
IEEE DESIGN AND TEST 1

A Quantitative Exploration of Collaborative Pruning

and Approximation Towards Energy-Efficient Deep

Neural Networks
Xin He, Member, IEEE, Wenyan Lu, Ke Liu, Guihai Yan, Member, IEEE, and Xuan Zhang, Member, IEEE

Abstract—To reduce the excess energy footprint of deep
neural networks (DNNs), diverse solutions have been proposed
across the system stacks. For instance, algorithm-level network
pruning techniques remove insignificant connections to simplify
the NN models, whereas architecture-level techniques leverage
approximate units to perform computations in a cost-efficient
manner. However, the collaborations across different optimization
layers are rarely explored. We observe that with careful char-
acterization, cross-stack techniques can be leveraged to further
reduce the energy consumption of DNNs with minimal accuracy
impact compared with employing a single technique. Specifically,
in this paper, we bridge the gap between network pruning
and approximate multiplication by proposing a collaborative
solution to optimize computational power. We first characterize
the error resilience and energy consumption of DNNs in each
layer and apply layer-wise network pruning. Based on the pruned
model, we propose an incremental approximation and retraining
scheme to apply approximate multiplication. The experimental
results from three datasets demonstrate that the proposed cross-
stack approach achieves 26.23% and 29.97% energy reduction
compared with the approximation-only and pruning-only method
with only 1.39% accuracy degradation compared to the optimal
accuracy of the original networks on average.

Index Terms—Neural network, Energy efficient computing,
Network pruning, Approximate computing.

I. INTRODUCTION

DEEP neural networks (DNNs) are biologically inspired

machine learning models that have been successfully

demonstrated to deliver superior performance in a wide range

of tasks, including image classification, object detection, ma-

chine translation, and so on. The success of DNNs can be

attributed to innovations across the computing system stacks:

to achieve higher accuracy, large-scale networks are created

along with more advanced training algorithms and an ever-

increasing volume of sample data. To speed up NN train-

ing deployment, powerful parallel computing engines (e.g.,

GPUs) are designed to accelerate computationally-intensive

mathematical operations. Despite the fast pace of performance

improvement, when it comes to edge devices with stringent

X. He is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, 48109 USA e-mail: (
{xinhe}@umich.edu). This work was done when X. He was a postdoctoral
research associate at Washington University in St. Louis.

L. Ke and X. Zhang are with the Department of Electrical and Systems
Engineering, Washington University in St. Louis, St. Louis, MO, 63130 USA
e-mail: ({xin.he, xuan.zhang}@wustl.edu).

W. Lu and G. Yan are with the State Key Laboratory of Computer Archi-
tecture, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China, 100190, and the University of Chinese Academy of Sciences.
e-mail: ({luwenyan, yan})@ict.ac.cn

power budgets, deploying advanced DNNs remains a challenge

because of their excess computational energy and memory

footprint[1].

To deal with the high energy consumption, a growing body

of techniques has been explored. At the algorithm level, DNNs

are simplified by proposing concise network models (e.g.

ResNet for ImageNet) or pruning insignificant connections of a

pre-trained models [2]. At the hardware front, efficiency-driven

designs have been conducted at the architecture-, circuit-, and

device-levels: customized accelerators aim at higher energy

efficiency [3], [4]; approximate circuits trade accuracy for

energy efficiency [5], [6]; and emerging technologies (e.g.

resistive memory crossbar) provide in-memory computing

substrates for NN operations [7].

Despite the advance achieved at the individual optimization

levels, these isolated techniques may lead to suboptimal energy

saving from a whole system perspective, which calls for a

synergistic and collaborative approach across the different

system stacks. For example, an aggressively pruned DNNs

may be able to further take advantage of the less accurate but

more energy efficient arithmetic operators to carry out tasks

with minimal accuracy loss. Fig. 1a shows the computational

energy of a typical CNN model for CIFAR10 dataset and its

energy-optimized counterparts are estimated and compared.

