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Abstract

Background: Protein pulldown using Methyl-CpG binding domain (MBD)
proteins followed by high-throughput sequencing is a common method to
determine DNA methylation. Algorithms have been developed to estimate
absolute methylation level from read coverage generated by affinity
enrichment-based techniques, but the most accurate one for MBD-seq data
requires additional data from an SssI-treated Control experiment.

Results: Using our previous characterizations of Methyl-CpG/MBD2 binding in
the context of an MBD pulldown experiment, we build a model of expected MBD
pulldown reads as drawn from SssI-treated DNA. We use the program BayMeth
to evaluate the effectiveness of this model by substituting calculated SssI Control
data for the observed SssI Control data. By comparing methylation predictions
against those from an RRBS data set, we find that BayMeth run with our
modeled SssI Control data performs better than BayMeth run with observed SssI
Control data, on both 100 bp and 10 bp windows. Adapting the model to an
external data set solely by changing the average fragment length, our calculated
data still informs the BayMeth program to a similar level as observed data in
predicting methylation state on a pulldown data set with matching WGBS
estimates.

Conclusion: In both internal and external MBD pulldown data sets tested in this
study, BayMeth used with our modeled pulldown coverage performs better than
BayMeth run without the inclusion of any estimate of SssI Control pulldown, and
is comparable to – and in some cases better than – using observed SssI Control
data with the BayMeth program. Thus, our MBD pulldown alignment model can
improve methylation predictions without the need to perform additional control
experiments.

Keywords: DNA methylation; Protein pulldown; Methyl-CpG-binding domain
proteins; SssI treatment

Background
Affinity enrichment-based techniques for methylated DNA capture remain a cost-
effective method for achieving genome-wide coverage of the CpG methylome [1, 2, 3].
Antibodies may be used to bind specifically to denatured methylated DNA (methy-
lated DNA immuno-precipitation, MeDIP-seq [4]), or the binding domain of Methyl-
CpG-binding domain (MBD) proteins may be used to bind specifically to double-
stranded methylated CpGs (MBD-seq [5]). Through incubation and pulldown with
one of these types of agents, DNA enriched for methylation is captured and then
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sequenced in a high-throughput manner, reducing sequencing costs while still map-
ping ∼ 70% and ∼ 80% of all mCpGs in the human genome for MeDIP-seq and
MBD-seq, respectively [6, 1]. These methods have been used to identify patterns
of methylation associated with gene expression and cell phenotypes, for instance
MBD-seq in the methylome profiling of cancer [7, 8, 9, 10].

Since pulldown reads are sequenced and aligned without knowing which of the
CpGs on the DNA fragment were methylated, MBD-seq data are often processed
around the resolution of the DNA fragment length, typically in 100-500 bp windows.
The interpretation of MBD pulldown reads is also affected by the density and ar-
rangement of mCpGs on the fragment, which is known to influence the efficiency of
capture by MBD pulldown [11, 12, 13]. Thus, statistical approaches must be used
to quantify methylation levels from MBD pulldown alignments and to increase
its resolution to make it competitive with bisulfite sequencing techniques. These
bisulfite sequencing techniques — whole genome bisulfite sequencing (WGBS) and
reduced representation bisulfite sequencing (RRBS) — remain the gold standard of
methylation prediction. However, they are still held back by sequencing and data
processing costs (in the case of WGBS) and restrictions in genome coverage (in the
case of RRBS). Hence the optimization of MBD pulldown analysis is still important
to methylome epigenetics, especially for exploratory studies with large numbers of
samples.

Various algorithms have been used to quantify absolute methylation levels, or de-
termine differentially methylated regions directly from read counts, for both MBD-
seq [14, 15, 16] and MeDIP-seq [17, 18, 19, 20] data. The program BayMeth has
shown the highest accuracy in predicting methylation from MBD pulldown cover-
age, as determined by comparison to methylation levels calculated by WGBS [14].
Specifically, BayMeth performs best when control data from MBD pulldown run
on a fully-methylated control sample are available (Figure 1). To generate such a
sample, DNA is treated with SssI CpG methyltransferase, which methylates Cs in
the CpG dinucleotide context [21], and thus pulldown from this sample can in-
form the expected number of reads from that genomic region at 100% methylation.
BayMeth then uses an empirical Bayes approach to model expected MBD pulldown
read densities conditioned on the level of methylation and the CpG density of the
region.

Given our previous characterizations of methylated DNA and MBD2 interac-
tions [13], we built a model of MBD pulldown alignments from SssI-treated DNA
that we tested the efficacy of through substitution for the SssI control data set
utilized by the BayMeth model. Our model incorporates the fragment length distri-
bution in the MBD pulldown library, the minimum separation between neighboring
mCpGs needed for optimal pulldown efficiency, and the relative representation of
DNA fragments with n mCpGs to those with 0 mCpGs, and generates an expected
MBD pulldown for every site in the human genome from SssI-treated DNA (Fig-
ure 1). We find high correlation between the calculated pulldown coverage, gener-
ated from our model of MBD pulldown alignments, and observed pulldown coverage
from an SssI-treated control. Using our modeled pulldown coverage in conjunction
with the BayMeth program produces methylation predictions that are comparable
to those produced by BayMeth using observed control data, and in some cases pre-
dictions using our model are better. Additionally, in all cases tested in this study,
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BayMeth used with our modeled pulldown coverage performs better than BayMeth
run without the inclusion of any estimation of SssI control pulldown. This shows that
our MBD pulldown alignment model can improve methylation predictions without
the need to perform additional control experiments. Source code implementing our
model can be found at http://bioserv.mps.ohio-state.edu/SssICalc.

Methods
MBD Pulldown experiment and methylation reference

Pulldown data for a Sample of Interest were taken from [22] to evaluate methods
of methylation quantification. These pulldown experiments were done using the
MethylMiner kit, which uses a biotinylated form of the protein MBD2 to capture
highly methylated fragments. In addition, single CpG methylation fraction derived
from RRBS is used from that study to verify predictions. Bisulfite treatment con-
verts an unmethylated C to a U, thus a sequenced T/A aligning to an encoded C/G
(depending on the strand) in the CpG context indicates absence of methylation. To
calculate RRBS methylation fraction for a genomic window i that contains CpGs
indexed by j, let rj represent the number of RRBS reads that overlap CpG j, and
mj the number of those reads that overlap and read as not bisulfite converted at the
position of CpG j (i.e. CpG j is methylated). Then µRRBS

i , the RRBS methylation
level, is

P
j∈i mjP
j∈i rj

.

