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Abstract—Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be
observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of
empirical data must be even larger to obtain statistically valid parameter estimates. This work describes a new quasi-Newton algorithm class QNSTOP for stochastic
optimization problems. QNSTOP directly uses the random objective function value samples rather than creating ensemble statistics. QNSTOP is used here to directly
match empirical and simulated joint probability distributions rather than matching summary statistics. Results are given for a current state-of-the-art stochastic cell
cycle model of budding yeast, whose predictions match well some summary statistics and one-dimensional distributions from empirical data, but do not match well
the empirical joint distributions. The nature of the mismatch provides insight into the weakness in the stochastic model.
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1 Introduction

fundamental challenge of molecular systems biology is to

build accurate dynamical models of the molecular mecha-
nisms underlying various aspects of cell physiology, e.g., cel-
lular chemotaxis or the regulation of cell growth and division.
Typically, these models are expressed in terms of differential
equations, i.e., the models are ‘deterministic’, and their validity
is assessed by comparison of model simulations to the observed
(average) properties of large populations of cells responding
to various experimental conditions. In recent years, however,
cell biologists are increasingly able to measure the behavior
and molecular constitution of single cells as they go about their
business in space and time. As might be expected, the spe-
cific behavior of any given cell may be quite different than the
average behavior of a population of cells, reflecting molecular
variability between cells. Regardless of the source(s) of such
variability, which may be at the levels of DNA, mRNA, protein,
and/or signaling molecules, deterministic models of the behav-
ior must be converted into realistic stochastic models to deal
with the variability of responses from one cell to another.

An important and difficult aspect of any modeling project
is estimation of the kinetic constants (‘model parameters’) that
appear in any dynamical model (deterministic or stochastic) of
a molecular regulatory process. The parameters (e.g., rates of
gene expression, rate constants for mRNA and protein degra-
dation, rates of association and dissociation of molecular com-
plexes, etc.) are estimated by comparison of model simulations
to relevant experimental measurements of molecular turnover in
cells. For deterministic models the problem is difficult enough,
because any reasonably complete model will have dozens of
molecular species and many dozens of undetermined parame-
ters, but the available experimental data is often quite extensive,
and there exist powerful algorithms for fitting deterministic sim-
ulations to experimental data points. For stochastic models the
problem is considerably more difficult, because a stochastic
model adds many more parameters to the deterministic model
on which it is based, and the specific sorts of data required to
estimate these ‘stochastic’ parameters is often difficult to obtain

experimentally. Furthermore, stochastic simulations generate
statistical distributions of observables, and these distributions
must be compared to experimentally observed distributions, and
the parameters estimated by optimization of an objective func-
tion that is a random variable. Algorithms for such stochastic
optimization problems are still being developed and assessed.

This paper presents results on optimization of the param-
eters in a stochastic model of cell cycle regulation in budding
yeast. Section 2 describes the model briefly. Section 3 states
the mathematical optimization problem precisely. Section 4
outlines a new quasi-Newton algorithm (QNSTOP) for stochas-
tic optimization, and Section 5 presents the results of using
QNSTORP to fit the stochastic cell cycle model to observed dis-
tributions of cell cycle observables (mass at birth, cell cycle
time, duration of G phase). Section 6 discusses some biolog-
ical implications of the results, and conclusions are drawn in
Section 7.

2 Stochastic Cell Cycle Model

The cell cycle model used in this paper was developed origi-
nally by Teeraphan Laomettachit and is described in full in his
Ph.D. thesis [4]. The deterministic version of the model uses a
set of nonlinear differential algebraic equations (DAEs) to track
the temporal evolution of 26 variables (proteins governing pro-
gression through the budding yeast cell cycle). These equations
involve 126 parameters (kinetic constants) that are estimated by
fitting simulations of the model to the observed phenotypes of
119 budding yeast strains.

The initial determination of the ‘best’ parameter values
was done ‘by hand’ as follows. Starting with an initial ‘basal’
parameter vector Xpasal, simulate the sequence of cell cycle
events in ‘wild-type’ cells growing in glucose and in galactose,
making sure that the cells are viable under both conditions. Then
simulate the phenotypes of 117 mutant strains of budding yeast
growing in either glucose or galactose. Each mutant strain
is characterized by a set of genetic changes (e.g., gene A is
knocked out and gene B is overexpressed two-fold). The strain is
simulated by appropriate changes to the basal parameter vector



(e.g., the rate constant for synthesis of protein A from gene A is
set to zero, and the rate constant for synthesis of protein B from
gene B is set to twice the basal value). Each mutant strain has
an observed phenotype: viable or inviable; if viable then some
observed birth size relative to wild-type cells; if inviable then
stuck at some particular stage of the cell cycle. The simulated
phenotype of each mutant strain is compared to the observed
phenotype, and the basal parameter vector is scored accordingly.
Then the basal parameter vector is modified, the simulations
are repeated and rescored, and the process is repeated until no
further improvement seems to be possible.

