Misery Digraphs:
Delaying Intrusion Attacks in Obscure Clouds

Hussain M.J. Almohri, Member, IEEE, Layne T. Watson, Life Fellow, IEEE, David Evans, Member, IEEE

Abstract—When remote command injection attacks succeed at the entry points of a cloud (servers exposed to the outside Internet),
attackers targeting a specific asset in the cloud will pursue further exploration to find their targets. Attack targets, such as database
servers, are often running on separate machines, forcing an extra step for a successful attack. However, compromising two or three
machines is all an attacker needs to reach an isolated database through a simple attack path. The goal of this work is to investigate the
possibility of frustrating attackers by constructing a cloud network architecture that hides the path to a target asset in the network,
utilizing multiple moving decoy virtual machines and confusing firewall configurations. A deceiving cloud network architecture can
significantly delay attacks (by stretching the attack path from a handful of steps to thousands), providing time for system administrators
to intervene and resolve the intrusion. This work introduces the concept of misery digraphs, which provide a theoretical foundation for
creating intrusion deception in clouds. This paper describes the necessary steps to convert a cloud to one that includes a misery
digraph, and evaluates the feasibility and effectiveness of using the approach with Amazon Web Services. Our simulation results
demonstrate that for a cloud implementing misery digraphs with a simple attack path of length five, there is 91% probability that an

attack requires at least 1000 steps to reach the target.

Index Terms—Network security, Security management, Data security, Tree graphs

1 INTRODUCTION

Remote code execution attacks [28] exploit vulnerable net-
work services for transferring malicious commands to the
host’s operating system. In vulnerable applications, attack-
ers often exploit unfiltered parameters [26], such as the
ones passed to require or exec in a PHP script to execute a
command that could be powerful enough to modify authen-
tication policies, creating permanent unauthorized access
to the host. Besides vulnerable applications, widely used
network services potentially increase the vulnerable surface.
For example, even though key-based SSH authentication
is a well-established practice, system administrators can
still choose to enable both key-based and password-based
authentication, enabling attacks that target passwords. An
analysis of Amazon EC2 instances revealed attackers” inter-
est in brute force SSH attacks [1].

Remote code execution attacks can be harmful when an
attacker is motivated to reach a specific target within a cloud-
based virtual network. To succeed, the attacker searches for
a vulnerable entry point in the virtual network’s external-
facing hosts and uses a compromised edge host to launch an
attack on the target asset. As target assets are isolated from
public Internet gateways, the attacker must repeat the attack
process by finding and exploiting vulnerable machines that
have direct access to the target. In common cloud network

e H. M.]. Almohriis with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22903. Email: almohri@ieee.org

o L. T. Watson is with the Departments of Computer Science, Mathematics,
and Aerospace and Ocean Engineering, Virginia Polytechnic Institute &
State University, Blacksburg, VA 24061. Email: ltw@ieee.org

e David Evans is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22903. Email: evans@uirginia.edu

This work was supported and funded by Kuwait University, Research Project
No. (RQ02/15)

architectures, successful attacks require only a few steps
(compromising two or three hosts). The goal of this work
is to increase the number of steps needed and make each
step more difficult for the attacker.

We investigate a pure architectural solution, utilizing
unique services provided by cloud computing platforms,
to mitigate remote code execution attacks. Our approach is
to continuously change the structure of the virtual network.
This confusing architecture provides parallel support for the
intrusion detection systems, transforming the firewall rules
of the cloud into a complementary line of defense. Our goal
is not necessarily to detect or eliminate the attack, but to
confuse and deceive attackers in ways that impose severe
delays on the attack process.

Several previous works have advocated for creating de-
ception or using moving target strategies to combat intru-
sions either in a virtual network or in a physical network.
Several works focused on physical networks, developing a
number of deception strategies based on network overlays,
proxying, and secret IP addresses [4], [16], [23], [27]. Other
proposals progressed closer to the present goals by lever-
aging the elasticity provided by cloud computing platforms
to distract distributed denial of service attacks (DDoS) [8],
[17], [34]. For example, to prevent DDoS attacks on specific
targets, Jia et al. [17] proposed creating replicas on the fly
and assigning network traffic to new replicas. Although this
work, as well as Brezeczko et al.’s [5], provide innovative
techniques to utilize cloud resources against remote attacks,
they do not consider attacks that continue to intrude into
the network and search for isolated targets. This paper
addresses the question of how to combine attack deception
and a moving target strategy. In particular, we present and
analyze a mathematical cloud architectural model for signif-
icantly delaying intrusion attacks that go beyond DDoS and

propagate through a cloud-based virtual network aiming to
compromise a target asset.

The key insight here is to introduce myriad dynami-
cally changing redundant attack paths that hide the real
attack path from an attacker and create confusion about the
steps that an attacker must take to reach a target database
server. We use a cloud’s firewall rules as the basis for an
abstract model of the cloud’s security architecture. Then, we
transform the resulting model into a set of misery digraphs,
graph theoretic models for confabulating the real attack
paths. This transformation maintains the original intention
of the cloud designers, does not impose modifications on
the core application logic, and incurs a prohibitive delay to
attacks while causing minimal delay to legitimate applica-
tion traffic. A virtual network containing misery digraphs
forces a targeted attack to traverse a longer path to a
target, requiring multiple blind decisions to finding the true
path to target. Misery digraphs possess a symmetric struc-
ture for confusing attackers, while neutrally multicasting
the legitimate traffic throughout the virtual network. The
dynamic behavior of attack paths in the misery digraph
causes a continuously changing virtual network structure
that repeatedly wastes an attacker’s efforts by modifying
and relocating redundant machines that are necessary to
compromise before reaching the target.

Transforming basic virtual networks into misery di-
graphs faces several challenges. First, the main challenge
is that misery digraphs should provide consistent and
complex paths towards target assets without leaking side-
channel information that would provide attackers with
path-pruning opportunities. Second, misery digraphs must
require minimal modifications to the underlying applica-
tion. Third, the structure of misery digraphs must have
financial efficiency, measured in the increased hourly cost of
the cloud. Section 2 provides background on cloud applica-
tions and details on these challenges. Section 3 describes the
design of misery digraphs and shows how it addresses these
changes for state-of-the-art cloud architectures. Section 4
presents the algorithms for constructing misery digraphs,
along with a cost analysis leading to a formula to estimate
the cost of our defense. Section 5 provides a security analysis
and demonstrates the various scenarios in which misery
digraphs are useful and also discusses limitations of our
approach. Section 6 evaluates the effectiveness of misery
digraphs using an extensive simulation, showing that a
minimal misery digraph can extend attack paths to thou-
sands of steps. Our evaluation also considers using misery
digraphs to protect an Amazon Web Services web applica-
tion, demonstrating that misery digraphs can be applied in
practice with reasonable cost. The main contributions of the
work are:

1) developing a rigorous graph-theoretic model for
creating deception in a cloud network of virtual
machines (Section 3.1),

2) designing a moving target strategy in the model
where the true path to a target machine is contin-
uously moved around the network (Section 3.2),

3) presenting algorithms for automatically generating
confusing clouds using existing cloud settings (con-
sistent with practical cloud computing models) (Sec-

tion 4),

4) analyzing the results of a deep simulation of an
attack on a cloud with a misery digraph (Section 5),
and

5) demonstrating the practicality of the approach and
a concrete cost analysis by creating a prototype
AWS virtual network containing misery digraphs
(Section 6).

Misery digraphs achieve a high level of deception. Sim-
ulating an attacker, our results demonstrate that with a
reasonably fast changing misery digraph, for a network of
two machines (an application and a database server), there
is a 91% probability that the attacker must compromise 1000
virtual machines before successfully connecting to the target
server.

The presented model is tested using the core and sta-
ble technology provided by Amazon Web Services (AWS).
Misery digraphs require customized virtual machines, vir-
tual internal networks, Internet gateways, and intermachine
firewall rules. Thus, the model is consistent with cloud com-
puting practice and does not assume abstract computing or
special security services available in major cloud providers.

2 OVERVIEW OF THE PROBLEM

This section provides background on current cloud com-
puting platforms, and motivates the requirements for our
design.

2.1 Background

Cloud providers, such as Amazon Web Services (AWS),
facilitate virtual private clouds, networks of virtual in-
stances, and virtual subnets with features resembling phys-
ical networks along with other unique features such as
security groups, software-based load balancers, and elastic
IP addresses. With a fresh virtual private cloud, a system
administrator chooses from a range of virtual instance types
(virtual machines that may or may not map to physical
machines), managed database instances, or specialized in-
stances (such as a machine learning service).

One of the sixteen reference cloud architectures pro-
posed by AWS! is the Web Application Hosting architecture
depicted in Figure 1. This architecture is an example of a
possible target for remote intruders who may be motivated
to attack web applications and gain unauthorized access
to their data. The Web Application Hosting architecture
employs software-based load balancers that route requests
to a basket of IP addresses and provide no other public
interface. The cloud user—the system administrator that
manages the cloud—creates a number of virtual instances to
execute the application logic. The cloud user has to use SSH
servers on the virtual instances since there is no physical
access to the machines. By connecting to these entry point
instances with SSH, the cloud user can walk through the
network and manage internal instances. In the architecture
of Figure 1, only the web servers face the external Internet,
the application servers process requests and mediate access
to the database server, which contains the sensitive data.

1. https:/ /aws.amazon.com/architecture /

2.2 Motivation

Equifax data breach and the 2014 Target data breach are
examples of vulnerabilities that allowed for arbitrary code
execution by exploiting web servers and executing com-
mands on them. In these incidents, attackers did not directly
query the data through vulnerable applications, for example
by using SQL injection attacks. Instead, in a more com-
plex attack process, a remote code execution vulnerability
allowed for some limited exploitation of a server that was
facing the Internet. Then, the exploited entry point server,
running a vulnerable version of the web server software
allowed access to the attacker, which was subsequently used
to gain access to other machines that would have direct
access to data.

