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a b s t r a c t

Many algorithms for constrained clustering have been developed in the literature that
aim to balance vector quantization requirements of cluster prototypes against the discrete
satisfaction requirements of constraint (must-link or must-not-link) sets. A significant
amount of research has been devoted to designing new algorithms for constrained clus-
tering and understanding when constraints help clustering. However, no method exists to
systematically characterize solution sets as constraints are gently introduced and how to
assist practitioners in choosing a sweet spot between vector quantization and constraint
satisfaction. A homotopy method is presented that can smoothly track solutions from
unconstrained to constrained formulations of clustering. Beginning the homotopy zero
curve trackingwhere the solution is (fairly) well-understood, the curve can then be tracked
into regions where there is only a qualitative understanding of the solution set, finding
multiple local solutions along the way. Experiments demonstrate how the new homotopy
method helps identify better tradeoffs and reveals insight into the structure of solution sets
not obtainable using pointwise exploration of parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As machine learning permeates multiple fields of science and engineering, new objective functions are continually being
proposed to suit the demands of new application domains. Multicriteria objective functions especially are becoming more
prevalent in areas such as mixing labeled and unlabeled data [1–3], incorporating constraints [4–6], and transfer learning
[7–10]. The difficulty of solving such problems, and even interpreting the solution in ameaningful way, is likewise a growing
field of research. Amechanism for solving problems in one fieldmay ormay not be adaptable to solving problems in another,
and the information yielded by the method may not contain everything needed by the modern researcher.

One such multiobjective formulation is in the area of constrained clustering. In constrained clustering [11], the goal is
not just to obtain clusters that are local in their respective spaces but that also obey a discrete set of a priori must-link (ML)
and cannot-link ormust-not-link (MNL) constraints between points. More complicated constraint sets can be represented in
simpler form by these ML and MNL constraints, as well; in particular, the conventional cluster hypothesis may be enforced
through the use of ϵ- and δ-constraints [12]. Although there aremany powerful constrained clustering algorithms published
in the literature [13–18], there is currently a lack of a systematic mathematical theory to guide the design of formulations
and understand the tradeoffs that invariably result as each algorithm attempts to serve two masters.

The fundamental problem in algorithm design for constrained clustering problems is the tradeoff between conventional
clustering objectives and the requirements of the linking constraints. Broadly speaking, there have been two types of
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algorithms designed to deal with this problem [19]. The first uses the constraints to learn a distance function. The
second strictly enforces the constraints as the algorithm iterates to a useful solution. The primary problem motivating the
development of these two algorithmic approaches is that determining the feasibility of a set of constraints that containsMNL
and ML constraints both is an NP-complete problem, being equivalent to the graph coloring problem. When the existence
of a feasible solution cannot be determined in polynomial time, the usual approach is to fall back on heuristics, with the
hope that the resulting solution will be good enough. This dovetails nicely with one of the dominant viewpoints of big-data
machine learning, where rigorous solutions are usually impractical due to the sheer amount of data involved, NP-complete
or not, and as such heuristic approaches are the norm for reaching reasonable solutions in a reasonable time.

One traditional solution to such heuristically solved biobjective problems is to introduce a parameter λ that balances or
weights competing considerations, in this case cluster locality versus constraint satisfaction. Although there are interesting
theoretical insights into the complexity of constrained clustering problems [20], there is little existing theory available that
can deal with (1) how to efficiently compute solutions parametrically as λ varies, (2) how to find and deal with multiple
solutions for a fixed λ, and (3) how to canonically define the best choice of λ. Furthermore, using such λ as an independent
variable often poses insurmountable problems to the researcher, as will be shown.

Homotopy methods are systematic approaches to characterize solution sets by smoothly tracking solutions from one
formulation to another (in this case, from an unconstrained formulation to a constrained formulation). This can allow the
effect of changing λ on the quality and nature of the solutions to be mathematically characterized. Smoothly tracking
solutions as λ varies provides a holistic understanding of the interplay between the algorithm and a dataset. The resulting
tradeoff curve can yield information about the nature of the problem and the probability of improvement offered by
constraints.

Corduneanu and Jaakkola [21] used classical continuation to study how two diverse information sources should be
combined in order to arrive at an integrated model. The first application of modern homotopy methods to machine learning
was by Ji et al. [22], who showed that a general semisupervised formulation for hidden Markov models (HMMs) can be
realized using a probability-one homotopy as well.

The key contributions here are:

(1) The first homotopy maps, which combine quadratic loss functions with discrete evaluations of constraint violations,
for constrained clustering problems are presented. This is a nontrivial task since there are several discrete aspects to
the constrained clustering problem (e.g., discrete assignments of points to clusters, discrete satisfactions or violations
of constraints) that need to be accommodated in a traditional homotopy framework.

(2) The construction of homotopy maps typically requires careful problem specific tweaking to ensure convergence. The
general map constructed here applies to any constrained clustering problemwhere a distance function is meaningful,
similar to existing algorithms for this purpose.

(3) Use of the theory of nonlinear complementarity problem (NCP) functions and the Kreisselmeier–Steinhauser envelope
function is new.

(4) Numerous experimental results demonstrating the scalability, viability, usefulness, superiority, and interpretability
of the homotopy map approach to constrained clustering are presented, as well as results for a new map applied to
ϵ- and δ-style constraints, which constrain intercluster and intracluster distances.

This paper is organized as follows. Section 2 is the mathematical background, with subsections devoted to specific
building blocks to be applied in the next section. Section 3 shows the application of homotopy theory to constrained
clustering applications, with a first map dedicated solely to constraint satisfaction and a secondmap that strives to maintain
strong clustering as well, along with proofs of convergence for both maps. Section 4 shows the experimental results, and
Section 5 concludes.

2. Mathematical background

Let superscripts denote vector indices and subscripts denote components of vectors and scalar indices unless otherwise
indicated. Let all norms be 2-norms unless otherwise indicated and let all distances be Euclidean distances. Let Rn denote
n-dimensional real Euclidean space and let Rn×m be the set of real n × m matrices. Let the ith row of a matrix A ∈ Rn×m be
denoted by Ai· and the jth column by A·j. Finally, for a vector x ∈ Rn, x > 0means all xi > 0, x ≧ 0means all xi ≧ 0, and x ≥ 0
means x ≧ 0 but x ̸= 0.

Given a set X̂ = {xi | xi ∈ Rd, i = 1, 2, . . . , k} of k points (cluster representatives) in d dimensions, let X = vec
(
x1, x2, . . . ,

xk
)

∈ Rkd. Given a set Ŷ = {yi | yi ∈ Rd, i = 1, 2, . . . , n} of n data points in d dimensions, let Y = vec
(
y1, y2, . . . , yn

)
∈ Rnd.

Represent a constraint by the vector c = (a, b, z, w) ∈ R2d+2 of two data points a, b ∈ Ŷ , an identifier z = ±1, and a degree-
of-belief weight R ∋ w > 0, where an identifier of z = 1 means that a and b are bound by a must-link constraint (i.e., must
be in the same cluster) and an identifier of z = −1 means that a and b are bound by a cannot-link constraint (cannot be in
the same cluster). Given a set Ĉ = {c i | c i ∈ R2d+2, i = 1, 2, . . . , q} of q constraints, let C = vec

(
c1, c2, . . . , cq

)
∈ Rq(2d+2).
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2.1. Penalty function and constraints

For a data point y ∈ Ŷ and two cluster prototypes xi, xj ∈ X̂ define the comparator function D : Rd
× Rd

× Rd
→ R by

D(xi, xj, y) =
(
max

{
0, ∥xi − y∥2

− ∥xj − y∥2})4.
Note that D is three times continuously differentiable, D ≧ 0, and D(xi, xj, y) > 0 if and only if the distance between y and xi
is larger than the distance between y and xj.