Surprisingly, despite the immensity of the parameter space,
a good modeler can make significant improvements to the basal
parameter vector by hand in a few weeks, and the process is nec-
essary (from the modeler’s point of view) in order to understand
the vagaries of the model with respect to the experimental data.
In the process, the modeler often makes slight ‘tweaks’ to the
underlying molecular model (the DAEs) in order to get better
agreement between the model and the mutant phenotypes.

Once the deterministic model (from [4]) was fitted as well
as possible to the data set (the phenotypes of 110 of 119 strains
correctly simulated), it was converted to a stochastic model in
order to explore the observed variability of cell cycle progres-
sion among single cells (wild-type and mutant strains). The
conversion was made in two steps. First, the dimensionless
variables of the DAE model (call them z;(t), ¢ = 1, ..., 26)
had to be converted into numbers of molecules of species 7 per
cell, ¢; z;(t), where ¢; is the ‘characteristic concentration’ of
species ¢. Then each of the differential equations of the system
of DAEs was converted into a stochastic differential equation
of the Langevin type by adding two random noise terms to the
right hand side. The first noise term had the usual form of a
birth-death process for the protein species, and the second term
was designed specifically to model the effects of mRNA fluctua-
tions on noisy protein expression; see Laomettachit’s thesis [4].
These two steps introduced 52 new ‘stochastic’ parameters into
the model: 22 characteristic concentrations, and 30 parameters
describing the coupling between mRNA expression and protein
synthesis.

Laomettachit estimated these stochastic parameters by
hand, as well. From experimental estimates of the average
numbers of protein molecules per cell for each cell cycle gene,
he could estimate the 22 characteristic concentrations. From
reasonable guesses about mRNA dynamics in budding yeast
cells, he could estimate the 30 other parameters. These esti-
mates gave quite acceptable agreement with the limited amount
of statistical data at his disposal for the distributions of cell cycle
observables in populations of wild-type cells.

The Laomettachit model of the budding yeast cell cycle
was further examined by Oguz et al. [5], who explored the
utility of differential evolution (DE) as a tool for characterizing
the parameter space of the model. These authors started from an
intermediate stage of Laomettachit’s search (a basal parameter
vector that accounted correctly for the phenotypes of only 72
of 119 strains). They found that DE could quickly improve
the score (i.e., the number of phenotypes correctly simulated)
of the basal parameter vector, but could not improve on the
score that Laomettachit achieved by hand. That is to say, 92.5%
(110/119) seems to be about the best fit that Laomettachit’s

deterministic model can achieve. In a later publication, Oguz
et al. [6] applied DE to the stochastic version of Laomettachit’s
model. They held the 126 deterministic parameters fixed at the
values determined by the mutant phenotypes, and they estimated
the 52 stochastic parameters by DE. The objective function in
this case was constructed by comparing simulated values and
observed values for the means and variances of certain cell-cycle
observables: total cycle time and duration of G phase of the cell
cycle, for mother cells and daughter cells. The purpose of this
paper was not so much to estimate the stochastic parameters
of the model as to use the parametrized model to study the
synchronization of cell division in budding yeast populations
by external perturbations; see [6] for details.

3 The Mathematical Problem

As explained in the previous section, stochastic models of the
cell cycle are necessary to explain the observed variability in
cell cycle progression among individual cells. Estimating the
parameters in a stochastic cell cycle model is challenging, both
mathematically and empirically. Obtaining accurate and use-
ful data from individual cells is difficult, and very little such
data exists in the literature. Regardless of what criterion is
minimized to estimate the model parameters, the mathematical
problem is a stochastic optimization problem, meaning that the
objective function 6(z) itself is a random variable. To further
complicate matters, the random noise in the objective function
is not additive, i.e., the objective function is not of the form (de-
terministic 6(z)) + (random noise). The randomness is buried
deep in the simulation model, and has no simple representation
at the output level of the simulation model.

For a real colony of cells and a simulated colony, several
properties (e.g., mass at birth m g and duration of G; phase T, )
can be observed. It is common practice to compute statistics
(e.g., mean, variance) of these observables and then to estimate
the simulation model parameters by minimizing the difference
(measured somehow) between the empirical colony’s statistics
and the simulated colony’s statistics. For example, both Laomet-
tachit [4] and Oguz et al. [6] approximated the scatter plot of
the two-dimensional joint distribution of mp versus Tq, by
a dogleg (continuous piecewise linear function with two line
segments), and then estimated stochastic model parameters by
matching the slopes of the line segments in the two (empirical
and model predicted) doglegs. Matching these statistics is cer-
tainly a necessary condition for the correctness of the model,
but such summary statistics do not capture all the available in-
formation. What one really wants to do, for example, is match
the empirical colony’s distribution of mp with the simulated
colony’s distribution of mp. Even better, match the distribu-
tions for all the observables simultaneously, or even match the
joint distributions. The proposal here is to do exactly that—for
both mother and daughter budding yeast cells, match the joint
distributions of the pair (mass at birth, duration of of G; phase)
from the empirical and simulated cell colonies.

