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Abstract—Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be

observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of

empirical data must be even larger to obtain statistically valid parameter estimates. This work describes a new quasi­Newton algorithm class QNSTOP for stochastic

optimization problems. QNSTOP directly uses the random objective function value samples rather than creating ensemble statistics. QNSTOP is used here to directly

match empirical and simulated joint probability distributions rather than matching summary statistics. Results are given for a current state­of­the­art stochastic cell

cycle model of budding yeast, whose predictions match well some summary statistics and one­dimensional distributions from empirical data, but do not match well

the empirical joint distributions. The nature of the mismatch provides insight into the weakness in the stochastic model.

Index Terms—Budding yeast, cell cycle model, model parameter estimation, quasi­Newton algorithm, stochastic optimization problem.

1 Introduction

A
fundamental challenge of molecular systems biology is to

build accurate dynamical models of the molecular mecha­

nisms underlying various aspects of cell physiology, e.g., cel­

lular chemotaxis or the regulation of cell growth and division.

Typically, these models are expressed in terms of differential

equations, i.e., the models are ‘deterministic’, and their validity

is assessed by comparison of model simulations to the observed

(average) properties of large populations of cells responding

to various experimental conditions. In recent years, however,

cell biologists are increasingly able to measure the behavior

and molecular constitution of single cells as they go about their

business in space and time. As might be expected, the spe­

cific behavior of any given cell may be quite different than the

average behavior of a population of cells, reflecting molecular

variability between cells. Regardless of the source(s) of such

variability, which may be at the levels of DNA, mRNA, protein,

and/or signaling molecules, deterministic models of the behav­

ior must be converted into realistic stochastic models to deal

with the variability of responses from one cell to another.

An important and difficult aspect of any modeling project

is estimation of the kinetic constants (‘model parameters’) that

appear in any dynamical model (deterministic or stochastic) of

a molecular regulatory process. The parameters (e.g., rates of

gene expression, rate constants for mRNA and protein degra­

dation, rates of association and dissociation of molecular com­

plexes, etc.) are estimated by comparison of model simulations

to relevant experimental measurements of molecular turnover in

cells. For deterministic models the problem is difficult enough,

because any reasonably complete model will have dozens of

molecular species and many dozens of undetermined parame­

ters, but the available experimental data is often quite extensive,

and there exist powerful algorithms for fitting deterministic sim­

ulations to experimental data points. For stochastic models the

problem is considerably more difficult, because a stochastic

model adds many more parameters to the deterministic model

on which it is based, and the specific sorts of data required to

estimate these ‘stochastic’ parameters is often difficult to obtain

experimentally. Furthermore, stochastic simulations generate

statistical distributions of observables, and these distributions

must be compared to experimentally observed distributions, and

the parameters estimated by optimization of an objective func­

tion that is a random variable. Algorithms for such stochastic

optimization problems are still being developed and assessed.

This paper presents results on optimization of the param­

eters in a stochastic model of cell cycle regulation in budding

yeast. Section 2 describes the model briefly. Section 3 states

the mathematical optimization problem precisely. Section 4

outlines a new quasi­Newton algorithm (QNSTOP) for stochas­

tic optimization, and Section 5 presents the results of using

QNSTOP to fit the stochastic cell cycle model to observed dis­

tributions of cell cycle observables (mass at birth, cell cycle

time, duration of G1 phase). Section 6 discusses some biolog­

ical implications of the results, and conclusions are drawn in

Section 7.

2 Stochastic Cell Cycle Model

The cell cycle model used in this paper was developed origi­

nally by Teeraphan Laomettachit and is described in full in his

Ph.D. thesis [4]. The deterministic version of the model uses a

set of nonlinear differential algebraic equations (DAEs) to track

the temporal evolution of 26 variables (proteins governing pro­

gression through the budding yeast cell cycle). These equations

involve 126 parameters (kinetic constants) that are estimated by

fitting simulations of the model to the observed phenotypes of

119 budding yeast strains.

The initial determination of the ‘best’ parameter values

was done ‘by hand’ as follows. Starting with an initial ‘basal’

parameter vector Xbasal, simulate the sequence of cell cycle

events in ‘wild­type’ cells growing in glucose and in galactose,

making sure that the cells are viable under both conditions. Then

simulate the phenotypes of 117 mutant strains of budding yeast

growing in either glucose or galactose. Each mutant strain

is characterized by a set of genetic changes (e.g., gene A is

knocked out and gene B is overexpressed two­fold). The strain is

simulated by appropriate changes to the basal parameter vector
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(e.g., the rate constant for synthesis of protein A from gene A is

set to zero, and the rate constant for synthesis of protein B from

gene B is set to twice the basal value). Each mutant strain has

an observed phenotype: viable or inviable; if viable then some

observed birth size relative to wild­type cells; if inviable then

stuck at some particular stage of the cell cycle. The simulated

phenotype of each mutant strain is compared to the observed

phenotype, and the basal parameter vector is scored accordingly.

Then the basal parameter vector is modified, the simulations

are repeated and rescored, and the process is repeated until no

further improvement seems to be possible.