The computational energy is estimated based on the amount

of multiply-accumulation (MAC) operations and its energy

consumption dumped from Synopsys EDA tools. And the

analytical model is detailed in Section III. Without loss of

generality, we adopt an existing approximate multiplier, and

its configuration is detailed in Section IV. All computational

energies are normalized by the energy consumption from the

Original CNN. The Approx case indicates the energy-intensive

multiplication operations in the networks are performed by ag-

gressive approximate multipliers (detailed in Section IV), the

Pruned represents the case when the unimportant/unnecessary

weights are pruned (i.e. around 70% of weights on average in

both convolutional and fully connected layers), and the Com-

bined represents a simple joint optimization of approximate

multiplication and network pruning where 50% of weights are

pruned and the rest are used with approximate multiplications

in forward propagation. As illustrated in the figure, although

stand-alone techniques could save computational energy by

66.7% and 70.1% compared to the original network, their

synergistic combination could further improve the energy

savings to 80.0%. This collaborative approach, however, has to

be conducted with care, for naive implementations could easily

Original Approx PrunedCombined
0

0.2

0.4

0.6

0.8

1

N
u
m

b
e
r

o
f

e
n
e
rg

y
 u

n
it
s

(a) Comparisons of computational
energy consumption between the
original network and optimized
networks by approximate com-
puting, network pruning, and the
combined scheme

Network pruning

Incremental

approximation

Retraining

Resilience

Characterization

Energy

Analysis

(b) Framework of pro-
posed cross-stack approach:
1) Network characterization
to determine pruning fac-
tor, 2) Network pruning, 3)
Incremental approximation
and retraining

Fig. 1: Motivation and framework of proposed cross-stack

approach

degrade the energy efficiency instead of improving it. For ex-

ample, aggressively pruning 70% of total weights and naively

applying approximation for the remaining weights fails to meet

the accuracy requirement. Therefore, the energy-optimized

Combined case prunes less weights (50%) and leaves some

headroom for approximation. In this case, while the amount

of pruned weights are reduced, the complementary effect of

approximate multiplication and network pruning outperforms

using any stand-alone technique. Note that in all three energy-

optimized cases, the maximal accuracy degradation is limited

to be less than 1%.

The above example motivates the exploration of cross-stack

approach that has the potential to offer superior energy effi-

ciency. However, finding an optimal solution is nontrivial, as a

naive implementation could degrade the energy consumption.

We first need to carefully characterize accuracy-energy trade-

offs in DNNs. This is because the overall proportion of pruning

and approximation determines the inference accuracy and

energy consumption. For example, with aggressive pruning,

the network may fail to meet a certain accuracy requirement

with approximate multiplication, whereas with conservative

pruning, the energy consumption may not be optimal even

after applying approximation. What complicates the explo-

ration further is the sensitivity of individual weight to pruning

and approximation is hard to characterize, because weights

in different layers have different contributions to the energy

footprint. Another problem is naively applying approximation

and retraining leads to degraded accuracy because the noise

from approximation reduces the effectiveness of parameter

updating during training.

In this paper, we investigate a collaborative cross-stack

approach leveraging both network pruning and approximate

computing. We perform pruning sensitivity and energy con-

sumption analysis in a layer-wise manner to guide network

pruning. With the knowledge of layer resilience and power

consumption, three different pruning modes (conservative,

intermediate and aggressive) are derived for later collaboration

with approximate computing. To complement network pruning

and leverage approximate computing with minimal accuracy

impact, we then develop an incremental network approxi-

mation and retraining scheme that can work on top of the

pruned model. Specifically, the approximation multiplications

for network weights are incrementally applied, so the network

weights that are not currently involved in approximate comput-

ing can still be precisely updated to compensate for possible

accuracy loss. We are able to obtain a network tailored for

approximate computing with high accuracy after the proposed

incremental approximation and retraining steps. The entirety

of our proposed framework is illustrated in Fig. 1b.

II. BACKGROUND

A. Neural network pruning

Despite their superior performance, DNNs require a large

number of parameters to carry out a task. For example, VGG-

16 uses 138MB parameters to perform the ImageNet task.

With the large number of parameters, parameter redundancy

has been identified as commonly existed in DNNs [8], [9].

The redundancy allows the network pruning and quantization

techniques to simplify the DNNs with minimum accuracy

impact. Early approaches like Optimal Brain Damage [10]

prune the network based on the Hessian of the loss function

to network weights. However, the complexity of the Hessian

matrix requires high computation efforts. Recently, Han et al.

propose a magnitude-based pruning and retraining scheme to

preserve the original accuracy[2]. Inspired by Han’s work,

Dynamic Network Surgery (DNS) [11] allows a portion of

network connections to be pruned or spliced dynamically

during the retraining process, which exhibits superior accuracy

to prior works. In this work, we adopt DNS to perform network

pruning.