Postponing until later the details of obtaining (approxi-
mations of) these distributions, let p(i) and ¢(¢) denote the
probability mass (after discretization of the probability density)
functions of the empirical and of the simulated colony’s ob-
servable, respectively. There are several standard, well-justified



ways to compare distributions. From an information theoretic
perspective comes the Kullback-Leibler divergence

. p(i)
dKL(p7 Q) = Zp(l) 1Og2 <—> )
- q(i)
which is nonnegative and zero if and only if p = ¢, but is
not a metric. Another criterion from statistics is the Hellinger
distance

5\ /2
di(p,q) = <Z (V@) - Va(®) ) ,
which is a metric. Depending on how discretization (one- or
two-dimensional histograms) is done, some of the simulation
probabilities ¢(z) might be zero (a histogram interval or box has
no points in it), which makes dxkr, infinite. dy is better behaved
in such cases. Both dkr, and dpg were tried for this work, but
only results for dy are reported.

Let X € IR" be the vector of parameters to be estimated
in the stochastic cell cycle model. Let p(i) and ¢(i) be the
probability mass functions of the observable (e.g., mp or the
pair (mp,Tg,)) from the empirical cell colony and from the
simulated cell colony, respectively. p(¢) is constant, but ¢(z) is
a random variable determined by a stochastic simulation. The
objective function is the random variable

and the stochastic optimization problem to be solved is

o f(X),
where [L, U] is a box in IR" defining the feasible set (allowable
values for the model parameters X).

The approach taken here, aptly described as simulation-
based parameter estimation, has a long history in statistics,
which is discussed, with historical references, in Castle’s Ph.D.
thesis [2]. The original version of the algorithm QNSTOP
summarized in the next section is due to Castle [2]; based on
experience with applications, and considerations of numerical
stability and computational efficiency, the original version of
QNSTOP has evolved to that of Amos et al. [1], the version
used here.

4 Quasi-Newton Algorithm for Stochastic

Optimization
QNSTOP is a class of quasi-Newton methods developed for
stochastic optimization that can also be used for deterministic
global optimization. Complete mathematical details, conver-
gence theory, and programming implementation details are in
[1]. The essential steps are outlined here. In iteration k, QN-
STOP computes the gradient vector g and Hessian matrix H,
of a quadratic model

(X — Xp) = fr + 31 (X — X»)

1 N
5 (X - X" Hy (X — Xy)

of the objective function f centered at X}, where fk is generally
not f(X}). The next iterate is

N —1
Xpy1 = (Xk - [Hk + uka} Qk) ;
o

where p; is the Lagrange multiplier of a trust region subprob-
lem, Wy is a symmetric, positive definite scaling matrix, and
(-)g denotes projection onto the feasible set © = [L, U].

To estimate the gradient, QNSTOP uses an ellipsoidal de-
sign region centered at the current iterate X, € IR"™. Let

Wy ={WeR"™™ : W =W7", det(W) =1,
Y, =W =41}

for some v > 1 where I,, is the n X n identity matrix. The
elements of the set W, are valid scaling matrices that control
the shape of the ellipsoidal design regions with eccentricity
constrained by . Let the ellipsoidal design regions, with radius
Tk, be given by

Ex(rp) = {X ER™: (X — X)T Wi (X — Xp) < T,f}

where W, € W,.

In each iteration, QNSTOP chooses a set of /N uniformly
sampled design sites { X1, ..., Xgn} C Ex(7:)NO. Let Yy, =
(Yk1, - - -» yen') T denote the N-vector of responses modeled by
the linear model yi; = fk + X,F;Figk + €x; where €;; accounts
for lack of fit. g, is then the least squares estimate of the linear
model gradient.

Depending on the context, QNSTOP either constrains the
Hessian matrix update to satisfy

—nly, = Hy, — Hy—1 = nl,
for some 7 > 0, using a variation of the SR1 (symmetric, rank
one) quasi-Newton update, or uses the unconstrained BFGS
quasi-Newton update

~ ~ kalskSTﬁkfl Vg I/T
Hy = Hg—1 — k + k

2 )
Sng—lsk Vgsk

where S = Xk — kal, vV = gk — gkfl.
QNSTORP utilizes an ellipsoidal trust region concentric with
the design region for controlling step length. In one usage mode,

the trust region ellipsoid radius py, is taken equal to the design
ellipsoid radius 7y, and the optimization problem

1 ~
. ~T T
X—Xp)+ = (X —Xy) H (X - X
XenEliI(lpk) gk( k) 2( k) k( k)

is solved for X} and p related by

N —1
X1 = X () = X — [Hk + Mka} Ik

In another usage mode, (1 is directly updated to iy, giving
Xi+1 = X (ur) as above. If necessary, X1 is projected back
into the feasible set ©.

