
1

Misery Digraphs:
Delaying Intrusion Attacks in Obscure Clouds

Hussain M.J. Almohri, Member, IEEE, Layne T. Watson, Life Fellow, IEEE, David Evans, Member, IEEE

Abstract—When remote command injection attacks succeed at the entry points of a cloud (servers exposed to the outside Internet),
attackers targeting a specific asset in the cloud will pursue further exploration to find their targets. Attack targets, such as database
servers, are often running on separate machines, forcing an extra step for a successful attack. However, compromising two or three
machines is all an attacker needs to reach an isolated database through a simple attack path. The goal of this work is to investigate the
possibility of frustrating attackers by constructing a cloud network architecture that hides the path to a target asset in the network,
utilizing multiple moving decoy virtual machines and confusing firewall configurations. A deceiving cloud network architecture can
significantly delay attacks (by stretching the attack path from a handful of steps to thousands), providing time for system administrators
to intervene and resolve the intrusion. This work introduces the concept of misery digraphs, which provide a theoretical foundation for
creating intrusion deception in clouds. This paper describes the necessary steps to convert a cloud to one that includes a misery
digraph, and evaluates the feasibility and effectiveness of using the approach with Amazon Web Services. Our simulation results
demonstrate that for a cloud implementing misery digraphs with a simple attack path of length five, there is 91% probability that an
attack requires at least 1000 steps to reach the target.

Index Terms—Network security, Security management, Data security, Tree graphs

F

1 INTRODUCTION

Remote code execution attacks [28] exploit vulnerable net-
work services for transferring malicious commands to the
host’s operating system. In vulnerable applications, attack-
ers often exploit unfiltered parameters [26], such as the
ones passed to require or exec in a PHP script to execute a
command that could be powerful enough to modify authen-
tication policies, creating permanent unauthorized access
to the host. Besides vulnerable applications, widely used
network services potentially increase the vulnerable surface.
For example, even though key-based SSH authentication
is a well-established practice, system administrators can
still choose to enable both key-based and password-based
authentication, enabling attacks that target passwords. An
analysis of Amazon EC2 instances revealed attackers’ inter-
est in brute force SSH attacks [1].

Remote code execution attacks can be harmful when an
attacker is motivated to reach a specific target within a cloud-
based virtual network. To succeed, the attacker searches for
a vulnerable entry point in the virtual network’s external-
facing hosts and uses a compromised edge host to launch an
attack on the target asset. As target assets are isolated from
public Internet gateways, the attacker must repeat the attack
process by finding and exploiting vulnerable machines that
have direct access to the target. In common cloud network

• H. M. J. Almohri is with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22903. Email: almohri@ieee.org

• L. T. Watson is with the Departments of Computer Science, Mathematics,
and Aerospace and Ocean Engineering, Virginia Polytechnic Institute &
State University, Blacksburg, VA 24061. Email: ltw@ieee.org

• David Evans is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22903. Email: evans@virginia.edu

This work was supported and funded by Kuwait University, Research Project
No. (RQ02/15)

architectures, successful attacks require only a few steps
(compromising two or three hosts). The goal of this work
is to increase the number of steps needed and make each
step more difficult for the attacker.

We investigate a pure architectural solution, utilizing
unique services provided by cloud computing platforms,
to mitigate remote code execution attacks. Our approach is
to continuously change the structure of the virtual network.
This confusing architecture provides parallel support for the
intrusion detection systems, transforming the firewall rules
of the cloud into a complementary line of defense. Our goal
is not necessarily to detect or eliminate the attack, but to
confuse and deceive attackers in ways that impose severe
delays on the attack process.

Several previous works have advocated for creating de-
ception or using moving target strategies to combat intru-
sions either in a virtual network or in a physical network.
Several works focused on physical networks, developing a
number of deception strategies based on network overlays,
proxying, and secret IP addresses [4], [16], [23], [27]. Other
proposals progressed closer to the present goals by lever-
aging the elasticity provided by cloud computing platforms
to distract distributed denial of service attacks (DDoS) [8],
[17], [34]. For example, to prevent DDoS attacks on specific
targets, Jia et al. [17] proposed creating replicas on the fly
and assigning network traffic to new replicas. Although this
work, as well as Brezeczko et al.’s [5], provide innovative
techniques to utilize cloud resources against remote attacks,
they do not consider attacks that continue to intrude into
the network and search for isolated targets. This paper
addresses the question of how to combine attack deception
and a moving target strategy. In particular, we present and
analyze a mathematical cloud architectural model for signif-
icantly delaying intrusion attacks that go beyond DDoS and



2

propagate through a cloud-based virtual network aiming to
compromise a target asset.

The key insight here is to introduce myriad dynami-
cally changing redundant attack paths that hide the real
attack path from an attacker and create confusion about the
steps that an attacker must take to reach a target database
server. We use a cloud’s firewall rules as the basis for an
abstract model of the cloud’s security architecture. Then, we
transform the resulting model into a set of misery digraphs,
graph theoretic models for confabulating the real attack
paths. This transformation maintains the original intention
of the cloud designers, does not impose modifications on
the core application logic, and incurs a prohibitive delay to
attacks while causing minimal delay to legitimate applica-
tion traffic. A virtual network containing misery digraphs
forces a targeted attack to traverse a longer path to a
target, requiring multiple blind decisions to finding the true
path to target. Misery digraphs possess a symmetric struc-
ture for confusing attackers, while neutrally multicasting
the legitimate traffic throughout the virtual network. The
dynamic behavior of attack paths in the misery digraph
causes a continuously changing virtual network structure
that repeatedly wastes an attacker’s efforts by modifying
and relocating redundant machines that are necessary to
compromise before reaching the target.

Transforming basic virtual networks into misery di-
graphs faces several challenges. First, the main challenge
is that misery digraphs should provide consistent and
complex paths towards target assets without leaking side-
channel information that would provide attackers with
path-pruning opportunities. Second, misery digraphs must
require minimal modifications to the underlying applica-
tion. Third, the structure of misery digraphs must have
financial efficiency, measured in the increased hourly cost of
the cloud. Section 2 provides background on cloud applica-
tions and details on these challenges. Section 3 describes the
design of misery digraphs and shows how it addresses these
changes for state-of-the-art cloud architectures. Section 4
presents the algorithms for constructing misery digraphs,
along with a cost analysis leading to a formula to estimate
the cost of our defense. Section 5 provides a security analysis
and demonstrates the various scenarios in which misery
digraphs are useful and also discusses limitations of our
approach. Section 6 evaluates the effectiveness of misery
digraphs using an extensive simulation, showing that a
minimal misery digraph can extend attack paths to thou-
sands of steps. Our evaluation also considers using misery
digraphs to protect an Amazon Web Services web applica-
tion, demonstrating that misery digraphs can be applied in
practice with reasonable cost. The main contributions of the
work are:

1) developing a rigorous graph-theoretic model for
creating deception in a cloud network of virtual
machines (Section 3.1),

2) designing a moving target strategy in the model
where the true path to a target machine is contin-
uously moved around the network (Section 3.2),

3) presenting algorithms for automatically generating
confusing clouds using existing cloud settings (con-
sistent with practical cloud computing models) (Sec-

tion 4),
4) analyzing the results of a deep simulation of an

attack on a cloud with a misery digraph (Section 5),
and

5) demonstrating the practicality of the approach and
a concrete cost analysis by creating a prototype
AWS virtual network containing misery digraphs
(Section 6).

Misery digraphs achieve a high level of deception. Sim-
ulating an attacker, our results demonstrate that with a
reasonably fast changing misery digraph, for a network of
two machines (an application and a database server), there
is a 91% probability that the attacker must compromise 1000
virtual machines before successfully connecting to the target
server.

The presented model is tested using the core and sta-
ble technology provided by Amazon Web Services (AWS).
Misery digraphs require customized virtual machines, vir-
tual internal networks, Internet gateways, and intermachine
firewall rules. Thus, the model is consistent with cloud com-
puting practice and does not assume abstract computing or
special security services available in major cloud providers.

2 OVERVIEW OF THE PROBLEM

This section provides background on current cloud com-
puting platforms, and motivates the requirements for our
design.

2.1 Background

Cloud providers, such as Amazon Web Services (AWS),
facilitate virtual private clouds, networks of virtual in-
stances, and virtual subnets with features resembling phys-
ical networks along with other unique features such as
security groups, software-based load balancers, and elastic
IP addresses. With a fresh virtual private cloud, a system
administrator chooses from a range of virtual instance types
(virtual machines that may or may not map to physical
machines), managed database instances, or specialized in-
stances (such as a machine learning service).

One of the sixteen reference cloud architectures pro-
posed by AWS1 is the Web Application Hosting architecture
depicted in Figure 1. This architecture is an example of a
possible target for remote intruders who may be motivated
to attack web applications and gain unauthorized access
to their data. The Web Application Hosting architecture
employs software-based load balancers that route requests
to a basket of IP addresses and provide no other public
interface. The cloud user—the system administrator that
manages the cloud—creates a number of virtual instances to
execute the application logic. The cloud user has to use SSH
servers on the virtual instances since there is no physical
access to the machines. By connecting to these entry point
instances with SSH, the cloud user can walk through the
network and manage internal instances. In the architecture
of Figure 1, only the web servers face the external Internet,
the application servers process requests and mediate access
to the database server, which contains the sensitive data.

1. https://aws.amazon.com/architecture/



3

2.2 Motivation

Equifaxdatabreachandthe2014Targetdatabreachare
examplesofvulnerabilitiesthatallowedforarbitrarycode
executionbyexploiting webserversandexecutingcom-
mandsonthem.Intheseincidents,attackersdidnotdirectly
querythedatathroughvulnerableapplications,forexample
byusingSQLinjectionattacks.Instead,ina morecom-
plexattackprocess,aremotecodeexecutionvulnerability
allowedforsomelimitedexploitationofaserverthatwas
facingtheInternet.Then,theexploitedentrypointserver,
runningavulnerableversionofthewebserversoftware
allowedaccesstotheattacker,whichwassubsequentlyused
togainaccesstoother machinesthat wouldhavedirect
accesstodata.
TheEquifaxdatabreachwasreported[9]tohavebeen

aconsequenceofavulnerablityin ApacheStruts2.1.2
andbefore2.3.34[10], whichallowedforarbitrarycode
execution.Inthisattack,adecerializationflawallowsfor
unsanitizeddatatobeconvertedintoJavaobjects.Using
thesevulnerabilities,theattackeraimsforexecutingcode
withintheprogram’scontext,eventuallyleadingtoexe-
cutingcommandsonthetargetsystem. Moreover,inthe
2014Targetdatabreach,theattackersusedislandhoping,
compromisingandexploiting multiple machinestoreach
internalTargetservers[7].Unlike manySQLinjectionat-
tacksthatdependonlyonvulnerableapplications,usually
throughunfilteredPOSTorGETrequests,islandhopping
attacksuseremotecodeexecutionvulnerabilitiestogainac-
cesstointermediatemachinesandhopthroughthenetwork
toreachtheirtargets.
Themainingredientoftheseattacksistherequirement

andabilityoftheattackertoquickly moveacrossthe
networkbyconnectingtoentrypointandintermediate
machinestofindadirectaccesspathtoavaluabletarget.
Specifically,asuccessfulattackisboundtoasetofcondi-
tions:

1) Hijackingnormal HTTPrequestsfromclientsto
injectmaliciousquerieswithoutcompromisingthe
serverisnotpossibleor willonlyyieldlimited
results,makingtheattackimpractical.

