IEEE DESIGN AND TEST

A Quantitative Exploration of Collaborative Pruning
and Approximation Towards Energy-Efficient Deep
Neural Networks

Xin He, Member, IEEE, Wenyan Lu, Ke Liu, Guihai Yan, Member, IEEE, and Xuan Zhang, Member, IEEE

Abstract—To reduce the excess energy footprint of deep
neural networks (DNNs), diverse solutions have been proposed
across the system stacks. For instance, algorithm-level network
pruning techniques remove insignificant connections to simplify
the NN models, whereas architecture-level techniques leverage
approximate units to perform computations in a cost-efficient
manner. However, the collaborations across different optimization
layers are rarely explored. We observe that with careful char-
acterization, cross-stack techniques can be leveraged to further
reduce the energy consumption of DNNs with minimal accuracy
impact compared with employing a single technique. Specifically,
in this paper, we bridge the gap between network pruning
and approximate multiplication by proposing a collaborative
solution to optimize computational power. We first characterize
the error resilience and energy consumption of DNNs in each
layer and apply layer-wise network pruning. Based on the pruned
model, we propose an incremental approximation and retraining
scheme to apply approximate multiplication. The experimental
results from three datasets demonstrate that the proposed cross-
stack approach achieves 26.23% and 29.97% energy reduction
compared with the approximation-only and pruning-only method
with only 1.39% accuracy degradation compared to the optimal
accuracy of the original networks on average.

Index Terms—Neural network, Energy efficient computing,
Network pruning, Approximate computing.

I. INTRODUCTION

EEP neural networks (DNNs) are biologically inspired

machine learning models that have been successfully
demonstrated to deliver superior performance in a wide range
of tasks, including image classification, object detection, ma-
chine translation, and so on. The success of DNNs can be
attributed to innovations across the computing system stacks:
to achieve higher accuracy, large-scale networks are created
along with more advanced training algorithms and an ever-
increasing volume of sample data. To speed up NN train-
ing deployment, powerful parallel computing engines (e.g.,
GPUs) are designed to accelerate computationally-intensive
mathematical operations. Despite the fast pace of performance
improvement, when it comes to edge devices with stringent
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power budgets, deploying advanced DNNs remains a challenge
because of their excess computational energy and memory
footprint[1].

To deal with the high energy consumption, a growing body
of techniques has been explored. At the algorithm level, DNNs
are simplified by proposing concise network models (e.g.
ResNet for ImageNet) or pruning insignificant connections of a
pre-trained models [2]. At the hardware front, efficiency-driven
designs have been conducted at the architecture-, circuit-, and
device-levels: customized accelerators aim at higher energy
efficiency [3], [4]; approximate circuits trade accuracy for
energy efficiency [5], [6]; and emerging technologies (e.g.
resistive memory crossbar) provide in-memory computing
substrates for NN operations [7].

Despite the advance achieved at the individual optimization
levels, these isolated techniques may lead to suboptimal energy
saving from a whole system perspective, which calls for a
synergistic and collaborative approach across the different
system stacks. For example, an aggressively pruned DNNs
may be able to further take advantage of the less accurate but
more energy efficient arithmetic operators to carry out tasks
with minimal accuracy loss. Fig. 1a shows the computational
energy of a typical CNN model for CIFARIO dataset and its
energy-optimized counterparts are estimated and compared.
The computational energy is estimated based on the amount
of multiply-accumulation (MAC) operations and its energy
consumption dumped from Synopsys EDA tools. And the
analytical model is detailed in Section III. Without loss of
generality, we adopt an existing approximate multiplier, and
its configuration is detailed in Section IV. All computational
energies are normalized by the energy consumption from the
Original CNN. The Approx case indicates the energy-intensive
multiplication operations in the networks are performed by ag-
gressive approximate multipliers (detailed in Section IV), the
Pruned represents the case when the unimportant/unnecessary
weights are pruned ( i.e. around 70% of weights on average in
both convolutional and fully connected layers), and the Com-
bined represents a simple joint optimization of approximate
multiplication and network pruning where 50% of weights are
pruned and the rest are used with approximate multiplications
in forward propagation. As illustrated in the figure, although
stand-alone techniques could save computational energy by
66.7% and 70.1% compared to the original network, their
synergistic combination could further improve the energy
savings to 80.0%. This collaborative approach, however, has to
be conducted with care, for naive implementations could easily
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Fig. 1: Motivation and framework of proposed cross-stack
approach

degrade the energy efficiency instead of improving it. For ex-
ample, aggressively pruning 70% of total weights and naively
applying approximation for the remaining weights fails to meet
the accuracy requirement. Therefore, the energy-optimized
Combined case prunes less weights (50%) and leaves some
headroom for approximation. In this case, while the amount
of pruned weights are reduced, the complementary effect of
approximate multiplication and network pruning outperforms
using any stand-alone technique. Note that in all three energy-
optimized cases, the maximal accuracy degradation is limited
to be less than 1%.