Modeled pulldown from SssI-treated DNA

Pulldown data is analyzed per genomic window i. We use the construction x ∈ i to
refer to all genomic positions x that fall within genomic window i. Our model for
Λx, the expected pulldown at position x, can be used to calculate MBD pulldown
signal from window i by summing over all Λx terms in the window and rounding
down to the nearest integer, yiΛ =

⌊︁∑︁
x∈i Λx

⌋︁
, so that yiΛ can represent a physical

read count like the window coverage inputs that BayMeth takes (see Figure 1 and
subsection “BayMeth implementation”).

Three ingredients are used to calculate the expected pulldown of a particular
fragment of length ℓ to a location x: (i) The number of accessible mCpGs on
the fragment, (ii) the relative enrichment of that fragment due to this number
of mCpGs, and (iii) the probability of a fragment of length ℓ being sequenced in
the pulldown library. Ingredient (i) depends on the minimum separation of consec-
utive mCpGs in order for the two to be bound by two separate MBD2 domains,
set here to be 3 bp [13]. Ingredient (ii) depends on the pulldown efficiencies as a
function of accessible CpGs. These pulldown efficiencies were calculated in [13] from
the same MethylMiner kit as used here, and we thus use the pulldown efficiencies
E(n mCpGs) for n well-separated CpGs from [13]. Then, the coefficients for (ii)
are derived as Cn = E(n mCpGs)/E(0 mCpGs) (Table 1). We set the maximum
number of mCpGs considered here to 7, which aligns with the MethylMiner Kit
estimate. To derive a sample-to-sample standard deviation, sss, we sub-sampled
the fragments by chromosome, and calculated Cn on each sub-sample (Table 1 and
Additional file 1: Table S1). These standard deviations are under 5% except for C6

and C7 due to the relative rarity of fragments with 6 or more CpGs that satisfy our
criteria for analysis. While the standard deviation for C7 is particularly large, given
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the overall depth of the input data, we were previously able to show that for n ≤ 7,
E(n mCpGs) differs to a statistically significant degree when one calculates it with
the subset of fragments containing only “well-separated” CpGs versus allowing any
separation. As the alternative would be to set C7 to C6, we propagate the modest
increase allowed by setting C7 ≈260. The fragment length distribution required for
(iii) has not been derived before and will be discussed in more detail in a later sec-
tion. Source code for calculating yiΛ and example data files from hg18 and hg19 ref-
erence genomes can be found at http://bioserv.mps.ohio-state.edu/SssICalc.

Table 1 MBD Pulldown scale factors. These scale factors are ratios of pulldown efficiencies
comparing the SssI Control and Input Control libraries, and represent the probability that a
fragment with n mCpGs will be pulled-down, sequenced, and aligned relative to a fragment with 0
mCpGs. A sample-to-sample standard deviation, sss, was calculated by sub-sampling by
chromosome, and is given as a percentage of the Cn value.

n mCpGs 0 1 2 3 4 5 6 ≥ 7
Cn 1 1.489 5.468 32.31 124.7 207.3 233.2 259.7

%sss - 1.7% 2.3% 2.2% 3.3% 4.8% 19% 81%

BayMeth implementation

The BayMeth algorithm [14] was run using pulldown read coverage calculated per
genomic window i from just a Sample of interest (yiS), with additional pulldown
read coverage data from an SssI-treated Control sample (yiC), or with calculated
control data generated from our model of pulldown from SssI-treated DNA, yiΛ,
used in place of yiC . These inputs define the three implementations of BayMeth that
we consider, which we call BayMeth-noSssI, BayMeth-SssI, and BayMeth-calcSssI
respectively (Figure 1). We use the default parameters and recommended prior
distributions for calculating the normalization offset f and hyperparameters α and
β. For calculating a local CpG density for each genomic window, we include bases
within an average fragment length of the window range (to set the window parameter
for the cpgDensityCalc function in the Repitools package). To calculate read
counts yiS and yiC , the length of each fragment is approximated by the average
fragment length, and then for each genomic window the number of reads that overlap
the window is counted.

Methylation quantification evaluation

Methylation fraction estimates on our Sample of interest were calculated on non-
overlapping, fixed-width windows covering hg18. We use windows of 100 bp (as
in the original BayMeth paper) and 10 bp. BayMeth-SssI, BayMeth-noSssI, and
BayMeth-calcSssI were evaluated on genomic windows with RRBS coverage of 10
or more and at least 75% mappable bases. To determine mappability, we use project
ENCODE’s mappability calculation for each 36mer in the hg18 genome [23], which
allows for no more than 2 mismatches. Then the mappability of the window is the
fraction of bases with scores of 1. We also compare methylation quantifications on
the Sample of interest in the original BayMeth publication [14] using their selection
criteria of 100 bp windows on chromosome 7 with at least 33 WGBS read coverage
and at least 75% mappable bases as determined by unique Bowtie alignment.

To quantify performance of each methylation estimate method, we calculate Re-
ceiver Operator Characteristic (ROC) curves. For the ROC curve, the true methy-
lation state of each considered window is determined to be “methylated” if the
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BS methylation estimate on that window µRRBS
i > 0.50 and “unmethylated” if

µRRBS
i ≤ 0.50. Each estimate method produces a set of predicted methylation lev-

els {µi}. By sorting this list and varying the cutoff that splits the “methylated”
and “unmethylated” groups, each point on the ROC curves represents a split that
is evaluated by calculating the resulting True positive rate and False positive rate.
The area under the ROC curve (AUC) is thus a measure of how well the method’s
predictions serve as an indicator of methylation state, the maximum value being 1.

Results
A model of pulldown data from SssI-treated DNA

An MBD enrichment-capture experiment produces a pool of DNA fragments en-
riched for DNA methylation. Those fragments are sequenced and the reads are
aligned to a reference genome to form the “pulldown” data set. In order to gener-
ate a control sample that approximates the pulldown of a genomic window at full
methylation, the experiment can be done on DNA treated with M.SssI to methylate
all cytosines in the CpG dinucleotide context. In this study, we formulate a model
of the expected pulldown data from such an SssI Control sample to use in place
of an experimental SssI Control pulldown data set. Let Λx represent the average
number of pulldown reads that align to the genome starting at location x. For our
purposes, we assume that a fragment that aligns to location x, on the forward or
reverse strand, with a length ℓ possesses the corresponding sequence that is encoded
in the genome. From our previous results [13], the parameters that most determine
the probability that such a fragment starting at x would be pulled down are the
number and spacing of the CpGs on the DNA fragment. We summarize the number
and spacing of the CpGs by our term “accessible CpGs”. This refers to the number
of CpGs on the fragment that can be simultaneously bound by MDB2 protein do-
mains after taking into account that MBD2 domains are sterically excluded from
binding if the CpGs are too close to each other along the DNA molecule. Thus,
for Λx, we consider every fragment that could align starting at x and sum over the
expected amount of pulldown of that fragment, weighted by the probability that a
fragment of that length would appear in the sample to begin with:

Λx ∝
ℓmax∑︂

ℓ=ℓmin

P (ℓ)[Cn(x→x+ℓ−1) + Cn(x−ℓ+1→x)], (1)

where the sum is over the range of possible pulldown fragment lengths ℓ. In Eq. (1),
P (ℓ) represents the probability that a fragment sequenced from the pulldown data
set is of length ℓ, n(a → b) the number of accessible CpGs that would be on a
fragment that starts at genomic location a and ends at b (inclusive), and Cn the
scale factor for the representation of sequenced fragments that have n accessible
mCpGs. The two terms correspond to alignments on the forward strand and reverse
strand that could both align to location x. These Cn factors scale the probability
of observing a fragment with n accessible mCpGs to that of observing a fragment
with 0 mCpGs. The other normalization to consider is that which scales Λx to the
sequencing depth of the modeled experiment. We choose a pre-factor of 1 and later
show that the overall results are not affected by this choice over a large range of
values.
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To evaluate Eq. (1) for each site in a reference genome, parameters n(a → b),
Cn, and P (ℓ) were derived as detailed next from the experiments performed in [13].
These experiments resulted in two data sets. For both data sets the DNA was first
treated with SssI and then fragmented. For the Input Control (I) data set, the DNA
fragments were simply sequenced. The SssI Control (C) data set, on the other hand,
represents the library of DNA fragments that were submitted to the enrichment-
capture experiment, pulled down, and then sequenced. Comparing SssI Control and
Input Control data sets yields the parameters of our model as follows:

Number of accessible CpGs
In [13], we deduced that the physical size of the binding protein used for the pull-
down experiment (in this case MBD2) can limit the accessibility of an mCpG to a
binding protein if another nearby mCpG has already bound a protein. Specifically,
we found that pulldown efficiency was suppressed for fragments with two mCpGs
separated by 2 bp or less, relative to those with separations ≥ 3 bp. We want the
number of “accessible CpGs” to refer to the largest number of CpGs that can be si-
multaneously bound by protein. To approximate this, we calculate n(x → x+ ℓ−1)
for the DNA sequence represented by [x, x + ℓ − 1], by finding the largest subset
of CpGs on the sequence such that each pair of CpGs in the subset are separated
by at least 3 bp. This is equivalent to allowing an MBD protein to be bound at
the first CpG, where the location of the CpG is identified with the position of the
Cytosine and labeled c1. Then, going through the rest of the downstream CpGs,
the number of bound CpGs is only increased, and the location of the last bound
CpG is updated from ci to ci+j , if (ci + 1) + 3 < ci+j .

Coefficients of relative enrichment
In [13] we also, as a corollary, introduced the pulldown efficiency, E(n CpGs), for
DNA fragments with n accessible mCpGs as the ratio between the fraction of the
SssI Control data with n CpGs and the fraction of the Input Control data with n

CpGs. Then Cn = E(n)/E(0) represents how much more likely a fragment with
n mCpGs will be sequenced in the SssI Control data set than a fragment with 0
mCpGs. Hence, as we sum over the fragments that could align to location x, this
factor accounts for relatively how often we should expect to see a fragment with
that many mCpGs. See subsection “Modeled pulldown from SssI-treated DNA” of
the Methods for the specific values calculated.

Length distribution of DNA fragments
The length distribution of DNA fragments that are aligned to the reference genome
can be approximated by Bioanalyzer analysis on the pulldown library after frag-
mentation. To get a more precise description of the fragment length distribution, we
compared the distribution of alignments from the SssI Control to the distribution
in the Input Control. Let the fragment length probability distribution be approx-
imated by a Gaussian, P (ℓ) ∼ N(L, S), where L is the average fragment length
and S is the standard deviation. To determine its parameters L and S, we take all
reads that have been aligned to the reference genome and then extend them to a
segment of length ℓmax = 250 (larger than the expected actual fragment length)
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and then consider only those segments where the genomic sequence contains only
a single CpG. To avoid edge effects we in addition require that the C of this CpG
must be located at, or downstream of, the 11th nucleotide from the 5’ end of the
fragment. Let then p(1 CpG, t nt) be the fraction of segments observed in the SssI
Control data set with one CpG, which starts at the tth nucleotide (with respect
to the 5’-end). Similarly, we define q(1 CpG, t nt) for the Input Control data set.
Then the predicted pulldown efficiency for reads that are sequenced and align to a
position with one CpG located at the tth nucleotide downstream with respect to
that position is:

p(1 CpG, t nt)
q(1 CpG, t nt)

=
t∑︂

ℓ=ℓmin

R0P (ℓ) +
ℓmax∑︂

ℓ=t+1

R1P (ℓ) (2)

= R0 + (R1 −R0)P (ℓ ≥ t + 1),

where R0 and R1 represent the pulldown efficiency for fragments with 0 and 1
CpGs, as a ratio of fractions of the pool of reads with only 1 CpG between 11 bp
and 250 bp from the 5′-end. This expression captures how, as we look at fragments
with a single CpG further and further downstream of the 5′-end, we will find the
length past which the CpG is not likely to actually be on the fragment and not
contribute to that fragment’s pulldown probability, and therefore it marks the typ-
ical length of the sequenced fragments. For a Gaussian P (ℓ), we can approximate
P (ℓ ≥ t) ≈ Erf

(︂
t−L
S
√

2

)︂
− Erf

(︂
1−L
S
√

2

)︂
. We fit the experimental data to Eq. (2) us-

ing the Python SciPy function curve fit to perform least-squares optimization,
obtaining parameters (R0 = 0.889, R1 = 1.187, L = 100.7, S = 12.98) from an ini-
tial guess of (1.0, 1.0, 200, 50), (Figure 2). This completely characterizes the length
distribution P (ℓ) and from this we set ℓmin = 3 and ℓmax = 200.

When comparing the fit to the data, we notice an increase over the expected
pulldown efficiency at ℓ = 10 ∼ 30. It is not clear what the source of this trend
is, though there is another similar increase for ℓ > 200. We found the latter to be
an artifact of our maximum ℓ cutoff; when we shifted ℓmax from 250 to 300, the
increase at the largest ℓ shifted with it and the parameter fits for L and S were
not significantly changed. We also note that the values for R0 and R1 do not match
those for E(0 CpGs) and E(1 CpG) because the latter are normalized to the larger
pool of all fragments with no CpGs contained in the first 10 bases versus the subset
with just one CpG within 250 bp downstream of the alignment start.