Surprisingly, despite the immensity of the parameter space,

a good modeler can make significant improvements to the basal

parameter vector by hand in a few weeks, and the process is nec­

essary (from the modeler’s point of view) in order to understand

the vagaries of the model with respect to the experimental data.

In the process, the modeler often makes slight ‘tweaks’ to the

underlying molecular model (the DAEs) in order to get better

agreement between the model and the mutant phenotypes.

Once the deterministic model (from [4]) was fitted as well

as possible to the data set (the phenotypes of 110 of 119 strains

correctly simulated), it was converted to a stochastic model in

order to explore the observed variability of cell cycle progres­

sion among single cells (wild­type and mutant strains). The

conversion was made in two steps. First, the dimensionless

variables of the DAE model (call them zi(t), i = 1, . . ., 26)

had to be converted into numbers of molecules of species i per

cell, ci zi(t), where ci is the ‘characteristic concentration’ of

species i. Then each of the differential equations of the system

of DAEs was converted into a stochastic differential equation

of the Langevin type by adding two random noise terms to the

right hand side. The first noise term had the usual form of a

birth­death process for the protein species, and the second term

was designed specifically to model the effects of mRNA fluctua­

tions on noisy protein expression; see Laomettachit’s thesis [4].

These two steps introduced 52 new ‘stochastic’ parameters into

the model: 22 characteristic concentrations, and 30 parameters

describing the coupling between mRNA expression and protein

synthesis.

Laomettachit estimated these stochastic parameters by

hand, as well. From experimental estimates of the average

numbers of protein molecules per cell for each cell cycle gene,

he could estimate the 22 characteristic concentrations. From

reasonable guesses about mRNA dynamics in budding yeast

cells, he could estimate the 30 other parameters. These esti­

mates gave quite acceptable agreement with the limited amount

of statistical data at his disposal for the distributions of cell cycle

observables in populations of wild­type cells.

The Laomettachit model of the budding yeast cell cycle

was further examined by Oguz et al. [5], who explored the

utility of differential evolution (DE) as a tool for characterizing

the parameter space of the model. These authors started from an

intermediate stage of Laomettachit’s search (a basal parameter

vector that accounted correctly for the phenotypes of only 72

of 119 strains). They found that DE could quickly improve

the score (i.e., the number of phenotypes correctly simulated)

of the basal parameter vector, but could not improve on the

score that Laomettachit achieved by hand. That is to say, 92.5%

(110/119) seems to be about the best fit that Laomettachit’s

deterministic model can achieve. In a later publication, Oguz

et al. [6] applied DE to the stochastic version of Laomettachit’s

model. They held the 126 deterministic parameters fixed at the

values determined by the mutant phenotypes, and they estimated

the 52 stochastic parameters by DE. The objective function in

this case was constructed by comparing simulated values and

observed values for the means and variances of certain cell­cycle

observables: total cycle time and duration ofG1phase of the cell

cycle, for mother cells and daughter cells. The purpose of this

paper was not so much to estimate the stochastic parameters

of the model as to use the parametrized model to study the

synchronization of cell division in budding yeast populations

by external perturbations; see [6] for details.

3 The Mathematical Problem

As explained in the previous section, stochastic models of the

cell cycle are necessary to explain the observed variability in

cell cycle progression among individual cells. Estimating the

parameters in a stochastic cell cycle model is challenging, both

mathematically and empirically. Obtaining accurate and use­

ful data from individual cells is difficult, and very little such

data exists in the literature. Regardless of what criterion is

minimized to estimate the model parameters, the mathematical

problem is a stochastic optimization problem, meaning that the

objective function θ(x) itself is a random variable. To further

complicate matters, the random noise in the objective function

is not additive, i.e., the objective function is not of the form (de­

terministic θ(x)) + (random noise). The randomness is buried

deep in the simulation model, and has no simple representation

at the output level of the simulation model.

For a real colony of cells and a simulated colony, several

properties (e.g., mass at birthmB and duration ofG1 phaseTG1
)

can be observed. It is common practice to compute statistics

(e.g., mean, variance) of these observables and then to estimate

the simulation model parameters by minimizing the difference

(measured somehow) between the empirical colony’s statistics

and the simulated colony’s statistics. For example, both Laomet­

tachit [4] and Oguz et al. [6] approximated the scatter plot of

the two­dimensional joint distribution of mB versus TG1
by

a dogleg (continuous piecewise linear function with two line

segments), and then estimated stochastic model parameters by

matching the slopes of the line segments in the two (empirical

and model predicted) doglegs. Matching these statistics is cer­

tainly a necessary condition for the correctness of the model,

but such summary statistics do not capture all the available in­

formation. What one really wants to do, for example, is match

the empirical colony’s distribution of mB with the simulated

colony’s distribution of mB . Even better, match the distribu­

tions for all the observables simultaneously, or even match the

joint distributions. The proposal here is to do exactly that—for

both mother and daughter budding yeast cells, match the joint

distributions of the pair (mass at birth, duration of of G1 phase)

from the empirical and simulated cell colonies.