The above example motivates the exploration of cross-stack
approach that has the potential to offer superior energy effi-
ciency. However, finding an optimal solution is nontrivial, as a
naive implementation could degrade the energy consumption.
We first need to carefully characterize accuracy-energy trade-
offs in DNNSs. This is because the overall proportion of pruning
and approximation determines the inference accuracy and
energy consumption. For example, with aggressive pruning,
the network may fail to meet a certain accuracy requirement
with approximate multiplication, whereas with conservative
pruning, the energy consumption may not be optimal even
after applying approximation. What complicates the explo-
ration further is the sensitivity of individual weight to pruning
and approximation is hard to characterize, because weights
in different layers have different contributions to the energy
footprint. Another problem is naively applying approximation
and retraining leads to degraded accuracy because the noise
from approximation reduces the effectiveness of parameter
updating during training.

In this paper, we investigate a collaborative cross-stack
approach leveraging both network pruning and approximate
computing. We perform pruning sensitivity and energy con-
sumption analysis in a layer-wise manner to guide network
pruning. With the knowledge of layer resilience and power
consumption, three different pruning modes (conservative,
intermediate and aggressive) are derived for later collaboration
with approximate computing. To complement network pruning
and leverage approximate computing with minimal accuracy

impact, we then develop an incremental network approxi-
mation and retraining scheme that can work on top of the
pruned model. Specifically, the approximation multiplications
for network weights are incrementally applied, so the network
weights that are not currently involved in approximate comput-
ing can still be precisely updated to compensate for possible
accuracy loss. We are able to obtain a network tailored for
approximate computing with high accuracy after the proposed
incremental approximation and retraining steps. The entirety
of our proposed framework is illustrated in Fig. 1b.

II. BACKGROUND

A. Neural network pruning

Despite their superior performance, DNNs require a large
number of parameters to carry out a task. For example, VGG-
16 uses 138MB parameters to perform the ImageNet task.
With the large number of parameters, parameter redundancy
has been identified as commonly existed in DNNs [8], [9].
The redundancy allows the network pruning and quantization
techniques to simplify the DNNs with minimum accuracy
impact. Early approaches like Optimal Brain Damage [10]
prune the network based on the Hessian of the loss function
to network weights. However, the complexity of the Hessian
matrix requires high computation efforts. Recently, Han et al.
propose a magnitude-based pruning and retraining scheme to
preserve the original accuracy[2]. Inspired by Han’s work,
Dynamic Network Surgery (DNS) [11] allows a portion of
network connections to be pruned or spliced dynamically
during the retraining process, which exhibits superior accuracy
to prior works. In this work, we adopt DNS to perform network
pruning.

B. Approximate computing

Approximate computing is a promising technique for en-
ergy optimization. Due to the intrinsic noise tolerance of
DNNs, approximate multiplications and fuzzy storage have
been explored to improve their energy efficiency. In this paper,
we focus on the computational energy optimization since it
contributes to a significant portion of energy in NN hardware.
Without loss of generality, to assess the impact of approximate
multiplication, we adopt a recently-proposed unbiased approx-
imate multiplier for weight-activation multiplication [12]. This
design explores the tradeoff between precision and computing
efficiency which is similar to changing the effective widths kg
and k; for two operands, i.e., with a smaller k configuration,
the approximate multiplier gains higher energy efficiency at
the cost of increased noise. Mathematically, the approximation
is performed as follows: firstly, the positions of the leading
non-zero bit and the radix point of the two operands are
detected. Then the following ko and k; bits are extracted and
then updated: from MSBs to LSBs the first kg — 1 and k1 — 1
bits are kept intact while the kgth and k;th bits are set to one.
Then the k¢ and k; bits are multiplied and shifted with the
summed radixes to obtain the approximated result.