Finally, the experimental design region Ej () is updated
to approximate a confidence set by updating the scaling matrix
W. The updated scaling matrix is given by

N T N
Wit1 = (Hk + Mka) vt (Hk + Mka) ;

where V}, is the covariance matrix of Vg (Xy41 —X%). Fornu-
merical stability, Wy is constrained (by modifying its eigen-
values) to satisfy the constraints O Wi4+1 = I, and
det(Wyy1) =1, s0 Wy 3 Wiyq.



Algorithm summary: It is generally desirable to run QN-
STOP from multiple start points, and the algorithm described
below is repeated for each start point.

Step 0 (initialization): Given a function evaluation budget B
per start point and operating mode (choices of quasi-Newton
update, ways of updating the ellipsoidal design region radii 7
and ellipsoidal trust region radii py, etc.), set values for 79 > 0,
y>1,7>0,N,Xo, k:=0Wy:=Hy:=1I,.

Step 1 (regression experiment): Depending on the usage
mode, compute the design ellipsoid radius 7. Uniformly sam-

ple {Xk1, ..., Xgn} C Ex(7) N ©. Observe the response
vector Yy, = (Y1, ... yxn)T. Compute g by linear regres-
sion.

Step 2 (secant update): If £k > 0, compute the model Hes-

sian matrix H}, using either the BFGS or SR1 variant update,
depending on the usage mode.

Step 3 (update iterate): Compute i, depending on the usage
mode, solve [ﬁk +urWilsk = —gy. for the step si, and compute
X1 = (Xi + Sk)@~

Step 4 (update subsequent design ellipsoid): Compute a new
scaling matrix Wy € W,.

Step 5: If (k + 2)(N + 1) + 1 < B then increment k by 1 and
go to Step 1. Otherwise, the algorithm terminates. (f is also
observed at each ellipsoid center Xy.)

The Fortran 2003 parallel (OpenMP) subroutine QN-
STOPP from [1] is used here, and the nondefault values for
all inputs to QNSTOPP are reported with the results later.

5 Numerical Results and Discussion

The budding yeast stochastic cell cycle model in [6], called
‘Laomettachit’s stochastic model’ here, has 52 parameters that
are exclusive to the stochastic aspects of the model, of which
some are chosen to be equal to others, leaving 44 independent
variables (parameters) to be determined by some mathemati-
cal procedure (here, solving a stochastic optimization problem).
The parameter names follow a pattern: the species % is de-
noted by an index 1, 2, . . ., 10, referring to species Cln3, Bck2,
ClIn2, CKI, CIb5, CIb2, Swi5, Cdc20, Pdsl, and POLO, re-
spectively. The parameters kipx, Kdmx> Mmins TOr Species
are, respectively, translation rate, mRNA degradation rate, and
minimum number of mRNA molecules. This accounts for 30
parameters. The remaining 22 parameters c,, where x is the
species name, are the characteristic concentrations of the above
ten species and 12 other species: Whi5, SBF, Cdhl, APCP,
Clb14, Netl, PPX, Espl, Cdcl5, Teml, MEN, Mcml. These
characteristic concentrations are introduced to convert the di-
mensionless concentrations of the species in the deterministic
version of Laomettachit’s model into numbers of molecules per
cell for each species in the stochastic version of the model.
Since some of the species in the model bind with each other
to form stoichiometric complexes, the characteristic concentra-
tions of such binding partners must be identical. Therefore, as
in Oguz et al. [6], making the eight assignments cspr = Cwhis,
CClb2 = CClb5 = CCKI, CAPCP = C€Cdc20> CNetl = CCdcl4,

0.30F
L [ ]
L )
0.25f° o .
[ ° o
0.20F
[ ® o : e °
5 p °
& 0.15[ | HE= evd o
3 t °q oo . R °
r & bo o o °
010: ..- 23:. ?. ..'
{]
0.05F ¢ o s .
0.00¢ ‘ ‘
-0.4 -0.2 0.0 0.2
M.
ln_blrth ( )
Mypirtn

Fig. 1. Discretization for empirical correlations of mass at birth and
scaled duration of G; phase of mother cells. The z-axis is In (individual
mass/mean mass), where the mean is of all mother cells.
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Fig. 2. Discretization for empirical daughter cell cycle time.

CEspl = Cpdsi> and CMEN = CTem1 = Ccdc1s leaves 44 inde-
pendent parameters defining the vector X.

Table 1 lists the 52 stochastic parameters in Laomettachit’s
model. The nominal vector X defines the search box [L, U],
where the bounding interval for the ith component (X); of X
is [(1/¢i)(Xo)i, pi(Xo):| and each factor ¢; is either 2 or 5.
The ‘best [6] vector’ is the best estimate of the parameter vector
found by [6] using differential evolution.