Given a, b ∈ Ŷ , let the must-link function

Fm : Rd
× Rd

× Rkd
→ R

be defined by

Fm(a, b, X) =

k∏
i=1

⎛⎝ k∑
j=1,j̸=i

D(xi, xj, a) + D(xi, xj, b)

⎞⎠
and let the cannot-link function Fc : Rd

× Rd
× Rkd

→ R be defined by

Fc(a, b, X) =

k∑
i=1

⎛⎝ k∏
j=1,j̸=i

D(xj, xi, a)D(xj, xi, b)

⎞⎠ .

Then the following observations are easily verified.

Observation 1. Fm and Fc are nonnegative and three times continuously differentiable.

Observation 2. For any must-link constraint

c = (a, b, 1, w) ∈ Ĉ,

the must-link function Fm(a, b, X) = 0 if and only if constraint c is satisfied.

Observation 3. For any cannot-link constraint

c = (a, b, −1, w) ∈ Ĉ,

the cannot-link function Fc(a, b, X) = 0 if and only if constraint c is satisfied.

Observation 4. The penalty function

F (C, X) =

∑
{i:zi=1}

wiFm(ai, bi, X)

+

∑
{i:zi=−1}

wiFc(ai, bi, X)

is zero if and only if all the constraints in Ĉ are satisfied.

By Observation 4, if it is possible to satisfy all of the constraints with a convex clustering, then there exists a vector of
cluster representatives X such that F (C,X ) = 0. This vector of cluster representatives represents a global minimum point
of the function F at which ∇XF (C,X ) = 0. Unfortunately, if multiple xi ∈ X̂ coalesce, the resulting D values will result in
zero even though there is no clear clustering arising from this case, and minXF (C, X) has the trivial solutions x1 = · · · = xk.
Thus it is necessary to constrain the optimization problem minXF (C, X) to prevent such a degenerate case from occurring.
In addition, X should be bounded, as lim∥X∥→∞F (C, X) = 0 is possible.

First, consider the bounding constraint. A straightforward concave function Ψ : Rkd
→ R to achieve bounding is

Ψ (X) = B −
∑k

i=1∥x
i
∥
2 ≧ 0, where B ∈ R is a given large constant. Second, to prevent the degenerate condition noted

above, a set of constraints gi : Rkd
→ R can be constructed as gi(X) = ϵg − ∥xi1 − xi2∥2 ≦ 0, where 1 ≦ i ≦

( k
2

)
, xi1 , xi2 ∈ X̂

are different cluster representatives and ϵg > 0 is a small constant. Note that these constraints are differentiable everywhere,
and satisfy the reverse convex constraint qualification [23] at X if Ψ (X ) > 0 is inactive. If the active constraints at X satisfy
a constraint qualification (e.g., Arrow–Hurwicz–Uzawa [24]), then the resulting optimization problem

min
X

F (C, X)

subject to − Ψ (X) ≦ 0, (1)

gi(X) ≦ 0, 1 ≦ i ≦
(
k
2

)
satisfies the Karush–Kuhn–Tucker (KKT) necessary conditions at X .
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Now that the problem has been defined, it remains to show how homotopy methods can be used to effect a smooth
transition from a traditional clustering to a clustering that solves the above optimization problem, yielding a useful tradeoff
curve. First, however, several tools necessary to utilize the homotopy method are described.

2.2. Kreisselmeier–Steinhauser function

Since there are
( k
2

)
separation constraints in the optimization problem, an aggregation function that can reduce these to

a single inequality constraint is of benefit. The Kreisselmeier–Steinhauser envelope function [25]

Z(X) =
1
κ
ln

⎡⎢⎣
(

k
2

)∑
i=1

exp(κgi(X))

⎤⎥⎦ ,

where κ > 0 is a regularization parameter, is a common aggregation function used in optimization to reduce the number of
inequality constraints to one. Let gmax(X) = max

1≤i≤
(

k
2

)gi(X). Note that

gmax(X) ≦ Z(X) ≦ gmax(X) +
ln(k(k − 1)/2)

κ
,

which means that if Z(X) ≦ 0 then gi(X) ≦ 0 for all i. As an approximation function, however, there are some drawbacks.
The selection of κ is important; a large κ will result in a small difference between the value of Z and gmax, but may also
cause some numerical difficulties. Furthermore, the feasible region defined by Z is generally smaller than the feasible region
defined by gmax, as should be obvious from the above inequalities. While each gi is concave, Z is neither pseudoconcave nor
pseudoconvex. Nevertheless, except for the degenerate case

∇Ψ (X )(∇Z(X ))T = ∥∇Ψ (χ )∥ ∥∇Z(χ )∥

the constraints −Ψ (X) ≦ 0, Z(X) ≦ 0 satisfy the Arrow–Hurwicz–Uzawa constraint qualification at X . A KKT point X̄ for

min
X

F (C, X)

subject to − Ψ (X) ≦ 0, (2)
Z(X) ≦ 0

is generally not a KKT point for (1). However, since ϵg is a fairly arbitrary value to separate cluster representatives, the
distinction between formulations (1) and (2) is minimal. For a relatively small number of clusters, say k < 10, it is possible
to select a large κ , say κ = 100, without encountering numerical difficulties summing the

( k
2

)
terms in Z(X). Thus, for a

moderate number of cluster representatives, Z(X) is a practical way to combine the gi constraints, reducing the number of
dual variables and hence the dimension of the homotopy map.

2.3. Positively oriented nonlinear complementarity functions

A continuous function Ψ̂ : R × R −→ R is called an NCP function if Ψ̂ (a, b) = 0 ⇐⇒ 0 ≦ a ⊥ b ≧ 0, and it is positively
oriented if Ψ̂ (a, b) ≧ 0 ⇐⇒ a ≧ 0 and b ≧ 0. The positively oriented NCP function of interest here, first introduced by
Mangasarian [26], is

Φ̂(a, b) = −|a − b|3 + a3 + b3.

Observe that Φ̂ is C2; moreover, for b > 0, Φ̂(·, b) is strictly increasing and onto R. NCP functions are used to represent
the complementarity conditions within the KKT necessary conditions: for each inequality constraint gi ≦ 0 with associated
Lagrange multiplier µi, Φ̂(−gi, µi) = 0 ⇐⇒ −giµi = 0, −gi ≧ 0, µi ≧ 0. Thus, for an optimization problem (1) containing
only inequality constraints, finding a KKT point is equivalent to solving the nonlinear system of equations

∇XF (C, X) − µ0∇Ψ (X) +

(
k
2

)∑
i=1

µi∇gi(X) = 0,

Φ̂(Ψ , µ0) = 0,

Φ̂(−gi, µi) = 0, i = 1, . . . ,
(
k
2

)
.
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2.4. Homotopy theory

Standard continuation methods [27,28] find a root x̄ of a differentiable function f (x) using a known root x0 of a simple
differentiable function g(x) by solving

ρ(λ, x) = (1 − λ)g(x) + λf (x) = 0

as λ is increased from 0 to 1, starting with the known solution x0 at λ = 0. λ is the continuation parameter, g is called
the ‘start’ function, and f is called the ‘target’ function. Given a solution (λ, xλ), standard local methods (such as Newton’s
method) are used to solve ρ(λ + δλ, x) = 0 for fixed small δλ > 0. This yields a series of solutions along a zero curve γ

of ρ(λ, x). However, there is no guarantee that a given starting function g will yield a zero of f , as the algorithm may fail at
some intermediate λ̃ as continuation progresses.

Continuation can fail if the zero curve γ of ρ emanating from (0, x0) fails to exist past some λ̃ < 1. γ can just stop at λ̃,
turn back toward λ = 0 at λ̃, or go to infinity. γ may exist past λ̃, but bifurcate at λ̃, causing the local iteration to fail because
Dxρ(λ, x) is singular at the bifurcation point (λ̃, xλ̃).

Homotopy methods deal with bifurcation and turning points through a local parametrization of the zero curve (λ, x) =

(λ(t), x(t)). Most importantly, homotopy methods treat λ as an independent variable, and do not increase λ monotonically
from 0 to 1. The issues of nonexistence, bifurcation, and divergence to infinity are addressed by modern probability-one
homotopy methods [27–29], which under certain conditions guarantee almost surely (in the probability measure theoretic
sense) the existence of a smooth, nonbifurcating, bounded zero curve γ of a homotopy map ρa(λ, x) that connects a start
point (0, x0) to a point (1, x̄), where f (x̄) = 0.