Postponing until later the details of obtaining (approxi­

mations of) these distributions, let p(i) and q(i) denote the

probability mass (after discretization of the probability density)

functions of the empirical and of the simulated colony’s ob­

servable, respectively. There are several standard, well­justified
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ways to compare distributions. From an information theoretic

perspective comes the Kullback­Leibler divergence

dKL(p, q) =
∑

i

p(i) log2

(
p(i)

q(i)

)
,

which is nonnegative and zero if and only if p = q, but is

not a metric. Another criterion from statistics is the Hellinger

distance

dH(p, q) =

(
∑

i

(√
p(i)−

√
q(i)

)2
)1/2

,

which is a metric. Depending on how discretization (one­ or

two­dimensional histograms) is done, some of the simulation

probabilities q(i) might be zero (a histogram interval or box has

no points in it), which makes dKL infinite. dH is better behaved

in such cases. Both dKL and dH were tried for this work, but

only results for dH are reported.

Let X ∈ IRn be the vector of parameters to be estimated

in the stochastic cell cycle model. Let p(i) and q(i) be the

probability mass functions of the observable (e.g., mB or the

pair (mB , TG1
)) from the empirical cell colony and from the

simulated cell colony, respectively. p(i) is constant, but q(i) is

a random variable determined by a stochastic simulation. The

objective function is the random variable

f(X) = dH(p, q),

and the stochastic optimization problem to be solved is

min
L<
=X<

=U
f(X),

where [L,U ] is a box in IRn defining the feasible set (allowable

values for the model parameters X).

The approach taken here, aptly described as simulation­

based parameter estimation, has a long history in statistics,

which is discussed, with historical references, in Castle’s Ph.D.

thesis [2]. The original version of the algorithm QNSTOP

summarized in the next section is due to Castle [2]; based on

experience with applications, and considerations of numerical

stability and computational efficiency, the original version of

QNSTOP has evolved to that of Amos et al. [1], the version

used here.

4 Quasi-Newton Algorithm for Stochastic

Optimization

QNSTOP is a class of quasi­Newton methods developed for

stochastic optimization that can also be used for deterministic

global optimization. Complete mathematical details, conver­

gence theory, and programming implementation details are in

[1]. The essential steps are outlined here. In iteration k, QN­

STOP computes the gradient vector ĝk and Hessian matrix Ĥk

of a quadratic model

m̂k(X −Xk) = f̂k + ĝTk (X −Xk)

+
1

2
(X −Xk)

T Ĥk (X −Xk)

of the objective function f centered atXk, where f̂k is generally

not f(Xk). The next iterate is

Xk+1 =

(
Xk −

[
Ĥk + µkWk

]−1

ĝk

)

Θ

,

where µk is the Lagrange multiplier of a trust region subprob­

lem, Wk is a symmetric, positive definite scaling matrix, and

(·)Θ denotes projection onto the feasible set Θ = [L,U ].
To estimate the gradient, QNSTOP uses an ellipsoidal de­

sign region centered at the current iterate Xk ∈ IRn. Let

Wγ =
{
W ∈ IRn×n : W = WT , det(W ) = 1,

γ−1In � W � γIn
}

for some γ ≥ 1 where In is the n × n identity matrix. The

elements of the set Wγ are valid scaling matrices that control

the shape of the ellipsoidal design regions with eccentricity

constrained by γ. Let the ellipsoidal design regions, with radius

τk , be given by

Ek(τk) =
{
X ∈ IRn : (X −Xk)

T Wk (X −Xk) ≤ τ2k

}

where Wk ∈ Wγ .

In each iteration, QNSTOP chooses a set of N uniformly

sampled design sites {Xk1, . . ., XkN} ⊂ Ek(τk)∩Θ. Let Yk =

(yk1, . . ., ykN )T denote the N ­vector of responses modeled by

the linear model yki = f̂k + XT
kiĝk + ǫki where ǫki accounts

for lack of fit. ĝk is then the least squares estimate of the linear

model gradient.

Depending on the context, QNSTOP either constrains the

Hessian matrix update to satisfy

−ηIn � Ĥk − Ĥk−1 � ηIn

for some η ≥ 0, using a variation of the SR1 (symmetric, rank

one) quasi­Newton update, or uses the unconstrained BFGS

quasi­Newton update

Ĥk = Ĥk−1 −
Ĥk−1sks

T
k Ĥk−1

sTk Ĥk−1sk
+

νk ν
T
k

νTk sk
,

where sk = Xk −Xk−1, νk = ĝk − ĝk−1.

QNSTOP utilizes an ellipsoidal trust region concentric with

the design region for controlling step length. In one usage mode,

the trust region ellipsoid radius ρk is taken equal to the design

ellipsoid radius τk, and the optimization problem

min
X∈Ek(ρk)

ĝTk (X −Xk) +
1

2
(X −Xk)

T
Ĥk (X −Xk)

is solved for Xk+1 and µk related by

Xk+1 = X(µk) = Xk −
[
Ĥk + µkWk

]−1

ĝk.