Fragment length and mCpG number are sufficient to model pulldown alignment to a

genomic window

To begin thinking about using our model of Λx as a substitute for experimentally
observed MBD pulldown alignments, we wish to see how well SssI Control window
coverage correlates with modeled window coverage. We calculated expected SssI
Control alignments, Λx, for every site in chromosome 7 and summed it over 100 bp
non-overlapping windows to generate modeled SssI Control window coverage, yiΛ =⌊︁∑︁

x∈i Λx

⌋︁
. Using the same mappability cutoff as in [14], we compare this quantity

to the observed SssI Control window coverage, yiC , at every genomic window i that
has at least 75% mappable bases. In Figure 3 (a), there is a general increase in
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the SssI Control coverage as the modeled SssI Control coverage increases (Pearson
correlation between yiΛ and yiC is 0.78). Wondering at the reason for the slight
turnover in SssI Control coverage for modeled coverage values log10(yiΛ) > 4.5, we
suspect these regions are more likely to have high GC content and were therefore less
likely to be sequenced in these experiments [24]. We can control for which windows
are likely to be sequenced by dividing the SssI Control coverage by the Input Control
Coverage, yiI , to essentially obtain an unnormalized pulldown efficiency of reads
that overlap the window. Comparing that to the modeled SssI Control coverage, we
see a positive correlation between a window’s SssI Control coverage and pulldown
efficiency at these larger values of yiΛ (Figure 3 (b)).

Model of pulldown alignment improves estimates of methylation

Methylation prediction
To predict methylation level from MBD pulldown and assess our model of predicted
SssI Control coverage, we use the previously published program BayMeth [14].
BayMeth uses a Bayesian framework to quantify methylation fraction on genomic
windows from data from pulldown experiments – done on both a Sample of interest
(S) that has undergone MBD pulldown but not SssI treatment and an SssI Control
(C) version of that sample. For each genomic window i, the probability of the ob-
served read counts from the Sample of Interest (yiS) and the SssI Control sample
(yiC) update the prior distribution for the methylation fraction µ. The read counts
are assumed to be Poisson-distributed with average read density scaled by param-
eter λi, which represents the expected read density for a window of the same CpG
density at full methylation. There are two main modes of BayMeth that we com-
pare and modify in this study. The first uses pulldown read coverage from both the
Sample of interest and the SssI Control sample (what we call BayMeth-SssI); this is
the mode recommended by the authors of BayMeth. The second only uses pulldown
data from the Sample of interest (BayMeth-noSssI), which is of use if a matching
SssI Control sample is not available. The new implementation that we test here is
to run BayMeth with expected read coverage, yiΛ =

⌊︁∑︁
x∈i Λx

⌋︁
, calculated by our

model developed above, as a proxy for the SssI-treated Control read coverage yiC ;
we call this mode BayMeth-calcSssI, which can be used even in the absence of a real
SssI-treated Control sample. While this formulation of yiΛ only explicitly models
reads that start or end in window i – in contrast to the window coverage described
by yiC – we will find that including modeled reads spanning, but not starting in,
a window does not meaningfully improve predictions by BayMeth-calcSssI, even
when the window width is much smaller than the average fragment length.

Methylation predictions on 100 bp windows
The methylation predictions generated by BayMeth-SssI, BayMeth-noSssI, and
BayMeth-calcSssI are each assessed against the methylation predictions measured
by RRBS, µRRBS

i , for a Sample of interest from [22]. We set a window’s methylation
state to be methylated if its RRBS methylation is > 0.50 and unmethylated if it is
≤ 0.50. Then ROC curves are generated and we ultimately evaluate each method’s
performance in separating methylated from unmethylated windows through its cor-
responding AUC.
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We first compare the performance of BayMeth-calcSssI on all 100 bp windows
on hg18 that pass the minimum RRBS coverage and mappable base percentage
(212,252 windows out of 14,506,245 total windows with at least one annotated CpG).
In Figure 4, the ROC curves for BayMeth-SssI, BayMeth-noSssI, and BayMeth-
calcSssI are plotted, showing that BayMeth-calcSssI has the largest AUC (0.948)
followed by BayMeth-SssI (0.936) and BayMeth-noSssI (0.925).

For each method’s most efficient ordering (the cutoff corresponding to the point on
the ROC curve furthest from the y = x line), 94.5% of methylated windows are cor-
rectly categorized by BayMeth-calcSssI, a ∼5% improvement over BayMeth-noSssI,
and ∼1% improvement over BayMeth-SssI. On the reverse, 14.3% of unmethylated
windows are incorrectly categorized by BayMeth-calcSssI, a ∼5% improvement over
BayMeth-noSssI, and ∼3% improvement over BayMeth-SssI.

To get a sense of what methylation states each method is better at predicting,
smoothed density plots in Figure 5 compare predicted methylation levels to their
RRBS methylation. First, methylation level among 100 bp windows with RRBS
coverage is highly bimodal, similar to the mean methylation levels observed at in-
dividual CpGs. There are 55% more unmethylated windows than methylated win-
dows, but as both methylated and unmethylated states are well-represented in this
RRBS sample, an indicator of methylation state has to achieve high accuracy in
both regimes. About 81% of plotted windows have an RRBS methylation level that
is ≤ 0.10 or ≥ 0.90. From Figure 5 (a)-(c), we see that BayMeth-SssI and BayMeth-
calcSssI give less precise predictions to windows with medium levels of methylation
than those given by BayMeth-noSssI. For windows with RRBS methylation level
≤ 0.10 (Figure 5 (d)), more windows are predicted by BayMeth-noSssI to still have a
methylation level ≤ 0.10 than by BayMeth-SssI, and BayMeth-noSssI also miscate-
gorizes fewer windows overall (4.80% versus 5.50%, of windows with µRRBS

i ≤ 0.10).
Among windows with an RRBS methylation level of at least 0.90 (Figure 5 (e)),
more windows are predicted by BayMeth-noSssI than by BayMeth-SssI to have a
methylation level ≥ 0.90. However, overall BayMeth-noSssI ends up miscategorizing
more of these high-methylation windows than BayMeth-SssI because of how many
more windows it predicts with a methylation level ≤ 0.50 (23.3% versus 15.9%, of
windows with µRRBS

i ≥ 0.90). Interestingly, the methylation prediction profile of
BayMeth-calcSssI is most similar to BayMeth-SssI in the high-methylation regime
(and miscategorizes the lowest percentage of these windows at 15.5%) and most
similar to BayMeth-noSssI in the low-methylation regime (and again miscatego-
rizes the lowest percentage at 4.07%). Thus, BayMeth-calcSssI appears to capture
the strengths of the other two BayMeth configurations and, on this scale, perform
better than both of them.