These algorithms are implemented in FORTRAN 77 as HOMPACK [30], and extended in Fortran 90 as HOMPACK90 [31].
The following theorems about probability-one homotopy maps and the associated zero curves γ are central.

Theorem 1 (Parametrized Sard’s Theorem). Let U ⊂ Rm, V ⊂ Rn be nonempty open sets, ρ : U ×[0, 1)×V → Rn be a C2 map,
and define

ρa(λ, x) = ρ(a, λ, x).

If ρ is transversal to zero (rank Dρ = n on ρ−1(0)), then for almost all a ∈ U the map ρa is also transversal to zero.

Theorem 2. Let F : Rn
→ Rn and ρ : Rm

× [0, 1) × Rn
→ Rn be C2, and define ρa(λ, x) = ρ(a, λ, x). Assume that

(1) ρ is transversal to zero;
(2) for each fixed a ∈ Rm, ρa(0, x) = 0 has a unique solution xa at which rank Dxρa(0, xa) = n;
(3) ρa(1, x) = F (x);
(4) for each a ∈ Rm, the connected component of the zero set ρ−1

a (0) containing (0, xa) is bounded.
Then for almost all a ∈ Rm there exists a zero curve γ of ρa(λ, x), emanating from (0, xa), along which the n × (n + 1) Jacobian
matrix Dρa(λ, x) has full rank, that does not intersect itself and is disjoint from any other zeros of ρa, and accumulates at a point
(1, x̄) for which F (x̄) = 0. Furthermore, if rank Dρa(1, x̄) = n, then the curve γ connecting (0, xa) to (1, x̄) has finite arc length.

Theorem 3. Let F : Rn
→ Rn be C2, and suppose there exist r0, r > 0, r > r0, such that for any a ∈ Rn with ∥a∥2 < r0, x − a

and F (x) do not point in opposite directions on
{
x ∈ Rn

| ∥x∥2 = r
}
. Define ρ : Rn

× [0, 1) × Rn
→ Rn by

ρ(a, λ, x) = (1 − λ)(x − a) + λ F (x),

and let ρa(λ, x) = ρ(a, λ, x). Then for almost all vectors a ∈ Rn with ∥a∥2 < r0 there exists a zero curve γ of ρa(λ, x), emanating
from (0, a), along which the n × (n + 1) Jacobian matrix Dρa(λ, x) has full rank, that does not intersect itself and is disjoint from
any other zeros of ρa, and accumulates at a point (1, x̄) for which F (x̄) = 0. Furthermore, if rank Dρa(1, x̄) = n, then the curve
γ connecting (0, a) to (1, x̄) has finite arc length.

Theorem 1means that the set of points (λ, x) where ρa(λ, x) = 0 looks like the curves in Fig. 1 for almost all points a ∈ U .
The hypotheses in Theorems 2 and 3 guarantee that the curve γ in Fig. 1 is the only curve emanating from λ = 0 and that
γ must accumulate at λ = 1. Thus, a probability-one homotopy algorithm simply tracks the zero curve γa of ρa, which is
guaranteed to reach a solution x̄ of F (x) = 0 at λ = 1, with probability one (almost surely) so long as the hypotheses of
Theorems 2 and 3 are met. (Theorem 3 is simply a special case of Theorem 2.)

In practice, the full rank of the Jacobian matrix Dρa (1, x̄) is not necessary, as the zero curve usually approaches a solution
as λ → 1with finite arc length. This is especially truewhen applied to the semisupervised clustering problem, as the desired
clustering (which satisfies the given constraints) is expected to be present at some point along γ before λ = 1. Homotopy
maps that fulfill the theorems’ assumptions are called globally convergent probability-one homotopy maps. Proving a map to
be globally convergent with probability one reduces to proving that it meets the given assumptions. Given time to trace the
finite arc length of the solution curve with a robust enough tracker, such curves will inevitably yield a useful solution. More
valuable, tracing the curve yields the entire parametrized solution trace for analysis, generating a tradeoff curve that can be
further analyzed.
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Fig. 1. The inverse image ρ−1
a (0) for ρa transversal to zero.

It is possible to modify the given ‘‘natural’’ homotopy map (1 − λ)g(x) + λf (x) by manipulating the λ parameter to yield
more useful maps. In particular, where g(x) lacks a unique zero (such as the clustering problem case here), a unique zero x0
at λ = 0 can be enforced by modifying the map to

ρa(λ, x) = (1 − tanh(60λ))(x − x0)
+ tanh(60λ) [(1 − λ)g(x) + λf (x)] ,

where tanh is the hyperbolic tangent function. tanh(60λ) ≈ 1 for λ > 0.3, to within 64-bit machine accuracy. Thus
ρa(λ, x) = 0 has a unique solution x = x0 at λ = 0, but for λ > 0.3 the map looks essentially like (1 − λ)g(x) + λf (x).
Semisupervised learning problems often have such ‘‘natural’’ start functions g with multiple zeros, making this a useful
general trick in homotopy map generation. (The rigorous convergence theory for this map actually uses tanh

(
60λ/(1 − λ)

)
,

which is computationally indistinguishable from tanh(60λ) for λ > 0.3.)

3. Clustering application

Let k0 ∈ Rkd be some (presumably poor) solution to the unsupervised clustering problem for k clusters in d dimensions,
generated by a traditional clustering approach, such as the K -Means algorithm. For the present discussion, consider each
cluster assignment to be a ‘‘hard’’ assignment, that is, each data point is assigned to a single cluster determined by its
distances from the cluster representatives, not assigned a probability of belonging to each cluster based on those distances.

It is worth noting at this juncture that disjunctive and conjunctive combinations of constraints can be represented by the
penalty functions Fm and Fc defined in Section 2, which are of particular value when ϵ- and δ-constraints are considered. ϵ-
and δ-constraints are constraints that act upon groups of instances. ϵ-constraints are constraints that dictate that any data
point in a cluster must have another data point in that cluster within ϵ distance, or be the only data point in the cluster.
δ-constraints are constraints that dictate that any datapoint in a cluster must be at least δ distance from every datapoint
that resides in a different cluster. Both of these types of constraints can be represented as disjunctions and conjunctions of
must-link constraints [12].

Let C1 and C2 be constraints (must-link, cannot-link, or combinatorial) and let F 1 and F 2 be the corresponding penalty
functions. Then C3

= C1
∨ C2 has the corresponding penalty function F 3

= F 1F 2. Similarly, C4
= C1

∧ C2 has the
corresponding penalty function F 4

= F 1
+ F 2. Observe that F 3

= 0 if and only if C3 is satisfied, and F 4
= 0 if and only if C4

is satisfied. Finally, observe that any number of must-link and cannot-link constraints can thus be combined in conjunctive
normal form by summing products of these penalty functions. As such, these penalty functions can easily be adapted to
represent penalty functions for ϵ- and δ-constraints.

By Observation 4 in Section 2, if it is possible to satisfy all of the constraints defined by C , then there exists a vector of
cluster representatives X such that the penalty function F (C,X ) = 0. This vector of cluster representatives represents a
global minimum point of the function F at which ∇XF (C,X ) = 0. This suggests the homotopy map (where a = k0)

ρ̌a(λ, X) = (1 − λ)(X − a) + λ (∇XF (C, X))T .

This homotopymap is appealing: when λ = 0, the solution is simply the solution k0 to the unsupervised clustering problem.
When λ = 1, the solution, if one exists, represents a localminimumpoint (or stationary point) of the penalty function, which
is based on the violation of constraints. This is not to say that the solution generated will satisfy all the constraints if such
a solution is possible, as it is fairly easy to construct a degenerate set of constraints so that there is a local solution close to
X = k0. However, in practice this has not proven to be a problem.