III. FRAMEWORK OF THE CROSS-STACK SOLUTION

A. Neural network resilience and energy characterization

In our cross-stack framework, network pruning can be
viewed as an extreme energy-efficient but error-prone version
of approximate computing. We explore performing the net-
work pruning step before the approximation step. As we briefly
discussed in the introduction, the knowledge of both resilience
of weights and the energy consumption of multiplications and
accumulations with the weights are needed to determine the
optimal network pruning configuration. The decision-making
overview is illustrated in Fig. 2a. First, layer wise sensitivity
analysis is performed to study the general knowledge of error-
tolerance capability of DNNs. Second, computation energy
estimation is used to quantify the potential energy saving from
network pruning. With the observation and energy estimation,
we categorize the layers of a DNN into four categories:
high resilience high energy (HH), high resilience low energy
(HL), low resilience high energy (LH) and low resilience low
energy (LL). We select the HH layers for higher pruning
rate while selecting HL and LH layers for lower pruning rate
because it guarantees maximum energy saving at the cost of
little accuracy impact. Note that this simple decision making
heuristic is conducted offline.

For resilience analysis, existing techniques fail to faithfully
and fully characterize the resilience for DNNs. Representative
works like [5], [6] leverage neuron-level criticality analysis
by measuring the first-order/second-order derivatives of output
loss to neuron activations through backpropagation. However,
this measure of sensitivity only works for small weight pertur-
bations and fails to characterize larger deviations from pruning
and approximation. Aiming to reduce the number of weights,
Han et al. [2] adopts a light-weight method by ranking all the
weights of a pretrained model according to their magnitudes
and prunes the weights with small magnitude. This global
pruning method results in minimal network parameters instead
of energy consumption.

We perform resilience characterization layer-wise since it
requires less efforts to explore the design space than weight-
level or neuron-level methods, and the insights from high-level
characterization are more stable and applicable to different
tasks. Specifically, we systemically evaluate the layer-wise
resilience by applying different pruning rates to a layer and
compare the output accuracy. The pruning threshold for a layer
is correlated to Mean(|W|) +n x Std(|]W|) [11]. Here, W
is the set of weights in a layer, and absolute values for the
weights are used for mean and standard deviation calculation.
By changing the pruning factor 7, different pruning rates
can be applied. In this exploration, the pruning factors n
are selected from 0.5,0.8,1.0 and 1.3, which correspond to
68 ~ 87% pruning rate for a layer. And we only prune a
single layer at a time for characterization purposes. Note that
after weight pruning, the NNs are retrained using a dynamic
pruning method [11] for enough epochs (e.g., 5) to fine-tune
the remaining weights and recover from pruning.

Fig. 2b shows the classification accuracy under different
pruning factors across different layers of a CNN for CIFARIO.
At a similar pruning factor, later deeper layers (except the fully

Layer
sensitivity to
pruning

Layer resilience
>
g LL HL Pruning
= configuration
]
gl LH | HH
-

Workflow of heuristic pruning
(a) Layer-wise sensitivity analysis and layer computational en-
ergy estimation are first performed. And high energy and high
resilience layers are selected

94 - T
‘ — Insensitive layer: C1~C6

N

' %& = ;

Y7

(o]
w
ol

[(e}
w

2 T
’

\

--C1
--C2

o

N

(oY
(N

[]
1
1

Network accuracy (%)

~7 Cs
ol N\
Sensitive layers: C0, FO —e-C4
91.5 C6
- FO
91 : :
0.5 0.8 1.0 1.3

Pruning factor

(b) Layer-wise sensitivity analysis of accuracy to pruning rate
on CIFARI10: For each layer, different pruning factors are
applied while other layers stay intact
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process, Lower: layer sensitivity analysis of a representative
DNN

connected layers) always exhibit higher resilience to pruning
compared to early shallower layers, as the network accuracy
is more stable at different pruning factors for C1 ~ C6
layers and the accuracy degrades significantly with increasing
pruning factors for CO, F0 layers. We speculate that the
reasons are two folds. Firstly, early convolutional layers extract
fundamental features which are used by later layers to form
high-level features. Discarding these fundamental features
severely degrades network functionality. Secondly, the early
convolutional (CONV) layer (C0) and final fully connected
(FC) layer (F'0) have a smaller amount of weights which carry
more information per weight.