2) Theattacktargetsvaluabledataorapplicationlogic
thatarenotdirectlyaccessiblefromtheentrypoint
machines,whichfacetheInternet.Therefore,attacks
cannotcommitinasinglestep.

3) Theexactstructureoftheinternaltopologyofthe
cloud-basedvirtualnetworkisn’tvisibletotheat-
tacker.Thus,theattackerhastoincorporateasearch
strategytoreconstructanabstractimageofthe
targetnetwork.

Throughoutthisarticle,weprovideanexamplecloud-
basedvirtualnetworkarchitecturethatincludesavaluable
targetto whichtheattackers wishtogaindirectaccess.
Sections2.3and2.4presentthedetailsoftheproblemand
thecapabilitiesofattackersanddefenders.

2.3 ProblemStatement

Ourgoalistodelay

Application 
servers

Synchronous 
replication

User

Facing 
Internet

Load 
Balancer

EC2 
Instance

Load 
Balancer

Web 
servers

EC2 
Instance

EC2 
Instance

EC2 
Instance

EC2 
Instance

EC2 
Instance

EC2 
Instance

EC2 
Instance

Internal

thetimetosuccessofremotenetwork
attacksmotivatedtocompromisethesourceofdatawithin
acloudapplication.Theattacker’sultimategoaliseither

Fig.1:Anexample WebApplicationHostingarchitecture
recommendedbyAWS.Thearchitectureincludesacluster
ofEC2instances(virtual machinesinAWS)hostingthe
application,isolatingaclusterofdatabase machinesthat
areonlyinternallyaccessible.Thisexamplearchitecturehas
fourEC2instancesaswebservers,fourEC2instancesas
applicationservers,andamainandareplicateddatabase
server.DB-SYNCisusedtosynchronizethetwodatabase
instances.2

tocorruptorquerythetargetdatabase.Togainaccessto
adatabaseserver,theattackermustcompromiseanentry
pointinthecloudandpropagatethroughthecloud.The
benefitofdelayinganattackerinaconfusingcloudarchitec-
tureisprovidingalargerresponsetimewindowwhenanin-
trusionisdetected.Alongenoughdelaymaycauseenough
frustrationorcosttotheattackertobesufficienttothwart
theattack.Notethatprovidingthearchitecturalsupportfor
delayingtheattacksisanorthogonalproblemtodetecting
theintrusionwithinthecloudandutilizingthedelayedand
complicatedattackpathforpreventingunauthorizedaccess
tothedatabaseserver.Itisalsoorthogonalandcomplemen-
tarytothegoalofeliminatingthevulnerabilitiesinthefirst
place.Thebestdefensewould,ofcourse,betoremovethose
vulnerabilities,leavingtheattackerwithnostartingpoint
fortheattack.But,eliminatingvulnerabilitiesfromcomplex
applicationsremainsanelusivegoal,motivatingourwork
onmitigatingtheirexploitation.
Figure2demonstratesonepossiblechainofstepsto

compromisethedatabaseserverofFigure1.Inthischain,
theattackerwillcompromiseanEC2instancethathasan
elasticIPaddress, whichisapublicIPaddressservice
providedbyAmazon WebServices.Next,withshellaccess
tothecompromised machine,theattackerwilleitheruse
astoredcredentialtoconnecttothenextEC2instanceor
useanothervulnerabilitytotakecontrolofthenextEC2
instance.Finally,oncetheattackercontrolstheEC2instance
withdirectaccesstothedatabase,theattackercanaccess
andmanipulatethedatabasedirectly.
ThearchitectureofFigure1is modeledinagraphof

firewallrulesextractedfromwithinacloud,capturingthe
connectivitystructureamongvirtualinstances.Two ma-
chinesareconnectedifthereisanetworkpathbetweenthe
two machinesandthefirewallrulesallowtraffictopass
throughthepath.InAWS,thefirewallrulesareexplicitly

2.Figures1and2arecreatedusingAWSSimpleIcons:https://aws.
amazon.com/architecture/icons/

https://aws.amazon.com/architecture/icons/
https://aws.amazon.com/architecture/icons/


Attacker
EC2 

Instance
EC2 

Instance
Elastic 
IP 

address

4

Fig.2:Achainofstepsthatanattackermusttaketowards
atargetdatabaseserver,requiringtwostepstoreachthe
targetdatabase.

definedinsecuritygroups.Formally,machineconnectivity
isdefinedbyalabelleddigraph.

Definition1.Aconnectivity-labelleddigraph,L=(V,A,),is
adigraphwherev∈Vrepresentsavertexcorresponding
toaninstanceinthecloud,Aisasetof(u,v)pairsrep-
resentingdirectededgesfromutovinthedigraph,and
:A → 2S givesthesetofpossibleconnectionsinA.

Forsomeserviceprotocols∈S,s∈ (u,v)meansucan
establishconnectionstovandvacceptsconnectionsfromu
ons.
Figure3showsanexampleconnectivitydigraphG

forthecloudofFigure1.Inthisdigraph, machinesfrom
Figure3includingloadbalancers,webservers,application
servers,anddatabaseserversareallrepresentedbyvertices.
Theundirectededgesrepresentinboundandoutbound
traffic(arcs)betweentwoverticesassetbyfirewallrules.
Theserulescorrespondtothelinesconnectingthemachines
inFigure3.The mainnetworktrafficpassesthroughthe
loadbalancer,u0.However,u0isnottheonlyentrypointin
thedigraph.Verticesu1,...,u4alsorepresententrypoints
astheyareopentoSSHtraffic.Systemadministratorsopen
accesstotheseverticesbecauseu1,...,u4arevirtualma-
chineswithnophysicalaccess.
AsuccessfulattackinGiscapableofcompromising

oneofu1,...,u4andpropagatingthroughapathtowards
u11oru12dependingontheattack’smotivation.Although
u0isalsoanentrypoint,itplaysnoroleinfacilitating
theattackexceptforforwardingtherequeststou1,...,u4.
Similarly,theloadbalancer,u5,actsasaforwarderenabling
amaliciousrequesttotravelthroughu6,...,u9.
ThecloudofFigure3allowsanattackpathwithonly

fourstepstoreachthetarget.Forexample,

π=A
SSH
−−→u1

SSH
−−→u6

HTTP
−−−→u10

DB-SYNC
−−−−−→u11.

Even withasignificantlylargerdigraph, withthesame
architecture,thesizeoftheshortestattackpathremains
unchanged,andthemorepossiblepathstothetarget,the
moreopportunitiesfortheattacker.Theintentofthiswork
istoensuretherearenoshortpathstoreachthetarget
availabletotheadversary.

2.4 ThreatModel

Weassumeatrustedanduncompromisedcloudcomputing
platform,andfocusonprotectinganapplicationrunning
onthatcloudfromasophisticatedandmotivatedadversary
whoaimstogainunauthorizedaccesstoatargeteddata
assetwithinthecloud.
Weassumeapowerfulattackerwiththeabilitytocom-

promisehostsalongapath(suchasπ

u1

u6

u2

u7

u3

u8

u4

u9

HTTP
HTTP HTTP

HTTP

u0

u5

u10

HTTP

HTTP HTTP

u11

SSH SSH
SSH SSH

{SSH,HTTP}

HTTP

HTTPHTTP

HTTP HTTP

A

SSH
SSH SSH

SSH
HTTP

DB-SYNC

{SSH,HTTP}

{SSH,HTTP}

{SSH,HTTP}

inSection2.4)through
theapplication.Suchanattackercanfindanentrypoint
machine,perhapsbyusinganIPscanofarangeofthe
hostingcloud,andcompromisethathosttolaunchattacks

Fig.3:AconnectivitydigraphforFigure1.Eachvertex
representsamachineinFigure1andeachedgecorresponds
totheconnectivityofthe machines.Internettraffic(rep-
resentedbyvertexAanddottedlines)flowstotheload
balanceru0,whichforwardsHTTPrequeststou1,...,u4.
u0isaHTTPentrypointwhileu1,...,u4areSSHentry
points.Loadbalancersaredashed,entrypointsareinblue,
andtargetmachineshavedoublecirclesandareinred.The
edgelabelscapturetheprotocolsusedfortheconnection.
Accesstou10isassumedtobethroughHTTPforthehosted
application.Edgeslabelledas{SSH,HTTP}indicatetwo
servicesallowedtopassthrough.

onotherhosts withthegoalofreachingthetarget. We
assumeotherhostsalsohavevulnerabilitiesthatcanbe
exploitedbytheadversary.

Weassumetheattackerhasnocontroloverthecloudset-
tingsthatdeterminethenumberandthetypesofinstances,
thenetworkstructure,andglobalfirewallrulesthatcontrol
accesstothevirtualprivatecloud.Anattacker whocan
compromisethecloudproviderortheapplicationowner’s
configurationaccessisbeyondthescopeofthiswork.Since
theattackerhasnocontroloverthecloud,weassumethat
theattacker’sknowledgeabouttheconnectivitystructureof
theinternalnetworkinthecloudisnotcomplete.Specif-
ically,theattackerdoesnotknowthenumberofvirtual
machinesandtheirsecuritygroupswithintheinternalnet-
work.Thisinformationcanonlybeincrementallyrevealed
byattackingthevirtualnetwork. Whenthecloudisfirst
created,theattackeronlyknowsthatforsomei,ui∈Vis
vulnerableandopentoInternettraffic,andatargetinstance
t∈V,accessiblefromui,exists.