B. Approximate computing

Approximate computing is a promising technique for en-

ergy optimization. Due to the intrinsic noise tolerance of

DNNs, approximate multiplications and fuzzy storage have

been explored to improve their energy efficiency. In this paper,

we focus on the computational energy optimization since it

contributes to a significant portion of energy in NN hardware.

Without loss of generality, to assess the impact of approximate

multiplication, we adopt a recently-proposed unbiased approx-

imate multiplier for weight-activation multiplication [12]. This

design explores the tradeoff between precision and computing

efficiency which is similar to changing the effective widths k0
and k1 for two operands, i.e., with a smaller k configuration,

the approximate multiplier gains higher energy efficiency at

the cost of increased noise. Mathematically, the approximation

is performed as follows: firstly, the positions of the leading

non-zero bit and the radix point of the two operands are

detected. Then the following k0 and k1 bits are extracted and

then updated: from MSBs to LSBs the first k0 − 1 and k1 − 1
bits are kept intact while the k0th and k1th bits are set to one.

Then the k0 and k1 bits are multiplied and shifted with the

summed radixes to obtain the approximated result.

2

0.00 0.09 0.50

0.11 0.01 0.10

0.20 0.29

0.18 0.55 0.28 0.33

0.00 0.09 0.49

0.11 0.01 0.10

0.20 0.29

0.18 0.28 0.27 0.30

0.00 0.24 0.18

0.61 0.01 0.10

0.38 0.35

0.30 0.50 0.22 0.16

Iteration 0 Iteration 1 Iteration N

(7/16 processed) (10/16 processed) (16/16 processed)

Fig. 3: Incremental approximation scheme: in each iteration,

a fixed percentage of weights of low approximation error is

picked for approximate computing while the rests are fine-

tuned for error recovery. Grey squares indicate pruned weights,

Blue squares mean weights used with approximate computing

while the white squares are the weights for fine-tuning

sic energy unit. Thus the energy consumption of a CONV layer

and an FC layer are No×Ni×KW ×KH×Wo×Ho×EMAC

and No × Ni × EMAC , respectively. In the CONV layer,

No and Ni are the numbers of output feature maps (OFMs)

and input feature maps, KW and KH are the width and

height of kernels, while Wo and Ho are width and height

of OFMs. In the FC layer, No and Ni are the numbers of

output and input neurons. For CIFAR10, the normalized layer

energy consumptions for seven CONV layers and one FC layer

are [0.023, 1.000, 0.500, 1.000, 0.500, 1.000, 0.125, 0.000]. We

find the energy consumption of the first CONV layer C0 and

last FC layer F0 contribute little (i.e. less to 0.6%) to total

energy. This is because Ni is small for the C0 layer and

computations used by FC0 layer only involve inner-product

operations. The low energy consumption nature of C0 and

FC0 makes them less receptive to pruning. Besides, sensitivity

analysis above also reveals that it is undesirable to prune the

C0 and F0 layers from an accuracy perspective. These insights

can also be applied for other DNNs because of their structural

similarity.

Hence our pruning strategy is to prune the middle layers of

large energy footprint while leaving the first and last layers

intact. For a thorough exploration, we adopt three different

pruning configurations: conservative, intermediate and aggres-

sive pruning modes. In the conservative pruning, the scaling

factor vector for the middle layers is 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
in which the value 0.5 is selected to leave accuracy headrooms

for approximate computing. And in the aggressive pruning, the

factor vector is 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, which is obtained

by selecting the maximum scaling factors within allowed

accuracy degradation. In the intermediate pruning, the scaling

factors of the early layers (i.e. two layers in this paper) in the

middle layers are set to 0.5. These three pruned models are

then fed to the proposed incremental approximation scheme.

We applied this strategy for all datasets used in the experiment.

B. Incremental approximation and retraining scheme

In this section, we present an incremental approximate and

retraining scheme on top of the pruned models to fully exploit

the potential of energy saving from approximate multiplication

and suppress the accuracy loss. Instead of directly incorporat-

ing the entire network weights to approximate multiplication,

in the proposed scheme, the pruned models are incrementally

trained under approximate multiplication, as shown in Fig.