The Equifax data breach was reported [9] to have been
a consequence of a vulnerablity in Apache Struts 2.1.2
and before 2.3.34 [10], which allowed for arbitrary code
execution. In this attack, a decerialization flaw allows for
unsanitized data to be converted into Java objects. Using
these vulnerabilities, the attacker aims for executing code
within the program’s context, eventually leading to exe-
cuting commands on the target system. Moreover, in the
2014 Target data breach, the attackers used island hoping,
compromising and exploiting multiple machines to reach
internal Target servers [7]. Unlike many SQL injection at-
tacks that depend only on vulnerable applications, usually
through unfiltered POST or GET requests, island hopping
attacks use remote code execution vulnerabilities to gain ac-
cess to intermediate machines and hop through the network
to reach their targets.

The main ingredient of these attacks is the requirement
and ability of the attacker to quickly move across the
network by connecting to entry point and intermediate
machines to find a direct access path to a valuable target.
Specifically, a successful attack is bound to a set of condi-
tions:

1) Hijacking normal HTTP requests from clients to
inject malicious queries without compromising the
server is not possible or will only yield limited
results, making the attack impractical.

2) The attack targets valuable data or application logic
that are not directly accessible from the entry point
machines, which face the Internet. Therefore, attacks
cannot commit in a single step.

3) The exact structure of the internal topology of the
cloud-based virtual network isn’t visible to the at-
tacker. Thus, the attacker has to incorporate a search
strategy to reconstruct an abstract image of the
target network.

Throughout this article, we provide an example cloud-
based virtual network architecture that includes a valuable
target to which the attackers wish to gain direct access.
Sections 2.3 and 2.4 present the details of the problem and
the capabilities of attackers and defenders.

2.3 Problem Statement

Our goal is to delay the time to success of remote network
attacks motivated to compromise the source of data within
a cloud application. The attacker’s ultimate goal is either

Application EC2
servers

——
Load
S:V:;s Ec2 || EC2 | palancer| EC2 | EC2 Facing
-

Fig. 1: An example Web Application Hosting architecture
recommended by AWS. The architecture includes a cluster
of EC2 instances (virtual machines in AWS) hosting the
application, isolating a cluster of database machines that
are only internally accessible. This example architecture has
four EC2 instances as web servers, four EC2 instances as
application servers, and a main and a replicated database
server. DB-SYNC is used to synchronize the two database
instances.?

to corrupt or query the target database. To gain access to
a database server, the attacker must compromise an entry
point in the cloud and propagate through the cloud. The
benefit of delaying an attacker in a confusing cloud architec-
ture is providing a larger response time window when an in-
trusion is detected. A long enough delay may cause enough
frustration or cost to the attacker to be sufficient to thwart
the attack. Note that providing the architectural support for
delaying the attacks is an orthogonal problem to detecting
the intrusion within the cloud and utilizing the delayed and
complicated attack path for preventing unauthorized access
to the database server. It is also orthogonal and complemen-
tary to the goal of eliminating the vulnerabilities in the first
place. The best defense would, of course, be to remove those
vulnerabilities, leaving the attacker with no starting point
for the attack. But, eliminating vulnerabilities from complex
applications remains an elusive goal, motivating our work
on mitigating their exploitation.

Figure 2 demonstrates one possible chain of steps to
compromise the database server of Figure 1. In this chain,
the attacker will compromise an EC2 instance that has an
elastic IP address, which is a public IP address service
provided by Amazon Web Services. Next, with shell access
to the compromised machine, the attacker will either use
a stored credential to connect to the next EC2 instance or
use another vulnerability to take control of the next EC2
instance. Finally, once the attacker controls the EC2 instance
with direct access to the database, the attacker can access
and manipulate the database directly.

The architecture of Figure 1 is modeled in a graph of
firewall rules extracted from within a cloud, capturing the
connectivity structure among virtual instances. Two ma-
chines are connected if there is a network path between the
two machines and the firewall rules allow traffic to pass
through the path. In AWS, the firewall rules are explicitly

2. Figures 1 and 2 are created using AWS Simple Icons: https://aws.
amazon.com/ architecture/icons/

https://aws.amazon.com/architecture/icons/
https://aws.amazon.com/architecture/icons/

Attacker §—p ._j':,—- = —1
Bacfc O &0 m
address

Fig. 2: A chain of steps that an attacker must take towards
a target database server, requiring two steps to reach the
target database.

defined in security groups. Formally, machine connectivity
is defined by a labelled digraph.

Definition 1. A connectivity-labelled digraph, L = (V, A, f), is
a digraph where v € V represents a vertex corresponding
to an instance in the cloud, A is a set of (u,v) pairs rep-
resenting directed edges from u to v in the digraph, and
{: A — 25 gives the set of possible connections in A.
For some service protocol s € S, s € £(u,v) means u can
establish connections to v and v accepts connections from u
on s.

Figure 3 shows an example connectivity digraph G
for the cloud of Figure 1. In this digraph, machines from
Figure 3 including load balancers, web servers, application
servers, and database servers are all represented by vertices.
The undirected edges represent inbound and outbound
traffic (arcs) between two vertices as set by firewall rules.
These rules correspond to the lines connecting the machines
in Figure 3. The main network traffic passes through the
load balancer, up. However, ug is not the only entry point in
the digraph. Vertices uy,...,u4 also represent entry points
as they are open to SSH traffic. System administrators open
access to these vertices because uq,...,us are virtual ma-
chines with no physical access.

A successful attack in G is capable of compromising
one of uq,...,u, and propagating through a path towards
91 or uq5 depending on the attack’s motivation. Although
ug is also an entry point, it plays no role in facilitating
the attack except for forwarding the requests to u1, ..., u4.
Similarly, the load balancer, us, acts as a forwarder enabling
a malicious request to travel through ug, .

The cloud of Figure 3 allows an attack path with only
four steps to reach the target. For example,

T = A E} w E} ug H'TTI"} 10 DB-SYNC
Even with a significantly larger digraph, with the same
architecture, the size of the shortest attack path remains
unchanged, and the more possible paths to the target, the
more opportunities for the attacker. The intent of this work
is to ensure there are no short paths to reach the target
available to the adversary.

.., Ug.

¥ U11-

2.4 Threat Model

We assume a trusted and uncompromised cloud computing
platform, and focus on protecting an application running
on that cloud from a sophisticated and motivated adversary
who aims to gain unauthorized access to a targeted data
asset within the cloud.

We assume a powerful attacker with the ability to com-
promise hosts along a path (such as 7 in Section 2.4) through
the application. Such an attacker can find an entry point
machine, perhaps by using an IP scan of a range of the
hosting cloud, and compromise that host to launch attacks

Fig. 3: A connectivity digraph for Figure 1. Each vertex
represents a machine in Figure 1 and each edge corresponds
to the connectivity of the machines. Internet traffic (rep-
resented by vertex A and dotted lines) flows to the load
balancer g, which forwards HTTP requests to ui, ..., u4.
ug is a HTTP entry point while u,,...,u4 are SSH entry
points. Load balancers are dashed, entry points are in blue,
and target machines have double circles and are in red. The
edge labels capture the protocols used for the connection.
Access to u1g is assumed to be through HTTP for the hosted
application. Edges labelled as {SSH, HT'T P} indicate two

services allowed to pass through.

on other hosts with the goal of reaching the target. We
assume other hosts also have vulnerabilities that can be
exploited by the adversary.

We assume the attacker has no control over the cloud set-
tings that determine the number and the types of instances,
the network structure, and global firewall rules that control
access to the virtual private cloud. An attacker who can
compromise the cloud provider or the application owner’s
configuration access is beyond the scope of this work. Since
the attacker has no control over the cloud, we assume that
the attacker’s knowledge about the connectivity structure of
the internal network in the cloud is not complete. Specif-
ically, the attacker does not know the number of virtual
machines and their security groups within the internal net-
work. This information can only be incrementally revealed
by attacking the virtual network. When the cloud is first
created, the attacker only knows that for some 2, u; € V' is
vulnerable and open to Internet traffic, and a target instance
t € V, accessible from u;, exists.

Defender’s Capabilities. The defender’s goal is to create
a cloud network of virtual machines that preserves the
original functionality with minimal additional cost, while
frustrating attacks. The defender achieves this by having full
control on the cloud settings and all the virtual machines.
In a trusted cloud computing platform, only the defender
can control the security groups, providing or revoking ac-
cess to individual virtual machines. For example, in AWS
the cloud user adds or removes machines, changes access
control among the machines, and has full access to all
virtual machines. The attacker cannot tamper with virtual

machine access control rules from within a compromised
virtual machine (for example, by changing iptable rules) as
the access control rules will be firmly overridden by the
cloud.

3 DESIGN OF MISERY DIGRAPHS

The strategy for delaying a remote command injection attack
is (i) to create a large network of decoy virtual machines
to confuse the attacker, and (ii) dynamically relocate and
modify the decoys to waste the attacker’s resources and
frustrate the attacker. Increasing attack complexity and du-
ration starts with expanding an initial connectivity digraph
of an existing virtual network into one containing misery
digraphs.

3.1 Defining Misery Digraphs

A misery digraph contains the original virtual network
combined with additional deceiving structure. In a misery
digraph, at each point in time, only a single path has bidi-
rectional access to the target server. As a random function of
time, uniformly selected pairs of decoy virtual machines are
replaced and switch positions within the misery digraph.
As a result, misery digraphs change the true path to the
target, disabling the attacker from learning the structure of
the virtual network.