608 D.R. Easterling et al. / Journal of Computational and Applied Mathematics 343 (2018) 602–618

ρ̌a is a probability-one homotopy map, but while it satisfies conditions (1), (2), and (3) in Theorem 2, it fails to satisfy
condition (4), bounded γ . Furthermore, there is a trivial solution to all constraints at x1 = x2 = · · · = xk, where all cluster
representatives are equal. Thus, modifications must be made to the above map to accommodate the constraints outlined
earlier in Section 2.

3.1. First homotopy map

First, consider the bounding constraint

Ψ (X) = B −

n∑
i=1

∥xi∥2 ≧ 0,

and let B > ∥k0∥2 be a given constant. The Lagrangian of the new bounded penalty function is L̂(X, µ) = F (C, X) − µΨ (X),
and its derivative, replacing ∇XF (C, X), is

∇X L̂(X, µ) = ∇XF (C, X) − µ∇XΨ (X).

This yields a new variable, the Lagrangian multiplier µ, which in turn adds a new function to the map (since the map must
be from Rp+1

→ Rp for some p), along with the requirement that µ ≧ 0, Ψ ≧ 0, and µΨ = 0. This naturally leads to the use
of the Mangasarian NCP function presented in [26] and modified in [32,33].

Define the function Φ : [0, 1] × R × R × R → R by

Φ (λ, µ, Ψ (X), h0) =

− |µ − Ψ (X)|3 + µ3

+ Ψ (X)3 − (1 − λ)h0

for some constant h0 > 0. The constant term h0 is designed to force the remaining terms to remain positive for λ < 1, which
enforces the bounding of X for λ < 1, since Ψ (X) must remain positive when Φ = 0. When λ = 1, Φ(1, µ, Ψ , h0) = 0 ⇐⇒

µ ≧ 0, Ψ ≧ 0, µΨ = 0. The previous homotopy map ρ̌a is then modified to (where now a = (k0, h0))

ρ̂a(λ, X, µ) =

(
(1 − λ)(X − k0) + λ(∇X L̂(X, µ))T

Φ (λ, µ, Ψ (X), h0)

)
.

Note that ρ̂a(1, X, µ) = 0 is equivalent to the KKT conditions: ∇X L̂ = 0, Ψ ≧ 0, µ ≧ 0, µΨ = 0. Unfortunately, while the
stated Φ enforces a lower bound on µ, it does not enforce an upper bound on µ; in fact, if Ψ (X) → 0 as λ → λ̃ < 1, µ must
potentially become arbitrarily large to compensate for this. While this map is better than the previous one in that it prevents
cluster representatives frommigrating arbitrarily far from the data set, it does not prevent µ from growing arbitrarily large,
although in practice this is not a common occurrence.

To avoid the trivial solution x1 = · · · = xk, an alternative to the constraint functions gi(X) and Z(X) described in Section 2
is to define the function G : Rkd

→ R by

G(X) =

k−1∑
i=1

k∑
j=i+1

max(0, ℓ − ∥xi − xj∥2)4, xi, xj ∈ X̂ .

Then G ≧ 0, G ∈ C3, and G = 0 unless two cluster representatives xi and xj are less than a distance
√

ℓ from each other,
where ℓ > 0 is a given regularization constant. This represents an equality constraint on the original problem. The updated
Lagrangian becomes L̄(X, µ, ν) = F (C, X)−µΨ (X)+ νG(X). In turn, ∇X L̄(X, µ, ν) = ∇XF (C, X)−µ∇XΨ (X)+ ν∇XG(X). The
additional function is much simpler here, as G(X) is obviously bounded above by k(k−1)ℓ4/2 and below by 0. Let G(X) serve
as the final regularization function when λ = 1, thus fulfilling the equality constraint, and let ν be uniquely determined at
λ = 0 by some initial R ∋ ν0 > 0. Since it can be assumed that G(k0) = 0 for any reasonable ℓ, and Ψ (k0) > 0, the final hard
clustering map is (where now a = (k0, h0, ν0))

ρ̄a(λ,X, µ, ν) =⎛⎝(1 − λ)(X − k0) + λ(∇X L̄(X, µ, ν))T

Φ (λ, µ, Ψ (X), h0)
(1 − λ)(ν − ν0) + G(X)

⎞⎠ .

This map is also a probability-one homotopy map. Taking a =
(
k0, h0, ν0

)
the map ρ̄(a, λ, X, µ, ν) = ρ̄a(λ, X, µ, ν) is

transversal to zero — Daρ̄ = (λ − 1)I , a multiple of the identity matrix, hence Dρ̄ has full rank. For 0 ≦ λ ≦ 1 and
Ψ (k0) > 0, Φ is a strictly increasing function of µ (when the other variables are held constant), unbounded above, and
therefore Φ(0, µ, Ψ (k0), h0) = 0 uniquely determines µ. Thus ρ̄a = 0 has a unique solution at λ = 0, and a straightforward
calculation shows that D(X,µ,ν)ρ̄a(0, X, µ, ν) is invertible at this solution. It is also clear from the construction of ρ̄a that
ρ̄a(1, X, µ, ν) = 0 is equivalent to the KKT conditions for the problem of minimizing F (X, C) subject to the bounding
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constraint Ψ ≧ 0 and the regularization constraint G = 0. Therefore, ρ̄a satisfies conditions (1), (2), and (3) of Theorem 2,
but the bounded γ condition (4) is not satisfied without further assumptions. Conditions for the zero curve γ being bounded
(and hence reaching a solution at λ = 1) are addressed in the next lemma.

Lemma 1. Let Ψ (k0) > 0, G(k0) = 0, γ be a zero curve of ρ̄a(λ, X, µ, ν) emanating from
(
0, k0, µ0, ν0

)
along which Dρ̄a has

full rank, and assume that ν is bounded along γ . Then γ itself is bounded.

Proof. Φ(λ, µ, Ψ (X), h0) = 0 along γ implies that, for λ < 1, µ > 0 and Ψ (X) > 0, which in turn implies that X is bounded
along γ . Since 0 ≦ λ ≦ 1, and ν is assumed to also be bounded along γ , it suffices to prove that µ is bounded along γ .
Assume otherwise, so there exists a sequence of points

(
λi, X i, µi, νi

)
on γ with µi ≧ 0, µi → ∞. Passing to a subsequence

if necessary, it may be assumed (by compactness) that
(
λi, X i, νi

)
→ (λ̄, X̄, ν̄).

Suppose Ψ (X̄) > 0. Then because Φ is a strictly increasing function of µ and unbounded above [26,32,33] Φ
(
λ̄, µi, Ψ (X̄),

h0
)

→ 0 implies {µi} is bounded, a contradiction. Hence Ψ (X̄) = 0.
Suppose then that Ψ (X̄) = B − ∥X̄∥

2
= 0 and λ̄ > 0. In this case ∇Ψ (X̄) = −2X̄ ̸= 0 and (from the first component of

ρ̄a = 0)

µi∇Ψ (X̄) →
1 − λ̄

λ̄

(
X̄ − k0

)T
+ ∇XF (C, X̄) + ν̄∇G(X̄)

H⇒ {µi} is bounded, a contradiction.
The remaining case is Ψ (X̄) = 0 and

λ̄ = 0 H⇒ ∇Ψ (X̄) ̸= 0

and

λiµi
(
∇Ψ (X̄)

)T
→ X̄ − k0 H⇒ w

(
−∇Ψ (X̄)

)T
= k0 − X̄

for some w ≧ 0. Since −Ψ (X) is convex, −∇Ψ (X̄)(k0 − X̄) ≦ −Ψ (k0) − (−Ψ (X̄)) < 0. Then 0 ≧ (k0 − X̄)T
(
−∇Ψ (X̄)

)T
w =

(k0 − X̄)T (k0 − X̄) > 0, a contradiction. Therefore µ is bounded along γ . •

Lemma 1 directly yields the next homotopy convergence theorem.

Theorem 4. Using the notation of this section, define ρ̄ : Rkd
× (0, ∞) × (0, ∞) × [0, 1) × Rkd

× R × R → Rkd+2 by

ρ̄
(
k0,h0, ν0, λ, X, µ, ν

)
=⎛⎝(1 − λ)(X − k0) + λ(∇X L̄(X, µ, ν))T

Φ (λ, µ, Ψ (X), h0)
(1 − λ)(ν − ν0) + G(X)

⎞⎠ .