Defender’sCapabilities.Thedefender’sgoalistocreate
acloudnetworkofvirtual machinesthatpreservesthe
originalfunctionalitywith minimaladditionalcost,while
frustratingattacks.Thedefenderachievesthisbyhavingfull
controlonthecloudsettingsandallthevirtualmachines.
Inatrustedcloudcomputingplatform,onlythedefender
cancontrolthesecuritygroups,providingorrevokingac-
cesstoindividualvirtualmachines.Forexample,inAWS
theclouduseraddsorremovesmachines,changesaccess
controlamongthe machines,andhasfullaccesstoall
virtualmachines.Theattackercannottamperwithvirtual



5

machine access control rules from within a compromised
virtual machine (for example, by changing iptable rules) as
the access control rules will be firmly overridden by the
cloud.

3 DESIGN OF MISERY DIGRAPHS

The strategy for delaying a remote command injection attack
is (i) to create a large network of decoy virtual machines
to confuse the attacker, and (ii) dynamically relocate and
modify the decoys to waste the attacker’s resources and
frustrate the attacker. Increasing attack complexity and du-
ration starts with expanding an initial connectivity digraph
of an existing virtual network into one containing misery
digraphs.

3.1 Defining Misery Digraphs
A misery digraph contains the original virtual network
combined with additional deceiving structure. In a misery
digraph, at each point in time, only a single path has bidi-
rectional access to the target server. As a random function of
time, uniformly selected pairs of decoy virtual machines are
replaced and switch positions within the misery digraph.
As a result, misery digraphs change the true path to the
target, disabling the attacker from learning the structure of
the virtual network.

We first define a generic misery digraph, building on
our definition of a connectivity-labelled digraph from Sec-
tion 2.3. Then, we define canonical misery digraphs, and
discuss the main two properties of misery digraphs, which
is a periodic relocation of machines and hiding the true
path towards the target. A symbol reference is provided in
Table 1.

Definition 2. Let L be a connectivity-labelled digraph with a
path π = (u1, ui1 , . . ., uim , uk+1) connecting an entry vertex
u1 to a target vertex uk+1 and containing the reverse path
πR = (uk+1, uim , . . ., ui1 , u1). π is enlarged to a path of
length k in the digraph

G =
(
{ui}k+1

i=1 ,
{

(ui, ui+1), (ui+1, ui)
}k
i=1

)
consisting of a single path p = (u1, . . ., uk+1) from the entry
vertex u1 to the target vertex uk+1, and the reverse path
pR = (uk+1, . . ., u1). A misery digraph, G∗, for π contains G
as a subdigraph, exactly b paths q(j) =

(
u1, v(j)2 , . . ., v(j)k

)
,

j = 1, . . ., b, of maximal length k − 1, as well as the arcs(
uk+1, v

(j)
k

)
and reverse paths

(
q(j)

)R
, j = 1, . . ., b. The

paths q(j), j = 1, . . ., b, mirror p in that id u` = id v(j)` (in
degrees) for ` = 2, . . ., k and od u` = od v(j)` (out degrees)
for ` = 2, . . ., k − 1. Note that G∗ has depth k, some of
the v(j)` may equal u`, and G∗ can be constructed in many
different ways.

Two example misery digraphs are created for the virtual
network in Figure 1 and depicted in Figure 4. The connectiv-
ity digraph of Figure 3 can have multiple misery digraphs,
one for each path to target, which can be constructed in
various ways. In this scenario, two original paths to u10
(through SSH and HTTP) are replicated in completely re-
dundant paths. The example shown in Figure 4 captures one
possible format of misery digraphs created for a path that

Symbol Description
L A connectivity-labelled digraph
π and πR A path and its reverse in L
G An expanded path from L, which includes extra vertices
p and pR A path and its reverse in G
G∗ A misery digraph with b paths, including G
k Depth of a misery digraph G∗

TABLE 1: A table of symbols used in Definition 2.

uses the SSH service (Figure 4-A) and a similar path that
uses the HTTP service (Figure 4-B). In both misery digraphs
A and B, only u15 sends outbound requests to u10. There
are three other alternative misery digraphs with a different
vertex that has direct SSH or HTTP access to u10.

3.2 Canonical Misery Digraphs
Misery digraphs can take many forms and produce strate-
gies with various implications. Our goal is to find designs
that maximize the cost for the attacker relative to the ad-
ditional cost for the application owner. These requirements
drive our strategy:

1) A misery digraph should not include vertical short-
cuts. That is, a misery digraph should not include
arcs that lead to pruning entire subgraphs.

2) A misery digraph cannot connect the target server
to more than one vertex in the entire digraph. Violat-
ing this requirement will make the misery digraph
easier to traverse.

3) Target servers (known to the cloud user) should be
pushed to the deepest layer in the graph, making
them only accessible by paths of at least length k.

Minimally fulfilling the requirements above are canonical
misery digraphs:

Definition 3. The canonical misery digraph, G̃∗, is a layered
digraph with d + 1 layers. Layer 1 contains only the entry
point a, layer d + 1 contains only the target point t, and
the underlying undirected graph of layers 1, 2, . . ., d is a
complete balanced k-ary tree rooted at a, with each edge
{r, s} corresponding to arcs (r, s) and (s, r) in G̃∗. For each
leaf node w in this k-ary tree (each node w at level d) there
is an arc (t, w) in G̃∗, and exactly one arc (w, t) from level d
to t in G̃∗.

Canonical misery digraphs contain k-ary trees that are
balanced and complete, giving the attacker no clue for
preferring one path over another. As the attacker traverses
the graph, the structure of the digraph only reveals alter-
native paths that all appear equivalent to the attacker. Since
the target is also moving, between two points in time the
true path towards the target changes, making some of the
attacker’s discoveries obsolete.

3.3 Relocating the Decoys
Definition 2 defines the structure of misery digraphs, which
provides a platform for deceiving intruders. For an in-
creased deception in misery digraph, two mechanisms are
introduced. First, misery digraphs change in time, moving
the true path to target and resetting decoy machines using
a random process. Second, misery digraphs hide the true



6

pathtotargetbyreplicatingthetraffictowardsit.Inthe
remainderofthissection, wefirstpresenttherelocation
processfor miserydigraphs.InSection3.4,wepresenta
methodforhidingthetruepathtotarget.
Relocatingmachinesinthenetworkinvolvesarandom

relocationprocess,whichinterchangestwopairsofvertices
withinasinglelayerina miserydigraph.Asarandom
functionoftime,thecurrentactivearcamong

uk,uk+1 ,v
(1)
k ,uk+1 ,...,v

(b)
k ,uk+1

isinterchangedforadifferentarctothetargetvertexuk+1.
Thisensuresthataccesstothetargetmachineisnotstatic
andchangesintime.Forrandom1≤ i <j≤ band

2≤ m <k thepairofarcs v
(i)
m,v

(i)
m+1 ,v

(j)
m ,v

(j)
m+1

isreplacedbythepairv
(i)
m,v

(j)
m+1 ,v

(j)
m ,v

(i)
m+1 , which

randomizesG∗.Therandomnessensuresthatateachpoint
intimetwoentirepathsinthedigraphare modifiedby
replacingthechosen machineswithnewvirtual machine
imagesandswitchingtheirpositionsinthedigraph.Evenif
theattackerhadalreadycompromisedalargeportionofthe
selectedpaths,theattacker’seffortislost.
Forexample, miserydigraphs AandBofFigure4

changeintimetocreateamovingtarget.Randomlychosen
pairsofedges mustberelocatedasafunctionoftime,
dynamicallymodifyingthepathstotarget,andrefreshing
thecorrespondingdecoyvirtualmachines.(u6,u14)maybe
chosentoswitchwith(u12,u15),resultinginalostattack
effort,iftheattackerhadchosenapathcontaininganyof
thefournodes.
Inarealcloud-basedvirtualnetwork,relocatingthe

decoystakesplacebymodifyingthecloud’sfirewallrules
thatdefinetheaccessibilityof machines.Forexample,in
Amazon WebServices,asecuritygroupof machinesde-
finesfirewallrulesandcontrolsthenetworkreachability
of member machinesbasedontheprotocolandtheport
number.AsdiscussedlaterinSection6.2,bydynamically
modifyingsecuritygroups, machinescanchangelocation
inthe miserydigraphs.Also,anotherrequirementofthe
relocationprocessistoresetmachinesthatwererelocated.
MachinesareshutdownusingremoteAPIsavailabletothe
cloudowner,andarereplacedwithnew machinesusing
adiversifiedsystemconfiguration(forexample,runninga
differentoperatingsystem).

3.4 HidingthePathtoTarget

u1

u6

u10

u14u13

u12

u5

A (SSH) B (HTTP)

u16u15

u1

u6

u10

u14u13

u12

u16u15

Theeffectivenessof miserydigraphsdependsontheat-
tackernotbeingabletodistinguishcorrectguessesforthe
nexthostfromincorrectones.Tomaintainanexponential
advantageovertheattacker,itisimportantthattheattacker
hasnowaytodetermineiftheattackisontherightpath
untilthatpathhasbeenfollowedallthewaytothetarget.
Theattackerisassumedtohavefullaccesstoeach

compromisedhost,socanfullyobserve(andalter)that
machine’sbehaviorandtheflowofrequests.Hence,itis
importantthattheattackerwhohasfullycompromiseda
nodeatonelayer,canonlydeterminewhichnodesatthe
nextlayerareconnectedtothecompromisednode,without
learningifthecompromisednodeisontherealpath.To
resolvethispotentialproblem,ateachlayerofthemisery

Fig.4:Twomiserydigraphswithextrapathsandvertices
toconfusetheattackeraboutthetruepathtothetargetu10.
ThemiserydigraphAisforSSHandthemiserydigraph
Bisfor HTTP.Topreventside-channelinformation,all
requestsfromtheentrypointare multicasttoallpaths.
MiserydigraphsAandBchangeintimebychangingthe
vertexthathasanoutgoingarctowardsu10.

digraphauser’srequestis multicasttoallnodesinthe
successivelayer.Thatis,eachdecoyforwardstherequests
toallothersitisconnectedtointhefollowinglayer.On
thewaybackfromthetargetserver,alldataresponsesmust
alsobesentbackalongallpathsconnectedtothetarget
server.Forexample,inFigure4onlythearc(u15,u10)carries
actualHTTPrequeststothetargetvertexu10,butthedecoy
nodesallsendthesamerequests.Decoysmustbeindistin-
guishablefrompathnodes,soneedtofullyduplicateallthe
computationandcommunicationthatwouldbedoneonthe
actualpath.

Weassumethatallrequesttrafficgoalongapathfrom
theentrypointstothetargetvirtualmachinefromwhich
theresponsesaresentback.Internaldecoyvirtualmachines
onlygenerateresponsestorequestsfromthepreviouslayer.
Decoysdonotmodifytheresponsesanddonotmaintain
internalstates. Also,itisassumedthattheapplication
doesnotrequiremaintaininginternalstatesthroughoutthe
network.