We first define a generic misery digraph, building on
our definition of a connectivity-labelled digraph from Sec-
tion 2.3. Then, we define canonical misery digraphs, and
discuss the main two properties of misery digraphs, which
is a periodic relocation of machines and hiding the true
path towards the target. A symbol reference is provided in
Table 1.

Definition 2. Let L be a connectivity-labelled digraph with a
path m = (uy, wiy, - .., Ui, , Up41) connecting an entry vertex
uy to a target vertex up41 and containing the reverse path
7R = (ugs1, wi,, ..., uiy, u). 7 is enlarged to a path of
length k in the digraph

G = ({ui}fif, { @iy wigr), (it Ui)}i-;)

consisting of a single path p = (uy, ..., uy+1) from the entry
vertex u; to the target vertex up41, and the reverse path
pft = (ugs1, ..., u1). A misery digraph, G*, for contains G
as a subdigraph, exactly b paths ¢\ = (uy, véj), o ’U](gj)),
j =1,..., b, of maximal length k — 1, as well as the arcs
1, ..., b. The

paths q(j), j=1,..., b, mirror p in that id ug = id véj) (in

(uk+1,v,(€j)) and reverse paths (qm)R,j =

degrees) for { =2, ..., k and od u; = od vé]) (out degrees)
for { = 2, ..., k — 1. Note that G* has depth k, some of
the v§]) may equal u¢, and G* can be constructed in many
different ways.

Two example misery digraphs are created for the virtual
network in Figure 1 and depicted in Figure 4. The connectiv-
ity digraph of Figure 3 can have multiple misery digraphs,
one for each path to target, which can be constructed in
various ways. In this scenario, two original paths to w1
(through SSH and HTTP) are replicated in completely re-
dundant paths. The example shown in Figure 4 captures one
possible format of misery digraphs created for a path that

Symbol Description

L A connectivity-labelled digraph

mand 7' | A path and its reverse in L

G An expanded path from L, which includes extra vertices
pand pf | A path and its reverse in G

G* A misery digraph with b paths, including G

k Depth of a misery digraph G*

TABLE 1: A table of symbols used in Definition 2.

uses the SSH service (Figure 4-A) and a similar path that
uses the HTTP service (Figure 4-B). In both misery digraphs
A and B, only u;5 sends outbound requests to u19. There
are three other alternative misery digraphs with a different
vertex that has direct SSH or HTTP access to u1g.

3.2 Canonical Misery Digraphs

Misery digraphs can take many forms and produce strate-
gies with various implications. Our goal is to find designs
that maximize the cost for the attacker relative to the ad-
ditional cost for the application owner. These requirements
drive our strategy:

1) A misery digraph should not include vertical short-
cuts. That is, a misery digraph should not include
arcs that lead to pruning entire subgraphs.

2) A misery digraph cannot connect the target server
to more than one vertex in the entire digraph. Violat-
ing this requirement will make the misery digraph
easier to traverse.

3) Target servers (known to the cloud user) should be
pushed to the deepest layer in the graph, making
them only accessible by paths of at least length £.

Minimally fulfilling the requirements above are canonical
misery digraphs:

Definition 3. The canonical misery digraph, G*, is a layered
digraph with d + 1 layers. Layer 1 contains only the entry
point a, layer d + 1 contains only the target point ¢, and
the underlying undirected graph of layers 1, 2, ..., d is a
complete balanced k-ary tree rooted at a, with each edge
{r, s} corresponding to arcs (r, s) and (s, r) in G*. For each
leaf node w in this k-ary tree (each node w at level d) there
is an arc (¢, w) in G*, and exactly one arc (w, t) from level d
totin G*.

Canonical misery digraphs contain k-ary trees that are
balanced and complete, giving the attacker no clue for
preferring one path over another. As the attacker traverses
the graph, the structure of the digraph only reveals alter-
native paths that all appear equivalent to the attacker. Since
the target is also moving, between two points in time the
true path towards the target changes, making some of the
attacker’s discoveries obsolete.

3.3 Relocating the Decoys

Definition 2 defines the structure of misery digraphs, which
provides a platform for deceiving intruders. For an in-
creased deception in misery digraph, two mechanisms are
introduced. First, misery digraphs change in time, moving
the true path to target and resetting decoy machines using
a random process. Second, misery digraphs hide the true

path to target by replicating the traffic towards it. In the
remainder of this section, we first present the relocation
process for misery digraphs. In Section 3.4, we present a
method for hiding the true path to target.

Relocating machines in the network involves a random
relocation process, which interchanges two pairs of vertices
within a single layer in a misery digraph. As a random
function of time, the current active arc among

(v urs1) }

is interchanged for a different arc to the target vertex ug41.
This ensures that access to the target machine is not static
and changes in time. For random 1 < ¢ < j < b and
2 < m < k the pair of arcs (u‘.(;), ,‘,(7:)_%1) (&{), fﬂ_l)
is replaced by the pair (vs,i), ,‘,(;11_1) (u‘.(;;), m+1) which
randomizes G*. The randomness ensures that at each point
in time two entire paths in the digraph are modified by
replacing the chosen machines with new virtual machine
images and switching their positions in the digraph. Even if
the attacker had already compromised a large portion of the
selected paths, the attacker’s effort is lost.

For example, misery digraphs A and B of Figure 4
change in time to create a moving target. Randomly chosen
pairs of edges must be relocated as a function of time,
dynamically modifying the paths to target, and refreshing
the corresponding decoy virtual machines. (ug, %14) may be
chosen to switch with (u;g,u5), resulting in a lost attack
effort, if the attacker had chosen a path containing any of
the four nodes.

In a real cloud-based virtual network, relocating the
decoys takes place by modifying the cloud’s firewall rules
that define the accessibility of machines. For example, in
Amazon Web Services, a security group of machines de-
fines firewall rules and controls the network reachability
of member machines based on the protocol and the port
number. As discussed later in Section 6.2, by dynamically
modifying security groups, machines can change location
in the misery digraphs. Also, another requirement of the
relocation process is to reset machines that were relocated.
Machines are shutdown using remote APIs available to the
cloud owner, and are replaced with new machines using
a diversified system configuration (for example, running a
different operating system).

{(Uk, uk+1), (ﬂ;(;l),ukﬂ), ceey

3.4 Hiding the Path to Target

The effectiveness of misery digraphs depends on the at-
tacker not being able to distinguish correct guesses for the
next host from incorrect ones. To maintain an exponential
advantage over the attacker, it is important that the attacker
has no way to determine if the attack is on the right path
until that path has been followed all the way to the target.
The attacker is assumed to have full access to each
compromised host, so can fully observe (and alter) that
machine’s behavior and the flow of requests. Hence, it is
important that the attacker who has fully compromised a
node at one layer, can only determine which nodes at the
next layer are connected to the compromised node, without
learning if the compromised node is on the real path. To
resolve this potential problem, at each layer of the misery

B (P)

A (SSH)
Fig. 4: Two misery digraphs with extra paths and vertices
to confuse the attacker about the true path to the target u0.
The misery digraph A is for SSH and the misery digraph
B is for HTTP. To prevent side-channel information, all
requests from the entry point are multicast to all paths.
Misery digraphs A and B change in time by changing the

vertex that has an outgoing arc towards u1.

digraph a user’s request is multicast to all nodes in the
successive layer. That is, each decoy forwards the requests
to all others it is connected to in the following layer. On
the way back from the target server, all data responses must
also be sent back along all paths connected to the target
server. For example, in Figure 4 only the arc (u15,u1¢) carries
actual HTTP requests to the target vertex u;g, but the decoy
nodes all send the same requests. Decoys must be indistin-
guishable from path nodes, so need to fully duplicate all the
computation and communication that would be done on the
actual path.

We assume that all request traffic go along a path from
the entry points to the target virtual machine from which
the responses are sent back. Internal decoy virtual machines
only generate responses to requests from the previous layer.
Decoys do not modify the responses and do not maintain
internal states. Also, it is assumed that the application
does not require maintaining internal states throughout the
network.

3.5 Handling Fault Tolerance

Major cloud providers include load balancer services and
recommend architectures that use replicas of web, applica-
tion, or database servers. Misery digraphs are designed to
integrate with load balancers as demanded by the architec-
ture.

As shown in Figure 3, the load balancer ug induces
four main paths to the target uip, which are further split
into 16 paths as the four paths pass through the second
load balancer us. According to Definition 2, each of the
16 paths to the target requires a separate misery digraph,
which can be expensive to implement. Optimizing misery
digraph generation for paths that include load balancers
involves the design of a load balancer system and splitting
the connectivity digraph paths that involve load balancers.

First, the requirement for load balancers to function in a
misery digraph is to balance the request traffic towards the
least occupied successor machine, and multicast the response
traffic back to all predecessor machines. For example, us in
Figure 3 must send the request to the least occupied machine

R n; : Multicast %
™ Balance +

Fig. 5: Two misery digraphs are created for the HTTP path
(A, ug, uy, us, ug, ujp) for the connectivity digraph of

Figure 3.

in {us,...,uo}, and multicast the response to all machines
in {ul, ‘s ,U4}.

Second, since load balancers create overlapping paths
towards the target server (as they must connect to multiple
machines for fault tolerance), misery digraph redundancy is
avoided by splitting paths at load balancers into subpaths.
A load balancer is treated as a target for the incoming
subpath, and as the predecessor to a machine that is treated
as the entry point to an outgoing subpath. With this split-
ting technique, misery digraphs provide redundancies to
frustrate attackers for each subpath without duplication
from overlapping paths. The example depicted in Figure 5
demonstrates splitting of a path starting at the user A and
ending at the target database u1o, passing through the load
balancers ug and us. The subpath (A,up) is unchanged,
and one misery digraph appears before us and a second
appears after us. The requests will only travel through one
subtree of us (only one shown in Figure 5) while responses
are multicast back to all the vertices connected to us in the
layer above it.