3. In each iteration, three major steps are applied to each

layer: weight partitioning, group-wise approximation, and net-

work retraining/fine-tuning. Weight partitioning first divides

the unprocessed weights into two groups in a complementary

way. The weights of the first group undergo approximate

multiplication during the network forward propagation, while

the weights in the second group are updated normally in

the retraining step to compensate for the accuracy loss from

approximate computing. Once the three steps are finished in an

iteration, the same process is repeatedly performed on the sec-

ond group of weights until all network weights are processed

by this incremental approximation scheme. Mathematically,

weight partition in a layer is represented as:

G(1) ∪G(2) ∪G(Pruned/processed) = W
G(1) ∩G(2) = ∅, G(1) ∩G(Pruned/processed) = ∅

G(2) ∩G(Pruned/processed) = ∅

(1)

In these equations, G(1) means the first group of weights

used in approximate multiplications while G(2) indicates the

second group used to compensate for the accuracy loss from

approximation in the current iteration. The group G(Pruned)

contains pruned (zero-valued) and processed weights in this

layer. The pruned weights are fixed while more and more

weights get processed along iterations of incremental ap-

proximation. Specifically, to partition the group, we rank the

weights based on their absolute approximation error, and

weights with small approximation error are put into G(1)

for approximation. Note that we use approximation error of

weights to guide the application of approximate multiplication

because other operands (the input activations of DNNs) are

input-dependent and highly sensitive. This also reflects the

insights from preliminary exploration that the approximate

multipliers used should not compromise the precision of the

activations too much.

A novel retraining/fine-tuning algorithm for approximate

multiplication is also developed that differs from conventional

training algorithm. The conventional training seeks to reduce

the loss function:

Enetwork = E(W) + γR(W) (2)

where E(W) is the network output loss, R(W) is the regu-

larization loss and γ is a control coefficient for regularization.

In our retraining algorithm for approximate multiplication, the

loss function is transformed to:

Enetwork = E(amulamulamul(W)) + γR(W) (3)

The difference is that the functionality of approximation

multipliers (amul) are incorporated in training. So the two

input operands (weights and input activations) to approximate

multiplications are changed accordingly. In this way, the prob-

lem of reducing network loss can be handled by the stochastic

gradient descent (SGD) optimization simultaneously. In the

incremental retraining scheme, only weights from the com-

pensation group G(2) can be updated while the gradients

for G(1) and G(Pruned/processed) are masked with zero to

4

Algorithm 1 Incremental network retraining algorithm for

approximate computing

Input: the training data Samples, the pruned DNN model

W , number of iterations Niter

Output: the pruned model with optimized for approximate

computing

1: Initializations: G(2) = W (Remaining), G(1) = ∅,

G(Pruned/processed) = W (Pruned), current iteration i = 1
2: for current iteration i ≤ Niter do

3: Rank the weights in G(2) with the approximation error

4: η = 100 ∗ 1/(Niter − i + 1) percent weights in G(2)

need to be approximated in this iteration

5: Remove η percent weights of smallest approximation

error from G(2) to form G(1) for approximate multiplica-

tion.

6: Perform forward propagation to obtain network loss,

then conduct back-propagation and SGD to update weights

in G(2)

7: G(Pruned/processed) = G(Pruned/processed) ∪G(1)

8: i+ = 1

prevent updating. The detailed algorithm for the proposed

incremental approximation is listed in Algorithm 1. In this

paper, we use four iterations in the incremental approximation

and retraining scheme. Empirically, four iterations are enough

to get a satisfactory accuracy. With more iterations, the return

on the accuracy improvement is diminishing and small.

IV. EXPERIMENTAL METHODOLOGY

NN accelerator architecture. To evaluate the energy effi-

ciency improvement from approximate computing, we imple-

ment and customize a data-driven NN accelerator architecture

named “FlexFlow” proposed in earlier work for approximate

computing [3]. FlexFlow stores weights and activations in two

separate buffers and employs parallel processing engines (PE)

for computation. Each PE consists of a DRUM approximate

multiplier [12], an adder, a neuron local memory, a weight

local memory, and a controller. The approximate multiplier in

proposed approach and approximation-only approach, we set

K = 1 for weights and K = 5 for activations (denoted as

k(1, 5)) since the input-dependent nature of activations makes

them hard to characterize. For the pruning-only approach, the

multiplier is set to high accuracy mode, k(1, 5). Note that

FlewFlow is mainly used as a faithful tool to evaluate the

energy saving of the proposed approach, and we do not claim

the high energy efficiency of FlexFlow itself since it is not

customized for pruned networks.