3.5 HandlingFaultTolerance

Majorcloudprovidersincludeloadbalancerservicesand
recommendarchitecturesthatusereplicasofweb,applica-
tion,ordatabaseservers. Miserydigraphsaredesignedto
integratewithloadbalancersasdemandedbythearchitec-
ture.

AsshowninFigure3,theloadbalanceru0induces
four mainpathstothetargetu10,whicharefurthersplit
into16pathsasthefourpathspassthroughthesecond
loadbalanceru5.AccordingtoDefinition2,eachofthe
16pathstothetargetrequiresaseparatemiserydigraph,
whichcanbeexpensivetoimplement.Optimizingmisery
digraphgenerationforpathsthatincludeloadbalancers
involvesthedesignofaloadbalancersystemandsplitting
theconnectivitydigraphpathsthatinvolveloadbalancers.

First,therequirementforloadbalancerstofunctionina
miserydigraphistobalancetherequesttraffictowardsthe
leastoccupiedsuccessormachine,andmulticasttheresponse
trafficbacktoallpredecessormachines.Forexample,u5in
Figure3mustsendtherequesttotheleastoccupiedmachine



u1

u0A

u5

u6

u10

Multicast ⇡
Balance ⇣

7

Fig.5:TwomiserydigraphsarecreatedfortheHTTPpath
(A,u0,u1,u5,u6,u10)fortheconnectivitydigraphof
Figure3.

in{u6,...,u9},andmulticasttheresponsetoallmachines
in{u1,...,u4}.
Second,sinceloadbalancerscreateoverlappingpaths

towardsthetargetserver(astheymustconnecttomultiple
machinesforfaulttolerance),miserydigraphredundancyis
avoidedbysplittingpathsatloadbalancersintosubpaths.
Aloadbalanceristreatedasatargetfortheincoming
subpath,andasthepredecessortoamachinethatistreated
astheentrypointtoanoutgoingsubpath. Withthissplit-
tingtechnique, miserydigraphsprovideredundanciesto
frustrateattackersforeachsubpath withoutduplication
fromoverlappingpaths.TheexampledepictedinFigure5
demonstratessplittingofapathstartingattheuserAand
endingatthetargetdatabaseu10,passingthroughtheload
balancersu0andu5.Thesubpath(A,u0)isunchanged,
andone miserydigraphappearsbeforeu5andasecond
appearsafteru5.Therequestswillonlytravelthroughone
subtreeofu5(onlyoneshowninFigure5)whileresponses
aremulticastbacktoalltheverticesconnectedtou5inthe
layeraboveit.
Loadbalancersareeitherpartofthecloudprovider

orcouldbeimplementedasvirtual machines. Wedonot
assumethatattackerscannotcompromiseloadbalancers.A
compromisedloadbalancerdoesnotprovideusefulinfor-
mationtoattackers.

4 CONSTRUCTIONOFMISERYDIGRAPHS

AsdefinedinSection3,miserydigraphsenlargeindividual
attackpathsofaconnectivitydigraphthatconnectsentry
pointstothetarget. Apracticalsolution mustcombine
miserydigraphsintoanewconnectivitydigraph(here-
afterreferredtoasthefinalconnectivitydigraph)thatcan
bedeployedinthecloud,byfirstconstructinganinitial
connectivitydigraphgivenacloud’sfirewallandnetwork
connectionrules,andthengeneratingmiserydigraphsthat
containk-arytreeswithd+1layers.
Assumethattheconnectivitydigraphforanapplication

onlycontainsthenecessaryarcsforensuringdeliveryof
applicationrequestsandresponses. Atahighlevel,the
constructionofthefinalconnectivitydigraphforaninitial
connectivity-labelleddigraphGinvolves:

1) generatingasetΓcontainingsimpleconnectivity-
labelleddigraphsGsforeachservices,

2) computingasetPofsubpathsofallpathsconnect-
ingtheentryvertextoatargetvertexinG,

3) convertingeachp∈Ptoamiserydigraph,and
4) combiningallthemiserydigraphsinafinalconnec-

tivitydigraph.

Next,wepresentthealgorithmsforexecutingthesteps
aboveanddevelopacostanalysisasa metricforestab-
lishingabaselinetoevaluatetheeconomicimpactofusing
miserydigraphsinacloud.

4.1 ConstructingtheInitialGraphs

Thefirststepistoconstructtheinitialconnectivity-labelled
digraph,G,fromtheapplication’sarchitecture. Westartby
preparingastackofmachineIPaddressesM andasetof
firewallinboundandoutboundrulesRas(m1,m2,s)indi-
catingthatthemachinewithIPaddressm1canaccessthe
machinewithIPaddressm2onprotocols.Thisinformation
isavailablefromthecloud’sconsoleinplatformssuchas
Amazon WebServicesandGoogleCloudPlatform.Once
therulesaregatheredfromthecloud’sconsole,weconstruct
aconnectivity-labelleddigraphGbyassigningavertexto
everym∈M andaddingalabelledarc(ui,vj,Lij)where

Lij=
(ui,vj,s)∈R

{s}.

Therewilllikelybelabelsinvolving multipleservices.
Toincreasetheefficiencyof miserydigraphconstruction,
wesplitthecloud’sconnectivitydigraph Gintosimple
connectivitydigraphsin whicheverylabel (u,v)isthe
samesingleservice{s}.Algorithm1splitsaconnectivity-
labelleddigraphGintoasetofsimpleconnectivity-labelled
digraphs,Γ.EachGs∈Γisdefinedforaservices∈S,
whereSisthesetofallservicesappearinginG=(V,A,).

Algorithm1SplitaconnectivitydigraphG=(V,A,).

1:foreachs∈Sdo
2: SetAs←∅,s←∅
3: foreachu∈Vdo
4: foreachv=u∈Vdo
5: if(u,v)∈Aands∈ (u,v)then
6: As←As∪{(u,v)}
7: s← s∪{((u,v),{s})}
8: endif
9: endfor
10: endfor
11: Γ←Γ∪{(V,As,s)}
12:endfor
13:returnΓ

4.2 ComputingPathstoTarget

Thenextstepfindsthepathsforconstructing miserydi-
graphs.Recallthatamiserydigraphreplacesasinglepath
fromanentrypointtoatarget(Definition2).Assumingthe
digraphs,Gs∈Γ,donotincludeunnecessaryarcsandare
notcomplete,findingallpathsfromeachentrypointtoeach



8

target machine can be done efficiently using repeated calls
to Dijkstra’s shortest path algorithm.

Algorithm 2 examines the vertices in each Gs to decide
if a vertex is an entry point, which heads a subset of
paths to the target. The function nextpath(Gs, u, v) finds the
next unique shortest path from u to v in Gs. In practice,
entry point vertices can be stored in a list that includes all
vertices that allow inbound access on an elastic IP address
(accessible from outside the cloud) on the service s for which
the simple connectivity digraph Gs is constructed.

Let Ls ⊆ Vs be the set of load balancer vertices in As,
Os ⊆ Vs denote the set of all entry point vertices in As, and
Ts ⊆ Vs denote the set of all target vertices in As.

Algorithm 2 Find all paths and subpaths between en-
try points, load balancers, and targets in each Gs =
(Vs, As, `s) ∈ Γ.

1: Set P ← ∅
2: for each Gs ∈ Γ do
3: for u ∈ Os (entry point vertices) do
4: for each v ∈ Ts (target vertices) do
5: loop
6: p← nextpath(Gs,u,v)
7: if p = ∅ then
8: Break
9: end if

10: if p contains b1, . . ., bj ∈ Ls then
11: split p at b1, . . ., bj into j + 1 subpaths (as

described in III.C): p1, p2, . . ., pj+1

12: P ← P ∪ {p1, . . . , pj+1}
13: else
14: P ← P ∪ {p}
15: end if
16: end loop
17: end for
18: end for
19: end for
20: return P

The output of Algorithm 2 is the input to the final
construction, which converts every (sub)path in P to a
misery digraph containing a canonical misery digraph. The
union of the resulting misery digraphs will form the final
connectivity digraph that can replace the original cloud
connectivity digraph G.

4.3 Constructing The Final Connectivity Digraph
The final construction takes each path p ∈ P (an original
path from an entry point to a target in the connectivity di-
graph G or a subpath from the splitting in Algorithm 2) and
replaces it with a misery digraph. Before the replacement,
we expand all paths to be at least the minimum path length
d ≥ min

p∈P
|p|, where |p| denotes the length of path p. We

choose the fanout k ≥ 2 of the canonical misery digraphs.
Thus, this construction replaces every path in P with a
misery digraph containing a canonical misery digraph of
d+ 1 layers and fanout k.

The enlargement requires at most max{0, d − |p|} new
vertices, and the canonical misery digraph requires another
(kd − 1)/(k − 1) − d new vertices. The final result, after

processing each p ∈ P and taking the union of all these
misery digraphs, is the misery digraph G∗ for the original
connectivity digraph G.

4.4 Additional Cost of Misery Digraphs
To evaluate the feasibility of misery digraphs as a defense,
we need to understand the costs required by the defender
relative to the increase in adversary cost. The main cost
for the defense is the need for the decoy virtual machines,
which must appear indistinguishable from the real hosts to
intruders. We analyze the extra cost in terms of the increase
in the hourly rate for the entire cloud-based network as a
result of applying misery digraphs.

The cost of a cloud is modeled as a summation of the cost
of all services used to operate the cloud. Let si be a service
in the cloud, including virtual machines, load balancers,
storage instances, or database instances. For M services, the
total hourly cost of a cloud is:

M∑
i=1

h(si) + n(si) + d(si),

where h is the direct cost of the service (e.g., hourly rent of
a virtual machine), n is the networking cost of the service
(e.g., hourly traffic usage of the service), and d is the identity
cost of the service (e.g., reserved IP addresses for facing the
Internet).

With the current technology in major cloud providers
(AWS and Google Cloud Platform), a misery digraph only
increases the hourly direct cost of the cloud by

M+N∑
i=M+1

h(si),

where N is the number of added decoy vertices in the
misery digraph. The network n(si) and identity costs d(si)
are zero for all decoy vertices as they only use internal
networking without Internet traffic charges or the cost of
reserving public IP addresses.

Note that the choice of decoy virtual machines must be
relative to the choice of machines in the original cloud. For
example, when the original cloud runs virtual machines of
medium capability (two cores and 4GB of memory), decoy
servers in each path to target should have at least two cores
and 4GB of memory. This is to avoid saturating the decoy
virtual machines with a high number of requests received
from more capable virtual machines in the network.