In another usage mode, µk−1 is directly updated to µk, giving

Xk+1 = X(µk) as above. If necessary, Xk+1 is projected back

into the feasible set Θ.

Finally, the experimental design region Ek(τk) is updated

to approximate a confidence set by updating the scaling matrix

Wk . The updated scaling matrix is given by

Wk+1 =
(
Ĥk + µkWk

)T
V −1
k

(
Ĥk + µkWk

)
,

whereVk is the covariance matrix of∇m̂k(Xk+1−Xk). For nu­

merical stability, Wk+1 is constrained (by modifying its eigen­

values) to satisfy the constraints γ−1In � Wk+1 � γIn and

det(Wk+1) = 1, so Wγ ∋ Wk+1.

3



Algorithm summary: It is generally desirable to run QN­

STOP from multiple start points, and the algorithm described

below is repeated for each start point.

Step 0 (initialization): Given a function evaluation budget B̃
per start point and operating mode (choices of quasi­Newton

update, ways of updating the ellipsoidal design region radii τk
and ellipsoidal trust region radii ρk, etc.), set values for τ0 > 0,

γ ≥ 1, η ≥ 0, N , X0, k : = 0, W0 : = Ĥ0 : = In.

Step 1 (regression experiment): Depending on the usage

mode, compute the design ellipsoid radius τk. Uniformly sam­

ple {Xk1, . . ., XkN} ⊂ Ek(τk) ∩ Θ. Observe the response

vector Yk = (yk1, . . ., ykN )T . Compute ĝk by linear regres­

sion.

Step 2 (secant update): If k > 0, compute the model Hes­

sian matrix Ĥk using either the BFGS or SR1 variant update,

depending on the usage mode.

Step 3 (update iterate): Compute µk depending on the usage

mode, solve [Ĥk+µkWk]sk = −ĝk for the step sk, and compute

Xk+1 =
(
Xk + sk

)
Θ

.

Step 4 (update subsequent design ellipsoid): Compute a new

scaling matrix Wk+1 ∈ Wγ .

Step 5: If (k + 2)(N + 1) + 1 < B̃ then increment k by 1 and

go to Step 1. Otherwise, the algorithm terminates. (f is also

observed at each ellipsoid center Xk.)

The Fortran 2003 parallel (OpenMP) subroutine QN­

STOPP from [1] is used here, and the nondefault values for

all inputs to QNSTOPP are reported with the results later.

5 Numerical Results and Discussion

The budding yeast stochastic cell cycle model in [6], called

‘Laomettachit’s stochastic model’ here, has 52 parameters that

are exclusive to the stochastic aspects of the model, of which

some are chosen to be equal to others, leaving 44 independent

variables (parameters) to be determined by some mathemati­

cal procedure (here, solving a stochastic optimization problem).

The parameter names follow a pattern: the species ⋆ is de­

noted by an index 1, 2, . . ., 10, referring to species Cln3, Bck2,

Cln2, CKI, Clb5, Clb2, Swi5, Cdc20, Pds1, and POLO, re­

spectively. The parameters ktr⋆, kdm⋆, mmin⋆ for species ⋆
are, respectively, translation rate, mRNA degradation rate, and

minimum number of mRNA molecules. This accounts for 30

parameters. The remaining 22 parameters cx, where x is the

species name, are the characteristic concentrations of the above

ten species and 12 other species: Whi5, SBF, Cdh1, APCP,

Clb14, Net1, PPX, Esp1, Cdc15, Tem1, MEN, Mcm1. These

characteristic concentrations are introduced to convert the di­

mensionless concentrations of the species in the deterministic

version of Laomettachit’s model into numbers of molecules per

cell for each species in the stochastic version of the model.

Since some of the species in the model bind with each other

to form stoichiometric complexes, the characteristic concentra­

tions of such binding partners must be identical. Therefore, as

in Oguz et al. [6], making the eight assignments cSBF ≡ cWhi5,

cClb2 ≡ cClb5 ≡ cCKI, cAPCP ≡ cCdc20, cNet1 ≡ cCdc14,
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Fig. 1. Discretization for empirical correlations of mass at birth and

scaled duration of G1 phase of mother cells. The x­axis is ln (individual

mass/mean mass), where the mean is of all mother cells.
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Fig. 2. Discretization for empirical daughter cell cycle time.

cEsp1 ≡ cPds1, and cMEN ≡ cTem1 ≡ cCdc15 leaves 44 inde­

pendent parameters defining the vector X .

Table 1 lists the 52 stochastic parameters in Laomettachit’s

model. The nominal vector X0 defines the search box [L,U ],
where the bounding interval for the ith component (X)i of X

is
[
(1/ϕi)(X0)i, ϕi(X0)i

]
and each factor ϕi is either 2 or 5.

The ‘best [6] vector’ is the best estimate of the parameter vector

found by [6] using differential evolution.