Energy evaluation flow. To evaluate the energy improve-

ment from approximate multiplication, we implement the

approximate accelerator using Verilog and then synthesize the

design using the Synopsys Design Compiler with the TSMC

65nm library. The energy results are gathered using Synopsys

PrimeTime.

Training tool and Dataset. We implement the layer-wise

pruning and incremental approximation algorithm and infer-

ence simulator with PyTorch deep learning suite. Representa-

tive datasets CIFAR10, CIFAR100, STL-10 and ImageNet12

are used in the experiment and detailed in Table I. For

ImageNet12, its archived training set and test set are used

while for other datasets, 80% of samples are used for training

and the remaining 20% samples are for testing.

V. EXPERIMENTAL RESULTS

To evaluate the accuracy improvement, we first compare

the accuracy between the proposed cross-stack approach and

the state-of-the-art baseline which combining pruning and ap-

proximation. For a fair comparison, dynamic network surgery

are used for pruning while same approximate computing

configuration and same pruning rate is applied across the

two approaches. The cross-stack approach performs the dy-

namic network surgery step for pruning and the incremental

approximation step consecutively while the baseline leverages

dynamic network surgery, approximate multiplication, and

fine-tuning simultaneously. With the knowledge of network

resilience and energy consumption, in this experiment, three

carefully-selected pruning modes, conservative (CON), inter-

mediate (INTER), and aggressive (AGG) modes which are

detailed in Section III are leveraged for exploration and eval-

uation. The accuracy results for the three datasets are shown in

Fig. 4. In general, the proposed cross-stack approach achieves

on average 0.8730% higher accuracy over the baseline for

three datasets in all pruning modes. Even though 0.8730%

higher accuracy does not seem a large improvement at first

glance, this improvement is sufficiently large to bridge the gaps

from the pruned and approximated models to the ideal models.

The average accuracy loss to the ideal case is reduced from

2.0120% with the baseline method to 1.139% by using the

proposed approach. Besides, the cross-stack approach shows

better resilience to pruning. Compared with the baseline, the

accuracy improves by 0.3234%, 0.7709% and 1.5246% in the

conservative, intermediate and aggressive modes, correspond-

ingly. Note that in this experiment, the resulting pruning rate

and approximation configurations are the same, so are the

energy consumption of the two approaches.

Secondly, we evaluate the computational energy con-

sumption of approximation-only, pruning-only, and the pro-

posed collaborative cross-stack approach generated DNNs on

FlexFlow accelerator. In the approximation-only case, the

computations are carried out by the aggressive approximate

multiplier working at k(1, 5) mode, similar to the proposed

approach. In the pruning-only case, the DNNs are retrained

by DNS approach with 80% weights pruned on average while

the approximate multiplier working a high accuracy k(5, 5)
mode. In the proposed case, the cross-stack approach applies

the incremental approximation technique on the aggressively

pruned (AGG) model, which shows only 1.39% accuracy

degradation to the ideal networks on average. The results of

energy consumption for three datasets are shown in Fig. 5. The

results show that the proposed approach effectively reduces the

energy consumption by 26.23% and 29.97% compared with

the approximation-only and pruning-only method, correspond-

ingly. To summarize, the proposed cross-stack approach makes

it possible to further reduce the energy consumption of DNNs

with minimal (e.g., 1.39%) accuracy loss. Note that CIFAR10

5

TABLE I: Datasets and the corresponding topologies of DNNs

Datasets Topology of DNNs (in terms of feature maps) Ideal accu Source

CIFAR10

Regular network: Inputs: 3× 32× 32, 128× 32× 32, 128× 32× 32, 256× 16× 16,
256× 16× 16, 512× 8× 8, 512× 8× 8, 1024× 2× 2, Outputs: 10

93.57% UToronto

Shallow network: Inputs: 3× 32× 32, 256× 32× 32, 256× 32× 32,
512× 16× 16, 1024× 8× 8, 2048× 2× 2, Outputs: 10

87.74% UToronto

CIFAR100

Regular network: Inputs: 3× 32× 32, 128× 32× 32, 128× 32× 32, 256× 16× 16,
256× 16× 16, 512× 8× 8, 512× 8× 8, 1024× 2× 2, Outputs: 100

73.92% UToronto

Shallow network: Inputs: 3× 32× 32, 256× 32× 32, 256× 32× 32, 512× 16× 16,
1024× 8× 8, 2048× 2× 2, Outputs: 100