Let Ψ (k0) > 0, G(k0) = 0, a =
(
k0, h0, ν0

)
and

ρ̄a(λ, X, µ, ν) = ρ̄
(
k0, h0, ν0, λ, X, µ, ν

)
.

Then ρ̄ is transversal to zero, and for almost all a ∈ Rkd
× (0, ∞) × (0, ∞) there exists a zero curve γ of ρ̄a, emanating from(

0, k0, µ0, ν0
)
, along which the (kd+ 2)× (kd+ 3) Jacobian matrix Dρ̄a has full rank, that does not intersect itself and is disjoint

from any other zeros of ρ̄a. If ν is bounded along γ , then γ accumulates at a point (1, X̄, µ̄, ν̄), where (X̄, µ̄, ν̄) is a KKT point for
the constrained clustering problem

min
X

F (C, X) subject to − Ψ (X) ≦ 0, G(X) = 0.

Furthermore, if rank Dρ̄a(1, X̄, µ̄, ν̄) = kd + 2, then the curve γ connecting
(
0, k0, µ0, ν0

)
to (1, X̄, µ̄, ν̄) has finite arc length.

3.2. K-means approximation

In order for the tradeoff curve to reflect an accurate picture of the differences between clustering based solely on the
cluster hypothesis and clustering based on the satisfaction of cluster constraints, it is important that the start function g(x)
accurately represents the state of the clustering as determined by the cluster hypothesis and that f (x) accurately represents
the state of the clustering as determined by the clustering constraints. The latter case is handled by the optimization problem
given above, but the former case requires a clustering formulation that will work in the context of a homotopy map.

The traditional K -Means clustering algorithm is the most popular clustering algorithm based on the cluster hypothesis
available. However, the K -Means function K : Rkd

→ R to be minimized,

K (X) =

k∑
i=1

∑
y∈Si

∥y − xi∥2,
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where Si is the set of all points in cluster i, with representative xi, is not C2, since cluster assignment is not differentiable.
Ideally, besides being a fair approximation of the K -Means clustering algorithm, the approximation K̂ (X) : Rkd

→ R will
have two additional qualities: It must be C3, and ∇X K̂ (X) : Rkd

→ Rkd must be bounded in the feasible region.
The most common such approximation [34] for a given data set Ŷ is

K̂ (X) =

|Ŷ |∑
i=1

k∑k
j=1

1
∥yi−xj∥2

.

This continuously differentiable approximation arises from posing the original K -Means clustering problem as a sum of
products of the weight or probability Pi,j(X) that a data point yi ∈ Ŷ belongs to a particular cluster represented by xj ∈ X̂ ,
measured here as

Pi,j =

1
∥yi−xj∥2∑k

m=1
1

∥yi−xm∥2

,

and a measure D̃i,j of the distance that the data point resides from the cluster representative, taken here as D̃i,j = ∥yi − xj∥2,
a simple square of the Euclidean distance from xj to yi. Thus, points very close to their cluster representatives have high
probability of belonging to that cluster, but bring a corresponding low value to the final optimization function, since such
points are considered ideal. Summing the products yields the approximation K̂ (X) =

∑
|Ŷ |

i=1
∑k

j=1Pi,jD̃i,j after cancellation.
Note, however, that this cancellation may yield overflow if ∥yi − xj∥ ≈ 0, in which case the summand for that index i is
taken as zero. These singularities are removable, and K̂ (X) is an entire function (in each of the components of X , viewed
as a complex vector). Minimizing K̂ (X) thus yields an approximation of the minimum of the original K -Means function.
Furthermore, ∇X K̂ (X) is bounded if X is bounded, and the components of ∇X K̂ (X) are also entire functions in each of the
components of (complex) X . Precisely,

∂K̂ (X)
∂xbc

=

|Ŷ |∑
i=1

2k(xbc − yic)

∥yi − xb∥4
(∑k

j=1
1

∥yi−xj∥2
)
2

is bounded if X is bounded, with the same removable singularities as K̂ (X).
Note that while the problem has been represented here using the squared 2-norm as the measure of distance, points can

be ‘‘spread out’’ by using higher order (even) p-norms raised to the pth power. In fact, any C3 nonnegative function could be
used as the distance measure between data points; the squared 2-norm is simply the most convenient one for the present
purpose.

3.3. Second homotopy map

Generally inequality constraints are easier to deal with than equality constraints, so consider replacing the equality
constraint G(X) = 0 used for the first homotopy map ρ̄a by the inequality constraint Z(X) ≦ 0 discussed earlier. Keep
the same bounding constraint Ψ (X) ≧ 0. Using the same modified NCP function Φ as before, the equation

Φ(λ, µ, Ψ (X), h0) = 0

for h0 > 0, Ψ (k0) > 0, Φ(0, µ0, Ψ (k0), h0) = 0, and 0 ≦ λ < 1 forces Ψ (X) > 0 along the zero curve γ . Similarly the
equation

Φ(λ, ν,−Z(X), h1) = 0

for h1 > 0, Z(k0) < 0, Φ(0, ν0, −Z(k0), h1) = 0, and 0 ≦ λ < 1 forces Z(X) < 0 along γ . When λ = 1, these two equations
enforce the KKT conditions for the constraints −Ψ (X) ≦ 0, Z(X) ≦ 0 and their Lagrange multipliers µ, ν, respectively.

The Lagrangian function associated with (2) is

L̃(X, µ, ν) = F (C, X) − µΨ (X) + νZ(X),

and a KKT point (X̄ , µ̄, ν̄) for (2) satisfies

∇X L̃(X, µ, ν) = 0,
0 ≦ µ ⊥ Ψ (X) ≧ 0,
0 ≦ ν ⊥ −Z(X) ≧ 0.

Furthermore, should Z(X̄) < 0, the KKT point (X̄ , µ̄, 0) for (2) yields a KKT point (X̄ , µ̄, 0, . . . , 0) for (1).
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Finally, putting all the pieces together, the proposed constrained clustering homotopy map is

ρ̃a(λ, X, µ, ν) =⎛⎝(1 − tanh(60λ))(X − k0) + tanh(60λ)ϕ(λ, X, µ, ν)
Φ (λ, µ, Ψ (X), h0)
Φ (λ, ν,−Z(X), h1)

⎞⎠ ,

where

ϕ(λ, X, µ, ν) =(
(1 − λ)∇X K̂ (X) + λ∇X L̃(X, µ, ν)

)T
,

a = (k0, h0, h1) and k0 is any point for which Ψ (k0) > 0, Z(k0) < 0, and ∇X K̂ (k0) ≈ 0, e.g., a K -Means solution (locally)
minimizing K (X).

The X − k0 term in the above construction arises because ∇X K̂ (X) = 0 has multiple possible solutions. At the very
least, permutations of the cluster representatives in X will yield identical values for ∇X K̂ . The (X − k0) term ensures that
ρ̃a(0, X, µ, ν) = 0 has a unique solution as required by Theorem2. Since h0 > 0,Φ(0, µ, Ψ (k0), h0) = 0 uniquely determines
µ = µ0 > 0, and similarly h1 > 0,Φ(0, ν,−Z(k0), h1) = 0 uniquely determines ν = ν0 > 0. The tanh terms exist to prevent
the erroneous computation of singular Jacobians close to λ = 0.

Computationally, as mentioned earlier, tanh(60λ) = 1 in 64-bit arithmetic for λ > 0.3, and thus, for λ > 0.3, this map
functions identically to⎛⎝(

(1 − λ)∇X K̂ (X) + λ∇X L̃(X, µ, ν)
)T

Φ (λ, µ, Ψ (X), h0)
Φ (λ, ν,−Z(X), h1)

⎞⎠ .