Methylation predictions on 10 bp windows
Since one of the advantages of RRBS is single CpG resolution in methylation pre-
dictions, we explore the accuracy of methylation predictions informed by MBD
pulldown on 10 bp windows. Of the 25,858,448 windows of width 10 bp on hg18
with at least one annotated CpG, 457,335 pass the minimum mappable base per-
centage (75%) and RRBS coverage (10). Of these windows, 63% contain only one
CpG, 29% contain two CpGs, and the remaining 8% have three or more. Evaluat-
ing the three methylation prediction methods on these windows, the ROC curves
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for BayMeth-SssI, BayMeth-noSssI, and BayMeth-calcSssI are plotted in Figure 6.
Again, the AUC for BayMeth-calcSssI (0.955) is highest followed by BayMeth-SssI
(0.936) and BayMeth-noSssI (0.930). These AUCs are even higher than they were
for the 100 bp windows in the case of BayMeth-calcSssI and BayMeth-noSssI.

Smoothed density plots of the predicted methylations versus the RRBS methyla-
tion are shown in Figure 6 (a)-(c). The percentage of windows with extremal RRBS
methylation levels (≤ 0.10 or ≥ 0.90) increases to 88%. As with the methylation pre-
dictions on 100 bp windows, BayMeth-calcSssI and BayMeth-noSssI provide similar
distributions of methylation predictions for windows in the low methylation regime,
while BayMeth-calcSssI and BayMeth-SssI provide similar distributions of predic-
tions for windows in the high methylation regime (Figure 6 (d)-(e)). Though, on this
window size, BayMeth-calcSssI miscategorizes the most windows in the high methy-
lation regime (20.6%), followed by BayMeth-SssI (16.1%), and BayMeth-noSssI
(15.9%). However, in the low methylation regime, BayMeth-calcSssI performs best,
categorizing 96.9% of windows correctly, followed by BayMeth-SssI (95.1%), and
then BayMeth-noSssI (94.3%).

Testing parameter robustness on chromosome 7

With these results, we must also make sure that the quality of BayMeth-calcSssI
predictions is robust to variation of the input parameters involved in calculating the
modeled SssI Control coverage, yiΛ. We use chromosome 7 to test the sensitivity
of the AUC measure since it was the chromosome reported on in [14]. On chromo-
some 7, 11,158 windows of width 100 bp meet the minimum mappable base percent-
age and RRBS coverage (which represents 1.4% of windows on chromosome 7 with
at least one CpG). Running our three configurations of BayMeth with the previously
stated parameters, we find that methylation predictions from the BayMeth-calcSssI
method produced the largest AUC (0.946), followed by BayMeth-SssI (0.938) and
BayMeth-noSssI (0.925). If we, instead, reduce the minimum separation between
consecutive CpGs to 2 bp (from 3 bp) to potentially count additional CpGs as “ac-
cessible” (0.946); scale the overall depth normalization, i.e. the prefactor in Eq. (1),
by 10 (0.946), or by 0.10 (0.946); or collapse the fragment length distribution to the
determined average fragment length (0.945), i.e. P (ℓ) ∼ δ(ℓ− ℓavg); the AUCs cal-
culated after each of these individual modifications all remain within 0.001 of the
initial model. Additionally, we considered whether information is effectively lost
by only summing the Λx terms for sites, x, in window i, and thus only modeling
contributions from reads that start in window i (on either the forward or reverse
strand). To instead model a sum over all reads that likely overlap window i, we
tested using a fixed fragment length (P (ℓ) ∼ δ(ℓ − ℓavg)) and, for the proxy SssI
Control measure, summing over all sites and strands where a fragment of length
ℓavg would overlap window i:

yiΛ =

⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎝ ∑︂

[x,x+(ℓavg−1)]
overlapping window i

Λx,+

⎞⎟⎟⎠ +

⎛⎜⎜⎝ ∑︂
[x−(ℓavg−1),x]

overlapping window i

Λx,−

⎞⎟⎟⎠
⎥⎥⎥⎥⎥⎦ , (3)

where we use Λx,+ to refer to the expected pulldown to position x from the forward
strand, and similarly for Λx,− for the reverse strand. This formulation also produces
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an AUC of 0.945. Additionally, this formulation and each of the other modifications
to the BayMeth-calcSssI method applied to analysis of chromosome 7 on 10 bp
windows also produced methylation prediction profiles that all had an AUC within
0.001 of the AUC produced by the original method.

Model of pulldown alignment can be applied to methylation predictions on external

experiments done with the same MBD protein

For our model of expected pulldown alignments, Λx, to be of general use in pre-
dicting methylation level from MBD pulldown experiments, we must show that it
may be applied to pulldown experiments that it has not been trained on. To that
end, we adapted our model to be used in place of the SssI Control data from the
human fibroblast (IMR-90) sample analyzed in Riebler et al. [14]. We used the av-
erage fragment length of 300 bp given in that study to set the fragment length
probability distribution to P (ℓ) = δ(ℓ − 300 bp), since the width of that distribu-
tion was not described, and kept all other parameters the same. On chromosome 7,
426,366 windows of width 100 bp pass both the 75% minimum mappable base per-
centage and the minimum WGBS coverage, set in that study to 33. Applying the
three configurations of methylation prediction on these windows, the ROC curves
for BayMeth-SssI, BayMeth-calcSssI, and BayMeth-noSssI are plotted in the top
leftmost panel of Figure 8 (“All” windows). The BayMeth-SssI mode performs best
with an AUC of 0.763, followed by BayMeth-calcSssI (0.715) and BayMeth-noSssI
(0.681). Since the AUC produced by BayMeth-calcSssI on this set of windows is
not as high as we have seen in the previous sections, it would be convenient to
have a quantity that indicates for each window whether BayMeth-calcSssI is likely
to provide a good methylation prediction. A suitable choice is the calculated SssI
Control window coverage, yiΛ, itself. We had developed our model for SssI Con-
trol pulldown alignments by considering what DNA fragment features significantly
change the pulldown efficiency, and the calculated SssI Control coverage approxi-
mates how efficiently, relatively, an MBD pulldown experiment should be expected
to sample reads from that window. In the Bayesian framework used in BayMeth,
the windows that it samples the most information from should be predicted on more
accurately. To test the usefulness of calculated SssI Control coverage as an indica-
tor of BayMeth-calcSssI performance, we range through different minimum cutoffs
on yiΛ (in steps of 5 percentile) and calculate ROC curves on all windows above
that threshold. We see in the main body of Figure 8 that the AUCs for the three
methods increase monotonically with the minimum window yiΛ. For cutoffs above
the 85th percentile in SssI Control coverage, the AUCs from all three methods are
above 0.90.