66.71% UToronto

STL-10

Regular network: Inputs: 3× 96× 96, 32× 96× 96, 64× 48× 48, 128× 24× 24,
128× 12× 12, 256× 4× 4, 256× 2× 2, Outputs: 10

76.10% Stanford

Shallow network: Inputs:3× 96× 96, 64× 96× 96, 128× 48× 48, 256× 24× 24,
512× 12× 12, 512× 8× 8, Outputs: 10

71.26% Stanford

ImageNet12
Regular network: Inputs: 3× 224× 224, 64× 55× 55, 192× 27× 27, 384× 13× 13,

256× 13× 13, 256× 6× 6, 4096× 1× 1, 4096× 1× 1, Outputs: 1000
77.42% Stanford

Fig. 4: Network output accuracy using proposed cross-stack approach and the baseline (i.e., DNS) at three different pruning

modes for three representative datasets

Fig. 5: Energy consumption of DNNs under approximation-

only, pruning-only and proposed cross-stack approach

and CIFAR100 have similar energy profiles since the network

topologies used are very similar and the only difference lies

in the last FC layer and the number of outputs.

Furthermore, in order to demonstrate the effectiveness of

the ”collaboration” between pruning and approximation, we

compare the aggressive pruning-only scheme, the iterative in-

cremental approximation-only scheme and the proposed cross-

stack in terms of output accuracy and energy consumption un-

der more diverse network models. Specifically, the aggressive

pruning-only scheme leverages high pruning factor (i.e., 1.3

which indicates a pruning rate between 80% and 87%) for

intermediate layers following the observation in Section III,

which will fully exploit the energy saving under the aggressive

pruning factor. And the iterative incremental approximation

scheme adopts proposed incremental pruning which would

take advantages of the error-tolerance capability of DNNs.

The results are reported in Table II. As shown in Table II,

the proposed cross-stack approach outperforms the aggres-

sive pruning scheme and the incremental approximation-only

scheme by 26.59% and 24.64% in terms of energy consump-

tion on average, respectively. Besides the reduced energy

consumption, the proposed cross-stack solution exhibits both

1.30% higher accuracy with the aggressive pruning scheme,

and 0.91% higher accuracy with the the iterative incremental

approximation scheme.

VI. CONCLUSION AND FUTURE WORK

To address the high energy consumption in modern deep

neural networks, diverse techniques from different system

stacks have been proposed. In this work, we aim to bridge the

gap across the stacks. Specifically, we propose a cross-stack

approach where network pruning and approximate computing

collaborate. To guide network pruning, we explore the pruning

sensitivity and energy consumption at the layer level. Through

this exploration, a general insight is gained: the first convo-

lution layer and fully connected layers are less robust and

consume less energy compared with other layers, which makes

them less appealing to pruning. Meanwhile, three different

pruning modes are derived to explore the collaboration with

6

TABLE II: Computational energy and accuracy compari-

son between aggressive pruning-only scheme, incremental

approximation-only scheme and the proposed cross-stack ap-

proach with more diverse network models

Network models Scheme Accuracy(%) Energy(mJ)

Cifar10 (Regular)
Pruning 91.77 208.2380

Incremental 92.59 200.3728
Proposed 92.54 142.7912

Cifar10 (Shallow)
Pruning 86.80 429.5200

Incremental 86.57 413.0913
Proposed 87.36 354.7709

Cifar100 (Regular)
Pruning 69.18 208.2845

Incremental 71.25 200.3967
Proposed 71.64 142.6540

Cifar100 (Shallow)
Pruning 65.16 429.6400

Incremental 65.91 413.1149
Proposed 66.10 347.1929

STL-10 (Regular)
Pruning 73.72 42.3805

Incremental 74.39 40.6913
Proposed 74.29 29.2383

STL-10 (Shallow)
Pruning 69.55 205.4496

Incremental 71.00 227.3043
Proposed 71.15 160.7291

ImageNet12 (AlexNet)
Pruning 73.84 361.3896

Incremental 74.01 329.4823
Proposed 75.31 239.0736

approximate computing. With the pruned model, we propose

an incremental approximation scheme which incrementally

incorporate approximate computing to a changing group of

network weights and retraining the remaining weights to com-

pensate for the accuracy loss. The experimental results across

three representative datasets show the proposed cross-stack

approach makes it possible to further reduce the energy con-

sumption of DNNs with minimal accuracy loss. Besides, the

proposed approach exhibits better resilience (higher accuracy

than the baseline optimization method) when incorporating

approximate computing in the aggressively pruned DNNs.