When using misery digraphs, the number of requests
and responses in the network do increase (and must, as nec-
essary for eliminating side-channel attacks). Thus, the orig-
inal virtual machines and the decoy machines require extra
networking capabilities. For example, for every request in an
original path p to the target, a user’s request is represented
once at the application layer. When using a misery digraph,
the same request is multicast to all subsequent branches,
and thus generates multiple responses (to hide the actual
path). When implementing the multicasting service, each
vertex will only wait for a single response and discard the
rest. While this operation consumes extra bandwidth, since
the networking is internal (within one data center), the extra
cost is zero.



9

Finally, the total increased cost of a cloud with a misery
digraph depends on the expansion parameters used for each
canonical misery digraph. For each attack (sub)path p, the
number of extra vertices is

e(p) = max{0, d− |p|}+
kd − 1

k − 1
− d (1)

and the total extra cost is proportional to∑
p∈P

e(p). (2)

Note that misery digraphs consider only unique paths
from entry points to the target machines. Thus, clearly, paths
with overlapping vertices will not require additional decoy
vertices.

5 SECURITY ANALYSIS

Including a canonical misery digraph in every subpath
guarantees that every path connecting an entry point vertex
to a target machine vertex has length at least d vertices and
a misery fanout of at least kd−1. The enlarged connectivity
digraph will add complexity and time to an attack targeting
a server that is required to be accessible only by a leaf of a
k-ary tree in a misery digraph.

Recall that the attacker’s goal is to compromise the
database server by finding vulnerabilities in vertices along
paths to a target. In a cloud that contains misery digraphs,
assuming the attacker has no prior knowledge about the
structure of the cloud, an attacker is likely to either attack
the network by performing a depth-first attack or a breadth-
first attack, because reaching the target server requires find-
ing a path through which the intrusion can proceed. This
section analyzes both attack strategies and estimates the
delay incurred as a result of misery digraphs. Section 5.4
describes some attacks which are not mitigated by our
approach.

5.1 Resilience Against Reconnaissance Attempts

Reconnaissance attacks including DNS and IP scanning,
operating system fingerprinting, examination of the cloud
computing provider, and exploring the internal network
architecture of a cloud are effective ways for attackers to
launch informed attacks. Reconnaissance steps are neces-
sary for any attack attempt to bypass the protection of
misery digraphs. When an intruder gains access to the
cloud’s entry point, launching an effective attack on the next
layer of decoy machines includes two major steps.

Collecting System Details. The attacker collects technical
systems-level visible details of the machines accessible from
the entry points. The knowledge of the hosting cloud com-
puting provider is necessary to predict the range of regional
elastic IP addresses. Elastic IP addresses can identify decoy
machines in misery digraphs but are not static. Periodic
switching of attack paths (Section 3.3) imposes a shuffling of
these addresses, which is shown to be an effective general
moving target strategy [15]. Further, the attacker is assumed
to collect operating system signatures and configurations.
The attacker sniffs the traffic when a node is compromised

to view the flow of traffic, provided enough privileges are
gained.

Reconnaissance information collected from details are
necessary for the attacker to proceed. This information does
not undermine the security provided by misery digraphs.
This is because misery digraphs provide an architectural
solution that does not rely on the specific functionality of
machines. Further, misery digraphs allow for the probability
that decoy machines are exploited by attackers. At each time
period, when a switching occurs, any reconnaissance infor-
mation or exploited machines on the switched machines are
rendered obsolete.

Reconstructing the Network Architecture View. Once
gained access to an entry point machine, the attacker at-
tempts to construct an architectural view of the internal
virtual cloud-based network. This search is itself a recon-
naissance activity in which the attacker must use a graph
search strategy to find the moving target.

Misery digraphs, as specified in Section 3, are designed
to provide identical paths towards any destination. This is to
prevent attackers from pruning tree branches within a mis-
ery digraph’s k-ary tree, thus, gaining a shortcut towards the
target. The identical paths are provided using three critical
design decisions:

1) The initial structure of misery digraphs provides
equal numbers of vertices accessible from any ver-
tex. No path in the digraph is distinctly identifiable
in terms of its proximity to the target.

2) The network traffic maintained by misery digraphs
also follows an identical distribution of requests.
That is, each decoy forwards the requests to all suc-
cessive machines without prioritizing or neglecting
any machine. Similarly all responses are forwarded
back up to the parent vertices.

3) Connections from any vertex ui to any other vertex
uj cannot occurs unless ui is a direct parent of uj .
Accordingly, no vertex ui shall establish connections
to a vertex uj if ui is more than one layer away. As
this property is enforced by the rules set using the
cloud computing provider, it ensures that attackers
cannot construct shortcuts towards the target.

In Section 5.2, two attack strategies are described for
conducting an effective search against misery digraphs.
Later in Section 5.3, the probability of success for reaching
a particular vertex is assessed, and finally in Section 6.1.1, a
simulation evaluates the overall security of misery digraphs
against these strategies.

5.2 Attack Strategies
We first examine the available attack strategies, which pro-
vide the basis for a probabilistic analysis of attack success.
These strategies are designed to search the structure of
misery digraphs and outpace the moving target defense
provided by the cloud. A depth-first attack (DFA), inspired
by depth of stack routing [12], uses a depth-first search
strategy to construct a single path towards a target starting
with a vulnerable entry point. Next, the attacker is faced
with a choice of machines to (i) test for vulnerabilities and
(ii) craft an attack. To continue with a pure DFA, the attacker



10

repeats the previous step by choosing one of the available
IP addresses to attack. These repeated “compromise and
choose” steps will continue until the attacker reaches a
vertex that has an arc towards the target database. A key
guarantee of clouds made with misery digraphs is that by
examining the structure of the cloud, the attacker will not
be able to make intelligent guesses about the next vertex to
exploit.

A better approach is a breadth-first attack (BFA), inspired
by breadth-first search algorithms for network routing (such
as [2]), using which the attacker performs a breadth-first
search to construct a path towards a target starting from a
vulnerable entry point. Assuming the attacker has a set of
IP addresses to invade next, the strategy in BFA will involve
a per layer attack of all vertices in the graph until a leaf
is found that has a direct arc to the target (which provides
access to the target server). A BFA systematically explores
the IP ranges available to the attacker. As misery digraphs
contain k-ary tree structures, the available IP addresses will
only enable a layered attack. In a breadth-first attack, the
attacker searches for an attack path by discovering the entire
structure of the misery digraph.

5.3 Swiching Probability

Consider a trivial connectivity digraph with one entry point
and one target, replaced by a canonical misery digraph with
(kd − 1)/(k − 1) vertices and n = (kd − 1)/(k − 1) − 1
edges in the embedded k-ary tree. This probability analysis
considers a breadth-first attack that randomly chooses a
vertex to compromise at each level.

We analyze the probability that a breadth-first attack
to reaches level d (one step from the target) in a cloud
with a randomized misery digraph. Let D (delay) be the
time required to compromise a vertex, and r the period
at which two random pairs of arcs at the same (random)
level are interchanged (Definition 2). After each time period,
we assume the vertices at the heads and tails of these arcs
are reset to uncompromised states (which the attacker must
compromise again).

For the time interval D after an edge switch, the proba-
bility that a given edge {u, v} is not switched is(

n− 1

n

)bD/rc
, (3)

and the probability of not switching m distinct given edges
(required to maintain a path containing those m edges for
time D, so as to continue the attack from the last vertex in
that path) is (

n−m
n

)bD/rc
. (4)

For example, with a delay D = 0.5, an edge switch
period r = 0.01 (relative to some time unit), a misery
digraph with k = 2 and d = 5 (n = 30), and a target
compromising path of length m = 4, the probability of
success would be 0.00078. If D = 1.0, that probability drops
to 6 · 10−7. The expected delay is roughly the reciprocal of
this probability times D. Furthermore, note that even if the
attacker is successful in reaching the target, access to the
target is fleeting as it is only a matter of time before a path

edge required by the attacker is switched and the machines
on the two end points are reset (disrupting the attack and
requiring repeated effort from the attacker).

The edge switch mechanism combined with the con-
founding architecture of the misery cloud significantly low-
ers the probability of reaching a vertex with direct access
to the target. As a result, attacks are delayed depending
on the ratio D/r, and by the misery digraph itself even
without the randomization. In practice, the edge switch can
be implemented in seconds, as fast as sending a request to
the cloud provider and initiating a machine reset, thereby
eliminating an entire path constructed by the attacker.

5.4 Limitations
The goal of misery digraphs is to significantly delay an
attack when the attacker’s purpose is mainly to gain access
to a database server in a cloud. Misery digraphs by them-
selves do not directly mitigate other types of attacks, but are
generally complementary with defenses for other attacks.

SQL Injection. Misery digraphs do not target attacks that
can only succeed using SQL injections into vulnerable ap-
plications. Such attacks do not rely on the structure of the
network and cannot be defended against solely using an ar-
chitectural solution like misery digraphs. However, misery
digraphs can potentially couple with a parallel strategy that
introduces diversity in various layers of the digraph. For
example, if a vulnerable server in the entry point allows for
a wide data query such as SELECT * FROM t, a diversified
server in the next layer of the digraph can detect this. Thus,
introducing diversity at each layer of the misery digraph can
be a solution for attacks that succeed with simple requests.

Denial of Service. An attacker compromising a machine
at any layer of the misery digraph may attempt denial of
service by modifying the application, stopping the services,
or similar approaches. Misery digraphs do not provide a
solution for denial of service attacks, which have been
heavily studied in the literature (Section 7). Because of the
additional network traffic caused by multicasting between
the layers, misery digraphs may even provide attackers with
some additional opportunities for denial of service attacks.

Compromised Cloud. Misery digraphs depend on the in-
tegrity of the cloud. If the credentials for a cloud console
are stolen, all security measures can be subverted. A misery
digraph premise is that vertices will be compromised, but
doing so takes significant time for each vertex along a path.
Thus cloud users should avoid sharing credentials among
machines.