The empirical data from Di Talia et al. [3] includes mass at
birth, duration of GG; phase, and cell cycle time of both mother
and daughter budding yeast cells. Using the Hellinger distance
to measure the difference between the empirical data distribu-
tion and the simulated data distribution requires approximat-
ing the continuous distributions by (one- or two-dimensional)
histograms. For example, Figure 1 shows the histogram box
boundaries for the joint distribution of the (scaled) pair (mass
at birth, duration of G; phase) for mother cells. The strat-
egy is to define rectangles (or intervals in one dimension) that
roughly evenly divide the empirical data points and such that
every rectangle (or interval) contains some data points. The 122
data points yield 17 bins (divided by black lines in Figure 1).
The particular discretization has no effect on the optimization
algorithm. Figure 2 shows the one-dimensional histogram for
the empirical data of daughter cell cycle times. Here the 97
data points are divided into 10 bins. Given the sparsity and



List of parameters in stochastic cell cycle model.

TABLE 1

parameter | nominal best [6] [L,U]
value value
kir1 0.22 0.3870 [0.044,1.1]
kam1 0.7 2.9459 [0.14,3.5]
Mominl 1.0 5.0 [0.2,5.0]
kro 0.22 0.6166 [0.044,1.1]
kqgm2 0.7 0.6033 [0.14,3.5]
Mynin2 4.0 17.0 [0.8,20.0]
kirs 0.22 0.0761 [0.044,1.1]
kdm3 0.7 2.9502 [0.14,3.5]
Myping 1.0 2.0 [0.2,5.0]
kirq 0.22 0.2024 [0.044,1.1]
kdgma 0.7 1.4652 [0.14,3.5]
Mynind 4.0 1.0 [0.8,20.0]
kirs 0.22 0.6878 [0.044,1.1]
kdms 0.7 0.1975 [0.14,3.5]
Mypins 4.0 8.0 [0.8,20.0]
kire 0.22 0.6974 [0.044,1.1]
kdmeé 0.7 1.6668 [0.14,3.5]
MyninG 4.0 15.0 [0.8,20.0]
Ky 0.22 0.8867 [0.044,1.1]
kgm7 0.7 2.4182 [0.14,3.5]
MoninT 4.0 16.0 [0.8,20.0]
kirs 0.22 0.7344 [0.044,1.1]
kdms 0.7 3.4411 [0.14,3.5]
Myning 4.0 6.0 [0.8,20.0]
kirg 0.22 0.6737 [0.044,1.1]
kgmo 0.7 1.2706 [0.14,3.5]
Mynin9 4.0 9.0 [0.8,20.0]
ker10 0.22 0.4258 [0.044,1.1]
kgm10 0.7 0.1469 [0.14,3.5]
Myninl0 4.0 5.0 [0.8,20.0]
CCln3 10.0 19.0957 [5.0,20.0]
CBck2 10.0 16.3317 [5.0,20.0]
CWhi5 22.0 21.8688 [11.0,44.0]
CSBF 22.0 21.8688 [11.0,44.0]
CCln2 45.0 84.2260 [22.5,90.0]
COKI 80.0 101.9969 [40.0, 160.0]
cClbs 80.0 101.9969 [40.0, 160.0]
cClb2 80.0 101.9969 [40.0, 160.0]
CSwib 57.5 50.4561 [28.75,115.0]
€Cde20 100.0 93.1338 [50.0,200.0]
cCdhl 100.0 59.4664 [50.0,200.0]
CAPCP 100.0 93.1338 [50.0,200.0]
cCdcld 14.0 20.2049 [7.0,28.0]
CNetl 14.0 20.2049 [7.0,28.0]
CPPX 100.0 81.0649 [50.0,200.0]
Cpdsl 33 2.3993 [1.65,6.6]
CEspl 33 2.3993 [1.65,6.6]
cCdels 8.0 8.7958 [4.0,16.0]
CTem1 8.0 8.7958 [4.0,16.0]
CMEN 8.0 8.7958 [4.0,16.0]
CPOLO 100.0 155.2614 [50.0,200.0]
CMeml 100.0 183.1687 [50.0,200.0]

accuracy of the data, and the stated goal for how to discretize
the continuous distributions, the result is a histogram shape as
in Figure 2.

Altogether there are eight distributions being matched (and
eight Hellinger distances dg;, 2 = 1, ..., 8): joint pair (mass
at birth, duration of G; phase) for mothers (17 boxes), joint
pair (mass at birth, duration of G; phase) for daughters (18
boxes), mass at birth for mothers (12 intervals), mass at birth
for daughters (10 intervals), G; duration for mothers (9 inter-
vals), G; duration for daughters (11 intervals), cell cycle time
for mothers (10 intervals), and cell cycle time for daughters (10
intervals). There are thus a total of 97 discrete probabilities be-
ing matched (one for each bin/box/interval) using 44 degrees of
freedom (the independent stochastic cell cycle model parame-
ters X)), which is a well-posed problem. The objective function
is

8
f(X) = ZdH,i(p,q),

where p, ¢ were described earlier. Trying different weights on
the d g ; in the sum had little effect on the final results, and hence
results for different weights are not reported here.