Our work represents an initial step in the direction of cross-

stack frameworks. Future directions for improved DNN energy

efficiency that extend this work may include: 1) with more

flexible approximate hardware (e.g. accuracy-configurable ap-

proximate multiplier), approximate computing can be con-

ducted in a dynamically reconfigurable manner during runtime,

which could be leveraged to adaptively tradeoff between

energy and accuracy; 2) since the memory consumption can

also be reduced by fuzzy memorization, building the synergy

between approximate multiplication and fuzzy storage could

further reduce the energy consumption of deep neural net-

works.

ACKNOWLEDGMENT

This work is partially supported by NSF award CNS-

1739643 and the National Natural Science Foundation of

China under Grant Nos. 61872336, 61572470, and in part

by Youth Innovation Promotion Association, CAS under grant

No.Y404441000.

REFERENCES

[1] Z. Xu, Z. Qin, F. Yu, C. Liu, and X. Chen, “Direct: Resource-aware
dynamic model reconfiguration for convolutional neural network in
mobile systems,” in Proceedings of the International Symposium on Low

Power Electronics and Design. ACM, 2018, p. 37.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information

processing systems, 2015, pp. 1135–1143.
[3] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible

dataflow accelerator architecture for convolutional neural networks,” in
High Performance Computer Architecture (HPCA), 2017 IEEE Interna-

tional Symposium on. IEEE, 2017, pp. 553–564.
[4] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,

H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2018, pp. 724–736.
[5] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: an

approximate computing framework for artificial neural network,” in
Design, Automation and Test in Europe Conference Exhibition (DATE),
2015, pp. 701–706.

[6] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, “Axtrain: Hardware-oriented
neural network training for approximate inference,” in Proceedings of

the International Symposium on Low Power Electronics and Design,
2018.

[7] L. X. et al, “Switched by input: Power efficient structure for rram-based
convolutional neural network,” in Design Automation Conference (DAC),
2016, p. 125.

[8] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing

systems, 2013, pp. 2148–2156.
[9] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie, “Dynamic

sparse graph for efficient deep learning,” International Conference on

Learning Representations(ICLR), 2019.
[10] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Advances in neural information processing systems, 1990, pp. 598–605.
[11] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient

dnns,” in Advances In Neural Information Processing Systems, 2016, pp.
1379–1387.

[12] S. R. S Hashemi, R Bahar, “Drum: A dynamic range unbiased multiplier
for approximate applications,” in International Conference on Computer-

Aided Design (ICCAD), 2015, pp. 418–425.

Xin He (M17) is a postdoctoral research fellow in University of Michigan,

Ann Arbor. He received the the PhD degree in computer science from

the Institute of Computing Technology, Chinese Academy of Sciences,

Beijing, China, in 2017. His research interests include application specific

acceleration, deep learning, neural network accelerator, and approximate

computing. He is a member of the IEEE.

Wenyan Lu is an assistant professor at the State Key Lab. of Computer

Architecture, Institute of Computing Technology (ICT), Chinese Academy

of Science (CAS). He received his Ph.D. degree in computer science

from the Institute of Computing Technology, Chinese Academy of

Sciences, Beijing, China, in 2019. His research interests include computer

architecture and domain-specific accelerator.

Liu Ke is a Ph.D student in the Electrical and Systems Engineering

department at Washington University in St. Louis. Her current research

interest lies in design automation and hierarchical modeling of custom

machine learning and artificial intelligence accelerators.

Guihai Yan (M10) is a Professor with the Institute of Computing

Technology, Chinese Academy of Sciences. He received the Ph.D. degree

in computer science from the Institute of Computing Technology (ICT),

Chinese Academy of Sciences, Beijing, China, in 2011. His research

interests include computer architecture, domain-specific computing, and

intelligent systems. He is IEEE/ACM/CCF member.

7

Dr. Xuan Zhang (S08, M15) is an Assistant Professor at Washington

University in St. Louis. She received her Ph.D. degree in Electrical and

Computer Engineering from Cornell University. Her research interest

include hardware/software co-optimization, design automation, and hard-

ware acceleration. She is a member of IEEE and ACM.

8