The empirical data from Di Talia et al. [3] includes mass at

birth, duration of G1 phase, and cell cycle time of both mother

and daughter budding yeast cells. Using the Hellinger distance

to measure the difference between the empirical data distribu­

tion and the simulated data distribution requires approximat­

ing the continuous distributions by (one­ or two­dimensional)

histograms. For example, Figure 1 shows the histogram box

boundaries for the joint distribution of the (scaled) pair (mass

at birth, duration of G1 phase) for mother cells. The strat­

egy is to define rectangles (or intervals in one dimension) that

roughly evenly divide the empirical data points and such that

every rectangle (or interval) contains some data points. The 122

data points yield 17 bins (divided by black lines in Figure 1).

The particular discretization has no effect on the optimization

algorithm. Figure 2 shows the one­dimensional histogram for

the empirical data of daughter cell cycle times. Here the 97

data points are divided into 10 bins. Given the sparsity and
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TABLE 1

List of parameters in stochastic cell cycle model.

parameter nominal
value

best [6]
value

[L,U ]

ktr1 0.22 0.3870 [0.044, 1.1]

kdm1 0.7 2.9459 [0.14, 3.5]

mmin1 1.0 5.0 [0.2, 5.0]

ktr2 0.22 0.6166 [0.044, 1.1]

kdm2 0.7 0.6033 [0.14, 3.5]

mmin2 4.0 17.0 [0.8, 20.0]

ktr3 0.22 0.0761 [0.044, 1.1]

kdm3 0.7 2.9502 [0.14, 3.5]

mmin3 1.0 2.0 [0.2, 5.0]

ktr4 0.22 0.2024 [0.044, 1.1]

kdm4 0.7 1.4652 [0.14, 3.5]

mmin4 4.0 1.0 [0.8, 20.0]

ktr5 0.22 0.6878 [0.044, 1.1]

kdm5 0.7 0.1975 [0.14, 3.5]

mmin5 4.0 8.0 [0.8, 20.0]

ktr6 0.22 0.6974 [0.044, 1.1]

kdm6 0.7 1.6668 [0.14, 3.5]

mmin6 4.0 15.0 [0.8, 20.0]

ktr7 0.22 0.8867 [0.044, 1.1]

kdm7 0.7 2.4182 [0.14, 3.5]

mmin7 4.0 16.0 [0.8, 20.0]

ktr8 0.22 0.7344 [0.044, 1.1]

kdm8 0.7 3.4411 [0.14, 3.5]

mmin8 4.0 6.0 [0.8, 20.0]

ktr9 0.22 0.6737 [0.044, 1.1]

kdm9 0.7 1.2706 [0.14, 3.5]

mmin9 4.0 9.0 [0.8, 20.0]

ktr10 0.22 0.4258 [0.044, 1.1]

kdm10 0.7 0.1469 [0.14, 3.5]

mmin10 4.0 5.0 [0.8, 20.0]

cCln3 10.0 19.0957 [5.0, 20.0]

cBck2 10.0 16.3317 [5.0, 20.0]

cWhi5 22.0 21.8688 [11.0, 44.0]

cSBF 22.0 21.8688 [11.0, 44.0]

cCln2 45.0 84.2260 [22.5, 90.0]

cCKI 80.0 101.9969 [40.0, 160.0]

cClb5 80.0 101.9969 [40.0, 160.0]

cClb2 80.0 101.9969 [40.0, 160.0]

cSwi5 57.5 50.4561 [28.75, 115.0]

cCdc20 100.0 93.1338 [50.0, 200.0]

cCdh1 100.0 59.4664 [50.0, 200.0]

cAPCP 100.0 93.1338 [50.0, 200.0]

cCdc14 14.0 20.2049 [7.0, 28.0]

cNet1 14.0 20.2049 [7.0, 28.0]

cPPX 100.0 81.0649 [50.0, 200.0]

cPds1 3.3 2.3993 [1.65, 6.6]

cEsp1 3.3 2.3993 [1.65, 6.6]

cCdc15 8.0 8.7958 [4.0, 16.0]

cTem1 8.0 8.7958 [4.0, 16.0]

cMEN 8.0 8.7958 [4.0, 16.0]

cPOLO 100.0 155.2614 [50.0, 200.0]

cMcm1 100.0 183.1687 [50.0, 200.0]

accuracy of the data, and the stated goal for how to discretize

the continuous distributions, the result is a histogram shape as

in Figure 2.

Altogether there are eight distributions being matched (and

eight Hellinger distances dH,i, i = 1, . . ., 8): joint pair (mass

at birth, duration of G1 phase) for mothers (17 boxes), joint

pair (mass at birth, duration of G1 phase) for daughters (18

boxes), mass at birth for mothers (12 intervals), mass at birth

for daughters (10 intervals), G1 duration for mothers (9 inter­

vals), G1 duration for daughters (11 intervals), cell cycle time

for mothers (10 intervals), and cell cycle time for daughters (10

intervals). There are thus a total of 97 discrete probabilities be­

ing matched (one for each bin/box/interval) using 44 degrees of

freedom (the independent stochastic cell cycle model parame­

ters X), which is a well­posed problem. The objective function

is

f(X) =

8∑

i=1

dH,i(p, q),

where p, q were described earlier. Trying different weights on

the dH,i in the sum had little effect on the final results, and hence

results for different weights are not reported here.