In order to select the best candidates for pruning, we expect
maximum energy saving at the cost of little accuracy impact.
Hence besides the resilience characterization, we estimate the
energy consumption of layers so that resilient layers with high
energy consumption could be identified and prioritized for
high pruning rate. To simplify the estimation, we model the
energy consumption of a layer in an hardware-implementation-
independent manner. We treat the energy consumption Eys 4¢
of a single multiply-accumulation (MAC) operation as the ba-
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Fig. 3: Incremental approximation scheme: in each iteration,
a fixed percentage of weights of low approximation error is
picked for approximate computing while the rests are fine-
tuned for error recovery. Grey squares indicate pruned weights,
Blue squares mean weights used with approximate computing
while the white squares are the weights for fine-tuning

sic energy unit. Thus the energy consumption of a CONV layer
and an FC layer are N, X N; X Ky X Kg X Wy x Hy X Eprac
and N, x N; X Eprac, respectively. In the CONV layer,
N, and N; are the numbers of output feature maps (OFMs)
and input feature maps, Ky and Ky are the width and
height of kernels, while W, and H, are width and height
of OFMs. In the FC layer, N, and N; are the numbers of
output and input neurons. For CIFARIO0, the normalized layer
energy consumptions for seven CONV layers and one FC layer
are [0.023,1.000, 0.500, 1.000, 0.500, 1.000, 0.125, 0.000]. We
find the energy consumption of the first CONV layer C0 and
last FC layer F'O contribute little (i.e. less to 0.6%) to total
energy. This is because N; is small for the C'O layer and
computations used by F'CO0 layer only involve inner-product
operations. The low energy consumption nature of C'0 and
FC0 makes them less receptive to pruning. Besides, sensitivity
analysis above also reveals that it is undesirable to prune the
C0 and F0 layers from an accuracy perspective. These insights
can also be applied for other DNNs because of their structural
similarity.

Hence our pruning strategy is to prune the middle layers of
large energy footprint while leaving the first and last layers
intact. For a thorough exploration, we adopt three different
pruning configurations: conservative, intermediate and aggres-
sive pruning modes. In the conservative pruning, the scaling
factor vector for the middle layers is 0.5,0.5,0.5,0.5,0.5,0.5
in which the value 0.5 is selected to leave accuracy headrooms
for approximate computing. And in the aggressive pruning, the
factor vector is 0.8,0.8,0.8,0.8,0.8,0.8, which is obtained
by selecting the maximum scaling factors within allowed
accuracy degradation. In the intermediate pruning, the scaling
factors of the early layers (i.e. two layers in this paper) in the
middle layers are set to 0.5. These three pruned models are
then fed to the proposed incremental approximation scheme.
We applied this strategy for all datasets used in the experiment.

B. Incremental approximation and retraining scheme

In this section, we present an incremental approximate and
retraining scheme on top of the pruned models to fully exploit
the potential of energy saving from approximate multiplication
and suppress the accuracy loss. Instead of directly incorporat-
ing the entire network weights to approximate multiplication,

in the proposed scheme, the pruned models are incrementally
trained under approximate multiplication, as shown in Fig.
3. In each iteration, three major steps are applied to each
layer: weight partitioning, group-wise approximation, and net-
work retraining/fine-tuning. Weight partitioning first divides
the unprocessed weights into two groups in a complementary
way. The weights of the first group undergo approximate
multiplication during the network forward propagation, while
the weights in the second group are updated normally in
the retraining step to compensate for the accuracy loss from
approximate computing. Once the three steps are finished in an
iteration, the same process is repeatedly performed on the sec-
ond group of weights until all network weights are processed
by this incremental approximation scheme. Mathematically,
weight partition in a layer is represented as:

G(l) U G(Q) U G(Pruned/pr()cessed) -W

G(l) n G(2) — ®7 G(l) N G(Pruned/processed) — (Z)
G(Q) e G(Pruned/processed) _ (Z)

(D

In these equations, G") means the first group of weights
used in approximate multiplications while G(?) indicates the
second group used to compensate for the accuracy loss from
approximation in the current iteration. The group G(Fruned)
contains pruned (zero-valued) and processed weights in this
layer. The pruned weights are fixed while more and more
weights get processed along iterations of incremental ap-
proximation. Specifically, to partition the group, we rank the
weights based on their absolute approximation error, and
weights with small approximation error are put into GV
for approximation. Note that we use approximation error of
weights to guide the application of approximate multiplication
because other operands (the input activations of DNNs) are
input-dependent and highly sensitive. This also reflects the
insights from preliminary exploration that the approximate
multipliers used should not compromise the precision of the
activations too much.