6 EVALUATION

This section aims to examine the effectiveness and prac-
ticality of misery digraphs. We first present an extensive
simulation of the breadth-first attack against a changing
misery digraph, showing that an estimated high delay in
the attack. Then, we present a discussion on a prototype
AWS misery digraph and the needed configuration. We
implemented misery digraphs and the switching mecha-
nism (Section 3.3) using AWS Developer tools3. Finally, we

3. https://aws.amazon.com/tools/



1

3 4

0

2

5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

A

11

Fig.6:Amiserydigraphwithk=2andd=5usedfor
simulatingandmeasuringattacksuccess.

demonstrateaconcretecostanalysisbasedonrunningour
prototypeAWSmiserydigraphforacompletebillingcycle.
Theexamplenetworkusedinthissectionisbasedon

asimplifiednetwork,havingawebserverandadatabase
server.Thenetworkisthenexpandedusingtheconstruction
algorithmsinSection4tocreateamiserydigraphnetwork.

6.1 MeasuringtheAttackSuccess

Definition2requiresthatmiserydigraphschangeovertime.
Forexample,inthemiserydigraphofFigure6,asafunction
oftime,the(underlyinggraph)edge{u4,u10}israndomly
chosen(usingthecloudprovider’stools)toswitch with
{u6,u13},whilethemachinesonbothendsofeachedgeare
resetandreplacedwithnewlycreatedmachinesonthefly.
GivenamiserydigraphG,atanytime,theattackercannot
guaranteethattheobservedstructureofGremainsintact.
EveniftheattackermanagestopredictthestructureofGby
discoveringthefirstfewlevels,astheedgesareswitched,
theattacker’sunderstandingofthemiserydigraphissoon
obsolete.Theedgeswitchingmechanismmodifiesthepath
tothetarget,resultinginalossofeffortforanattackonthe
modifiedpath.

6.1.1 Attacker’sSuccessinOutpacingtheDefense

Tomeasuretheexpecteddelaycausedbymiserydigraphs
weimplementedadiscreteeventsimulationofanattackon
asimplecloudarchitecture.Theattacksimulation’sgoalis
toestimatetheattacksuccessmetric,thenumberofhoststhat
mustbecompromised(orre-compromised)beforeanattack
succeeds.
Simulationresultsareintwoparts.Thefirstpartimple-

mentstheattackstrategiesofSection5.2.Thesecondpart
incorporatesabranchpruningoracle,allowingtheattacker
tooccasionallygaininsiderinformationindicatingthatthe
currentpathdoesnotleadtothetarget.

AttackingWithoutPruning.Thesimulationusesthemisery
digraphofFigure6.Aclientattackerstartswithvertex0,
whichisassumedtobeexploitable.Theattackerbuildsa
currentunderstandingofthe miserydigraphGA, which
initiallyhasV ={A}.Thecloudis modeledasaserver
andhastheinitialmiserydigraphG,andalsomodifiesG
everyrunitsoftime.TheattackerspendsaconstantDunits
oftimetocompromiseavertex.Whentheattackstarts,after
spendingtimeD,theattackersendsthepath(A,0)tothe
cloud,indicatingthat0iscompromised.Toprovethatthe
attackerhascompromisedthecurrent0(before0

Mean=1089.484
Median=787
Minimum=7
Maximum=7426
D=0.10001,r=0.05

0 1000 2000 3000 4000 5000 6000 7000 8000

Attack success metric

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Pr
o
b
a
bi
li
t
y

isreset

(a)

Mean=8360.211
Median=8677
Minimum=12
Maximum=14737
D=0.20001,r=0.05

0 5000 10000 15000

Attack success metric

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Pr
o
b
a
bi
li
t
y

(b)

Fig.7:Histogramofsimulationresultsinwhich(a)thecloud
isabouttwicefasterthantheattacker,and(b)thecloudis
aboutfourtimesfasterthantheattacker.Thex-axisshows
theattacksuccessmetric,thenumberofverticestheattacker
trieduntilreachingthetarget.They-axisshowsthesample
probabilityoftheattacksuccessmetric.

andreplacedbyanewmachine),thecloudalsorequiresthe
attackertosend0’skey.Thecloudverifiesthekeyandthe
pathandrespondswiththeverticesinthenextlayerofthe
miserydigraph,thatis,{1,2}alongwiththeirkeys.
Thisinteractioncontinuesbetweenthecloudandthe

attackeruntiltimerhaselapsedandachangeoccursin
themiserydigraph,whichmodifiesapairofedgesandthe
machinesontheirends.Afterthechangetothedigraph,if
theattackersendsthecloudapaththatwasmodified,the
clouddetectsthis modificationbyeitherfailingtoverify
akeyorthepathitself,respondingtotheattacker with
anemptylist. Whentheattackerreceivesanemptylist,
theattackerknowsthatGAisnolongerconsistentwithG
andtriesanothervertexthatwasobservedbefore.Whenall
theobservedverticesaretriedwithoutsuccess,theattacker
restartsatvertex0.
Thesimulationwasexecutedwithparameters(D=0.1,

r=0.05)and(D =0.2,r=0.05).Eachexperimentis
repeated1000times,eachtimeexecutingacompletecycleof
attackreachingthetarget.Althoughsystemconfigurations
mayprohibitactualrepeatedattacks,wedidnotimplement
thisprohibitiontotestthestrengthofmiserydigraphs.
WithD=0.1,asthehistogramsofFigure7show,there

isa0.41probabilitythattheattackrequiresatleast1000
verticesbeforeitreachesthetarget.Inthiscase,during



12

the 1000 iterations, the attack succeeded only four times
with ten or fewer vertices. With D = 0.2, there is a 0.912
probability that the attack requires at least 1000 vertices to
reach the target. The observed minimum number of attack
steps increases from seven to twelve, with only a single time
in 1000 iterations in which the attack succeeded with 20 or
fewer steps.

The conclusion from the simulation results is that given
a reasonably fast cloud modification procedure, the attack
can take thousands of steps in a digraph where the actual
shortest path to target consists of only five steps. Even
a breadth first attack with a brute force strategy would
only require 30 steps; however, with the misery digraph’s
structure and switching mechanism, these minimums are
highly unlikely to occur.

Attacking With Pruning. One might wonder if the attacker
could use an oracle, which represents some leakage of the
exploited machines, to decide if the current path will not
lead to the actual target.

6.2 Are Misery Digraphs Practical?
To test whether current technology permits creation of
misery digraphs, we developed a tool that can connect
to an Amazon Web Services cloud, download machine,
connectivity, and firewall information, and create a con-
nectivity digraph. The tool can transform an applications’s
connectivity digraph to a misery digraph. We have re-
leased the code under an open source license, available at
https://github.com/kussl/mdg. This section empiri-
cally evaluates our misery digraph approach with respect to
Amazon Web Services (AWS) using our tool.

AWS provides elastic virtual machines, IP addresses,
virtual private clouds, customized routing rules, software-
based firewalls, and load balancers, which all can help in
building an application architecture that includes misery
digraphs. AWS was used to create a cloud misery digraph
with parameters k = 2 and d = 3, hosting a web application
that queries a database and provides summary data.

The prototype misery digraph is created using basic
AWS tools, mimicking a simplified web application archi-
tecture similar to the one in Figure 1. One EC2 instance
(an AWS virtual machine), N1, is responsible for receiving
requests from the Internet, and so is created with a subnet
with an Internet gateway. In AWS, machines join security
groups and the firewall rules can be configured for services
provided by the machines in the group. Host N1 is in
a single group that has the inbound HTTP rule allowing
traffic from all IP addresses. As an externally-facing host,
N1 does not include any credentials for the database. In-
stead, it will forward all database requests to the following
layer containing two EC2 instances, N2 and N3. The EC2
instances N2 and N3 each include an Apache server and
are only responsible for receiving and forwarding HTTP
requests. These nodes are in a security group that allows
inbound HTTP and SSH traffic only from N1. The hosts
are configured so N2 forwards all requests to N4 and N5
while N3 forwards all requests to N6 and N7. Similar to the
first internal layer (N2 and N3), N4 and N5 are in a security
group that only allows inbound HTTP and SSH traffic from
N2 while N6 and N7 are in a security group that only allows

inbound HTTP and SSH traffic from N3. The reverse of all of
the above traffic is allowed, but no traffic is allowed between
N1 and N7. Only one of the four second-layer nodes (say N4
for this example) actually forwards its requests to N8, the
target node. When N8 receives an HTTP request it processes
it with a local MySQL database. Regardless of which second-
layer node sent the request, N8 broadcasts the response
on HTTP to all the second-layer nodes (N4–N7). N8 allows
inbound HTTP and SSH traffic only with N4, and outbound
HTTP traffic to N4–N7. The outbound rules for all machines
are limited to only the necessary destinations.

6.2.1 Relocating Decoys in Misery Digraphs
As required by Definition 2 (in Section 3.1), the incoming
connection to the target machine (N8 in the implemented
cloud) should be continuously interchanged between the
final internal layer machines N4–N7. This randomness re-
quirement can be implemented in AWS by dynamically
modifying firewall security groups. That is, a single security
group, which will have exactly one machine as a member at
any time, can have access to N8. Each time period (whose
length is determined by a time parameter set by the user and
can be randomized), this security group is reset to contain
one of the four machines N4–N7, chosen randomly. The
other misery digraph arc switching described in Definition
2 was not implemented.

Another requirement is to reset the two machines at the
heads and tails of a randomly chosen pair of arcs between
two nodes within the underlying k-ary tree of a canonical
misery digraph. To implement this we create a large set of
configured machine images to choose from. To reset two
machines, a cron task randomly chooses one of the machine
images and launches two new instances using the AWS
command line tool, run instances. When the two instances
are started, they are assigned to the security groups of the
two old instances to be replaced (each pair of old and new
instances will be matched). Finally, a call to delete instances
given the identifier for the two old instances terminates the
old instances.

6.2.2 Accommodating Existing Applications
Existing applications can be deployed to use misery di-
graphs with minimal changes. Applications can continue
to issue database requests to a mediating proxy machine
that appears to the application server as the database server.
The proxy machine will perform the broadcasting to the
underlying misery digraph and forward the responses back
to the application server. The proxy machine implements
a simple proxy server, for example, Apache’s mod_proxy.
Using a proxy machine, drastic changes to the application
are avoided. On the database server side, no changes will
be necessary as the database server will continue to serve
the requests coming from a leaf node (node in layer d) of a
canonical misery digraph.

6.2.3 A Concrete Cost Analysis
The additional cost of misery digraphs is due to the use of
decoy vertices, added to the network, which are realized as
AWS EC2 instances. Misery digraphs incur no additional
network charges since all the additional network traffic is



13

within the internal network of the cloud. Consider network
of five hosts with two entry points, two application servers,
and a target. The connectivity digraph for the considered
example cloud in Figure 8-a has two distinct paths and
the digraph in Figure 8-b has four paths with overlapping
vertices. Note that, misery digraphs are only created for
distinct paths. That is, for both networks in Figure 8-a and 8-
b an identical misery digraph will be created. This is because
the overlapping paths (1, 4, 5) and (2, 4, 5) in Figure 8-b will
share decoy vertices.