Nondefault values for the input arguments to the computer

code QNSTOPP are described next. MODE is ‘G’ for global

optimization, ‘S’ for stochastic optimization; N is the number

of design ellipsoid sample points (from the statistical rule of

thumb that at least 1.5n data points are needed to estimate n

parameters); XI is the initial start point; [L,U ] is the feasible

box; TAU is the initial design ellipsoid radius τ ; GAIN, relevant

only for MODE ‘G’, defines the decay factor such that the design

ellipsoid radius at iteration k is τk = GAIN/(GAIN + k − 1) ·

TAU.

Using MODE= ‘G’ (global optimization), TAU = 20 (5%

of the search box diameter), GAIN = 10, N = 64, Figure 3

shows the iteration histories starting from three points chosen

from the box [L,U ] in Table 1 (lower box corner, upper box

corner, and the best value in Oguz’s model). The Hellinger

distance starting from the upper corner point shows a clear

descent from ≈ 2.9 to ≈ 1.75 in 13 iterations. Starting from the

best point in [6], the Hellinger distance decreases from ≈ 2.5 to

≈ 1.75 in 15 iterations and then oscillates around that value. The

same oscillation happens starting from the lower corner point,

which suggests that ≈ 1.75 is the best objective function value,

and that every point in the box near the corner L has about the

same objective function value ≈ 1.8. Dozens of other different

start points in the box [L,U ] produced similar best function

values (QNSTOP can automatically generate a Latin hypercube

design of start points including a given start point XI). Note that

the best objective function values (≈ 1.75) are not particularly

small in the (summed) Hellinger distance measure, meaning that

the empirical data is not being matched especially well, although
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Fig. 3. Execution trace of QNSTOP for three start points from Table 1,

lower box corner (top), upper box corner (middle), best value in [6]
(bottom). The x­axis shows the iteration number, and the y­axis is the
objective function value. For each iteration, the ellipsoid center (circles)
and best sampled (triangles) objective function values are reported.

the average Hellinger distance of ≈ 1.75/8 = 0.21875 is not

bad.

To demonstrate that the stochastic parameters in Laomet­

tachit’s stochastic cell cycle model are not entirely arbitrary,

and that QNSTOP can make progress on stochastic optimiza­

tion problems, consider an enlarged search box [(1/2)L, 2U ]
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Fig. 4. Execution trace of QNSTOP starting at the upper corner of the

larger box [(1/2)L, 2U ]. The x­axis shows the iteration number, and the

y­axis is the objective function value. For each iteration, the ellipsoid
center (circles) and best sampled (triangles) objective function values
are reported.
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Fig. 5. Execution trace of QNSTOP starting at the upper corner of the

larger box [(1/4)L, 4U ]. The x­axis shows the iteration number, and the

y­axis is the objective function value. For each iteration, the ellipsoid
center (circles) and best sampled (triangles) objective function values
are reported.

with the start point XI taken as the upper bound corner of this

box. This start point is far away from the best point in [6] and

has a much larger objective function value. The initial design

ellipsoid radius TAU is also changed to 5% of the diameter of

the new box, and GAIN = 10. A larger value for GAIN causes

the ellipsoid radii to decrease more slowly, which is advanta­

geous when starting far away from the optimum point. The

execution trace in Figure 4 drops rapidly to near 1.9 in less

than 10 iterations, and stays around that value, apparently a lo­

cal minimum. Figure 5 shows the execution trace of QNSTOP

from an even worse starting point (upper bound corner) in the

much larger box [(1/4)L, 4U ], with the initial TAU adjusted as

for Figure 4, and GAIN = 10. The plot shows a downward

trend and drops sharply around 20 iterations to get near ≈ 2.1,

apparently another local minimum.
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TABLE 2

Individual Hellinger distances between empirical distributions

and simulated distributions using the best point from Table 1

and the best point found by QNSTOP.

Table 1 QNSTOP

dH,1 0.57 0.44

dH,2 0.37 0.22

dH,3 0.16 0.09

dH,4 0.19 0.12

dH,5 0.45 0.31

dH,6 0.37 0.22

dH,7 0.19 0.10

dH,8 0.18 0.15

f (X) 2.48 1.65

TABLE 3

Best parameter vector found by QNSTOP.

parameter value parameter value

ktr1 0.6470 ktr2 0.4938

kdm1 0.8598 kdm2 1.4749

mmin1 0.2085 mmin2 9.0806

ktr3 0.4768 ktr4 0.6377

kdm3 2.1048 kdm4 1.4175

mmin3 3.3014 mmin4 12.2215

ktr5 0.5411 ktr6 0.4676

kdm5 1.9824 kdm6 1.5821

mmin5 8.7150 mmin6 10.7990

ktr7 0.5430 ktr8 0.59856

kdm7 1.3543 kdm8 1.6878

mmin7 9.7407 mmin8 12.3070

ktr9 0.5941 ktr10 0.5638

kdm9 2.0224 kdm10 1.8554

mmin9 12.2770 mmin10 8.7718

cCln3 11.0180 cBck2 13.0380

cWhi5 25.612 cCln2 59.8760

cCKI 94.6380 cSwi5 67.5470

cCdc20 123.9300 cCdh1 121.8000

cCdc14 20.1910 cPPX 110.2900

cPds1 3.9074 cCdc15 11.0270

cPOLO 126.2300 cMcm1 125.5000

As QNSTOP iterates, the design ellipsoid (in which sam­

ples are taken to build a quadratic model of the objective func­

tion) radius τk decreases. Figure 3, showing the objective func­

tion value at the ellipsoid center and at the best sampled point in­

side that ellipsoid, thus gives a good indication of the variability

of the stochastic objective function values within that ellipsoid.