A novel retraining/fine-tuning algorithm for approximate
multiplication is also developed that differs from conventional
training algorithm. The conventional training seeks to reduce
the loss function:

Enetwork = E(W) + ’YR(W) (2)

where E(WW) is the network output loss, R(W) is the regu-
larization loss and 7y is a control coefficient for regularization.
In our retraining algorithm for approximate multiplication, the
loss function is transformed to:

Enetwork = E(amul(W)) + yR(W) 3)

The difference is that the functionality of approximation
multipliers (amul) are incorporated in training. So the two
input operands (weights and input activations) to approximate
multiplications are changed accordingly. In this way, the prob-
lem of reducing network loss can be handled by the stochastic
gradient descent (SGD) optimization simultaneously. In the
incremental retraining scheme, only weights from the com-
pensation group G*) can be updated while the gradients
for GV and G(Pruned/processed) are masked with zero to



Algorithm 1 Incremental network retraining algorithm for
approximate computing

Input: the training data Samples, the pruned DNN model
W, number of iterations Ny,

Output: the pruned model with optimized for approximate
computing

1: Initializations: G® = W Bemaining) (1) — @

G(Pruned/processed) _ W(Pruned), current iteration i = 1

2: for current iteration i < Nz, do

3: Rank the weights in G(?) with the approximation error

4: n = 100 % 1/(Njter — i + 1) percent weights in G

need to be approximated in this iteration

5: Remove 7 percent weights of smallest approximation

error from G to form G for approximate multiplica-
tion.

6: Perform forward propagation to obtain network loss,
then conduct back-propagation and SGD to update weights
in G®)

G(Pruned/processed) _ G(Pruncd/processed) U G(l)

8: +=1

>

prevent updating. The detailed algorithm for the proposed
incremental approximation is listed in Algorithm 1. In this
paper, we use four iterations in the incremental approximation
and retraining scheme. Empirically, four iterations are enough
to get a satisfactory accuracy. With more iterations, the return
on the accuracy improvement is diminishing and small.

IV. EXPERIMENTAL METHODOLOGY

NN accelerator architecture. To evaluate the energy effi-
ciency improvement from approximate computing, we imple-
ment and customize a data-driven NN accelerator architecture
named “FlexFlow” proposed in earlier work for approximate
computing [3]. FlexFlow stores weights and activations in two
separate buffers and employs parallel processing engines (PE)
for computation. Each PE consists of a DRUM approximate
multiplier [12], an adder, a neuron local memory, a weight
local memory, and a controller. The approximate multiplier in
proposed approach and approximation-only approach, we set
K =1 for weights and K = 5 for activations (denoted as
k(1,5)) since the input-dependent nature of activations makes
them hard to characterize. For the pruning-only approach, the
multiplier is set to high accuracy mode, k(1,5). Note that
FlewFlow is mainly used as a faithful tool to evaluate the
energy saving of the proposed approach, and we do not claim
the high energy efficiency of FlexFlow itself since it is not
customized for pruned networks.

Energy evaluation flow. To evaluate the energy improve-
ment from approximate multiplication, we implement the
approximate accelerator using Verilog and then synthesize the
design using the Synopsys Design Compiler with the TSMC
65nm library. The energy results are gathered using Synopsys
PrimeTime.

Training tool and Dataset. We implement the layer-wise
pruning and incremental approximation algorithm and infer-
ence simulator with PyTorch deep learning suite. Representa-
tive datasets CIFARIO, CIFARIO0, STL-10 and ImageNetlI2

are used in the experiment and detailed in Table I. For
ImageNet12, its archived training set and test set are used
while for other datasets, 80% of samples are used for training
and the remaining 20% samples are for testing.