1

3

2

4

5

(a)

1

3 4

2

5

(b)

Fig. 8: Example networks with more than a single path each.

The original network of Figure 8 costs $47.5 for a single
billing cycle of 30 days ($9.5 per machine4). We analyze
the expected cost for replacing each path in the network
of Figure 8, in Table 2. In this table, we use a number
of misery digraph parameters (first and second columns)
to compute the extra vertices and cost (third and fourth
columns) of each of the two misery digraphs needed for the
example network. The extra vertices and cost are computed
according to the formulas of Section 4.4. The fifth column
shows the increase ratio with respect to the original cost of
$47.5. The last two columns provide the probability that a
sequence ofm edges are not switched during r units of time,
denoted P , and the probability that the attacker requires 500
or more compromises to reach the target, computed using
the simulation of Section 6.1.1.

From the results of Table 2, we present two conclusions.
First, although misery digraphs can be costly, one does not
need a large misery digraph for effectively confusing the
attacker. As the simulation results demonstrate, with only
seven extra vertices (per misery digraph), there is a 54%
probability that the attacker needs to compromise or re-
compromise 500 or more vertices before reaching the target.
Second, the results of the first and the second rows of the
table show that the choice of parameters can incur extra
charges without improved results. In the first row where
k = d = 3, there is an increased probability that a vertex is
not switched, compared to when k = 2 and d = 3. However,
as the misery digraph does not become long enough, the
attacker can be more successful. A systematic formulation
of cost versus the size of misery digraphs can assist system
administrators to optimize their choices, which will be left
for a future work.

4. https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-
instances/

k d Extra vertices Extra cost Inc. Ratio P Q
3 3 13 $123.5 2.6 69.44% 10%
2 3 7 $66.5 1.4 44% 54%
2 4 15 $142.5 3 61.73% 54%
2 5 31 $294.5 6.2 75% 87%

TABLE 2: Extra vertices and cost are computed using Equa-
tion 2. The increase ratio is relative to the base cost of $47.5
for the original network before converting it to a network
of misery digraphs. The values of P are computed based on
Equation 4, referring to the probability that a sequence of
paths is not switched during r units of time. The values of
Q are computed based on the simulation of Section 6.1.1,
indicating the probability that the attack requires 500 or
more steps to reach the target within a network of five
original machines.

7 PRIOR WORK

Misery digraphs establish a deceiving architecture in a vir-
tual network that also actively uses a moving target strategy
to distract powerful intrusions within the network. Prior
work in the design of network overlays and in moving
target defense has inspired and is closely related to the
present work. However, no prior work has explicitly aimed
to trap cloud intruders by delaying and complicating remote
attacks. Misery digraphs do not require secret entities, do
not perform traffic filtration, and address attacks beyond
distributed denial of service. In this section we examine
network overlays, a number of closely related moving target
defense strategies and theoretical frameworks, and embark
on approaches that have used decoys in other settings.

Network Overlay and Deception. In a secure network over-
lay [25], the target node only communicates with verified
sources. After verifying the source, a secret subset of nodes
forward the verified traffic to the target. Secure Overlay Ser-
vices (SOS) [18] and WebSOS [23] are classical approaches
that use network overlays to defend a target against DDoS
attacks. SOS is a deceiving architecture based on source
filtration. WebSOS implements SOS replacing strong client
authentication with graphic Turing tests. SOS and WebSOS
target DDoS attacks and rely on secret nodes, while misery
digraphs implement a layering approach without the need
for filtration or secret nodes. Further, all these proposals
explicitly target physical networks and do not use elastic
replicas as in misery digraphs. Denial of Service Elusion
(DoSE) [34] reuses the idea of overlay networks [27] in the
cloud where virtual machines comprise overlay networks
and a management layer repeatedly tries to distinguish
legitimate from malicious clients. Misery digraphs, in con-
trast, do not use filtration or learning, and are neutral to the
network traffic.

Moving Targets. Moving target is an effective technique
that incorporates diversity and shuffling to achieve higher
security [11], [14]. When a target machine is under attack,
Migrating OVErlay (MOVE) [27] relocates the target ma-
chine’s service to an unaffected machine and, as opposed
to SOS [18], does not require client filtration. MOVE relies
on hidden servers and also uses an overlay network to
distinguish unknown traffic from legitimate traffic. Venkate-
san et al. [30] address intercepting exfiltrated data using a



14

moving target defense (backed by a probabilistic analysis)
by dynamically replacing intrusion detection sensors. Their
threat model assumes the attacker can explore the network
topology and is aware of the moving target defense. MO-
TAG [16], on the other hand, uses moving secret proxies to
distinguish attackers from legitimate clients. MOTAG’s core
idea is to provide a single secret IP address to a legitimate
client, at any given time. The target servers only allow
incoming traffic from designated proxies that are meant to
be reachable by legitimate clients. Comparing to MOTAG,
misery digraphs do not require secret proxies and mainly
rely on a trusted cloud console that controls the policies and
structure of the cloud’s internal network. Also, it is shown
that proxies can be subject to proxy harvesting attack, which
require continuous remapping to disrupt the attacks [29].
Badishi et al. [4] proposed random port hopping to keep
a DDoS attacker in the dark while using packet filtration
to recognize legitimate traffic. Similarly, redundant data
routing paths [19] can distract attackers from their favorable
targets. Rather than relocating the target machine as in the
defenses against DDoS attacks, misery digraphs change the
path to the target machine as a continuous function of time.

Apart from physical distributed systems, moving tar-
get defense promises a viable strategy for securing elastic
clouds. The work by Brzeczko et al. [5] and Jia et al. [17] are
closest to our work in using cloud technologies and moving
the target away from attacks. However, misery digraphs
target intrusions within virtual networks as opposed to
those targeting the surface. Brzeczko et al. [5] demonstrate
an analytical method that uses decoys in an elastic cloud
computing platform to attract attacker traffic. The proposed
system will then learn and redirect the malicious traffic
from the production machines by using the data collected
from decoy machines. In 2014, Jia et al. [17] presented the
architecture of a system that uses a moving target defense
for Amazon Web Services. To rescue targets in a virtual net-
work from DDoS attacks, a defense system creates replicas
on the fly and assigns network traffic to new replicas. A
key assumption of the approach is hiding the newly created
replicas from the public and disclosing their addresses to a
select list of clients. Misery digraphs do not directly respond
to attacks and avoid problems such as Economic Denial of
Sustainability [33], which would cause unnecessary charges
on the cloud.

Theoretical Frameworks. Some recent work provides in-
teresting theoretical frameworks for various moving target
defense settings. For example, Wright et al. [35] evaluated
moving defense strategies using a game-theoretic simula-
tion, deriving insights for scenarios where a moving target
is useful for combating DDoS attacks. Miehling et al. [22]
present Bayesian attack graphs and model the defender’s
action as a partially observable Markov decision process
in which some of the attacker’s actions are not clear. The
proposed Bayesian model limits the capabilities of an at-
tacker by assuming a sequence of completely random attack
steps. Our work assumes a more accurate representation of
an intelligent attacker that will take many informed attack
steps. Zhuang et al. [36], [37] also presented an inspiring
theory of moving target defense in which they proposed a
general system and an initial underlying theory for moving

target defense. While having fundamentally different goals,
this work on theoretical aspects of moving target defense
is related to the present efforts. Maleki et al, described a
general theory on assessing the effectiveness of a moving
target strategy [21], which is useful in conjunction with the
probabilistic analysis of Section 5.3.

Other Uses of Decoys. The core aspect of misery digraphs
is the use of moving decoys to create deception by hiding
the true path towards a target database, somewhat different
from the deception in some previous work where the use
of decoys has been heavily discussed. For example, [31]
proposes the use of multiple decoys, such as decoy HTML
documents to distract attackers. Similarly, Voris et al. [32]
demonstrate how decoy files can distract attackers from the
target. Interesting work by Araujo et al. [3] proposes honey
patches that confuse attackers about whether a software
exploit has succeeded. This work might be especially useful
when deployed in conjunction with misery digraphs. In
a theoretical analysis, Pawlick and Zhu [24] demonstrate,
through cheap-talk games, that honeypots could be used
to create deception for attackers. An earlier game theoretic
investigation of honeypots is described in [6]. A recent work
by Luo et al. proposes the use of dynamic path identifiers for
network routing that dynamically change to escape DDoS
attacks [20]. Finally, Heydari et al. demonstrated the use
of moving target defense in web servers, acting as mobile
nodes, to combat Internet censorship [13].

8 CONCLUSIONS

Misery digraphs use the cloud’s elastic and cost-effective
services to deceive and frustrate attackers. A graph theoretic
model that includes multiple redundant paths towards a
cloud target was proposed and implemented in AWS. The
idea of using redundancy to distract attackers does not
intend to completely eliminate an attack, but to force enough
delay on an aggressive attack to give system administrators
time to intercede in the attack. Thus the delay and confusion
and obscurity mechanisms provide the architectural support
for a cloud to defend itself until rescue arrives.

An overall target defense strategy would require an
effective intrusion detection mechanism that can collaborate
with the misery digraphs and a mechanism to prevent an
intrusion from reaching the target. Future extensions of this
work might enable the misery digraphs themselves to act
as detectors of intrusion, e.g., using the redundant paths
as sensors to warn an outside monitor of possible attacks.
For instance, malicious SSH connections to the redundant
machines could trigger such an alarm. Detecting intrusions
using misery digraphs will be addressed in future work.

REFERENCES

[1] An in-depth analysis of ssh attacks on ama-
zon ec2. https://blog.smarthoneypot.com/
in-depth-analysis-of-ssh-attacks-on-amazon-ec2/, August 2014.
Accessed: 2017-02-1.

[2] B. Abali and C. Aykanat. Routing algorithms for ibm sp1. In
Proceedings of the First International Workshop on Parallel Computer
Routing and Communication, PCRCW ’94, pages 161–175, London,
UK, UK, 1994. Springer-Verlag.

https://blog.smarthoneypot.com/in-depth-analysis-of-ssh-attacks-on-amazon-ec2/
https://blog.smarthoneypot.com/in-depth-analysis-of-ssh-attacks-on-amazon-ec2/


15

[3] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser.
From patches to honey-patches: Lightweight attacker misdirec-
tion, deception, and disinformation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’14, pages 942–953, New York, NY, USA, 2014. ACM.