Observe that this variability shows little change with respect

to the iteration number, meaning that the inherent simulation

variance for a fixed parameter vector is roughly comparable to

the variance within the (small) design ellipsoid.

Table 2 shows the individual Hellinger distances dH,i(p, q)
comprising the objective function f(X), and that the best point

(from all runs) found by QNSTOP is considerably better than

that found by differential evolution in [6]. For completeness, Ta­

ble 3 reports that best point X found by QNSTOP. In summary,

QNSTOP performs well on this stochastic budding yeast cell

Oguz Empirical QNSTOP

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

Fig. 6. Comparison of histograms of the cell cycle time for daughter

cells, from the simulation using the best point from Table 1 (Oguz), from

the empirical data, and from the simulation using the best point found by

QNSTOP.

cycle model, quickly finding the best known Hellinger distance

even from a poor starting point, and significantly improving the

result from differential evolution in [6]. From very distant start­

ing points, QNSTOP converges to a (not globally optimal) local

minimum point, which is not unexpected behavior.

6 Implications for the Cell Cycle Model

Mathematically, Table 2 shows how well the distributions of the

various cell cycle observables (mass at birth, etc.) are being

captured by Laomettachit’s stochastic cell cycle model. The

smallest Hellinger distances are associated with the distributions

of birth masses for mother and daughter cells, dH,3 and dH,4,

and with the cycle time distributions for mother and daughter

cells, dH,7 and dH,8. The histograms of daughter cell cycle

times (Figure 6) show how good the fit is between the model

and the data in this particular case. The major discrepancies are

in the tails of the distribution. In contrast, the distribution of

G1 durations for mother cells is not a good match: dH,5 = 0.31
in Table 2, and the histograms in Figure 7 show clearly that

the model overestimates the time spent by mother cells in G1

phase of the cell cycle. This discrepancy points to a ‘structural’

problem of the model: the ‘G1­stabilizing’ proteins in the model

(Cdh1 and CKI) seem to be too active in mother cells, delaying

the exit of mother cells from G1 into S phase. On the other

hand, the time spent by daughter cells in G1 phase is not nearly

so discrepant, dH,6 = 0.22 in Table 2, suggesting that the

structural problem is related to some subtle difference between

mother cells and daughter cells, which has escaped modelers’

attention so far.

The other data that are poorly matched by the model are

the joint distributions of (mass at birth, duration of G1 phase)

for mother and daughter cells. The Hellinger distances from

QNSTOP are dH,1 = 0.44 and dH,2 = 0.22, respectively,

which are clear improvements over the best point from Ta­

ble 1; nonetheless, the Hellinger distances are hard to interpret.

Figures 8 and 9 contain histograms of these joint distributions

from the empirical data, from the simulation using the best

point from Table 1, and from the simulation using the best
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Oguz Empirical QNSTOP
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0.4

Fig. 7. Comparison of histograms of G1 duration for mother cells, from
the simulation using the best point from Table 1 (Oguz), from the empiri­

cal data, and from the simulation using the best point found by QNSTOP.

point found from QNSTOP. Each simulation produces about

1,000 data points, compared to about 100 empirical data points.

From these histograms it is evident that the major discrepan­

cies between the model and the empirical joint distributions

are in one specific region of the joint distribution: the region

where TG1
is large (TG1

> 0.2α = 26 min) and mB is not

too much different from the mean mass of mother cells at birth

(−0.3 < ln(mB/mB) < 0.1). In this case, the model is clearly

overestimating the number of cells (both mothers and daughters)

that spend a long time in G1 phase, which is complementary to

the ‘structural’ problem noted above. The model underestimates

the number of cells with short G1 durations and overestimates

the number of cells with long G1 durations.

7 Conclusions

As observed in the Introduction, to understand fully the molec­

ular basis of many aspects of cell physiology requires the con­

struction of detailed mathematical models that take into account

the intricate interactions among the genes, mRNAs, and proteins

involved in regulating each process. Deterministic models, ex­

pressed as sets of nonlinear differential equations describing the

temporal and spatial interactions of these molecules, are appro­

priate for understanding the average behavior of large popula­

tions of cells. On the other hand, to get at the statistical variabil­

ity of how individual cells behave requires stochastic models

that accurately describe cell­to­cell variability. Stochastic dif­

ferential equations (SDEs) are often used for this purpose.