Considering this framework for assessment, then, we see that the quality of methy-
lation predictions produced by BayMeth-SssI and BayMeth-calcSssI follow each
other closely and their AUC values stay within 0.05 of each other at all cutoffs.
The AUCs for BayMeth-noSssI get within 0.05 only for a minimum modeled SssI
Control coverage ≥ 75th percentile, and at all cutoffs, BayMeth-calcSssI performs
better than BayMeth-noSssI. Thus, in the absence of SssI Control data, our model
improves methylation predictions. While additional comparisons to external data
sets would be beneficial in showing our model’s broad applicability, MBD-seq data
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sets are not often generated with an SssI Control, which happens to be something
our method attempts to rectify. More pressingly, genome-wide bisulfite sequencing
data (either RRBS or WGBS) that can act as a truth data set against an MBD-
seq data set is not usually available simultaneously for the same samples. Thus, to
our knowledge there are no other MBD-seq/BS samples that use the same protein-
domain for enrichment, are of sufficient sequencing quality, and whose results would
not be potentially confounded by copy number variation.

Discussion
We developed a model for the number of reads aligned to genomic location x from
an MBD pulldown experiment done on SssI-treated DNA. The model is based on
the expected number of mCpGs to be captured on fragments taken from that loca-
tion and the relative representation of reads in a pulldown library given the number
of accessible mCpGs. Summed along all positions in a genomic window, it corre-
lates with observed SssI data. MBD pulldown coverage from a fully-methylated
sample can be used to calibrate the expectation of MBD pulldown read density
from a Sample of interest. Thus, we tested our model insofar as it improves sta-
tistical methods that convert MBD pulldown coverage on a genomic window to an
estimate of absolute methylation level. The algorithm BayMeth is one approach
for obtaining methylation estimates from MBD pulldown data that improves upon
previous algorithms, as well as the MEDIPS algorithm that incorporates methy-
lated DNA immunoprecipitation sequencing (MeDIP-seq) data instead of protein
pulldown data. BayMeth fits parameters to the distribution of mean read coverage
at full methylation by sampling within each CpG density class, and has two main
configurations that we call BayMeth-SssI (simultaneously models pulldown from the
Sample of interest and the SssI Control, to be used if such a control sample is avail-
able) and BayMeth-noSssI (only models pulldown from the Sample of interest and
thus applicable if no control sample is available). Here, we added the configuration
BayMeth-calcSssI by calculating SssI Control coverage for each genomic window,
yiΛ, using our model and substituting it for the observed SssI Control input, yiC

(applicable in the absence, but still providing the benefits, of a control sample).
Comparing methylation predictions for a sample of interest from BayMeth-SssI,

BayMeth-noSssI, and BayMeth-calcSssI against RRBS estimates for the same sam-
ple, we find that the profile of estimates from BayMeth-calcSssI produces the largest
AUC for both 100 bp and 10 bp windows. One possible interpretation of this finding
is that our model is overfitting the data. There are two reasons why this is highly
unlikely. First, and most importantly, fitting the model to measured SssI data is
completely independent of the AUC calculations used to evaluate the performance
of the model in the context of the BayMeth framework. Thus, the model fit cannot
be influenced by optimization of the AUC, thereby not even allowing the possibility
of overfitting. Second, in the case of overfitting, small changes to the model should
remove the overfitting advantage and lead to a clear decrease in performance. On
the contrary, our robustness studies on chromosome 7 indicate that the AUC is
very stable under various modeling choices. That leaves the question of how else
one could explain that the model performs better than the actual experimental SssI
data. Performing better than the BayMeth-noSssI indicates that the modeled SssI
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Control data in BayMeth-calcSssI adds more information than what can be inferred
from the distribution of pulldown coverage, yiS , in each CpG density class. While
our model of MBD pulldown is necessarily a simplification of the true SssI Con-
trol experiment, it does model an SssI Control experiment with very high depth
of coverage, one on the order of 6 × 1010 reads. As a result, windows with high
modeled SssI Control coverage, yiΛ, with low coverage from the Sample of interest,
yiS , are more easily predicted to have lower methylations, with lower variance, in
the BayMeth-calcSssI configuration. The increased scale also allows for finer dis-
tinction between windows of similar CpG densities. In summary, in contrast to the
experiment, the modeled SssI control does not suffer from sampling uncertainties,
which might explain how BayMeth-calcSssI is able to outperform BayMeth-SssI.

At the same time, compared on our RRBS data set, each method produces an
AUC greater than 0.90, suggesting each can act as a reliable indicator of methy-
lated/unmethylated state. The differences among the three methylation prediction
configurations are more pronounced in the external MBD pulldown and WGBS
data sets from the IMR-90 sample analyzed in [14]. Over all the 100 bp windows on
chromosome 7 meeting the minimum WGBS coverage and mappable base percent-
age, no configuration produces an AUC greater than 0.80. Considering the weaker
performance of BayMeth-calcSssI on this data set relative to BayMeth-SssI, there is
the question of whether the parameters calibrated from our earlier experiments do
not carry over to this one. First, we ask if BayMeth-calcSssI applied to the external
data set at least does well when compared on a set of windows representative of
an RRBS data set. To that end, if we look at the windows that were analyzed in
both the WGBS and RRBS data sets (8,998 windows on chromosome 7 that also
matched the minimum mappability), the AUCs achieved by all three methods are
greater than 0.95 with BayMeth-SssI (0.975) being the highest, though it differs
from BayMeth-calcSssI (0.973) less than BayMeth-calcSssI does from BayMeth-
noSssI (0.957). The improvement should be expected because RRBS biases the
resulting data set toward regions of higher CpG density, whereas WGBS attempts
to represent all parts of the genome, and at least those parts with high mappability.
Of course, a window with higher CpG density would correlate with a higher calcu-
lated SssI Control coverage, yiΛ. As a result, windows in the RRBS data set are on
the highest end of modeled SssI Control coverage: The 10th percentile value of yiΛ,
among mappable windows with RRBS coverage, is the 93rd percentile value among
all mappable windows with at least 1 CpG. Second, we ask how predictions by
BayMeth-calcSssI relate to those by BayMeth-SssI over the range of cutoffs in yiΛ.
Given that in Figure 8, the strength of predictions produced by BayMeth-calcSssI
tracks those by BayMeth-SssI very closely, it further suggests that the Λx model
has not drastically broken down when used for this experiment. More likely, the
inclusion of lower CpG density windows (and hence, generally lower yiΛ values) in
the analysis of this external data set, is what weakens each method as an indicator
of methylated/unmethylated state as to be expected from the relatively low gain in
pulldown from a single isolated CpG (compare C1 ∼ 1.49 to C3 ∼ 32). Thus, this
is likely a shortcoming of the MBD pulldown method in general in quantifying low
CpG density regions. In applying our method to data sets enriched for low-CpG
dense regions, an easy choice of yiΛ for a cutoff may not be clear at the outset. We
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recommend using a 2D-density plot of the variance on the posterior probability cal-
culation (an automatic output of BayMeth) versus yiΛ to identify a threshold in yiΛ