[4] G. Badishi, A. Herzberg, and I. Keidar. Keeping denial-of-service
attackers in the dark. IEEE Transactions on Dependable and Secure
Computing, 4(3):191–204, July 2007.

[5] A. Brzeczko, A. S. Uluagac, R. Beyah, and J. Copeland. Active
deception model for securing cloud infrastructure. In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 535–540, April 2014.

[6] T. E. Carroll and D. Grosu. A game theoretic investigation of
deception in network security. In Proceedings of the 2009 Proceedings
of 18th International Conference on Computer Communications and
Networks, ICCCN ’09, pages 1–6, Washington, DC, USA, 2009. IEEE
Computer Society.

[7] L. Cheng, F. Liu, and D. D. Yao. Enterprise data breach: causes,
challenges, prevention, and future directions. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 7(5):e1211–
n/a, 2017. e1211.

[8] A. Chowdhary, S. Pisharody, and D. Huang. SDN based scalable
mtd solution in cloud network. In Proceedings of the 2016 ACM
Workshop on Moving Target Defense, MTD ’16, pages 27–36, New
York, NY, USA, 2016. ACM.

[9] T. A. S. P. M. Committee. Apache struts statement
on equifax security breach. Technical report, Apache,
2017. https://blogs.apache.org/foundation/entry/apache-struts-
statement-on-equifax.

[10] N. V. Database. CVE-2017-9805 Detail, 2017.
https://nvd.nist.gov/vuln/detail/CVE-2017-9805.

[11] D. Evans, A. Nguyen-Tuong, and J. Knight. Effectiveness of Moving
Target Defenses, pages 29–48. Springer New York, New York, NY,
2011.

[12] A. Gupta, A. Kumar, and M. Thorup. Tree based mpls routing.
In Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’03, pages 193–199, New York,
NY, USA, 2003. ACM.

[13] V. Heydari, S. i. Kim, and S. M. Yoo. Scalable anti-censorship
framework using moving target defense for web servers. IEEE
Transactions on Information Forensics and Security, 12(5):1113–1124,
May 2017.

[14] J. B. Hong and D. S. Kim. Assessing the effectiveness of mov-
ing target defenses using security models. IEEE Transactions on
Dependable and Secure Computing, 13(2):163–177, March 2016.

[15] J. H. Jafarian, E. Al-Shaer, and Q. Duan. An effective address
mutation approach for disrupting reconnaissance attacks. IEEE
Transactions on Information Forensics and Security, 10:2562–2577,
2015.

[16] Q. Jia, K. Sun, and A. Stavrou. MOTAG: Moving target defense
against internet denial of service attacks. In 2013 22nd Interna-
tional Conference on Computer Communication and Networks (ICCCN),
pages 1–9, July 2013.

[17] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell. Catch
me if you can: A cloud-enabled ddos defense. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 264–275, June 2014.

[18] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: an architecture
for mitigating DDoS attacks. IEEE Journal on Selected Areas in
Communications, 22(1):176–188, Jan 2004.

[19] P. P. C. Lee, V. Misra, and D. Rubenstein. Distributed algo-
rithms for secure multipath routing in attack-resistant networks.
IEEE/ACM Trans. Netw., 15(6):1490–1501, Dec. 2007.

[20] H. Luo, Z. Chen, J. Li, and A. V. Vasilakos. Preventing distributed
denial-of-service flooding attacks with dynamic path identifiers.
IEEE Transactions on Information Forensics and Security, 12(8):1801–
1815, Aug 2017.

[21] H. Maleki, S. Valizadeh, W. Koch, A. Bestavros, and M. van Dijk.
Markov modeling of moving target defense games. In Proceedings
of the 2016 ACM Workshop on Moving Target Defense, MTD ’16, pages
81–92, New York, NY, USA, 2016. ACM.

[22] E. Miehling, M. Rasouli, and D. Teneketzis. Optimal defense
policies for partially observable spreading processes on bayesian
attack graphs. In Proceedings of the Second ACM Workshop on Moving
Target Defense, MTD ’15, pages 67–76, New York, NY, USA, 2015.
ACM.

[23] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra,
and D. Rubenstein. Using graphic turing tests to counter auto-
mated ddos attacks against web servers. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS ’03,
pages 8–19, New York, NY, USA, 2003. ACM.

[24] J. Pawlick and Q. Zhu. Deception by design: Evidence-based
signaling games for network defense. CoRR, abs/1503.05458, 2015.

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. SIGCOMM
Comput. Commun. Rev., 33(1):59–64, Jan. 2003.

[26] A. Stasinopoulos, C. Ntantogian, and C. Xenakis. Commix: Detect-
ing and exploiting command injection flaws. pages 10–13, 2015.

[27] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein.
MOVE: an end-to-end solution to network denial of service. In
Proceedings of the Network and Distributed System Security Sympo-
sium, NDSS 2005, San Diego, California, USA, 2005.

[28] Z. Su and G. Wassermann. The essence of command injection
attacks in web applications. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pages 372–382, New York, NY, USA, 2006.
ACM.

[29] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M. Wright.
A moving target defense approach to mitigate DDoS attacks
against proxy-based architectures. In 2016 IEEE Conference on
Communications and Network Security (CNS), pages 198–206, Oct
2016.

[30] S. Venkatesan, M. Albanese, G. Cybenko, and S. Jajodia. A
moving target defense approach to disrupting stealthy botnets.
In Proceedings of the 2016 ACM Workshop on Moving Target Defense,
MTD ’16, pages 37–46, New York, NY, USA, 2016. ACM.

[31] N. Virvilis, B. Vanautgaerden, and O. S. Serrano. Changing the
game: The art of deceiving sophisticated attackers. In 2014 6th
International Conference On Cyber Conflict (CyCon 2014), pages 87–
97, June 2014.

[32] J. Voris, J. Jermyn, N. Boggs, and S. Stolfo. Fox in the trap: Thwart-
ing masqueraders via automated decoy document deployment.
In Proceedings of the Eighth European Workshop on System Security,
EuroSec ’15, pages 3:1–3:7, New York, NY, USA, 2015. ACM.

[33] H. Wang, Z. Xi, F. Li, and S. Chen. Abusing public third-party ser-
vices for EDoS attacks. In Proceedings of the 10th USENIX Conference
on Offensive Technologies, WOOT’16, pages 155–167, Berkeley, CA,
USA, 2016. USENIX Association.

[34] P. Wood, C. Gutierrez, and S. Bagchi. Denial of service elusion
(DoSE): Keeping clients connected for less. In 2015 IEEE 34th
Symposium on Reliable Distributed Systems (SRDS), pages 94–103,
Sept 2015.

[35] M. Wright, S. Venkatesan, M. Albanese, and M. P. Wellman.
Moving target defense against DDoS attacks: An empirical game-
theoretic analysis. In Proceedings of the 2016 ACM Workshop on
Moving Target Defense, MTD ’16, pages 93–104, New York, NY,
USA, 2016. ACM.

[36] R. Zhuang, A. G. Bardas, S. A. DeLoach, and X. Ou. A theory
of cyber attacks: A step towards analyzing MTD systems. In
Proceedings of the Second ACM Workshop on Moving Target Defense,
MTD ’15, pages 11–20, New York, NY, USA, 2015. ACM.

[37] R. Zhuang, S. A. DeLoach, and X. Ou. Towards a theory of moving
target defense. In Proceedings of the First ACM Workshop on Moving
Target Defense, MTD ’14, pages 31–40, New York, NY, USA, 2014.
ACM.

Hussain M. J. Almohri received the BS degree
in Computer Science and Operations Research
from Kuwait University and the Ph.D. degree
in Computer Science from Virginia Tech. He is
currently an assistant professor of computer sci-
ence at Kuwait University and a visiting scholar
at the University of Virginia. He has cofounded
a mobile payment startup and has advised a
number of software startups in the Gulf region.
His research focuses on systems and network
security. He has served as a reviewer for several

IEEE and IET journals and Kuwait Journal of Science.



16

Layne T. Watson (F ’93) received the B.A.
degree (magna cum laude) in psychology and
mathematics from the University of Evansville,
Indiana, in 1969, and the Ph.D. degree in math-
ematics from the University of Michigan, Ann
Arbor, in 1974.

He has worked for USNAD Crane, Sandia
National Laboratories, and General Motors Re-
search Laboratories and served on the faculties
of the University of Michigan, Michigan State
University, and University of Notre Dame. He is

currently a professor of computer science, mathematics, and aerospace
and ocean engineering at Virginia Polytechnic Institute and State Uni-
versity. He serves as senior editor of Applied Mathematics and Com-
putation, and associate editor of Computational Optimization and Appli-
cations, Evolutionary Optimization, Engineering Computations, and the
International Journal of High Performance Computing Applications. He
is a fellow of the National Institute of Aerospace and the International
Society of Intelligent Biological Medicine. He has published well over
300 refereed journal articles and 200 refereed conference papers. His
research interests include fluid dynamics, solid mechanics, numerical
analysis, optimization, parallel computation, mathematical software, im-
age processing, and bioinformatics.

David Evans (https://www.cs.virginia.edu/
evans/) is a Professor of Computer Science
at the University of Virginia and leader of
the Security Research Group. He is the
author of an open computer science textbook
and a children’s book on combinatorics and
computability. He is Program Co-Chair for ACM
Conference on Computer and Communications
Security (CCS) 2017, and previously was
Program Co-Chair for the 31st (2009) and 32nd
(2010) IEEE Symposia on Security and Privacy

(where he initiated the SoK papers). He has SB, SM and PhD degrees
in Computer Science from MIT and has been a faculty member at the
University of Virginia since 1999.

https://www.cs.virginia.edu/evans/
https://www.cs.virginia.edu/evans/

	Introduction
	Overview of the Problem
	Background
	Motivation
	Problem Statement
	Threat Model

	Design of misery digraphs
	Defining Misery Digraphs
	Canonical Misery Digraphs
	Relocating the Decoys
	Hiding the Path to Target
	Handling Fault Tolerance

	Construction of misery digraphs
	Constructing the Initial Graphs
	Computing Paths to Target
	Constructing The Final Connectivity Digraph
	Additional Cost of Misery Digraphs

	Security Analysis
	Resilience Against Reconnaissance Attempts
	Attack Strategies
	Swiching Probability
	Limitations

	Evaluation
	Measuring the Attack Success
	Attacker's Success in Outpacing the Defense

	Are Misery Digraphs Practical?
	Relocating Decoys in Misery Digraphs
	Accommodating Existing Applications
	A Concrete Cost Analysis


	Prior Work
	Conclusions
	References
	Biographies
	Hussain M. J. Almohri
	Layne T. Watson
	David Evans