V. EXPERIMENTAL RESULTS

To evaluate the accuracy improvement, we first compare
the accuracy between the proposed cross-stack approach and
the state-of-the-art baseline which combining pruning and ap-
proximation. For a fair comparison, dynamic network surgery
are used for pruning while same approximate computing
configuration and same pruning rate is applied across the
two approaches. The cross-stack approach performs the dy-
namic network surgery step for pruning and the incremental
approximation step consecutively while the baseline leverages
dynamic network surgery, approximate multiplication, and
fine-tuning simultaneously. With the knowledge of network
resilience and energy consumption, in this experiment, three
carefully-selected pruning modes, conservative (CON), inter-
mediate (INTER), and aggressive (AGG) modes which are
detailed in Section III are leveraged for exploration and eval-
uation. The accuracy results for the three datasets are shown in
Fig. 4. In general, the proposed cross-stack approach achieves
on average 0.8730% higher accuracy over the baseline for
three datasets in all pruning modes. Even though 0.8730%
higher accuracy does not seem a large improvement at first
glance, this improvement is sufficiently large to bridge the gaps
from the pruned and approximated models to the ideal models.
The average accuracy loss to the ideal case is reduced from
2.0120% with the baseline method to 1.139% by using the
proposed approach. Besides, the cross-stack approach shows
better resilience to pruning. Compared with the baseline, the
accuracy improves by 0.3234%, 0.7709% and 1.5246% in the
conservative, intermediate and aggressive modes, correspond-
ingly. Note that in this experiment, the resulting pruning rate
and approximation configurations are the same, so are the
energy consumption of the two approaches.

Secondly, we evaluate the computational energy con-
sumption of approximation-only, pruning-only, and the pro-
posed collaborative cross-stack approach generated DNNs on
FlexFlow accelerator. In the approximation-only case, the
computations are carried out by the aggressive approximate
multiplier working at k(1,5) mode, similar to the proposed
approach. In the pruning-only case, the DNNs are retrained
by DNS approach with 80% weights pruned on average while
the approximate multiplier working a high accuracy k(5,5)
mode. In the proposed case, the cross-stack approach applies
the incremental approximation technique on the aggressively
pruned (AGG) model, which shows only 1.39% accuracy
degradation to the ideal networks on average. The results of
energy consumption for three datasets are shown in Fig. 5. The
results show that the proposed approach effectively reduces the
energy consumption by 26.23% and 29.97% compared with
the approximation-only and pruning-only method, correspond-
ingly. To summarize, the proposed cross-stack approach makes
it possible to further reduce the energy consumption of DNNs
with minimal (e.g., 1.39%) accuracy loss. Note that CIFARI0



TABLE I: Datasets and the corresponding topologies of DNNs

Datasets Topology of DNNs (in terms of feature maps) Ideal accu Source
Regular network: Inputs: 3 X 32 x 32, 128 x 32 x 32, 128 x 32 x 32, 256 X 16 x 16, 93.579 UToronto
CIFAR10 256 x 16 x 16, 512 x 8 x 8, 512 x 8 x 8, 1024 x 2 x 2, Outputs: 10 21
Shallow network: Inputs: 3 X 32 X 32, 256 x 32 X 32, 256 x 32 x 32,
512 x 16 x 16, 1024 x 8 x 8, 2048 x 2 x 2, Outputs: 10 87.74% | UToronto
Regular network: Inputs: 3 X 32 x 32, 128 X 32 x 32, 128 x 32 x 32, 256 X 16 x 16, 73.92% UToronto
CIFAR100 256 x 16 x 16, 512 x 8 X 8, 512 x 8 x 8, 1024 x 2 x 2, Outputs: 100 T
Shallow network: Inputs: 3 X 32 X 32, 256 x 32 x 32, 256 x 32 x 32, 512 x 16 x 16, 66.71% UT: i
1024 x 8 x 8, 2048 x 2 x 2, Outputs: 100 S oronto
Regular network: Inputs: 3 X 96 X 96, 32 X 96 X 96, 64 x 48 x 48, 128 X 24 x 24,
STL10 128 x 12 x 12, 256 x 4 x 4, 256 X 2 X 2, Outputs: 10 76.10% Stanford
i Shallow network: Inputs:3 X 96 X 96, 64 X 96 x 96, 128 x 48 x 48, 256 x 24 x 24, 71.26% Stanford
512 x 12 x 12, 512 x 8 x 8, Outputs: 10 0% andor
Regular network: Inputs: 3 x 224 x 224, 64 x 55 X 55, 192 x 27 X 27, 384 x 13 x 13,
ImageNet12 256 x 13 X 13, 256 X 6 x 6, 4096 x 1 x 1, 4096 x 1 x 1, Outputs: 1000 77.42% | Stanford
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Fig. 5: Energy consumption of DNNs under approximation-
only, pruning-only and proposed cross-stack approach

and CIFARI00 have similar energy profiles since the network
topologies used are very similar and the only difference lies
in the last FC layer and the number of outputs.