3.4. Convergence proof

(1) Taking a =
(
k0, h0, h1

)
the map ρ̃(a, λ, X, µ, ν) = ρ̃a(λ, X, µ, ν) is transversal to zero: Observe that

Daρ̃(a, λ, X, µ, ν) =

diag
(
−(1 − tanh(60λ))I, −(1 − λ), −(1 − λ)

)
,

which has rank kd + 2 for 0 ≦ λ < 1.
(2) ρ̃a = 0 has a unique solution at λ = 0: For 0 ≦ λ ≦ 1 and Ψ (k0) > 0, Φ(λ, µ, Ψ (k0), h0) is a strictly increasing function
of µ, unbounded above, and therefore Φ0(0, µ, k0, h0) = 0 uniquely determines µ = µ0. Similarly, for 0 ≦ λ ≦ 1 and
Z(k0) < 0, Φ(λ, ν,−Z(k0), h1) is a strictly increasing function of ν, unbounded above, and therefore Φ(0, ν,−Z(k0), h1) = 0
uniquely determines ν = ν0. A straightforward calculation shows that D(X,µ,ν)ρ̃a(0, k0, µ0, ν0) is invertible.
(3) It is clear from the construction of ρ̃a that

ρ̃a(1, X, µ, ν) = 0

is equivalent to the KKT necessary conditions for the problem (2).
Therefore, ρ̃a satisfies conditions (1), (2), and (3) of Theorem 2, but the bounded γ condition (4) is not satisfied without

further assumptions. Conditions for the zero curve γ being bounded (and hence reaching a solution at λ = 1) are addressed
in the next lemma.

Lemma 2. Let Ψ (k0) > 0, Z(k0) < 0, γ be a zero curve of ρ̃a(λ, X, µ, ν) emanating from
(
0, k0, µ0, ν0

)
along which Dρ̃a has

full rank, and assume that ν is bounded along γ . Then γ itself is bounded for 0 ≦ λ ≦ 1.

Proof. For 0 ≦ λ < 1, Φ(λ, µ, Ψ (X), h0) = 0 along γ implies that µ > 0 and Ψ (X) > 0, which in turn implies that X
is bounded along γ . Since 0 ≦ λ ≦ 1, and ν is assumed to also be bounded along γ , it suffices to prove that µ is bounded
along γ . Assume otherwise, so there exists a sequence of points

(
λi, X i, µi, νi

)
on γ with µi ≧ 0, µi → ∞. Passing to a

subsequence if necessary, it may be assumed (by compactness) that
(
λi, X i, νi

)
→ (λ̄, X̄, ν̄).

Suppose Ψ (X̄) > 0. Then because Φ is strictly increasing in µ and unbounded above [26,32,33] Φ
(
λ̄, µi, Ψ (X̄), h0

)
→ 0

implies {µi} is bounded, a contradiction. Hence Ψ (X̄) = 0.
Suppose then that Ψ (X̄) = B − ∥X̄∥

2
= 0 and λ̄ > 0. In this case ∇XΨ (X̄) = −2X̄T

̸= 0 and (from the first component
of ρ̃a = 0) µi∇XΨ (X̄) = −2µiX̄T

→
1−tanh(60λ̄)
λ̄tanh(60λ̄)

(
X̄ − k0

)T
+

1−λ̄

λ̄
∇X K̂ (X̄) + ∇XF (C, X̄) + ν̄∇XZ(X̄) H⇒ {µi} is bounded, a

contradiction.
The remaining case is Ψ (X̄) = 0 and λ̄ = 0 H⇒ ∇XΨ (X̄) = −2X̄T

̸= 0 and

tanh(60λi)λiµi
(
∇XΨ (X̄)

)T
→ X̄ − k0
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H⇒ w
(
−∇XΨ (X̄)

)T
= k0 − X̄ ̸= 0 for some w > 0, since 0 = Ψ (X̄) ̸= Ψ (k0) > 0. Since −Ψ (X) is convex,

−∇XΨ (X̄)(k0 − X̄) ≦ −Ψ (k0) − (−Ψ (X̄)) < 0. Then 0 > (k0 − X̄)T
(
−∇XΨ (X̄)

)T
w = (k0 − X̄)T (k0 − X̄) > 0, a contradiction.

Therefore µ is bounded along γ for 0 ≦ λ ≦ 1. •

Note that ν and µ can both go to infinity as λ → 1 and the h0 and h1 terms vanish from Φ(λ, µ, Ψ (X), h0) and
Φ(λ, ν,−Z(X), h1), which corresponds to two or more mean prototypes approaching each other as both approach the
boundary of the region. This indicates multiple active constraints. The solution X̄ approached as λ → 1 will still yield a
KKT point for (2), although the Lagrange multipliers will not be available (however, they may be easily verified to be greater
than zero in such a case).

Note also that ν may be unbounded at some point before λ = 1, causing the method to fail. However, in practice, this
deficiency is rare enough that it has yet to be reproduced in any non-degenerate test case,making the assumption in Lemma2
reasonable.

Lemma 2 and the earlier discussion of ρ̃ directly yield the next homotopy convergence theorem.

Theorem 5. Using the notation of this section, define ρ̃ : Rkd
× (0, ∞) × (0, ∞) × [0, 1) × Rkd

× R × R → Rkd+2 by

ρ̃
(
k0, h0, h1, λ, X, µ, ν

)
=⎛⎝(1 − tanh(60λ))(X − k0) + tanh(60λ)ϕ(λ, X, µ, ν)

Φ (λ, µ, Ψ (X), h0)
Φ (λ, ν,−Z(X), h1)

⎞⎠
where

ϕ(λ, X, µ, ν) =(
(1 − λ)∇XK (X) + λ∇X L̃(X, µ, ν)

)T
.

Let Ψ (k0) > 0, Z(k0) < 0, a =
(
k0, h0, h1

)
, and

ρ̃a(λ, X, µ, ν) = ρ̃
(
k0, h0, h1, λ, X, µ, ν

)
.

Then for almost all a ∈ Rkd
× (0, ∞)× (0, ∞) there exists a zero curve γ of ρ̃a, emanating from

(
0, k0, µ0, ν0

)
, along which the

(kd + 2) × (kd + 3) Jacobian matrix Dρ̃a has full rank, that does not intersect itself and is disjoint from any other zeros of ρ̃a. If
ν is bounded along γ , then γ accumulates at a point (1, X̄, µ̄, ν̄), where (X̄, µ̄, ν̄) is a KKT point for the constrained clustering
problem

min
X

F (C, X) subject to − Ψ (X) ≦ 0, Z(X) ≦ 0.

Furthermore, if rank Dρ̃a(1, X̄, µ̄, ν̄) = kd + 2, then the curve γ connecting
(
0, k0, µ0, ν0

)
to (1, X̄, µ̄, ν̄) has finite arc length.

4. Experimental results

4.1. Random Constraints

Experiments to discover the effectiveness of the homotopy tracking algorithm with the proposed homotopy map,
as compared to popular existing constrained clustering algorithms, are presented here. The constraints used involve
combinations of ML and MNL constraints (solving problems involving solely ML constraints are fairly straightforward
polynomial time graph problems).

The existence of MNL constraints in the constraint sets is crucial to understanding the complexity of the test problems.
Davidson et al. [35] state that as a rough rule of thumb a set of constraints can be understood as fundamentally ‘‘difficult’’
for these iterative K -Means approaches if any single datapoint appears in k or more MNL constraints. As such, for each
dataset presented here, both an ‘‘easy’’ and a ‘‘difficult’’ set of constraints were generated. The ‘‘easy’’ constraint set involves
one hundred constraints such that no datapoint appears more than k − 1 times in a mix of ML and MNL constraints. The
‘‘difficult’’ constraint set, also one hundred constraints, involves predominatelyMNL constraints, and guarantees that at least
one datapoint is involved in kMNL constraints. In both cases, the generated constraints were completely random, with no a
priori knowledge about how well the generated constraints would guide the algorithms to a correct solution.