Load balancers are either part of the cloud provider
or could be implemented as virtual machines. We do not
assume that attackers cannot compromise load balancers. A
compromised load balancer does not provide useful infor-
mation to attackers.

4 CONSTRUCTION OF MISERY DIGRAPHS

As defined in Section 3, misery digraphs enlarge individual
attack paths of a connectivity digraph that connects entry
points to the target. A practical solution must combine
misery digraphs into a new connectivity digraph (here-
after referred to as the final connectivity digraph) that can
be deployed in the cloud, by first constructing an initial
connectivity digraph given a cloud’s firewall and network
connection rules, and then generating misery digraphs that
contain k-ary trees with d + 1 layers.

Assume that the connectivity digraph for an application
only contains the necessary arcs for ensuring delivery of
application requests and responses. At a high level, the
construction of the final connectivity digraph for an initial
connectivity-labelled digraph G involves:

7

1) generating a set I' containing simple connectivity-
labelled digraphs G for each service s,

2) computing a set P of subpaths of all paths connect-
ing the entry vertex to a target vertex in G,

3) converting each p € P to a misery digraph, and

4) combining all the misery digraphs in a final connec-
tivity digraph.

Next, we present the algorithms for executing the steps
above and develop a cost analysis as a metric for estab-
lishing a baseline to evaluate the economic impact of using

misery digraphs in a cloud.

4.1 Constructing the Initial Graphs

The first step is to construct the initial connectivity-labelled
digraph, G, from the application’s architecture. We start by
preparing a stack of machine IP addresses M and a set of
firewall inbound and outbound rules R as (m1,m2,) indi-
cating that the machine with IP address m; can access the
machine with IP address ms on protocol s. This information
is available from the cloud’s console in platforms such as
Amazon Web Services and Google Cloud Platform. Once
the rules are gathered from the cloud’s console, we construct
a connectivity-labelled digraph G by assigning a vertex to
every m € M and adding a labelled arc (u;, v, Li;) where

Lij = U {s}.

(u'i svj ,S)ER

There will likely be labels involving multiple services.
To increase the efficiency of misery digraph construction,
we split the cloud’s connectivity digraph G into simple
connectivity digraphs in which every label {(u,v) is the
same single service {s}. Algorithm 1 splits a connectivity-
labelled digraph G into a set of simple connectivity-labelled
digraphs, I'. Each G, € T is defined for a service s € §,
where § is the set of all services appearing in G = (V, A, £).

Algorithm 1 Split a connectivity digraph G = (V, A, £).

1: foreachs € S do
2 SetA, 0, 0, 0

3: foreachu eV do

4 foreachv #u €V do

5 if (u,v) € A and s € £(u,v) then
6: Ag + A U{(u,v)}

7 £, €, U{((u,v), {s})}
8 end if

9 end for

10: end for

11: T+« TU{(V, A L)}

12: end for

13: return T’

4.2 Computing Paths to Target

The next step finds the paths for constructing misery di-
graphs. Recall that a misery digraph replaces a single path
from an entry point to a target (Definition 2). Assuming the
digraphs, G € I, do not include unnecessary arcs and are
not complete, finding all paths from each entry point to each

target machine can be done efficiently using repeated calls
to Dijkstra’s shortest path algorithm.

Algorithm 2 examines the vertices in each G to decide
if a vertex is an entry point, which heads a subset of
paths to the target. The function nextpath(Gy, u, v) finds the
next unique shortest path from u to v in G,. In practice,
entry point vertices can be stored in a list that includes all
vertices that allow inbound access on an elastic IP address
(accessible from outside the cloud) on the service s for which
the simple connectivity digraph G is constructed.

Let L, C V, be the set of load balancer vertices in A,,
O; C Vs denote the set of all entry point vertices in A, and
T, C V; denote the set of all target vertices in A,.

Algorithm 2 Find all paths and subpaths between en-
try points, load balancers, and targets in each G, =
(Vs, Ag, ls) €T

1: Set P+ ()
2: foreach G, € " do

3: foru € O, (entry point vertices) do
4: for each v € T} (target vertices) do
5: loop
6: p < nextpath(G,u,v)
7: if p = () then
8: Break
9: end if
10: if p contains by, ..., b; € L, then
11: split p at by, ..., b; into j + 1 subpaths (as
described in IIL.C): py, pa, . .., Pj+1
12: P(—PU{pl,...,pj+1}
13: else
14: P+ PU{p}
15: end if
16: end loop
17: end for
18: end for
19: end for
20: return P

The output of Algorithm 2 is the input to the final
construction, which converts every (sub)path in P to a
misery digraph containing a canonical misery digraph. The
union of the resulting misery digraphs will form the final
connectivity digraph that can replace the original cloud
connectivity digraph G.

4.3 Constructing The Final Connectivity Digraph

The final construction takes each path p € P (an original
path from an entry point to a target in the connectivity di-
graph G or a subpath from the splitting in Algorithm 2) and
replaces it with a misery digraph. Before the replacement,
we expand all paths to be at least the minimum path length
d > Ir)%i}r?l |p|, where |p| denotes the length of path p. We

choose the fanout k > 2 of the canonical misery digraphs.
Thus, this construction replaces every path in P with a
misery digraph containing a canonical misery digraph of
d + 1 layers and fanout k.

The enlargement requires at most max{0,d — |p|} new
vertices, and the canonical misery digraph requires another
(k¥ —1)/(k — 1) — d new vertices. The final result, after

8

processing each p € P and taking the union of all these
misery digraphs, is the misery digraph G* for the original
connectivity digraph G.

4.4 Additional Cost of Misery Digraphs

To evaluate the feasibility of misery digraphs as a defense,
we need to understand the costs required by the defender
relative to the increase in adversary cost. The main cost
for the defense is the need for the decoy virtual machines,
which must appear indistinguishable from the real hosts to
intruders. We analyze the extra cost in terms of the increase
in the hourly rate for the entire cloud-based network as a
result of applying misery digraphs.

The cost of a cloud is modeled as a summation of the cost
of all services used to operate the cloud. Let s; be a service
in the cloud, including virtual machines, load balancers,
storage instances, or database instances. For M services, the
total hourly cost of a cloud is:

M
Z h(si) +n(s;) +d(si),

where h is the direct cost of the service (e.g., hourly rent of
a virtual machine), n is the networking cost of the service
(e.g., hourly traffic usage of the service), and d is the identity
cost of the service (e.g., reserved IP addresses for facing the
Internet).

With the current technology in major cloud providers
(AWS and Google Cloud Platform), a misery digraph only
increases the hourly direct cost of the cloud by

M+N

> hisi),

i=M+1

where N is the number of added decoy vertices in the
misery digraph. The network n(s;) and identity costs d(s;)
are zero for all decoy vertices as they only use internal
networking without Internet traffic charges or the cost of
reserving public IP addresses.

Note that the choice of decoy virtual machines must be
relative to the choice of machines in the original cloud. For
example, when the original cloud runs virtual machines of
medium capability (two cores and 4GB of memory), decoy
servers in each path to target should have at least two cores
and 4GB of memory. This is to avoid saturating the decoy
virtual machines with a high number of requests received
from more capable virtual machines in the network.

When using misery digraphs, the number of requests
and responses in the network do increase (and must, as nec-
essary for eliminating side-channel attacks). Thus, the orig-
inal virtual machines and the decoy machines require extra
networking capabilities. For example, for every request in an
original path p to the target, a user’s request is represented
once at the application layer. When using a misery digraph,
the same request is multicast to all subsequent branches,
and thus generates multiple responses (to hide the actual
path). When implementing the multicasting service, each
vertex will only wait for a single response and discard the
rest. While this operation consumes extra bandwidth, since
the networking is internal (within one data center), the extra
cost is zero.

Finally, the total increased cost of a cloud with a misery
digraph depends on the expansion parameters used for each
canonical misery digraph. For each attack (sub)path p, the
number of extra vertices is
k?—1
k-1

and the total extra cost is proportional to

> elp). 2

peEP

e(p) = max{0,d — |p|} + —d 1)

Note that misery digraphs consider only unique paths
from entry points to the target machines. Thus, clearly, paths
with overlapping vertices will not require additional decoy
vertices.

5 SECURITY ANALYSIS

Including a canonical misery digraph in every subpath
guarantees that every path connecting an entry point vertex
to a target machine vertex has length at least d vertices and
a misery fanout of at least k1. The enlarged connectivity
digraph will add complexity and time to an attack targeting
a server that is required to be accessible only by a leaf of a
k-ary tree in a misery digraph.

Recall that the attacker’s goal is to compromise the
database server by finding vulnerabilities in vertices along
paths to a target. In a cloud that contains misery digraphs,
assuming the attacker has no prior knowledge about the
structure of the cloud, an attacker is likely to either attack
the network by performing a depth-first attack or a breadth-
first attack, because reaching the target server requires find-
ing a path through which the intrusion can proceed. This
section analyzes both attack strategies and estimates the
delay incurred as a result of misery digraphs. Section 5.4
describes some attacks which are not mitigated by our
approach.

5.1 Resilience Against Reconnaissance Attempts

Reconnaissance attacks including DNS and IP scanning,
operating system fingerprinting, examination of the cloud
computing provider, and exploring the internal network
architecture of a cloud are effective ways for attackers to
launch informed attacks. Reconnaissance steps are neces-
sary for any attack attempt to bypass the protection of
misery digraphs. When an intruder gains access to the
cloud’s entry point, launching an effective attack on the next
layer of decoy machines includes two major steps.