above which the variance is relatively flat (Additional file 2: Figure S1). Estimating
a cutoff in this way for the WGBS data places the yiΛ threshold between the top
25% and 30% of values, with AUCs > 0.85 on the corresponding data (Additional
file 2: Figure S1).

How generally applicable our model and its parameters are is an important con-
cern. Of course, in an ideal world, every pulldown experiment would be paired with
an SssI experiment performed under the exact same conditions. But in reality this
is not always feasible, as reflected in the scarcity of publicly available SssI data.
We will thus discuss here the transferability of our model between different experi-
ments. Our model is characterized by three ingredients, the pulldown coefficients Cn,
a scheme to determine accessible CpGs from the positions of genomically encoded
CpGs, and the mean and standard deviation of the fragment length distribution.
Given that most modern high throughput sequencing protocols use paired-end pro-
tocols, the fragment length distribution is directly obtainable from each library. For
single-end libraries, retaining the bioanalyzer traces typically obtained during qual-
ity control of library preparation would provide the same information at somewhat
lower resolution [22]. Thus, the fragment length distribution can be easily adapted
to a new sequencing experiment, as we have done here in our analysis of the Riebler
et al. data. The scheme to determine accessible CpGs from the positions of genom-
ically encoded CpGs reflects the minimum distance between two CpGs that can be
bound simultaneously by two proteins without steric clashes [13]. It thus represents
a fundamental biophysical property of the protein used for the pulldown. It will
have to be determined from scratch if a different protein is used for the pulldown,
but should otherwise be independent of experimental conditions. In our robustness
analysis, we also found that the change from 3 bp minimal distance to 2 bp mini-
mal distance did not affect performance measurably, indicating that at least small
changes in the bulkiness of the protein are tolerable. The pulldown coefficients Cn

are the most sensitive ingredients of the model. They could vary with experimental
conditions and certainly will vary with the protein used for the pulldown. The fact
that we could successfully apply our set of coefficients to the data sets of Riebler et
al. (at least on the high CpG density regions, where pulldown sequencing is more
successful as a whole as discussed in the previous paragraph) shows that it is possi-
ble to transfer the model between data sets generated under different experimental
conditions as long as the same protein is used. In addition, as our model captures
the fundamental interactions between the protein and the methylated DNA, we do
not expect the model to be sensitive to sequence features other than the locations
of the CpGs. We thus expect that our model would allow one to generate calculated
SssI data of similar quality for any organism based on its genome alone, even if no
experimental SssI data sets for this organism were available.

Conclusion
We built a model of MBD pulldown alignments from SssI-treated DNA using
empirically-derived relationships from our previous studies on MBD pulldown ex-
periments [13]. Quantifying absolute methylation level is an important step in in-
terpreting results from MBD pulldown experiments and in allowing results to be
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compared across different experiments. We used our pulldown alignment model to
calculate pulldown coverage of SssI-treated DNA and substituted it for the use of
observed SssI Control pulldown in the implementation of the program BayMeth [14].
As determined by its authors, BayMeth performs best when it is run with SssI Con-
trol data. Against RRBS-determined methylation levels calculated genome-wide,
BayMeth informed by our SssI pulldown model showed improvements as an indi-
cator of methylated/unmethylated state, over BayMeth informed by observed SssI
pulldown. This held even when we looked at methylation predictions on 10 bp win-
dows, a scale at which a majority of windows only contain a single CpG. Looking
specifically at how well each configuration of BayMeth did at classifying genomic
windows with extremal methylation levels, BayMeth informed by our model seemed
to combine the particular capacities of the other two BayMeth configurations: that
of BayMeth with observed SssI data on classifying windows with high methyla-
tion levels, and that of BayMeth with no SssI data on classifying windows with low
methylation levels. To see if our model parameters and performance could extend to
external data sets and therefore be of general use, we generated methylation predic-
tions on a Sample of interest from [14], only updating the average fragment length
parameter to match the MBD pulldown data from this sample. Against methylation
estimates calculated from WGBS data on this sample, all three methods performed
worse – as expected on a data set with more low CpG density windows. On this
data set, BayMeth with SssI data performed best among the three configurations,
but BayMeth with our modeled SssI data always did better than BayMeth run
without any SssI estimate. Furthermore, we found that the SssI Control pulldown
coverage calculated by the model was itself a good indicator of whether BayMeth
supplemented by our model would infer a good estimate on that window. Thus,
in the absense of an SssI Control pulldown data set, our modeled data is likely to
improve methylation predictions, potentially even over predictions made with real
SssI data, especially on windows with higher CpG density.
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Figure 1 Inputs for running BayMeth On the left, obtaining read coverage of a genomic window
i with some CpG pattern (circles) where the CpG is either methylated (red) or unmethylated
(empty). For the experimentally-derived inputs this is done by counting the number of aligned
reads that overlap the window from an MBD pulldown experiment done on a sample of interest
(yiS = 5 for the window depicted on the bottom) or on an SssI-treated sample (yiC = 5, for the
window depicted in the middle). With our implementation of a calculated SssI Control proxy, we
incorporate the range of fragment lengths (ℓ, where P (ℓ) is the probability a fragment of length ℓ
is in the library) and the amount of SssI pulldown expected (Cn) for a fragment given the number
of accessible mCpGs (n) on the fragment. For a given site, x, within our window i, we calculate a
term Λx that sums over P (ℓ)Cn terms for all fragments that begin in the window (on the forward
or reverse strands), and then sum over all these Λx values in the window to calculate yiΛ. On the
right, arrows indicate which quantities are used as inputs into each BayMeth mode considered.