The datasets involved are all taken from the UCI machine learning dataset repository [36]. They represent a balanced
selection of moderately easy clustering problems without constraints, and should demonstrate some of the key differences
between the homotopy algorithms utilizing the maps ρ̄ and ρ̃ developed here and the K -Means algorithms used previously.
The datasets are ‘‘Liver Disorders’’ (liver), ‘‘Pima Indians Diabetes’’ (pima), ‘‘Steel Plates Faults’’ (faults), ‘‘Wine’’ (wine), ‘‘Iris’’
(iris), ‘‘Ionosphere’’ (iono), ‘‘Glass Identification’’ (glass), and ‘‘PAMAP2 Physical Activity Monitoring’’ (pamap). The datasets
‘‘faults’’ and ‘‘pamap’’ were modified in the following manner: The first three classification categories of the dataset ‘‘faults’’
were treated as additional data, and the last classification category was used for classification. The dataset ‘‘pamap’’ was
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Table 1
Dataset summary.

No. Instances No. Features No. Categories

liver 345 6 2
pima 768 7 2
faults 1 941 31 2
wine 178 12 3
iris 150 4 3
iono 351 34 2
glass 214 10 6
pamap 175498 53 12

modified by eliminating all data points of the ‘‘0’’ classification (as recommended by the contributors) and any data point
with a ‘‘NaN’’ data value. See Table 1 for the relevant details for each dataset.

The K -Means algorithms used for the comparison are those presented by Bilenko et al. [37]: metric pairwise constrained
K -Means (MPCK-Means), metric learning K -Means without pairwise constraints (MK-Means), and pairwise constrained
K -Means without metric learning (PCK-Means). The standard K -Means result is also presented, to be used as a baseline.
These algorithms were chosen for several reasons. First, K -Means is by far the most popular clustering algorithm, if only
because of its intuitive approach and ease of programming; thus, K -Means algorithms modified for constrained clustering
are the most likely to be consulted by researchers who are interested in constrained clustering problems. Second, these
constrained K -Means algorithms minimize a summed penalty function based on the distance from the cluster centroids to
the data points assigned to that cluster. While this penalty function may be discrete, it is still similar enough to the penalty
function presented here to make comparisons between these algorithms and the homotopy approach feasible.

It is worth noting immediately that three things set the homotopy algorithms apart from the K -Means algorithms
presented here. First, for the K -Means algorithms, the ordering of the constraints plays a nonnegligible role in the quality of
the final result, meaning that finding the best result theoretically involves searching every permutation of a given constraint
set (which is not computationally feasible). For a homotopy algorithm, the ordering of the constraints is unimportant.
Second, not only are problems involving concentrations of MNL constraints involving the same datapoint not qualitatively
more ‘‘difficult’’ for homotopy algorithms, but, since distances only need to be calculated once per iteration, problems
involving concentrations of datapoints are computationally less intense than problems where the constraints are more
diverse, at least until each datapoint is involved in at least one constraint. Finally, the homotopy algorithms, like the
K -Means algorithm, is limited to convex clusterings, which for some datasets can be potentially debilitating. In contrast, the
adapted K -Means algorithms presented here distinguish between cluster assignment and cluster centroids, which allows
for nonconvex clusterings.

Ten experiments are conducted for each algorithm on each dataset, and the tables report the minimum, median, and
maximum of the stated index for the ten experiments. Table 2 shows the adjusted Rand index [38] of each dataset measured
against the proper classification, for each algorithm discussed here, for 100 ‘‘easy’’ (in the sense of not NP-hard) constraints.
Table 3 shows the samedata for 100 ‘‘hard’’ (as inNP-hard) constraints. The exception is the ‘‘pamap’’ dataset,which used 250
of each constraint to allow for more differentiation (due to the massive size of the dataset). Note that these two tables show
the highest adjusted Rand index found along the homotopymethod’s reported trace, excluding theK -Means solution starting
point. For both of these tables the simpler homotopy map ρ̄ was used. Asterisks indicate the highest adjusted Rand index
found for the median results, with multiple asterisks indicating that several algorithms arrived at the same partitioning.

4.2. ϵ- and δ-constraints

One reasonable question that arises in semisupervised learning is what kinds of information would need to be present in
a clustering problem that could not be represented by the datapoints themselves. One answermakes reference to the cluster
hypothesis itself.

The cluster hypothesis states that if two datapoints are close to each other (for a vague notion of closeness), then they
should belong to the same cluster; if they are far apart, they should belong to different clusters. The constraints that
formalize this statement are the previously mentioned ϵ- and δ-constraints, which can be represented as disjunctions
and conjunctions of the classic ‘‘must-link’’ and ‘‘must-not-link’’ constraints [35]. This presents a useful way of generating
meaningful constraints to apply to the datasets at hand. The number of such constraints can grow quite large as the number
of datapoints in the set increases (depending on the values assigned to ϵ and δ), but the entire set of constraints need not
be brought to bear for the solution to show improvement. One advantage of such constraints is that they do not depend on
the ‘‘real’’ clustering, which is to say the classification, of a given dataset, which is often unknown in practice. Thus, applying
these constraints to test problems can yield tests of improvement in whatever measure of cluster hypothesis satisfaction is
desired (of which there are many).

100 random constraints were generated using ϵ- and δ-constraints based on reasonable values for the given data sets.
Since the adjusted Rand index is useless in this context, the Davies–Bouldin index (DBI) [39] was used instead. The DBI is
a nonnegative measure of conformity to the cluster hypothesis; a lower DBI indicates closer conformity to the clustering
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Table 2
Adjusted Rand index, ‘‘easy’’ constraints.

K -means MK-means PCK-means MPCK-means Homotopy ρ̄

−0.0064 −0.0036 −0.0042 −0.0045 −0.0040
liver −0.0064 −0.0036*

−0.0042 −0.0045 −0.0040
−0.0064 −0.0036 −0.0042 −0.0045 −0.0040

0.0744 0.0720 0.0510 0.0164 0.1322
pima 0.0744 0.0870 0.0510 0.0164 0.1322*

0.0744 0.1040 0.0510 0.0164 0.1322

0.1358 −0.1028 0.1109 −0.0863 0.1127
faults 0.1358*

−0.1028 0.1133 −0.0849 0.1127
0.1358 −0.1028 0.1159 −0.0837 0.1127

0.3711 0.7549 0.3420 0.6211 0.4377
wine 0.3711 0.7692* 0.3420 0.6211 0.4377

0.3394 0.8309 0.3420 0.6211 0.4377

0.4225 0.4290 0.5195 0.5234 0.8841
iris 0.7163 0.8857* 0.5195 0.5234 0.8841

0.7302 0.8857 0.5195 0.5234 0.8841

0.1728 0.1776 0.1122 0.1122 0.2450
iono 0.1776 0.1776 0.1122 0.1122 0.2450*

0.1776 0.1776 0.1122 0.1122 0.2450

0.1790 0.2023 0.1720 0.1824 0.1967
glass 0.1790 0.2023* 0.1720 0.1824 0.1967

0.2258 0.2482 0.1720 0.1824 0.2258

0.6457 0.3046 0.5560 0.2695 0.6457
pamap 0.6457* 0.3046 0.5560 0.2695 0.6457*

0.6457 0.3046 0.5560 0.2695 0.6457

Table 3
Adjusted Rand index, ‘‘hard’’ constraints.