Nondefault values for the input arguments to the computer
code QNSTOPP are described next. MODE is ‘G’ for global
optimization, ‘S’ for stochastic optimization; NV is the number
of design ellipsoid sample points (from the statistical rule of
thumb that at least 1.5n data points are needed to estimate n
parameters); XI is the initial start point; [L, U] is the feasible
box; TAU is the initial design ellipsoid radius 7; GAIN, relevant
only for MODE ‘G’, defines the decay factor such that the design
ellipsoid radius at iteration k is 7, = GAIN/(GAIN + &k — 1) -
TAU.

Using MODE = ‘G’ (global optimization), TAU = 20 (5%
of the search box diameter), GAIN = 10, N = 64, Figure 3
shows the iteration histories starting from three points chosen
from the box [L,U] in Table 1 (lower box corner, upper box
corner, and the best value in Oguz’s model). The Hellinger
distance starting from the upper corner point shows a clear
descent from ~ 2.9 to ~ 1.75 in 13 iterations. Starting from the
best point in [6], the Hellinger distance decreases from ~ 2.5 to
~ 1.751n 15 iterations and then oscillates around that value. The
same oscillation happens starting from the lower corner point,
which suggests that =~ 1.75 is the best objective function value,
and that every point in the box near the corner L has about the
same objective function value ~ 1.8. Dozens of other different
start points in the box [L, U] produced similar best function
values (QNSTOP can automatically generate a Latin hypercube
design of start points including a given start point XI). Note that
the best objective function values (= 1.75) are not particularly
small in the (summed) Hellinger distance measure, meaning that
the empirical data is not being matched especially well, although
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Fig. 3. Execution trace of QNSTOP for three start points from Table 1,
lower box corner (top), upper box corner (middle), best value in [6]
(bottom). The z-axis shows the iteration number, and the y-axis is the
objective function value. For each iteration, the ellipsoid center (circles)
and best sampled (triangles) objective function values are reported.

the average Hellinger distance of ~ 1.75/8 = 0.21875 is not
bad.

To demonstrate that the stochastic parameters in Laomet-
tachit’s stochastic cell cycle model are not entirely arbitrary,
and that QNSTOP can make progress on stochastic optimiza-
tion problems, consider an enlarged search box [(1/2)L,2U]
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Fig. 4. Execution trace of QNSTOP starting at the upper corner of the
larger box [(1/2)L, 2U]. The z-axis shows the iteration number, and the
y-axis is the objective function value. For each iteration, the ellipsoid
center (circles) and best sampled (triangles) objective function values
are reported.
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Fig. 5. Execution trace of QNSTOP starting at the upper corner of the
larger box [(1/4)L, 4U]. The z-axis shows the iteration number, and the
y-axis is the objective function value. For each iteration, the ellipsoid
center (circles) and best sampled (triangles) objective function values
are reported.

with the start point XI taken as the upper bound corner of this
box. This start point is far away from the best point in [6] and
has a much larger objective function value. The initial design
ellipsoid radius TAU is also changed to 5% of the diameter of
the new box, and GAIN = 10. A larger value for GAIN causes
the ellipsoid radii to decrease more slowly, which is advanta-
geous when starting far away from the optimum point. The
execution trace in Figure 4 drops rapidly to near 1.9 in less
than 10 iterations, and stays around that value, apparently a lo-
cal minimum. Figure 5 shows the execution trace of QNSTOP
from an even worse starting point (upper bound corner) in the
much larger box [(1/4) L, 4U], with the initial TAU adjusted as
for Figure 4, and GAIN = 10. The plot shows a downward
trend and drops sharply around 20 iterations to get near ~ 2.1,
apparently another local minimum.



TABLE 2
Individual Hellinger distances between empirical distributions
and simulated distributions using the best point from Table 1
and the best point found by QNSTOP.

Table 1 | QNSTOP

dy 1 0.57 0.44

dg 2 0.37 0.22

dy,3 0.16 0.09

dy 4 0.19 0.12

dy,s 0.45 0.31

dy6 0.37 0.22

dy,7 0.19 0.10

dy 8 0.18 0.15

fX) 2.48 1.65

TABLE 3
Best parameter vector found by QNSTOP.

parameter value parameter value
kir1 0.6470 | kipo 0.4938
Kgm1 0.8598 | kgmo 1.4749
Moninl 0.2085 | mypin2 9.0806
kirs 0.4768 | kirg 0.6377
kgm3s 2.1048 | kgma 1.4175
Minin3 3.3014 | mypning 12.2215
kirs 0.5411 | kg 0.4676
kdms 1.9824 | kgme 1.5821
MyninG 8.7150 | mpming 10.7990
kep7 0.5430 | kg 0.59856
kqm7 1.3543 | kgms 1.6878
MoninT 9.7407 | Mypins 12.3070
ktrg 0.5941 | ki1 0.5638
kqmo 2.0224 | kgm1o 1.8554
Mynin9 122770 | myninio 8.7718
CClIn3 11.0180 | cpck2 13.0380
CWhi5 25.612 | cCin2 59.8760
CCKI 94.6380 | cswis 67.5470
€Cde20 123.9300 | ccgni 121.8000
cCdeld 20.1910 | cppx 110.2900
CPdsl 3.9074 | ccdels 11.0270
CPOLO 126.2300 | cMemi 125.5000