Collecting System Details. The attacker collects technical
systems-level visible details of the machines accessible from
the entry points. The knowledge of the hosting cloud com-
puting provider is necessary to predict the range of regional
elastic IP addresses. Elastic IP addresses can identify decoy
machines in misery digraphs but are not static. Periodic
switching of attack paths (Section 3.3) imposes a shuffling of
these addresses, which is shown to be an effective general
moving target strategy [15]. Further, the attacker is assumed
to collect operating system signatures and configurations.
The attacker sniffs the traffic when a node is compromised

9

to view the flow of traffic, provided enough privileges are
gained.

Reconnaissance information collected from details are
necessary for the attacker to proceed. This information does
not undermine the security provided by misery digraphs.
This is because misery digraphs provide an architectural
solution that does not rely on the specific functionality of
machines. Further, misery digraphs allow for the probability
that decoy machines are exploited by attackers. At each time
period, when a switching occurs, any reconnaissance infor-
mation or exploited machines on the switched machines are
rendered obsolete.

Reconstructing the Network Architecture View. Once
gained access to an entry point machine, the attacker at-
tempts to construct an architectural view of the internal
virtual cloud-based network. This search is itself a recon-
naissance activity in which the attacker must use a graph
search strategy to find the moving target.

Misery digraphs, as specified in Section 3, are designed
to provide identical paths towards any destination. This is to
prevent attackers from pruning tree branches within a mis-
ery digraph’s k-ary tree, thus, gaining a shortcut towards the
target. The identical paths are provided using three critical
design decisions:

1) The initial structure of misery digraphs provides
equal numbers of vertices accessible from any ver-
tex. No path in the digraph is distinctly identifiable
in terms of its proximity to the target.

2) The network traffic maintained by misery digraphs
also follows an identical distribution of requests.
That is, each decoy forwards the requests to all suc-
cessive machines without prioritizing or neglecting
any machine. Similarly all responses are forwarded
back up to the parent vertices.

3) Connections from any vertex u; to any other vertex
u; cannot occurs unless u; is a direct parent of u;.
Accordingly, no vertex u; shall establish connections
to a vertex u; if u; is more than one layer away. As
this property is enforced by the rules set using the
cloud computing provider, it ensures that attackers
cannot construct shortcuts towards the target.

In Section 5.2, two attack strategies are described for
conducting an effective search against misery digraphs.
Later in Section 5.3, the probability of success for reaching
a particular vertex is assessed, and finally in Section 6.1.1, a
simulation evaluates the overall security of misery digraphs
against these strategies.

5.2 Attack Strategies

We first examine the available attack strategies, which pro-
vide the basis for a probabilistic analysis of attack success.
These strategies are designed to search the structure of
misery digraphs and outpace the moving target defense
provided by the cloud. A depth-first attack (DFA), inspired
by depth of stack routing [12], uses a depth-first search
strategy to construct a single path towards a target starting
with a vulnerable entry point. Next, the attacker is faced
with a choice of machines to (i) test for vulnerabilities and
(ii) craft an attack. To continue with a pure DFA, the attacker

repeats the previous step by choosing one of the available
IP addresses to attack. These repeated “compromise and
choose” steps will continue until the attacker reaches a
vertex that has an arc towards the target database. A key
guarantee of clouds made with misery digraphs is that by
examining the structure of the cloud, the attacker will not
be able to make intelligent guesses about the next vertex to
exploit.

A better approach is a breadth-first attack (BFA), inspired
by breadth-first search algorithms for network routing (such
as [2]), using which the attacker performs a breadth-first
search to construct a path towards a target starting from a
vulnerable entry point. Assuming the attacker has a set of
IP addresses to invade next, the strategy in BFA will involve
a per layer attack of all vertices in the graph until a leaf
is found that has a direct arc to the target (which provides
access to the target server). A BFA systematically explores
the IP ranges available to the attacker. As misery digraphs
contain k-ary tree structures, the available IP addresses will
only enable a layered attack. In a breadth-first attack, the
attacker searches for an attack path by discovering the entire
structure of the misery digraph.

5.3 Swiching Probability

Consider a trivial connectivity digraph with one entry point
and one target, replaced by a canonical misery digraph with
(k* —1)/(k — 1) vertices and n = (k% — 1)/(k — 1) — 1
edges in the embedded k-ary tree. This probability analysis
considers a breadth-first attack that randomly chooses a
vertex to compromise at each level.

We analyze the probability that a breadth-first attack
to reaches level d (one step from the target) in a cloud
with a randomized misery digraph. Let D (delay) be the
time required to compromise a vertex, and r the period
at which two random pairs of arcs at the same (random)
level are interchanged (Definition 2). After each time period,
we assume the vertices at the heads and tails of these arcs
are reset to uncompromised states (which the attacker must
compromise again).

For the time interval D after an edge switch, the proba-
bility that a given edge {u, v} is not switched is

_ 1\ LP/7]
(") ®

and the probability of not switching m distinct given edges
(required to maintain a path containing those m edges for
time D, so as to continue the attack from the last vertex in

that path) is
LD/r]
n—m
() :)
n
For example, with a delay D = 0.5, an edge switch
period » = 0.01 (relative to some time unit), a misery

digraph with ¥ = 2 and d = 5 (n = 30), and a target
compromising path of length m = 4, the probability of
success would be 0.00078. If D = 1.0, that probability drops
to 6 - 1077. The expected delay is roughly the reciprocal of
this probability times D. Furthermore, note that even if the
attacker is successful in reaching the target, access to the
target is fleeting as it is only a matter of time before a path

10

edge required by the attacker is switched and the machines
on the two end points are reset (disrupting the attack and
requiring repeated effort from the attacker).

The edge switch mechanism combined with the con-
founding architecture of the misery cloud significantly low-
ers the probability of reaching a vertex with direct access
to the target. As a result, attacks are delayed depending
on the ratio D/r, and by the misery digraph itself even
without the randomization. In practice, the edge switch can
be implemented in seconds, as fast as sending a request to
the cloud provider and initiating a machine reset, thereby
eliminating an entire path constructed by the attacker.

5.4 Limitations

The goal of misery digraphs is to significantly delay an
attack when the attacker’s purpose is mainly to gain access
to a database server in a cloud. Misery digraphs by them-
selves do not directly mitigate other types of attacks, but are
generally complementary with defenses for other attacks.

SQL Injection. Misery digraphs do not target attacks that
can only succeed using SQL injections into vulnerable ap-
plications. Such attacks do not rely on the structure of the
network and cannot be defended against solely using an ar-
chitectural solution like misery digraphs. However, misery
digraphs can potentially couple with a parallel strategy that
introduces diversity in various layers of the digraph. For
example, if a vulnerable server in the entry point allows for
a wide data query such as SELECT » FROM t, a diversified
server in the next layer of the digraph can detect this. Thus,
introducing diversity at each layer of the misery digraph can
be a solution for attacks that succeed with simple requests.

Denial of Service. An attacker compromising a machine
at any layer of the misery digraph may attempt denial of
service by modifying the application, stopping the services,
or similar approaches. Misery digraphs do not provide a
solution for denial of service attacks, which have been
heavily studied in the literature (Section 7). Because of the
additional network traffic caused by multicasting between
the layers, misery digraphs may even provide attackers with
some additional opportunities for denial of service attacks.

Compromised Cloud. Misery digraphs depend on the in-
tegrity of the cloud. If the credentials for a cloud console
are stolen, all security measures can be subverted. A misery
digraph premise is that vertices will be compromised, but
doing so takes significant time for each vertex along a path.
Thus cloud users should avoid sharing credentials among
machines.

6 EVALUATION

This section aims to examine the effectiveness and prac-
ticality of misery digraphs. We first present an extensive
simulation of the breadth-first attack against a changing
misery digraph, showing that an estimated high delay in
the attack. Then, we present a discussion on a prototype
AWS misery digraph and the needed configuration. We
implemented misery digraphs and the switching mecha-
nism (Section 3.3) using AWS Developer tools®. Finally, we

3. https:/ /aws.amazon.com/tools/

Fig. 6: A misery digraph with k = 2 and d = 5 used for
simulating and measuring attack success.

demonstrate a concrete cost analysis based on running our
prototype AWS misery digraph for a complete billing cycle.

The example network used in this section is based on
a simplified network, having a web server and a database
server. The network is then expanded using the construction
algorithms in Section 4 to create a misery digraph network.

6.1 Measuring the Attack Success

Definition 2 requires that misery digraphs change over time.
For example, in the misery digraph of Figure 6, as a function
of time, the (underlying graph) edge {u4,u10} is randomly
chosen (using the cloud provider’s tools) to switch with
{ug, u13}, while the machines on both ends of each edge are
reset and replaced with newly created machines on the fly.
Given a misery digraph G, at any time, the attacker cannot
guarantee that the observed structure of G remains intact.
Even if the attacker manages to predict the structure of G by
discovering the first few levels, as the edges are switched,
the attacker’s understanding of the misery digraph is soon
obsolete. The edge switching mechanism modifies the path
to the target, resulting in a loss of effort for an attack on the
modified path.

6.1.1 Attacker's Success in Outpacing the Defense

To measure the expected delay caused by misery digraphs
we implemented a discrete event simulation of an attack on
a simple cloud architecture. The attack simulation’s goal is
to estimate the attack success metric, the number of hosts that
must be compromised (or re-compromised) before an attack
succeeds.

Simulation results are in two parts. The first part imple-
ments the attack strategies of Section 5.2. The second part
incorporates a branch pruning oracle, allowing the attacker
to occasionally gain insider information indicating that the
current path does not lead to the target.