K -means MK-means PCK-means MPCK-means Homotopy ρ̄

−0.0064 −0.0046 −0.0109 −0.0077 0.0400
liver −0.0064 −0.0046 −0.0080 −0.0052 0.0400*

−0.0064 −0.0046 0.0102 0.0253 0.0400

0.0744 0.0722 0.0652 0.0114 0.0775
pima 0.0744 0.0722 0.0696 0.0340 0.0775*

0.0744 0.0722 0.0696 0.0422 0.0775

0.1358 −0.1028 0.1324 −0.0839 0.1119
faults 0.1358 −0.1028 0.1420*

−0.0839 0.1119
0.1358 −0.1028 0.1459 −0.0832 0.1119

0.3394 0.7692 0.3265 0.6731 0.8666
wine 0.3711 0.7840 0.3818 0.7031 0.8666*

0.3711 0.8170 0.4451 0.8636 0.8666

0.4225 0.4290 0.5127 0.5411 0.9216
iris 0.7163 0.8857 0.6779 0.8017 0.9216*

0.7302 0.8857 0.8015 0.9222 0.9216

0.1728 0.1776 0.1049 0.1122 0.1943
iono 0.1776 0.1776 0.1413 0.1122 0.1943*

0.1776 0.1776 0.1413 0.1122 0.1943

0.0162 0.0000 0.1849 0.1560 0.0162
glass 0.1790 0.2023 0.2422* 0.1741 0.1790

0.2258 0.2482 0.2608 0.2102 0.2258

0.6457 0.2929 0.6454 0.2700 0.6513
pamap 0.6457 0.2929 0.6454 0.2700 0.6513*

0.6457 0.2929 0.6454 0.2700 0.6513

hypothesis. The ‘‘pamap’’ dataset was not used due to the difficulty in generating meaningful differences in the clusterings
with this sort of constraint. Table 4 shows these results. The (more computationally expensive) homotopy map ρ̃ was used
here to demonstrate the utility of incorporating the K -Means approximation function into the map. In these experiments
the best cluster found by the homotopy algorithm was also uniformly the last one.
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Table 4
Davies–Bouldin index, ϵ- and δ-constraints.

K-means MK-means PCK-means MPCK-means Homotopy ρ̃

1.7349 2.3067 1.7679 1.2516 0.8706
liver 1.7349 1.8801 1.4568 1.2516 0.8706*

1.7349 1.6682 1.3542 1.2516 0.8706

1.9995 0.9883 0.8762 0.8681 0.8094
pima 1.5653 1.9403 1.0585 1.4436 0.8601*

1.5387 1.9316 1.0585 1.4436 0.8601

0.9392 0.9883 0.8762 0.8681 0.8094
faults 0.9392 0.9652 0.8762 0.8681 0.8094*

0.9392 0.9652 0.8637 0.8681 0.8094

1.5126 1.6650 0.8185 1.5393 0.6604
wine 1.5126 1.5507 0.6542 1.4515 0.6097*

1.5126 1.4506 0.6101 1.3447 0.4948

0.7373 1.5023 1.4662 0.9612 0.9379
iris 0.7373 0.9455 0.8877 0.7175 0.6453*

0.7373 0.7445 0.7041 0.6585 0.5776

2.0706 2.0512 1.6898 1.6898 1.6188
iono 2.0706 1.8936 1.8936 1.6898 1.6188*

2.0706 1.8936 1.8919 1.6898 1.6188

3.4599 1.8348 1.0414 1.8284 2.2789
glass 2.2910 1.4204 1.0414* 1.2820 1.2204

1.7415 1.0621 1.0414 1.0038 0.2403

5. Conclusion

For the experiments that use the true classifications of these datasets to show the validity of the ‘‘easy’’ constraints
(Table 2), the homotopy method performed well for the pima, iris, and iono datasets, and performed well for the pamap
dataset when compared to the other constrained clustering metrics for the ‘‘easy’’ constraint set, although none of them
managed to improve on the K -Means starting points for that problem. The metric learning without pairwise constraints
algorithm (M-Kmeans) performed about as well, performing the best in the liver, wine, iris, and glass datasets. It is worth
noting that for the two largest datasets in terms of instance numbers (faults and pamap), no constrained clustering algorithm
approached the actual classification better than the straightforward K -Means solution. This is not entirely surprising, as a
dense population of datapoints means that any rearrangement of clustering, even one based on constraints known to be
correct, is going to inevitably cause a transfer of instances from a cluster where they satisfy the clustering hypothesis to one
where they do not, with an expected degradation of quality in the resulting partition.

The ‘‘hard’’ dataset saw a much better showing by the homotopy method, which performed the best for the liver, pima,
wine, iris, iono, and pamapdatasets. The faults and glass datasetswere, in this case, best captured by the pairwise constrained
K -Means algorithm. This demonstrates in particular the power of the homotopy map when faced with this kind of ‘‘hard’’
problem. The ordering of the constraints is quite important to the other algorithms, especially when a large number of
MNL constraints are employed, as is the case here. While these constraints were randomly generated, they were randomly
generated to satisfy the ‘‘hardness’’ of the constraint set, which meant that the first k + 1 constraints of each list were MNL
constraints all involving the same datapoint. This is exactly the kind of ordering guaranteed to give the other algorithms the
most difficulty in satisfying the constraints. The homotopy algorithm, on the other hand, is unbiased by constraint ordering,
and largely indifferent to constraint type.

The adjusted Rand index is a good tool for a posteriori judgment of clusters, but semisupervised clustering problems do
not have the classification a priori. The tools of the researcher are (usually) limited to intercluster and intracluster distances,
with limited extra informationnot presented as a dimension of the clustering. For this sort of situation, the homotopymethod
shines in the ϵ- and δ-constraint experiments (Table 4), due to the use of the K -Means approximation K̂ (X) in the homotopy
formulation. The net effect of this approximation is to cause the homotopy method to account for local minima of the
K -Means approximation as λ increases. Assuming that Ψ (X̂) > 0 and Z(X̂) < 0, with a small ν and µ, which is almost
always the case in practice, an X̂ at some λ̂ < 1 that would satisfy ∇XF (C, X̂) ≈ 0, but violate ∇X K̂ (X̂) ≈ 0, would not lie
along γ . Thus, γ contains those solutions that do not strongly violate the clustering hypothesis as arc length increases along
γ , resulting in the end point at λ = 1 being generally favorable to the cluster hypothesis.

All of this is an aside to the true purpose of the development of the homotopy map. The Dunn index [40] is a reasonable
tool for measuring the validity of multiple clusterings of the same dataset, although it is one that cannot handle nonconvex
clusters (hence it was not used in the ϵ- and δ-experiments). Figs. 2–5 show the utility of the homotopy map ρ̄ without
reference to the ‘‘correct’’ clustering, simulating the constraints that a researchermay reasonably discover on their own. Note
that generally, the Dunn index improves over the original K -Means clustering as constraints are satisfied. Since satisfying
the given set of constraints improves the quality of the discovered partitions, the improvement to the Dunn index (or other
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Fig. 2. The iris datasetwith ‘‘easy’’ constraints. TheDunn index is tracked against the arc length of γ in blue, while the satisfied constraints are tracked in red.
The Dunn Indices for the final homotopy (ρ̄) clustering (‘‘H’’), MK-Means clustering (‘‘M’’), and K -Means clustering (‘‘K’’) are also shown. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The iris dataset with ‘‘hard’’ constraints. The Dunn Indices for the final homotopy (ρ̄) clustering (‘‘H’’), MK-Means clustering (‘‘M’’), PK-Means
clustering (‘‘P’’), MPK-Means clustering (‘‘MP’’), and K -Means clustering (‘‘K’’) are also shown.

Fig. 4. The liver dataset with ‘‘easy’’ constraints.

clustermetric) can be viewed as providing a standard to judge imposed constraints. In this case, of course, the constraints are
all known to be valid. In addition, these figuresmake it easy to showhowvalid constraints can guide the homotopy algorithm
through regions of poor clustering to establish better partitions. For example, in Fig. 3 it is easy to see that several regions
of poor clustering are encountered as arc length increases along γ , but the final clustering in this case, with all constraints
satisfied, happens to be the best one. Of course, this need not be the case with these problems, but it would appear to speak
to the reasonable nature of these constraints.

The new homotopy approach for constrained clustering problems uses state-of-the-art mathematical software to
characterize multicriteria problems in constrained clustering. Just as in other applications of homotopy methods to science
and engineering, the application of homotopy methods to machine learning problems can usher in greater understanding
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Fig. 5. The liver dataset with ‘‘hard’’ constraints.

of solution sets and the value of constraints. Besides the strong mathematical foundations and rigorous formalisms brought
to classical machine learning problems, this homotopy approach has the potential to greatly reduce the ad hoc nature of
methodological experimentation that is prevalent in practice. The approach given here not only helps extract better patterns
from data, but also helps formally understand the internal workings of machine learning techniques. Future work includes
homotopymaps for othermulticriteriamachine learning problems such as information bottleneck, time series segmentation,
and transfer learning.
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