As QNSTORP iterates, the design ellipsoid (in which sam-
ples are taken to build a quadratic model of the objective func-
tion) radius 7, decreases. Figure 3, showing the objective func-
tion value at the ellipsoid center and at the best sampled point in-
side that ellipsoid, thus gives a good indication of the variability
of the stochastic objective function values within that ellipsoid.
Observe that this variability shows little change with respect
to the iteration number, meaning that the inherent simulation
variance for a fixed parameter vector is roughly comparable to
the variance within the (small) design ellipsoid.

Table 2 shows the individual Hellinger distances d ; (p, q)
comprising the objective function f(X'), and that the best point
(from all runs) found by QNSTOP is considerably better than
that found by differential evolution in [6]. For completeness, Ta-
ble 3 reports that best point X found by QNSTOP. In summary,
QNSTOP performs well on this stochastic budding yeast cell
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Fig. 6. Comparison of histograms of the cell cycle time for daughter
cells, from the simulation using the best point from Table 1 (Oguz), from
the empirical data, and from the simulation using the best point found by
QNSTOP.

cycle model, quickly finding the best known Hellinger distance
even from a poor starting point, and significantly improving the
result from differential evolution in [6]. From very distant start-
ing points, QNSTOP converges to a (not globally optimal) local
minimum point, which is not unexpected behavior.

6 Implications for the Cell Cycle Model

Mathematically, Table 2 shows how well the distributions of the
various cell cycle observables (mass at birth, etc.) are being
captured by Laomettachit’s stochastic cell cycle model. The
smallest Hellinger distances are associated with the distributions
of birth masses for mother and daughter cells, dg 3 and dp 4,
and with the cycle time distributions for mother and daughter
cells, dg,7 and dyg. The histograms of daughter cell cycle
times (Figure 6) show how good the fit is between the model
and the data in this particular case. The major discrepancies are
in the tails of the distribution. In contrast, the distribution of
G durations for mother cells is not a good match: dg 5 = 0.31
in Table 2, and the histograms in Figure 7 show clearly that
the model overestimates the time spent by mother cells in G4
phase of the cell cycle. This discrepancy points to a ‘structural’
problem of the model: the ‘G;-stabilizing’ proteins in the model
(Cdh1 and CKI) seem to be too active in mother cells, delaying
the exit of mother cells from Gy into S phase. On the other
hand, the time spent by daughter cells in G; phase is not nearly
so discrepant, dg ¢ = 0.22 in Table 2, suggesting that the
structural problem is related to some subtle difference between
mother cells and daughter cells, which has escaped modelers’
attention so far.

The other data that are poorly matched by the model are
the joint distributions of (mass at birth, duration of G; phase)
for mother and daughter cells. The Hellinger distances from
QNSTOP are dp1 = 0.44 and dpy» = 0.22, respectively,
which are clear improvements over the best point from Ta-
ble 1; nonetheless, the Hellinger distances are hard to interpret.
Figures 8 and 9 contain histograms of these joint distributions
from the empirical data, from the simulation using the best
point from Table 1, and from the simulation using the best
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Fig. 7. Comparison of histograms of Gy duration for mother cells, from
the simulation using the best point from Table 1 (Oguz), from the empiri-
cal data, and from the simulation using the best point found by QNSTOP.

point found from QNSTOP. Each simulation produces about
1,000 data points, compared to about 100 empirical data points.
From these histograms it is evident that the major discrepan-
cies between the model and the empirical joint distributions
are in one specific region of the joint distribution: the region
where T, is large (Tg, > 0.2ac = 26 min) and mp is not
too much different from the mean mass of mother cells at birth
(—0.3 < In(mp/mg) < 0.1). In this case, the model is clearly
overestimating the number of cells (both mothers and daughters)
that spend a long time in G; phase, which is complementary to
the ‘structural’ problem noted above. The model underestimates
the number of cells with short G durations and overestimates
the number of cells with long G; durations.

7 Conclusions

As observed in the Introduction, to understand fully the molec-
ular basis of many aspects of cell physiology requires the con-
struction of detailed mathematical models that take into account
the intricate interactions among the genes, mRNAs, and proteins
involved in regulating each process. Deterministic models, ex-
pressed as sets of nonlinear differential equations describing the
temporal and spatial interactions of these molecules, are appro-
priate for understanding the average behavior of large popula-
tions of cells. On the other hand, to get at the statistical variabil-
ity of how individual cells behave requires stochastic models
that accurately describe cell-to-cell variability. Stochastic dif-
ferential equations (SDEs) are often used for this purpose.