Attacking Without Pruning. The simulation uses the misery
digraph of Figure 6. A client attacker starts with vertex 0,
which is assumed to be exploitable. The attacker builds a
current understanding of the misery digraph GA, which
initially has V' = {A}. The cloud is modeled as a server
and has the initial misery digraph G, and also modifies G
every r units of time. The attacker spends a constant) units
of time to compromise a vertex. When the attack starts, after
spending time D, the attacker sends the path (A,0) to the
cloud, indicating that 0 is compromised. To prove that the
attacker has compromised the current 0 (before 0 is reset

11

0.14

012 5 Mean=1089.484

- Median=787
0.1 H| Minimum=7
L Maximum=7426

Zo.08 || D=0.10001,r=0.05
o
% L
= 0.06

0.04 -

0.02 I

. |5 Y —

0 1000 2000 3000 4000 S000 6000 7000 8000
(a) Attack success metric

Mean=8360.211
Median=8677
Minimum=12 [
Maximum=14737
D=0.20001,r=0.05

0
0 5000 10000 15000
(b) Attack success metric

Probability
=

Fig. 7: Histogram of simulation results in which (a) the cloud
is about twice faster than the attacker, and (b) the cloud is
about four times faster than the attacker. The x-axis shows
the attack success metric, the number of vertices the attacker
tried until reaching the target. The y-axis shows the sample
probability of the attack success metric.

and replaced by a new machine), the cloud also requires the
attacker to send 0’s key. The cloud verifies the key and the
path and responds with the vertices in the next layer of the
misery digraph, that is, {1, 2} along with their keys.

This interaction continues between the cloud and the
attacker until time r has elapsed and a change occurs in
the misery digraph, which modifies a pair of edges and the
machines on their ends. After the change to the digraph, if
the attacker sends the cloud a path that was modified, the
cloud detects this modification by either failing to verify
a key or the path itself, responding to the attacker with
an empty list. When the attacker receives an empty list,
the attacker knows that G* is no longer consistent with G
and tries another vertex that was observed before. When all
the observed vertices are tried without success, the attacker
restarts at vertex (0.

The simulation was executed with parameters (D = 0.1,
r = 0.05) and (D = 0.2, r = 0.05). Each experiment is
repeated 1000 times, each time executing a complete cycle of
attack reaching the target. Although system configurations
may prohibit actual repeated attacks, we did not implement
this prohibition to test the strength of misery digraphs.

With D = 0.1, as the histograms of Figure 7 show, there
is a 0.41 probability that the attack requires at least 1000
vertices before it reaches the target. In this case, during

the 1000 iterations, the attack succeeded only four times
with ten or fewer vertices. With D = 0.2, there is a 0.912
probability that the attack requires at least 1000 vertices to
reach the target. The observed minimum number of attack
steps increases from seven to twelve, with only a single time
in 1000 iterations in which the attack succeeded with 20 or
fewer steps.

The conclusion from the simulation results is that given
a reasonably fast cloud modification procedure, the attack
can take thousands of steps in a digraph where the actual
shortest path to target consists of only five steps. Even
a breadth first attack with a brute force strategy would
only require 30 steps; however, with the misery digraph’s
structure and switching mechanism, these minimums are
highly unlikely to occur.

Attacking With Pruning. One might wonder if the attacker
could use an oracle, which represents some leakage of the
exploited machines, to decide if the current path will not
lead to the actual target.

6.2 Are Misery Digraphs Practical?

To test whether current technology permits creation of
misery digraphs, we developed a tool that can connect
to an Amazon Web Services cloud, download machine,
connectivity, and firewall information, and create a con-
nectivity digraph. The tool can transform an applications’s
connectivity digraph to a misery digraph. We have re-
leased the code under an open source license, available at
https://github.com/kussl/mdg. This section empiri-
cally evaluates our misery digraph approach with respect to
Amazon Web Services (AWS) using our tool.

AWS provides elastic virtual machines, IP addresses,
virtual private clouds, customized routing rules, software-
based firewalls, and load balancers, which all can help in
building an application architecture that includes misery
digraphs. AWS was used to create a cloud misery digraph
with parameters k = 2 and d = 3, hosting a web application
that queries a database and provides summary data.

The prototype misery digraph is created using basic
AWS tools, mimicking a simplified web application archi-
tecture similar to the one in Figure 1. One EC2 instance
(an AWS virtual machine), N1, is responsible for receiving
requests from the Internet, and so is created with a subnet
with an Internet gateway. In AWS, machines join security
groups and the firewall rules can be configured for services
provided by the machines in the group. Host N1 is in
a single group that has the inbound HTTP rule allowing
traffic from all IP addresses. As an externally-facing host,
N1 does not include any credentials for the database. In-
stead, it will forward all database requests to the following
layer containing two EC2 instances, N2 and N3. The EC2
instances N2 and N3 each include an Apache server and
are only responsible for receiving and forwarding HTTP
requests. These nodes are in a security group that allows
inbound HTTP and SSH traffic only from N1. The hosts
are configured so N2 forwards all requests to N4 and N5
while N3 forwards all requests to N6 and N7. Similar to the
first internal layer (N2 and N3), N4 and N5 are in a security
group that only allows inbound HTTP and SSH traffic from
N2 while N6 and N7 are in a security group that only allows

12

inbound HTTP and SSH traffic from N3. The reverse of all of
the above traffic is allowed, but no traffic is allowed between
N1 and N7. Only one of the four second-layer nodes (say N4
for this example) actually forwards its requests to N8, the
target node. When N8 receives an HTTP request it processes
it with a local MySQL database. Regardless of which second-
layer node sent the request, N8 broadcasts the response
on HTTP to all the second-layer nodes (N4-N7). N8 allows
inbound HTTP and SSH traffic only with N4, and outbound
HTTP traffic to N4-N7. The outbound rules for all machines
are limited to only the necessary destinations.

6.2.1 Relocating Decoys in Misery Digraphs

As required by Definition 2 (in Section 3.1), the incoming
connection to the target machine (N8 in the implemented
cloud) should be continuously interchanged between the
final internal layer machines N4-N7. This randomness re-
quirement can be implemented in AWS by dynamically
modifying firewall security groups. That is, a single security
group, which will have exactly one machine as a member at
any time, can have access to N8. Each time period (whose
length is determined by a time parameter set by the user and
can be randomized), this security group is reset to contain
one of the four machines N4-N7, chosen randomly. The
other misery digraph arc switching described in Definition
2 was not implemented.

Another requirement is to reset the two machines at the
heads and tails of a randomly chosen pair of arcs between
two nodes within the underlying k-ary tree of a canonical
misery digraph. To implement this we create a large set of
configured machine images to choose from. To reset two
machines, a cron task randomly chooses one of the machine
images and launches two new instances using the AWS
command line tool, run_instances. When the two instances
are started, they are assigned to the security groups of the
two old instances to be replaced (each pair of old and new
instances will be matched). Finally, a call to delete_instances
given the identifier for the two old instances terminates the
old instances.

6.2.2 Accommodating Existing Applications

Existing applications can be deployed to use misery di-
graphs with minimal changes. Applications can continue
to issue database requests to a mediating proxy machine
that appears to the application server as the database server.
The proxy machine will perform the broadcasting to the
underlying misery digraph and forward the responses back
to the application server. The proxy machine implements
a simple proxy server, for example, Apache’s mod_proxy.
Using a proxy machine, drastic changes to the application
are avoided. On the database server side, no changes will
be necessary as the database server will continue to serve
the requests coming from a leaf node (node in layer d) of a
canonical misery digraph.

6.2.3 A Concrete Cost Analysis

The additional cost of misery digraphs is due to the use of
decoy vertices, added to the network, which are realized as
AWS EC2 instances. Misery digraphs incur no additional
network charges since all the additional network traffic is

within the internal network of the cloud. Consider network
of five hosts with two entry points, two application servers,
and a target. The connectivity digraph for the considered
example cloud in Figure 8-a has two distinct paths and
the digraph in Figure 8-b has four paths with overlapping
vertices. Note that, misery digraphs are only created for
distinct paths. That is, for both networks in Figure 8-a and 8-
b an identical misery digraph will be created. This is because
the overlapping paths (1,4,5) and (2, 4, 5) in Figure 8-b will
share decoy vertices.

Z} 22*2

(@ (b)

Fig. 8: Example networks with more than a single path each.

The original network of Figure 8 costs $47.5 for a single
billing cycle of 30 days ($9.5 per machine). We analyze
the expected cost for replacing each path in the network
of Figure 8, in Table 2. In this table, we use a number
of misery digraph parameters (first and second columns)
to compute the extra vertices and cost (third and fourth
columns) of each of the two misery digraphs needed for the
example network. The extra vertices and cost are computed
according to the formulas of Section 4.4. The fifth column
shows the increase ratio with respect to the original cost of
$47.5. The last two columns provide the probability that a
sequence of m edges are not switched during r units of time,
denoted P, and the probability that the attacker requires 500
or more compromises to reach the target, computed using
the simulation of Section 6.1.1.

From the results of Table 2, we present two conclusions.
First, although misery digraphs can be costly, one does not
need a large misery digraph for effectively confusing the
attacker. As the simulation results demonstrate, with only
seven extra vertices (per misery digraph), there is a 54%
probability that the attacker needs to compromise or re-
compromise 500 or more vertices before reaching the target.
Second, the results of the first and the second rows of the
table show that the choice of parameters can incur extra
charges without improved results. In the first row where
k = d = 3, there is an increased probability that a vertex is
not switched, compared to when k£ = 2 and d = 3. However,
as the misery digraph does not become long enough, the
attacker can be more successful. A systematic formulation
of cost versus the size of misery digraphs can assist system
administrators to optimize their choices, which will be left
for a future work.