Furthermore, in order to demonstrate the effectiveness of
the “collaboration” between pruning and approximation, we
compare the aggressive pruning-only scheme, the iterative in-
cremental approximation-only scheme and the proposed cross-
stack in terms of output accuracy and energy consumption un-
der more diverse network models. Specifically, the aggressive
pruning-only scheme leverages high pruning factor (i.e., 1.3
which indicates a pruning rate between 80% and 87%) for

INTER AGG
Fig. 4: Network output accuracy using proposed cross-stack approach and the baseline (i.e., DNS) at three different pruning
modes for three representative datasets

CON CON INTER AGG

intermediate layers following the observation in Section III,
which will fully exploit the energy saving under the aggressive
pruning factor. And the iterative incremental approximation
scheme adopts proposed incremental pruning which would
take advantages of the error-tolerance capability of DNNs.
The results are reported in Table II. As shown in Table II,
the proposed cross-stack approach outperforms the aggres-
sive pruning scheme and the incremental approximation-only
scheme by 26.59% and 24.64% in terms of energy consump-
tion on average, respectively. Besides the reduced energy
consumption, the proposed cross-stack solution exhibits both
1.30% higher accuracy with the aggressive pruning scheme,
and 0.91% higher accuracy with the the iterative incremental
approximation scheme.

VI. CONCLUSION AND FUTURE WORK

To address the high energy consumption in modern deep
neural networks, diverse techniques from different system
stacks have been proposed. In this work, we aim to bridge the
gap across the stacks. Specifically, we propose a cross-stack
approach where network pruning and approximate computing
collaborate. To guide network pruning, we explore the pruning
sensitivity and energy consumption at the layer level. Through
this exploration, a general insight is gained: the first convo-
lution layer and fully connected layers are less robust and
consume less energy compared with other layers, which makes
them less appealing to pruning. Meanwhile, three different
pruning modes are derived to explore the collaboration with



TABLE II: Computational energy and accuracy compari-
son between aggressive pruning-only scheme, incremental
approximation-only scheme and the proposed cross-stack ap-
proach with more diverse network models

Network models Scheme Accuracy(%) | Energy(mJ)
Pruning 91.77 208.2380
Cifarl0 (Regular) Incremental 92.59 200.3728
Proposed 92.54 142.7912
Pruning 86.80 429.5200
Cifar10 (Shallow) Incremental 86.57 413.0913
Proposed 87.36 354.7709
Pruning 69.18 208.2845
Cifar100 (Regular) Incremental 71.25 200.3967
Proposed 71.64 142.6540
Pruning 65.16 429.6400
Cifar100 (Shallow) Incremental 65.91 413.1149
Proposed 66.10 347.1929
Pruning 73.72 42.3805
STL-10 (Regular) Incremental 74.39 40.6913
Proposed 74.29 29.2383
Pruning 69.55 205.4496
STL-10 (Shallow) Incremental 71.00 227.3043
Proposed 71.15 160.7291
Pruning 73.84 361.3896
ImageNet12 (AlexNet) | Incremental 74.01 329.4823
Proposed 75.31 239.0736

approximate computing. With the pruned model, we propose
an incremental approximation scheme which incrementally
incorporate approximate computing to a changing group of
network weights and retraining the remaining weights to com-
pensate for the accuracy loss. The experimental results across
three representative datasets show the proposed cross-stack
approach makes it possible to further reduce the energy con-
sumption of DNNs with minimal accuracy loss. Besides, the
proposed approach exhibits better resilience (higher accuracy
than the baseline optimization method) when incorporating
approximate computing in the aggressively pruned DNNs.

Our work represents an initial step in the direction of cross-
stack frameworks. Future directions for improved DNN energy
efficiency that extend this work may include: 1) with more
flexible approximate hardware (e.g. accuracy-configurable ap-
proximate multiplier), approximate computing can be con-
ducted in a dynamically reconfigurable manner during runtime,
which could be leveraged to adaptively tradeoff between
energy and accuracy; 2) since the memory consumption can
also be reduced by fuzzy memorization, building the synergy
between approximate multiplication and fuzzy storage could
further reduce the energy consumption of deep neural net-
works.
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