Figure 2 Determining the pulldown fragment length distribution Pulldown efficiency among
read alignments with only 1 CpG within 250 bp downstream as a function of CpG position (with
respect to the 5′-end). Pulldown efficiency decreases around the CpG position corresponding to
the average sequenced fragment length since the CpG represented in the genome is no longer
likely to be contained on the read that aligned upstream. Fit to error function (red) is shown on
empirical data (blue).
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Figure 3 Modeled SssI pulldown coverage,
P

x∈i Λx, correlates with observed SssI pulldown
coverage Among 100 bp windows on chromosome 7 with at least 75% mappable bases, we
calculate expected SssI Control window coverage, yiΛ =

P
x∈i Λx, from our model of pulldown

alignments derived from previous MBD pulldown experiments. (a) A density plot shows that yiΛ

correlates with observed SssI pulldown coverage, yiC , represented with offset 0.5 to allow for
log-log plotting. (b) To account for parts of the genome that are less likely to be sequenced, we
compare yiΛ to yiC/yiI – wherever yiI , the read coverage from the Input Control sample, is
nonzero – which scales with the pulldown efficiency of genomic window i.
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Figure 4 Assessing methylation predictions genome-wide on 100 bp windows For all 100bp
windows on hg18 with at least 75% mappable bases and with at least 10 reads of RRBS coverage,
the ROC curve is plotted to assess the methylation predictions from three configurations of
BayMeth. The y = x line is marked in dotted black. The larger the area under the curve (AUC),
the better the method serves as an indicator of a window’s methylated/unmethylated state:
BayMeth-calcSssI (0.948) > BayMeth-SssI (0.936) > BayMeth-noSssI (0.925).
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Figure 5 Profile of methylation predictions on 100 bp windows For the same subset of windows
as analyzed in Figure 4, smoothed density plots compare the window methylation as calculated by
RRBS to the methylation predicted by (a) BayMeth-SssI, (b) BayMeth-noSssI, and (c)
BayMeth-calcSssI. The y = x line is plotted in dashed green and divisions at RRBS = 0.1 and
RRBS = 0.90 are plotted in bolded white. The distribution of methylation predictions given by
each configuration is plotted for windows with an RRBS methylation (d) ≤ 0.10 and (e) ≥ 0.90,
the methylation regimes (blocked in gray) where most windows lie.
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Figure 6 Assessing methylation predictions genome-wide on 10 bp windows For all 10 bp
windows on hg18 with at least 75% mappable bases and with at least 10 reads of RRBS coverage,
the ROC curve is plotted to assess the methylation predictions from three configurations of
BayMeth. The y = x line is marked in dotted black. These AUCs are as least as large as those for
100 bp windows, and again BayMeth-calcSssI produces the largest AUC: BayMeth-calcSssI
(0.955) > BayMeth-SssI (0.936) > BayMeth-noSssI (0.930).



Moreland et al. Page 21 of 23

e

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0

Predicted methylation

W
in

do
w

 c
ou

nt
s BayMeth−SssI

BayMeth−noSssI
BayMeth−calcSssI 

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
00

Predicted methylation

W
in

do
w

 c
ou

nt
s BayMeth−SssI

BayMeth−noSssI
BayMeth−calcSssI 

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0

Predicted methylation

W
in

do
w

 c
ou

nt
s BayMeth−SssI

BayMeth−noSssI
BayMeth−calcSssI 

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
00

Predicted methylation

W
in

do
w

 c
ou

nt
s BayMeth−SssI

BayMeth−noSssI
BayMeth−calcSssI 

Ba
yM

et
h-

Ss
sI

a

d

W
in

do
w

 c
ou

nt
s

Ba
yM

et
h-

no
Ss

sI

b

Ba
yM

et
h-

ca
lc

Ss
sI

c

Predicted methylation Predicted methylation

RRBS RRBS RRBS

W
in

do
w

 c
ou

nt
s

Figure 7 Profile of methylation predictions on 10 bp windows For the same subset of windows
as analyzed in Figure 6, smoothed density plots compare the window methylation as calculated by
RRBS to the methylation predicted by (a) BayMeth-SssI, (b) BayMeth-noSssI, and (c)
BayMeth-calcSssI. The y = x line is plotted in dashed green and divisions at RRBS = 0.1 and
RRBS = 0.90 are plotted in bolded white. The distribution of methylation predictions given by
each configuration is plotted for windows with an RRBS methylation (d) ≤ 0.10 and (e) ≥ 0.90,
the methylation regimes (blocked in gray) where most windows lie.
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Figure 8 Methylation predictions for an external MBD/WGBS data set To act as an external
data set to test the effectiveness of our MBD pulldown model, we use the WGBS and MBD
pulldown data from [14]. We consider all 100 bp windows on chromosome 7 with at least 75%
mappable bases and at least 33 reads in WGBS coverage, the same specifications as considered by
Riebler et al.. Each plot point in the main graph corresponds to a 5 percentile increment in the
minimum modeled SssI Control coverage, yiΛ, from the 0th percentile to the 95th percentile, and
the AUC is calculated for each BayMeth configuration on all windows that meet the minimum
threshold. ROC curves analyzing the windows with the top quartiles in yiΛ are plotted above,
corresponding to the cutoff identified in the gray boxes on the main graph.
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Additional Files
Additional file 1 — Standard deviation calculation on MBD pulldown scale factors

table giving the details of the per-chromosome sub-sampling process to calculate a sample-to-sample standard

deviation on the MBD pulldown scale factors listed in Table 1. The per-chromosome read alignement counts on

each chromosome, per number of well-separated CpGs, in each data set (Pulldown and Background Control) are

shown at top, with the resulting calculation of Cn values on each chromosome, the chromosome-averaged C∗n
values, the per-chromosome calculation of fluctuations around this average ((Cn − C∗n)2), and finally the standard

deviation sss on each Cn.

Additional file 2 — Selecting a cutoff in yiΛ

Figure S1. Among windows in the Riebler et al. pulldown data set passing mappability and WGBS thresholds, we

plot (a) the variance on the posterior probability of methylation from BayMeth-SssI against the measured SssI,

which shows a similar decay profile but a difference in distribution from the plot of the (b) variance from

BayMeth-calcSssI against yiΛ, our calculated SssI. In isolating a subset on which the methylation predictions can be

more trusted when running BayMeth-calcSssI, we select a cutoff in yiΛ (dashed line) based on a region of stable

variance on the prediction itself. The (c) ROC curves resulting from the methods being run on this subset with the

AUC printed in the corresponding color.
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