4. https:/ /aws.amazon.com/blogs/aws/low-cost-burstable-ec2-
instances/

13

k | d | Extra vertices | Extra cost | Inc. Ratio | P Q

313113 $123.5 2.6 69.44% | 10%
21317 $66.5 14 44% 54%
2 | 4115 $142.5 3 61.73% | 54%
2 |5] 31 $294.5 6.2 75% 87%

TABLE 2: Extra vertices and cost are computed using Equa-
tion 2. The increase ratio is relative to the base cost of $47.5
for the original network before converting it to a network
of misery digraphs. The values of P are computed based on
Equation 4, referring to the probability that a sequence of
paths is not switched during r units of time. The values of
Q are computed based on the simulation of Section 6.1.1,
indicating the probability that the attack requires 500 or
more steps to reach the target within a network of five
original machines.

7 PRIOR WORK

Misery digraphs establish a deceiving architecture in a vir-
tual network that also actively uses a moving target strategy
to distract powerful intrusions within the network. Prior
work in the design of network overlays and in moving
target defense has inspired and is closely related to the
present work. However, no prior work has explicitly aimed
to trap cloud intruders by delaying and complicating remote
attacks. Misery digraphs do not require secret entities, do
not perform traffic filtration, and address attacks beyond
distributed denial of service. In this section we examine
network overlays, a number of closely related moving target
defense strategies and theoretical frameworks, and embark
on approaches that have used decoys in other settings.

Network Overlay and Deception. In a secure network over-
lay [25], the target node only communicates with verified
sources. After verifying the source, a secret subset of nodes
forward the verified traffic to the target. Secure Overlay Ser-
vices (SOS) [18] and WebSOS [23] are classical approaches
that use network overlays to defend a target against DDoS
attacks. SOS is a deceiving architecture based on source
filtration. WebSOS implements SOS replacing strong client
authentication with graphic Turing tests. SOS and WebSOS
target DDoS attacks and rely on secret nodes, while misery
digraphs implement a layering approach without the need
for filtration or secret nodes. Further, all these proposals
explicitly target physical networks and do not use elastic
replicas as in misery digraphs. Denial of Service Elusion
(DoSE) [34] reuses the idea of overlay networks [27] in the
cloud where virtual machines comprise overlay networks
and a management layer repeatedly tries to distinguish
legitimate from malicious clients. Misery digraphs, in con-
trast, do not use filtration or learning, and are neutral to the
network traffic.

Moving Targets. Moving target is an effective technique
that incorporates diversity and shuffling to achieve higher
security [11], [14]. When a target machine is under attack,
Migrating OVErlay (MOVE) [27] relocates the target ma-
chine’s service to an unaffected machine and, as opposed
to SOS [18], does not require client filtration. MOVE relies
on hidden servers and also uses an overlay network to
distinguish unknown traffic from legitimate traffic. Venkate-
san et al. [30] address intercepting exfiltrated data using a

moving target defense (backed by a probabilistic analysis)
by dynamically replacing intrusion detection sensors. Their
threat model assumes the attacker can explore the network
topology and is aware of the moving target defense. MO-
TAG [16], on the other hand, uses moving secret proxies to
distinguish attackers from legitimate clients. MOTAG's core
idea is to provide a single secret IP address to a legitimate
client, at any given time. The target servers only allow
incoming traffic from designated proxies that are meant to
be reachable by legitimate clients. Comparing to MOTAG,
misery digraphs do not require secret proxies and mainly
rely on a trusted cloud console that controls the policies and
structure of the cloud’s internal network. Also, it is shown
that proxies can be subject to proxy harvesting attack, which
require continuous remapping to disrupt the attacks [29].
Badishi et al. [4] proposed random port hopping to keep
a DDoS attacker in the dark while using packet filtration
to recognize legitimate traffic. Similarly, redundant data
routing paths [19] can distract attackers from their favorable
targets. Rather than relocating the target machine as in the
defenses against DDoS attacks, misery digraphs change the
path to the target machine as a continuous function of time.

Apart from physical distributed systems, moving tar-
get defense promises a viable strategy for securing elastic
clouds. The work by Brzeczko et al. [5] and Jia et al. [17] are
closest to our work in using cloud technologies and moving
the target away from attacks. However, misery digraphs
target intrusions within virtual networks as opposed to
those targeting the surface. Brzeczko et al. [5] demonstrate
an analytical method that uses decoys in an elastic cloud
computing platform to attract attacker traffic. The proposed
system will then learn and redirect the malicious traffic
from the production machines by using the data collected
from decoy machines. In 2014, Jia et al. [17] presented the
architecture of a system that uses a moving target defense
for Amazon Web Services. To rescue targets in a virtual net-
work from DDoS attacks, a defense system creates replicas
on the fly and assigns network traffic to new replicas. A
key assumption of the approach is hiding the newly created
replicas from the public and disclosing their addresses to a
select list of clients. Misery digraphs do not directly respond
to attacks and avoid problems such as Economic Denial of
Sustainability [33], which would cause unnecessary charges
on the cloud.

Theoretical Frameworks. Some recent work provides in-
teresting theoretical frameworks for various moving target
defense settings. For example, Wright et al. [35] evaluated
moving defense strategies using a game-theoretic simula-
tion, deriving insights for scenarios where a moving target
is useful for combating DDoS attacks. Miehling et al. [22]
present Bayesian attack graphs and model the defender’s
action as a partially observable Markov decision process
in which some of the attacker’s actions are not clear. The
proposed Bayesian model limits the capabilities of an at-
tacker by assuming a sequence of completely random attack
steps. Our work assumes a more accurate representation of
an intelligent attacker that will take many informed attack
steps. Zhuang et al. [36], [37] also presented an inspiring
theory of moving target defense in which they proposed a
general system and an initial underlying theory for moving

14

target defense. While having fundamentally different goals,
this work on theoretical aspects of moving target defense
is related to the present efforts. Maleki et al, described a
general theory on assessing the effectiveness of a moving
target strategy [21], which is useful in conjunction with the
probabilistic analysis of Section 5.3.

Other Uses of Decoys. The core aspect of misery digraphs
is the use of moving decoys to create deception by hiding
the true path towards a target database, somewhat different
from the deception in some previous work where the use
of decoys has been heavily discussed. For example, [31]
proposes the use of multiple decoys, such as decoy HTML
documents to distract attackers. Similarly, Voris et al. [32]
demonstrate how decoy files can distract attackers from the
target. Interesting work by Araujo et al. [3] proposes honey
patches that confuse attackers about whether a software
exploit has succeeded. This work might be especially useful
when deployed in conjunction with misery digraphs. In
a theoretical analysis, Pawlick and Zhu [24] demonstrate,
through cheap-talk games, that honeypots could be used
to create deception for attackers. An earlier game theoretic
investigation of honeypots is described in [6]. A recent work
by Luo et al. proposes the use of dynamic path identifiers for
network routing that dynamically change to escape DDoS
attacks [20]. Finally, Heydari et al. demonstrated the use
of moving target defense in web servers, acting as mobile
nodes, to combat Internet censorship [13].

8 CONCLUSIONS

Misery digraphs use the cloud’s elastic and cost-effective
services to deceive and frustrate attackers. A graph theoretic
model that includes multiple redundant paths towards a
cloud target was proposed and implemented in AWS. The
idea of using redundancy to distract attackers does not
intend to completely eliminate an attack, but to force enough
delay on an aggressive attack to give system administrators
time to intercede in the attack. Thus the delay and confusion
and obscurity mechanisms provide the architectural support
for a cloud to defend itself until rescue arrives.

An overall target defense strategy would require an
effective intrusion detection mechanism that can collaborate
with the misery digraphs and a mechanism to prevent an
intrusion from reaching the target. Future extensions of this
work might enable the misery digraphs themselves to act
as detectors of intrusion, e.g., using the redundant paths
as sensors to warn an outside monitor of possible attacks.
For instance, malicious SSH connections to the redundant
machines could trigger such an alarm. Detecting intrusions
using misery digraphs will be addressed in future work.

REFERENCES
[1] An in-depth analysis of ssh attacks on ama-
zon ec2. https:/ /blog.smarthoneypot.com/

in-depth-analysis-of-ssh-attacks-on-amazon-ec2/, August 2014.
Accessed: 2017-02-1.

[2] B. Abali and C. Aykanat. Routing algorithms for ibm spl. In
Proceedings of the First International Workshop on Parallel Computer
Routing and Communication, PCRCW 94, pages 161-175, London,
UK, UK, 1994. Springer-Verlag.

https://blog.smarthoneypot.com/in-depth-analysis-of-ssh-attacks-on-amazon-ec2/
https://blog.smarthoneypot.com/in-depth-analysis-of-ssh-attacks-on-amazon-ec2/

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser.
From patches to honey-patches: Lightweight attacker misdirec-
tion, deception, and disinformation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
"14, pages 942-953, New York, NY, USA, 2014. ACM.

G. Badishi, A. Herzberg, and I. Keidar. Keeping denial-of-service
attackers in the dark. IEEE Transactions on Dependable and Secure
Computing, 4(3):191-204, July 2007.

A. Brzeczko, A. S. Uluagac, R. Beyah, and]J. Copeland. Active
deception model for securing cloud infrastructure. In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 535-540, April 2014.

T. E. Carroll and D. Grosu. A game theoretic investigation of
deception in network security. In Proceedings of the 2009 Proceedings
of 18th International Conference on Computer Communications and
Networks, ICCCN 09, pages 1-6, Washington, DC, USA, 2009. IEEE
Computer Society.

L. Cheng, F. Liu, and D. D. Yao. Enterprise data breach: causes,
challenges, prevention, and future directions. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 7(5):1211-
n/a, 2017. e1211.