In either case—deterministic or stochastic models—the

modeler is faced with a daunting task of estimating dozens

of parameters (rate constants) by fitting model simulations to

experimental observations. The parameter estimation problem

is difficult enough for a deterministic model, because of the

high dimension of the parameter space of any reasonably com­

plete, molecular­level model of some aspect of cell physiology,

and because of the general paucity of accurate and pertinent

experimental data. For stochastic models, parameter estimation

is more difficult indeed because one must compare statistical

distributions (computed and observed) and vary the parameter

Fig. 8. Two­dimensional histogram of the joint distribution of the pair
(mass at birth, duration of G1 phase) for mother cells from the empirical

data (top), from the simulation using the best point from Table 1 (mid­

dle), and from the simulation using the best point found by QNSTOP

(bottom). The polygons in this display correspond to the rectangles in
Figure 1, because the plotting program partitions the horizontal plane
into a Voronoi diagram based on the centers of each of the rectangles

in Figure 1. The height of each polygon is the relative frequency of data
points lying in the corresponding rectangle.

values to optimize the fit. The computations are more expen­

sive (typically hundreds or thousands of replica simulations to

approximate the probability distribution function), and relevant
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Fig. 9. Two­dimensional histogram of the joint distribution of the pair

(mass at birth, duration of G1 phase) for daughter cells from the empirical
data (top), from the simulation using the best point from Table 1 (middle),

and from the simulation using the best point found by QNSTOP (bottom).

As in Figure 8 the polygons correspond to the rectangles in a partition of

the daughter cell data (not shown here), similar to that for the mothers

in Figure 1, and the height of each polygon is the relative frequency of
data points lying in the corresponding rectangle.

experimental distributions of sufficient quality are rare indeed.

This work tested the efficacy of a quasi­Newton method for

stochastic optimization (QNSTOP) to estimate the parameters in

a system of SDEs that model the molecular interactions govern­

ing progression through the cell division cycle in budding yeast.

The model has 44 independent parameters that determine the

random fluctuations in molecular populations, and these fluc­

tuations determine the variability from cell to cell of certain

observable properties, such as cell cycle time, time spent in G1

phase of the cell cycle, and cell size at birth. Di Talia et al.

[3] have collected data on the distributions of these observables,

and on the joint distribution of the pair (mass at birth, G1 du­

ration). Budding yeast cells divide asymmetrically into a large

‘mother’ cell and a small ‘daughter’ cell, so Di Talia measured

separate distributions for mother­cell and daughter­cell popu­

lations. Hence, Di Talia provides sample data sets from eight

different distributions.

QNSTOP can efficiently find a globally (but occasionally

only locally) optimal stochastic parameter vector X by mini­

mizing the sum of Hellinger distances f(X) =
∑8

i=1 dH,i(p, q)
between the observed and computed probability mass functions

p and q, respectively, for each of the eight different distribu­

tions. QNSTOP’s fit to these distributions is considerably better

than the ‘best’ fit found in an earlier publication [6], which used

a differential evolution algorithm on an objective function that

was a sum of squares of deviations between summary statistics

(means and standard deviations) for the eight empirical distribu­

tions: f(X) = 1.65 for QNSTOP, f(X) = 2.48 for differential

evolution. Presumably, QNSTOP is doing a better job because

it is a more efficient algorithm than differential evolution and

because it is using all of the information in the full distributions

rather than just the summary statistics. A major conclusion of

this work is that matching summary statistics and even marginal

distributions does not in practice imply that the joint distribu­

tions match.

A few conclusions about the model can be drawn from the

best parameter vector found by QNSTOP (Table 3). First of all,

fluctuations in protein levels in the stochastic model are most

sensitively dependent on the parameters mmin,i. Genes with

smaller values of this parameter display larger fluctuations in

protein levels. For Oguz’s best parameter vector (Table 1), the

noisiest gene expression is attributable to CKI and PDS1. For

QNSTOP’s best parameter vector, CLN3 is, by far, the noisiest

gene, which seems quite reasonable because Cln3 protein abun­

dance is quite low in budding yeast cells and Cln3­dependent

kinase activity is known to play a major role in the G1­to­S

phase transition. Secondly, in QNSTOP’s best parameter vec­

tor, all mRNAs (except for CLN3 mRNA) have degradation rate

constants in the range 1.3 – 2.1 min−1, which corresponds to

half lives in the range 0.33 – 0.51 min. These values seem to

be quite smaller than what one might expect (say, 5 min half

life), but rapid turn over of mRNAs seems to be necessary to

limit the magnitude of protein­level fluctuations in the stochas­

tic model. Notice that CLN3 mRNA has a noticeably longer

half life (1.25 min) than any of the other mRNAs in the model,

presumably because it is fluctuations in CLN3 mRNA numbers

that plays the most important role in determining the noisiness

of the model’s behavior. The fact that the model requires rapid

turnover of mRNA species in order to fit the observed probabil­

ity distributions of cell cycle observables suggests that the way

molecular noise is incorporated into the model may be over­

simplified. More elaborate models, which incorporate mRNA
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bursting, mRNA processing, mRNA transport, etc., will have to

be explored in later publications.
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