In either case—deterministic or stochastic models—the
modeler is faced with a daunting task of estimating dozens
of parameters (rate constants) by fitting model simulations to
experimental observations. The parameter estimation problem
is difficult enough for a deterministic model, because of the
high dimension of the parameter space of any reasonably com-
plete, molecular-level model of some aspect of cell physiology,
and because of the general paucity of accurate and pertinent
experimental data. For stochastic models, parameter estimation
is more difficult indeed because one must compare statistical
distributions (computed and observed) and vary the parameter

Fig. 8. Two-dimensional histogram of the joint distribution of the pair
(mass at birth, duration of G phase) for mother cells from the empirical
data (top), from the simulation using the best point from Table 1 (mid-
dle), and from the simulation using the best point found by QNSTOP
(bottom). The polygons in this display correspond to the rectangles in
Figure 1, because the plotting program partitions the horizontal plane
into a Voronoi diagram based on the centers of each of the rectangles
in Figure 1. The height of each polygon is the relative frequency of data
points lying in the corresponding rectangle.

values to optimize the fit. The computations are more expen-
sive (typically hundreds or thousands of replica simulations to
approximate the probability distribution function), and relevant
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Fig. 9. Two-dimensional histogram of the joint distribution of the pair
(mass at birth, duration of G| phase) for daughter cells from the empirical
data (top), from the simulation using the best point from Table 1 (middle),
and from the simulation using the best point found by QNSTOP (bottom).
As in Figure 8 the polygons correspond to the rectangles in a partition of
the daughter cell data (not shown here), similar to that for the mothers
in Figure 1, and the height of each polygon is the relative frequency of
data points lying in the corresponding rectangle.

experimental distributions of sufficient quality are rare indeed.
This work tested the efficacy of a quasi-Newton method for

stochastic optimization (QNSTOP) to estimate the parameters in

a system of SDEs that model the molecular interactions govern-

ing progression through the cell division cycle in budding yeast.
The model has 44 independent parameters that determine the
random fluctuations in molecular populations, and these fluc-
tuations determine the variability from cell to cell of certain
observable properties, such as cell cycle time, time spent in Gy
phase of the cell cycle, and cell size at birth. Di Talia et al.
[3] have collected data on the distributions of these observables,
and on the joint distribution of the pair (mass at birth, G; du-
ration). Budding yeast cells divide asymmetrically into a large
‘mother’ cell and a small ‘daughter’ cell, so Di Talia measured
separate distributions for mother-cell and daughter-cell popu-
lations. Hence, Di Talia provides sample data sets from eight
different distributions.

QNSTOP can efficiently find a globally (but occasionally
only locally) optimal stochastic parameter vector X by mini-
mizing the sum of Hellinger distances f(X) = Ele du.i(p,q)
between the observed and computed probability mass functions
p and ¢, respectively, for each of the eight different distribu-
tions. QNSTOP’s fit to these distributions is considerably better
than the ‘best’ fit found in an earlier publication [6], which used
a differential evolution algorithm on an objective function that
was a sum of squares of deviations between summary statistics
(means and standard deviations) for the eight empirical distribu-
tions: f(X) = 1.65 for QNSTOP, f(X) = 2.48 for differential
evolution. Presumably, QNSTOP is doing a better job because
it is a more efficient algorithm than differential evolution and
because it is using all of the information in the full distributions
rather than just the summary statistics. A major conclusion of
this work is that matching summary statistics and even marginal
distributions does not in practice imply that the joint distribu-
tions match.

A few conclusions about the model can be drawn from the
best parameter vector found by QNSTOP (Table 3). First of all,
fluctuations in protein levels in the stochastic model are most
sensitively dependent on the parameters 1m,,y,,;. Genes with
smaller values of this parameter display larger fluctuations in
protein levels. For Oguz’s best parameter vector (Table 1), the
noisiest gene expression is attributable to CKI and PDSI. For
QNSTOP’s best parameter vector, CLN3 is, by far, the noisiest
gene, which seems quite reasonable because Cln3 protein abun-
dance is quite low in budding yeast cells and Cln3-dependent
kinase activity is known to play a major role in the G;-to-S
phase transition. Secondly, in QNSTOP’s best parameter vec-
tor, all mRNAs (except for CLN3 mRNA) have degradation rate
constants in the range 1.3 — 2.1 min—!, which corresponds to
half lives in the range 0.33 — 0.51 min. These values seem to
be quite smaller than what one might expect (say, 5 min half
life), but rapid turn over of mRNAs seems to be necessary to
limit the magnitude of protein-level fluctuations in the stochas-
tic model. Notice that CLN3 mRNA has a noticeably longer
half life (1.25 min) than any of the other mRNAs in the model,
presumably because it is fluctuations in CLN3 mRNA numbers
that plays the most important role in determining the noisiness
of the model’s behavior. The fact that the model requires rapid
turnover of mRNA species in order to fit the observed probabil-
ity distributions of cell cycle observables suggests that the way
molecular noise is incorporated into the model may be over-
simplified. More elaborate models, which incorporate mRNA



bursting, mRNA processing, mRNA transport, etc., will have to
be explored in later publications.
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