A. Chowdhary, S. Pisharody, and D. Huang. SDN based scalable
mtd solution in cloud network. In Proceedings of the 2016 ACM
Workshop on Moving Target Defense, MTD ’16, pages 27-36, New
York, NY, USA, 2016. ACM.

T. A. S. P. M. Committee. Apache struts statement
on equifax security breach. Technical report, Apache,
2017. https:/ /blogs.apache.org/foundation/entry/apache-struts-
statement-on-equifax.

N. V. Database. CVE-2017-9805 Detail,
https:/ /nvd.nist.gov/vuln/detail /CVE-2017-9805.
D. Evans, A. Nguyen-Tuong, and J. Knight. Effectiveness of Moving
Target Defenses, pages 29-48. Springer New York, New York, NY,
2011.

A. Gupta, A. Kumar, and M. Thorup. Tree based mpls routing.
In Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ‘03, pages 193-199, New York,
NY, USA, 2003. ACM.

V. Heydari, S. i. Kim, and S. M. Yoo. Scalable anti-censorship
framework using moving target defense for web servers. IEEE
Transactions on Information Forensics and Security, 12(5):1113-1124,
May 2017.

J. B. Hong and D. S. Kim. Assessing the effectiveness of mov-
ing target defenses using security models. IEEE Transactions on
Dependable and Secure Computing, 13(2):163-177, March 2016.

J. H. Jafarian, E. Al-Shaer, and Q. Duan. An effective address
mutation approach for disrupting reconnaissance attacks. IEEE
Transactions on Information Forensics and Security, 10:2562-2577,
2015.

Q. Jia, K. Sun, and A. Stavrou. MOTAG: Moving target defense
against internet denial of service attacks. In 2013 22nd Interna-
tional Conference on Computer Communication and Networks (ICCCN),
pages 1-9, July 2013.

Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell. Catch
me if you can: A cloud-enabled ddos defense. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 264-275, June 2014.

A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: an architecture
for mitigating DDoS attacks. IEEE Journal on Selected Areas in
Communications, 22(1):176-188, Jan 2004.

P. P. C. Lee, V. Misra, and D. Rubenstein. Distributed algo-
rithms for secure multipath routing in attack-resistant networks.
IEEE/ACM Trans. Netw., 15(6):1490-1501, Dec. 2007.

H. Luo, Z. Chen, J. Li, and A. V. Vasilakos. Preventing distributed
denial-of-service flooding attacks with dynamic path identifiers.
IEEE Transactions on Information Forensics and Security, 12(8):1801-
1815, Aug 2017.

H. Maleki, S. Valizadeh, W. Koch, A. Bestavros, and M. van Dijk.
Markov modeling of moving target defense games. In Proceedings
of the 2016 ACM Workshop on Moving Target Defense, MTD 16, pages
81-92, New York, NY, USA, 2016. ACM.

E. Miehling, M. Rasouli, and D. Teneketzis. Optimal defense
policies for partially observable spreading processes on bayesian
attack graphs. In Proceedings of the Second ACM Workshop on Moving
Target Defense, MTD ’15, pages 67-76, New York, NY, USA, 2015.
ACM.

2017.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

15

W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra,
and D. Rubenstein. Using graphic turing tests to counter auto-
mated ddos attacks against web servers. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS ‘03,
pages 8-19, New York, NY, USA, 2003. ACM.

J. Pawlick and Q. Zhu. Deception by design: Evidence-based
signaling games for network defense. CoRR, abs/1503.05458, 2015.
L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. SIGCOMM
Comput. Commun. Rev., 33(1):59-64, Jan. 2003.

A. Stasinopoulos, C. Ntantogian, and C. Xenakis. Commix: Detect-
ing and exploiting command injection flaws. pages 10-13, 2015.
A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein.
MOVE: an end-to-end solution to network denial of service. In
Proceedings of the Network and Distributed System Security Sympo-
sium, NDSS 2005, San Diego, California, USA, 2005.

Z. Su and G. Wassermann. The essence of command injection
attacks in web applications. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL "06, pages 372-382, New York, NY, USA, 2006.
ACM.

S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M. Wright.
A moving target defense approach to mitigate DDoS attacks
against proxy-based architectures. In 2016 IEEE Conference on
Communications and Network Security (CNS), pages 198-206, Oct
2016.

S. Venkatesan, M. Albanese, G. Cybenko, and S. Jajodia. A
moving target defense approach to disrupting stealthy botnets.
In Proceedings of the 2016 ACM Workshop on Moving Target Defense,
MTD ’16, pages 37-46, New York, NY, USA, 2016. ACM.

N. Virvilis, B. Vanautgaerden, and O. S. Serrano. Changing the
game: The art of deceiving sophisticated attackers. In 2014 6th
International Conference On Cyber Conflict (CyCon 2014), pages 87—
97, June 2014.

J. Voris, J. Jermyn, N. Boggs, and S. Stolfo. Fox in the trap: Thwart-
ing masqueraders via automated decoy document deployment.
In Proceedings of the Eighth European Workshop on System Security,
EuroSec "15, pages 3:1-3:7, New York, NY, USA, 2015. ACM.

H. Wang, Z. Xi, E. Li, and S. Chen. Abusing public third-party ser-
vices for EDoS attacks. In Proceedings of the 10th USENIX Conference
on Offensive Technologies, WOOT’16, pages 155-167, Berkeley, CA,
USA, 2016. USENIX Association.

P. Wood, C. Gutierrez, and S. Bagchi. Denial of service elusion
(DoSE): Keeping clients connected for less. In 2015 IEEE 34th
Symposium on Reliable Distributed Systems (SRDS), pages 94-103,
Sept 2015.

M. Wright, S. Venkatesan, M. Albanese, and M. P. Wellman.
Moving target defense against DDoS attacks: An empirical game-
theoretic analysis. In Proceedings of the 2016 ACM Workshop on
Moving Target Defense, MTD 16, pages 93-104, New York, NY,
USA, 2016. ACM.

R. Zhuang, A. G. Bardas, S. A. DeLoach, and X. Ou. A theory
of cyber attacks: A step towards analyzing MTD systems. In
Proceedings of the Second ACM Workshop on Moving Target Defense,
MTD '15, pages 11-20, New York, NY, USA, 2015. ACM.

R. Zhuang, S. A. DeLoach, and X. Ou. Towards a theory of moving
target defense. In Proceedings of the First ACM Workshop on Moving
Target Defense, MTD ‘14, pages 31-40, New York, NY, USA, 2014.
ACM.

Hussain M. J. Almohri received the BS degree
in Computer Science and Operations Research
from Kuwait University and the Ph.D. degree
in Computer Science from Virginia Tech. He is
currently an assistant professor of computer sci-
ence at Kuwait University and a visiting scholar
at the University of Virginia. He has cofounded
a mobile payment startup and has advised a
number of software startups in the Gulf region.
His research focuses on systems and network
security. He has served as a reviewer for several

IEEE and IET journals and Kuwait Journal of Science.

Layne T. Watson (F '93) received the B.A.
degree (magna cum laude) in psychology and
mathematics from the University of Evansville,
Indiana, in 1969, and the Ph.D. degree in math-
ematics from the University of Michigan, Ann
Arbor, in 1974.

He has worked for USNAD Crane, Sandia
National Laboratories, and General Motors Re-
search Laboratories and served on the faculties
of the University of Michigan, Michigan State
University, and University of Notre Dame. He is
currently a professor of computer science, mathematics, and aerospace
and ocean engineering at Virginia Polytechnic Institute and State Uni-
versity. He serves as senior editor of Applied Mathematics and Com-
putation, and associate editor of Computational Optimization and Appli-
cations, Evolutionary Optimization, Engineering Computations, and the
International Journal of High Performance Computing Applications. He
is a fellow of the National Institute of Aerospace and the International
Society of Intelligent Biological Medicine. He has published well over
300 refereed journal articles and 200 refereed conference papers. His
research interests include fluid dynamics, solid mechanics, numerical
analysis, optimization, parallel computation, mathematical software, im-
age processing, and bioinformatics.

David Evans (https:/www.cs.virginia.edu/
evans/) is a Professor of Computer Science
at the University of Virginia and leader of
the Security Research Group. He is the
author of an open computer science textbook
and a children’s book on combinatorics and
computability. He is Program Co-Chair for ACM
Conference on Computer and Communications
Security (CCS) 2017, and previously was
Program Co-Chair for the 31st (2009) and 32nd
(2010) IEEE Symposia on Security and Privacy
(where he initiated the SoK papers). He has SB, SM and PhD degrees
in Computer Science from MIT and has been a faculty member at the
University of Virginia since 1999.

16

https://www.cs.virginia.edu/evans/
https://www.cs.virginia.edu/evans/

	Introduction
	Overview of the Problem
	Background
	Motivation
	Problem Statement
	Threat Model

	Design of misery digraphs
	Defining Misery Digraphs
	Canonical Misery Digraphs
	Relocating the Decoys
	Hiding the Path to Target
	Handling Fault Tolerance

	Construction of misery digraphs
	Constructing the Initial Graphs
	Computing Paths to Target
	Constructing The Final Connectivity Digraph
	Additional Cost of Misery Digraphs

	Security Analysis
	Resilience Against Reconnaissance Attempts
	Attack Strategies
	Swiching Probability
	Limitations

	Evaluation
	Measuring the Attack Success
	Attacker's Success in Outpacing the Defense

	Are Misery Digraphs Practical?
	Relocating Decoys in Misery Digraphs
	Accommodating Existing Applications
	A Concrete Cost Analysis

	Prior Work
	Conclusions
	References
	Biographies
	Hussain M. J. Almohri
	Layne T. Watson
	David Evans

