (Austria, Belgium, France, Germany, Luxem-
burg, and the Netherlands) and peripheral countries con-
sistently contribute to interconnectedness changes within
the physical networks.

Moreover, correlation and physical networks respond
differently to monetary and macroeconomic shocks. Inter-
connectedness in physical networks adjusts strongly and
quickly to central bank operations and to announcements
of new information, revealing important markers of liquid-
ity at short (daily) horizons. Conversely, while intercon-
nectedness in correlation networks marks the onset of the
crisis, this metric changes little in response to central an-
nouncements and interventions.

We also show that the Lehman Brothers failure not
only altered the dynamics of how physical and correlation
networks react to shocks in Europe, but also altered the
lead-lag relations between interconnectedness in the cor-
relation networks of European and US banks. US network
variables significantly lead the European network variables
prior to the Lehman failure, but European network vari-
ables significantly lead US network variables after Lehman
failed.

Our results demonstrate that correlation and physical
networks can identify (and forecast) hard information like
industrial production and retail sales. Complementarily,
physical interbank trading networks serve to identify
weakening interconnectedness in the interbank system
that may lead to liquidity problems. Moreover, physical
networks can identify systemically important and problem
banks on an ongoing basis. From a policy perspective,
monitoring both types of networks would be useful.

Appendix

Let A; be the network adjacency matrix at time t. Then,
the given network sequence can be approximated with

A ~ UtVtT,

where U; and V; are both vectors that are constrained to be
nonnegative, i.e., each element of U; and V; is greater than
or equal to zero. Interpretations of U; and V; are straight-
forward. The jth element of U; measures the importance of
bank j to average outgoing connectivity at time t. Likewise,
the jth element of V; measures the importance of bank j
to the average incoming connectivity at time t. Together,
U; and V; are useful for highlighting banks by their impor-
tance to interconnectivity.

Constraints that force evolving factors U; and V; to ex-
hibit temporal smoothness are imposed on the factoriza-
tions to enhance their visualization and interpretability.
This ensures that bank trajectories are visually smooth
when drawn, and as a consequence, time plots of each
bank become informative. Thus, centrality measures over
time are found by minimizing an objective function that
consists of a goodness of fit component and a smoothness
penalty

T T
[min 3 |Ac - U] |22 S (U~ Uea |2
e Vip i =2

T
+ Aoy |IVe—Veall7
=2

where the parameters A; and A, are set by the user to
control the amount of memory or smoothness in the fac-
tors over time, and U; and V; are both vectors that are con-
strained to be nonnegative. The interpretation is again in-
tuitive. For the physical network, U; measures importance
to selling (outgoing edges) and V; to buying (incoming
edges). For the correlation network, U; measures impor-
tance of banks whose returns are predictive of other bank
returns (outgoing edges) and V; to banks whose stock re-
turns are predicted by other banks’ stock returns (incom-
ing edges).

To minimize the objective function and obtain the cen-
trality measures, gradient descent algorithms standard for
matrix factorization can be utilized. Extensive discussion,
including estimation and other implementation details, can
be found in Mankad and Michailidis (2013) and Mankad
et al. (2014).
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